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Pompeu Fabra University, Spain Ulrike von Luxburg, MPI for Biological Cybernetics, Germany
Sridhar Mahadevan, University of Massachusetts, Amherst, USA Shie Mannor, Technion, Israel
Chris Meek, Microsoft Research, USA Marina Meila, University of Washington, USA Nico-
lai Meinshausen, University of Oxford, UK Vahab Mirrokni, Google Research, USA Mehryar
Mohri, New York University, USA Sebastian Nowozin, Microsoft Research, Cambridge, UK Man-
fred Opper, Technical University of Berlin, Germany Una-May O’Reilly, Massachusetts Institute
of Technology, USA Ronald Parr, Duke University, USA Martin Pelikan, Google Inc, USA Jie
Peng, University of California, Davis, USA Jan Peters, Technische Universität Darmstadt, Ger-
many Avi Pfeffer, Charles River Analytis, USA Joelle Pineau, McGill University, Canada Massi-
miliano Pontil, University College London, UK Yuan (Alan) Qi, Purdue University, USA Luc de



Raedt, Katholieke Universität Leuven, Belgium Alexander Rakhlin, University of Pennsylvania,
USA Ben Recht, University of Wisconsin, Madison, USA Saharon Rosset, Tel Aviv University,
Israel Ruslan Salakhutdinov, University of Toronto, Canada Marc Schoenauer, INRIA Saclay,
France Matthias Seeger, Ecole Polytechnique Federale de Lausanne, Switzerland John Shawe-
Taylor, University College London, UK Xiaotong Shen, University of Minnesota, USA Yoram
Singer, Google Research, USA Peter Spirtes, Carnegie Mellon University, USA Nathan Srebro,
Toyota Technical Institute at Chicago, USA Ingo Steinwart, University of Stuttgart, Germany Ben
Taskar, University of Washington, USA Yee Whye Teh, University of Oxford, UK Ivan Titov,
Saarland University, Germany Koji Tsuda, National Institute of Advanced Industrial Science and
Technology, Japan Zhuowen Tu, University of California San Diego, USA Nicolas Vayatis, Ecole
Normale Supérieure de Cachan, France S V N Vishwanathan, Purdue University, USA Martin J.
Wainwright, University of California at Berkeley, USA Manfred Warmuth, University of Califor-
nia at Santa Cruz, USA Stefan Wrobel, Fraunhofer IAIS and University of Bonn, Germany Eric
Xing, Carnegie Mellon University, USA Bin Yu, University of California at Berkeley, USA Tong
Zhang, Rutgers University, USA Hui Zou, University of Minnesota, USA

JMLR-MLOSS Editors

Mikio L. Braun, Technical University of Berlin, Germany Geoffrey Holmes, University of Waikato,
New Zealand Antti Honkela, University of Helsinki, Finland Balazs Kegl, University of Paris-Sud,
France Cheng Soon Ong, University of Melbourne, Australia Mark Reid, Australian National
University, Australia

JMLR Editorial Board

Naoki Abe, IBM TJ Watson Research Center, USA Yasemin Altun, Google Inc, Switzerland
Jean-Yves Audibert, CERTIS, France Jonathan Baxter, Australia National University, Australia
Richard K. Belew, University of California at San Diego, USA Kristin Bennett, Rensselaer Poly-
technic Institute, USA Christopher M. Bishop, Microsoft Research, Cambridge, UK Lashon
Booker, The Mitre Corporation, USA Henrik Boström, Stockholm University/KTH, Sweden Craig
Boutilier, University of Toronto, Canada Nello Cristianini, University of Bristol, UK Dennis De-
Coste, eBay Research, USA Thomas Dietterich, Oregon State University, USA Jennifer Dy,
Northeastern University, USA Saso Dzeroski, Jozef Stefan Institute, Slovenia Ran El-Yaniv, Tech-
nion, Israel Peter Flach, Bristol University, UK Emily Fox, University of Washington, USA Dan
Geiger, Technion, Israel Claudio Gentile, Università dell’Insubria, Italy Sally Goldman, Google
Research, USA Tom Griffiths, University of California at Berkeley, USA Carlos Guestrin, Uni-
versity of Washington, USA Stefan Harmeling, MPI for Intelligent Systems, Germany David
Heckerman, Microsoft Research, USA Katherine Heller, Duke University, USA Philipp Hennig,
MPI for Empirical Inference, Germany Larry Hunter, University of Colorado, USA Risi Kon-
dor, University of Chicago, USA Aryeh Kontorovich, Ben-Gurion University of the Negev, Israel
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Abstract

The main theme of this paper is to develop a novel eigenvalue optimization framework for learning
a Mahalanobis metric. Within this context, we introduce a novel metric learning approach called
DML-eig which is shown to be equivalent to a well-known eigenvalue optimization problem called
minimizing the maximal eigenvalue of a symmetric matrix (Overton, 1988; Lewis and Overton,
1996). Moreover, we formulate LMNN (Weinberger et al., 2005), one of the state-of-the-art metric
learning methods, as a similar eigenvalue optimization problem. This novel framework not only
provides new insights into metric learning but also opens new avenues to the design of efficient
metric learning algorithms. Indeed, first-order algorithms are developed for DML-eig and LMNN
which only need the computation of the largest eigenvector of a matrix per iteration. Their conver-
gence characteristics are rigorously established. Various experiments on benchmark data sets show
the competitive performance of our new approaches. In addition, we report an encouraging result
on a difficult and challenging face verification data set called Labeled Faces in the Wild (LFW).

Keywords: metric learning, convex optimization, semi-definite programming, first-order methods,
eigenvalue optimization, matrix factorization, face verification

1. Introduction

Distance metrics are fundamental concepts in machine learning since a proper choice of a metric
has crucial effects on the performance of both supervised and unsupervised learning algorithms.
For example, the k-nearest neighbor (k-NN) classifier depends on a distance function to identify
the nearest neighbors for classification. The k-means algorithm depends on the pairwise distance
measurements between examples for clustering, and most information retrieval methods rely on a
distance metric to identify the data points that are most similar to a given query. Recently, learning
a distance metric from data has been actively studied in machine learning (Bar-Hillel et al., 2005;
Davis et al., 2007; Goldberger et al., 2004; Rosales and Fung, 2006; Shen et al., 2009; Torresani and
Lee, 2007; Weinberger et al., 2005; Weinberger and Saul, 2008; Xing et al., 2002; Ying et al., 2009).
These methods have been successfully applied to many real-world application domains including

c©2012 Yiming Ying and Peng Li.
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information retrieval, face verification, image recognition (Chopra et al., 2005; Guillaumin et al.,
2009; Hoi et al., 2006) and bioinformatics (Kato and Nagano, 2010; Vert et al., 2007).

Most metric learning methods attempt to learn a distance metric from side information which
is often available in the form of pairwise constraints, that is, pairs of similar data points and pairs
of dissimilar data points. The information of similarity or dissimilarity between a pair of examples
can easily be collected from the label information in supervised classification. For example, we can
reasonably let two samples in the same class be a similar pair and samples in the distinct classes be a
dissimilar pair. In semi-supervised clustering, a small amount of knowledge is available concerning
pairwise (must-link or cannot-link) constraints between data items. This side information delivers
the message that a must-link pair of samples is a similar pair and a cannot-link one is a dissimilar
pair. A common theme in metric learning is to learn a distance metric such that the distance between
similar examples should be relatively smaller than that between dissimilar examples. Although the
distance metric can be a general function, the most prevalent one is the Mahalanobis metric defined
by dM(xi,x j) =

√
(xi− x j)#M(xi− x j) whereM is a positive semi-definite (p.s.d.) matrix.

In this work we restrict our attention to learning a Mahalanobis metric for k-nearest neigh-
bor (k-NN) classification. However, the proposed methods below can easily be adapted to metric
learning for semi-supervised k-means clustering. Our main contribution is summarized as follows.
Firstly, we introduce a novel approach called DML-eig mainly inspired by the original work of
Xing et al. (2002). Although our ultimate target is similar to theirs, our methods are essentially
different. In particular, we can show our approach is equivalent to a well-known eigenvalue op-
timization problem called minimizing the maximal eigenvalue of a symmetric matrix (Lewis and
Overton, 1996; Overton, 1988). We further show that the above novel optimization formulation can
also be extended to LMNN (Weinberger et al., 2005) and low-rank matrix factorization for collab-
orative filtering (Srebro et al., 2004). Secondly, in contrast to the full eigen-decomposition used
in many existing approaches to metric learning, we will develop novel approximate semi-definite
programming (SDP) algorithms for DML-eig and LMNN which only need the computation of the
largest eigenvector of a matrix per iteration. The algorithms combine and develop the Frank-Wolfe
algorithm (Frank and Wolfe, 1956; Hazan, 2008) and Nesterov’s smoothing techniques (Nesterov,
2005). Finally, its rigorous convergence characteristics will also be established, and experiments
on various UCI data sets and benchmark face data sets show the competitiveness of our new ap-
proaches. In addition, we report an encouraging result on a challenging face verification data set
called Labeled Faces in the Wild (Huang et al., 2007).

The paper is organized as follows. In Section 2, we propose our new approach (DML-eig)
for distance metric learning and show its equivalence to the well-known eigenvalue optimization
problem. In addition, a generalized eigenvalue-optimization formulation will be established for
LMNN and low-rank matrix factorization for collaborative filtering (Srebro et al., 2004). In Section
3, based on eigenvalue optimization formulations of DML-eig and LMNN, we develop novel first-
order algorithms. Their convergence rates are successfully established. Section 4 discusses the
related work. In Section 5, our proposed methods are compared with the state-of-the-art methods
through extensive experiments. The last section concludes the paper.

2. Metric Learning Model and Equivalent Formulation

We begin by introducing useful notations. Let Nn = {1,2, . . . ,n} for any n ∈ N. The space of
symmetric d times d matrices will be denoted by Sd and the cone of p.s.d. matrices is denoted by

2
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Sd+. For any X ,Y ∈ Rd×n, we denote the inner product in Sd by 〈X ,Y 〉 := Tr(X#Y ) where Tr(·)
denotes the trace of a matrix. The standard norm in Euclidean space is denoted by ‖ ·‖.

Throughout the paper, the training data is given by z := {(xi,yi) : i ∈ Nn} with input xi =
(x1i ,x2i , . . . ,xdi ) ∈ Rd , class label yi (not necessary binary) and later on we use the convention Xi j =
(xi− x j)(xi− x j)#. Then, for any M ∈ Sd+, the associated Mahalanobis distance between xi and x j
can be written as d2M(xi,x j) = (xi− x j)#M(xi− x j) = 〈Xi j,M〉. Let S index the similar pairs and D
index the dissimilar pairs. For instance, if (xi,x j) is a similar pair we denote it by τ= (i, j) ∈ S , and
write Xi j as Xτ for simplicity.

Given a set of pairwise distance constraints, the target of metric learning is to find a distance
matrix M such that the distance between the dissimilar pairs is large and the distance between the
similar pairs is small. There are many possible criteria to realize this intuition. Our model is mainly
inspired by Xing et al. (2002) where the authors proposed to maximize the sum of distances between
dissimilar pairs, while maintaining an upper bound on the sum of squared distances between similar
pairs. Specifically, the following criterion was used in Xing et al. (2002):

maxM∈Sd+ ∑(i, j)∈D dM(xi,x j)
s.t. ∑(i, j)∈S d2M(xi,x j)≤ 1.

(1)

An iterative projection method was proposed to solve the above problem. However, it usually takes
a long time to converge and the algorithm needs the computation of the full eigen-decomposition of
a matrix in each iteration.

In this paper, we propose to maximize the minimal squared distances between dissimilar pairs
while maintaining an upper bound for the sum of squared distances between similar pairs, that is,

maxM∈Sd+ min(i, j)∈D d2M(xi,x j)
s.t. ∑(i, j)∈S d2M(xi,x j)≤ 1.

(2)

Now, let XS = ∑(i, j)∈S Xi j we can rewrite problem (2) as follows:

maxM∈Sd+ minτ∈D〈Xτ,M〉
s.t. 〈XS ,M〉 ≤ 1.

(3)

This problem is obviously a semi-definite programming (SDP) since it is equivalent to

maxM∈Sd+ t
s.t. 〈Xτ,M〉 ≥ t, ∀τ= (i, j) ∈D,

〈XS ,M〉 ≤ 1.

In contrast to problem (1), the objective function and the constraints in (3) are linear with respect to
(w.r.t.) M. As shown in the next subsection, this simple but important property1 plays a critical role
in formulating problem (2) as an eigenvalue optimization problem. This equivalent formulation is
key to the design of efficient algorithms in Section 3.

The generation of the pairwise constraints plays an important role in learning a metric. If labels
are known then the learning setting is often referred to as supervised metric learning which can

1. One might consider replacing the objective ∑(i, j)∈D dM(xi,x j) in problem (1) by ∑(i, j)∈D d2M(xi,x j). This would also
lead to a simple linear constraint and linear objective function. However, as mentioned in Xing et al. (2002), it would
result inM always being rank 1 (i.e., the data are always projected onto a line).
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further be divided into two categories: the global metric learning and the local metric learning.
The global approach learns the distance metric in a global sense, that is, to satisfy all the pairwise
constraints simultaneously. The original model in Xing et al. (2002) is a global method which used
all the similar pairs (same labels) and dissimilar pairs (distinct labels). The local approach is to
learn a distance metric only using local pairwise constraints which usually outperforms the global
methods as observed in many previous studies. This is reasonable in the case of learning a metric
for the k-NN classifiers since k-NN classifiers are influenced most by the data items that are close to
the test/query examples. Since we are mainly concerned with learning a metric for k-NN classifier,
the pairwise constraints for DML-eig are generated locally, that is, the similar/dissimilar pairs are
k-nearest neighbors. The details can be found in the experimental section.

2.1 Equivalent Formulation as Eigenvalue Optimization

In this section we establish a min-max formulation of problem (3), which is finally shown to be
equivalent to an eigenvalue optimization problem called minimizing the maximal eigenvalue of sym-
metric matrices (Lewis and Overton, 1996; Overton, 1988).

For simplicity of notation, for any X ∈ Sd , we denote its maximum eigenvalue of X ∈ Sd by
λmax(X). Let D be the number of dissimilar pairs and the simplex is denoted by

,= {u ∈ R
D : uτ ≥ 0, ∑

τ∈D

uτ = 1}.

We also denote the spectrahedron by

P = {M ∈ S
d
+ : Tr(M) = 1}.

Now we can show problem (3) is indeed an eigenvalue optimization problem.

Theorem 1. Assume that XS is invertible and, for any τ∈D , let X̃τ= X−1/2S XτX
−1/2
S . Then, problem

(3) is equivalent to the following problem

max
S∈P

min
u∈, ∑τ∈D

uτ〈X̃τ,S〉, (4)

which can further be written as an eigenvalue optimization problem:

min
u∈,

max
S∈P
〈∑
τ∈D

uτX̃τ,S〉=min
u∈,

λmax
(
∑
τ∈D

uτX̃τ
)
. (5)

Proof. LetM∗ be an optimal solution of problem (3) and M̃∗ = M∗
〈XS ,M∗〉 . Then, we have 〈XS ,M̃

∗〉= 1
and

min
τ∈D
〈Xτ,M̃∗〉=min

τ∈D
〈Xτ,M∗〉/〈XS ,M∗〉 ≥min

τ∈D
〈Xτ,M∗〉,

since 〈XS ,M∗〉 ≤ 1. This implies that M̃∗ is also an optimal solution. Consequently, problem (3) is
equivalent to, up to a scaling constant,

arg max
M∈Sd+

{min
τ∈D
〈Xτ,M〉 : 〈XS ,M〉= 1}. (6)

Noting that minτ∈D〈Xτ,M〉 = minu∈,∑τ∈D uτ〈Xτ,M〉, the desired equivalence between (4) and (3)
follows by changing variable S= X1/2S MX1/2S in formulation (6).

4
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Also, note from Overton (1988) that maxM∈P 〈X ,M〉 = λmax(X). By the min-max theorem,
problem (4) can further be written by a well-known eigenvalue optimization problem:

min
u∈,

max
M∈P
〈∑
τ∈D

uτX̃τ,M〉=min
u∈,

λmax
(
∑
τ∈D

uτX̃τ
)
.

This completes the proof of the theorem.

The problem of minimizing the maximal eigenvalue of a symmetric matrix is well-known which
has important applications in engineering design, see Overton (1988); Lewis and Overton (1996).
Hereafter, we refer to metric learning formulation (3) (equivalently (4) or (5)) as DML-eig.

We end this subsection with two remarks. Firstly, Theorem 1 assumes that XS is invertible. In
practice, this can be achieved by enforcing a small ridge to the diagonal of the matrix XS , that is,
XS ←− XS + δId where Id is the identity matrix and δ > 0 is a very small ridge constant. Without
loss of generality, we assume that XS is positive definite throughout the paper. Secondly, when the
dimension d of the input space is very large, the computation of X−1/2S could be time-consuming.
Instead of directly inverting the matrix, one can use the Cholesky decomposition which is faster and
numerically more stable. Indeed, the Cholesky decomposition tells us that XS = LL# where L is a
lower triangular matrix with strictly positive diagonal entries. Hence, in (6) we can let S = L#ML
(i.e., M = (L−1)#SL−1) and Theorem 1 still holds true if we redefine, for any τ = (i, j) ∈ D , that
X̃τ = (L−1(xi− x j))(L−1(xi− x j))#. Therefore, it suffices to compute {L−1xi : i ∈ Nn} which can
efficiently be obtained by solving linear system of equations (e.g., using the operation L \ xi in
MATLAB).

2.2 Eigenvalue Optimization for LMNN

Weinberger et al. (2005) proposed the large margin nearest neighbor classification (LMNN) which is
one of the state-of-the-art metric learning methods. In analogy to the above argument for DML-eig,
we can also formulate LMNN as a generalized eigenvalue optimization problem.

Formulation (3) used the pairwise constraints in the form of similar/dissimilar pairs. In contrast,
LMNN aims to learn a metric using the relative distance constraints which are presented in the form
of triplets. With a little abuse of notation, we denote a triplet by τ= (i, j,k) which means that xi is
similar to x j and x j is dissimilar to xk. Then, denote the set of triplets by T which can be specified
based on label information (e.g., see Section 5). Given a set S of similar pairs and a set T of triplets,
the target of LMNN is to learn a distance metric such that k-nearest neighbors always belong to the
same class while examples from different classes are separated by a large margin. In particular, let
XS = ∑(i, j)∈S (xi− x j)(xi− x j)# andCτ = Xjk−Xi j, then LMNN can be rewritten as

minM,ξ (1− γ)∑τ∈T ξτ+ γTr(XSM)
s.t. 1−〈Cτ,M〉 ≤ ξτ,

M ∈ Sd+,ξτ ≥ 0, ∀τ= (i, j,k) ∈ T ,
(7)

where γ ∈ [0,1] is a trade-off parameter.
Let T be the number of triplets, that is, the cardinality of the triplet set T . We can establish the

following equivalent min-max formulation of LMNN. A similar result with a quite different proof
has also been given in Baes and Bürgisser (2009) for a certain class of SDP problems.
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Lemma 2. LMNN formulation (7) is equivalent to

max
M∈Sd+,ξ≥0

{
min
τ
(ξτ+ 〈Cτ,M〉) : γTr(XSM)+(1− γ)∑

τ
ξτ = 1

}
. (8)

Proof. Write the LMNN formulation (7) as

minM,ξ (1− γ)∑τ∈T ξτ+ γTr(XSM)
s.t. 〈Cτ,M〉+ξτ ≥ 1,

M ∈ Sd+,ξτ ≥ 0, ∀τ= (i, j,k) ∈ T .
(9)

The condition that 〈Cτ,M〉+ ξτ ≥ 1 for any τ ∈ T is identical to minτ∈T 〈Cτ,M〉+ ξτ ≥ 1. Hence,
problem (7) is further equivalent to

minM,ξ (1− γ)∑τ∈T ξτ+ γTr(XSM)
s.t. minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ ≥ 1,

M ∈ Sd+,ξ≥ 0.
(10)

Since the objective function and the constraints are linear w.r.t. variable (M,ξ), the optimal solution
for (10) must be attained on the boundary of the feasible domain, that is, minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ=
1. Consequently, problem (10) is identical to

minM,ξ (1− γ)∑τ∈T ξτ+ γTr(XSM)
s.t. minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ = 1,

M ∈ Sd+,ξ≥ 0.
(11)

Let Ω=
{
(M,ξ) : minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ ≥ 0,M ∈ Sd+,ξ≥ 0

}
.We first claim that (11) is equiv-

alent to
min
M,ξ

{
(1− γ)∑τ∈T ξτ+ γTr(XSM)

minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ
: (M,ξ) ∈Ω

}
. (12)

To see this equivalence, let φ1 be the optimal value of problem (11) and φ2 be the optimal value of
problem (12). Suppose that (M∗,ξ∗) be an optimal solution of problem (12). Let δ∗ =
minτ=(i, j,k)∈T 〈Cτ,M∗〉+ξ∗τ and denote (M̃∗, ξ̃∗) = (M∗/δ∗,ξ∗/δ∗). Then, for anyM ∈ Sd+ and ξ≥ 0
satisfying minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ = 1,

(1− γ)∑τ∈T ξτ+ γTr(XSM) = (1−γ)∑τ∈T ξτ+γTr(XSM)
minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ

≥ φ2 =
(1−γ)∑τ∈T ξ∗τ+γTr(XSM∗)
minτ=(i, j,k)∈T 〈Cτ,M∗〉+ξ∗τ

= (1− γ)∑τ∈T ξ̃
∗
τ+ γTr(XSM̃∗)≥ φ1,

where the last inequality follows from the fact that minτ=(i, j,k)∈T 〈Cτ,M̃∗〉+ ξ̃∗τ = 1. Since the above
inequality holds true for anyM ∈ Sd+ and ξ≥ 0 satisfying minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ = 1, we finally
get that φ1 ≥ φ2 ≥ φ1, that is, φ1 = φ2 and, moreover (M̃∗, ξ̃∗) is an optimal solution of problem
(11). This completes the equivalence between (11) and (12).

Now, rewrite problem (12) as

min
M,ξ

{( minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ
(1− γ)∑τ∈T ξτ+ γTr(XSM)

)−1
: (M,ξ) ∈Ω

}
,

6
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which is further equivalent to

max
M,ξ

{ minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ
(1− γ)∑τ∈T ξτ+ γTr(XSM)

: (M,ξ) ∈Ω

}
. (13)

Using exactly the same argument of proving the equivalence between (11) and (12), one can show
that the above problem (13) is equivalent to

max
M,ξ

{
min

τ=(i, j,k)∈T
〈Cτ,M〉+ξτ : (1− γ)∑

τ∈T

ξτ+ γTr(XSM) = 1,(M,ξ) ∈Ω
}
. (14)

Now consider problem (14) without the restriction (M,ξ) ∈Ω, that is,

max
M,ξ

{
min

τ=(i, j,k)∈T
〈Cτ,M〉+ξτ : (1− γ)∑

τ∈T

ξτ+ γTr(XSM) = 1,M ∈ S
d
+, ξ≥ 0

}
. (15)

Let M̃ = 0 and ξ̃τ = 1
(1−γ)T for any τ which obviously satisfies the restriction condition of problem

(15), that is, (1− γ)∑τ∈T ξ̃τ+ γTr(XSM̃) = 1. Then,

maxM,ξ

{
minτ=(i, j,k)∈T 〈Cτ,M〉+ξτ : (1− γ)∑τ∈T ξτ+ γTr(XSM) = 1,M ∈ Sd+, ξ≥ 0

}

≥minτ=(i, j,k)∈T 〈Cτ,M̃〉+ ξ̃τ = 1
(1−γ)T > 0,

which means that any optimal solution for problem (15) automatically satisfies (M,ξ) ∈ Ω. Con-
sequently, problem (15) is equivalent to (14). Combining this with the equivalence between (11),
(12), (13) and (14) finally yields the equivalence between problem (15) and the primal formulation
(7) of LMNN. This completes the proof of the lemma.

Using the above min-max representation for LMNN, it is now easy to reformulate LMNN as a
generalized eigenvalue optimization as we will do below. With a little abuse of notation, denote the
simplex by,= {u ∈ RT : ∑τ∈T uτ = 1, uτ ≥ 0}.

Theorem 3. Assume that XS is invertible and, for any τ ∈ T , let C̃τ = X−1/2S CτX
−1/2
S . Then, LMNN

is equivalent to the following problem

max
S,ξ

{
min
u∈, ∑τ∈T

uτ
(
ξτ+ 〈C̃τ,S〉

)
: (1− γ)ξ#1+ γTr(S) = 1,S ∈ S

d
+, ξ≥ 0

}
, (16)

where 1 is a column vector with all entries one. Moreover, it can further be written as a generalized
eigenvalue optimization problem:

min
u∈,

max
( 1
1− γ

umax,
1
γ
λmax

(
∑
τ∈T

uτC̃τ
))

, (17)

where umax is the maximum element of the vector (uτ : τ ∈ T ).

Proof. Note that minτ=(i, j,k)∈T
(
〈Cτ,M〉+ξτ

)
=minu∈, uτ

(
〈Cτ,M〉+ξτ

)
.Combing this with Lemma

2 implies that LMNN is equivalent to

max
M,ξ

{
min
u∈, ∑τ∈D

uτ
(
ξτ+ 〈Cτ,M〉

)
: (1− γ)ξ#1+ γTr(XSM) = 1,M ∈ S

d
+, ξ≥ 0

}
.

7
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Letting S= X1/2S MX1/2S yields the equivalence between (8) and (16).
By the min-max theorem, problem (16) is equivalent to

min
u∈,

{
max
S,ξ
∑
τ∈D

uτ
(
ξτ+ 〈C̃τ,S〉

)
: (1− γ)ξ#1+ γTr(S) = 1,S ∈ S

d
+, ξ≥ 0

}
. (18)

To see the equivalence between (18) and (17), observe that

max
{
∑τ∈D uτ

(
ξτ+ 〈C̃τ,S〉

)
: (1− γ)ξ#1+ γTr(S) = 1,S ∈ Sd+, ξ≥ 0

}

=max
{

1
1−γ ∑

τ∈D

uτξτ+ 1
γ 〈∑
τ∈D

uτC̃τ,S〉 : ξ#1+Tr(S) = 1,S ∈ S
d
+, ξ≥ 0

}

=max
(

1
1−γumax,

1
γ λmax

(
∑
τ∈D

uτC̃τ
))

,

where the last equality follows from the fact that the above maximization problem is a linear pro-
gramming w.r.t. (S,ξ) and, for any A ∈ Sd , max{〈A,B〉 : B ∈ Sd+, Tr(B) ≤ 1} = λmax(A). This
completes the proof of the theorem.

Since we have formulated LMNN as an eigenvalue optimization problem in the above theorem,
hereafter we refer to formulation (16) (equivalently (17)) as LMNN-eig. The above eigenvalue
optimization formulation is not restricted to metric learning problems. It can be extended to other
machine learning tasks if their SDP formulation is similar to that of LMNN. Maximum-margin
matrix factorization (Srebro et al., 2004) is one of such examples. Its eigenvalue optimization
formulation can be found in Appendix A.

3. Eigenvalue Optimization Algorithms

In this section we develop efficient algorithms for solving DML-eig and LMNN-eig. We can di-
rectly employ the entropy smoothing techniques (Nesterov, 2007; Baes and Bürgisser, 2009) for
eigenvalue optimization which, however, needs the computation of the full eigen-decomposition per
iteration. Instead, we propose a new first-order method by developing and combining the smooth-
ing techniques (Nesterov, 2005) and Frank-Wolfe algorithm (Frank and Wolfe, 1956; Hazan, 2008),
which will only involve the computation of the largest eigenvector of a matrix.

3.1 Approximate Frank-Wolfe Algorithm for DML-eig

By Theorem 1, DML-eig is identical to problem:

max
S∈P

f (S) =max
S∈P

min
u∈, ∑τ∈D

uτ〈X̃τ,S〉. (19)

To this end, for a smoothing parameter µ> 0, define

fµ(S) =min
u∈, ∑τ∈D

uτ〈X̃τ,S〉+µ∑
τ∈D

uτ lnuτ.

We use the smoothed problem maxS∈P fµ(S) to approximate problem (19).
It is easy to see that

fµ(S) =−µln
(
∑
τ∈D

e−〈X̃τ,S〉/µ
)
,

8
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Input:
· smoothing parameter µ> 0 (e.g., 10−5)
· tolerance value tol (e.g., 10−5)
· step sizes {αt ∈ (0,1) : t ∈ N}

Initialization: Sµ1 ∈ Sd+ with Tr(S
µ
1) = 1

for t = 1,2,3, . . . do
· Zµt = argmax

{
fµ(St)+ 〈Z,∇ fµ(S

µ
t )〉 : Z ∈ Sd+, Tr(Z) = 1

}
, that is, Zµt = vv#

where v is the maximal eigenvector of matrix ∇ fµ(Sµt )
· Sµt+1 = (1−αt)Sµt +αtZ

µ
t

· if | fµ(Sµt+1)− fµ(S
µ
t )|< tol then break

Output: d×d matrix Sµt ∈ Sd+

Table 1: Approximate Frank-Wolfe Algorithm for DML-eig

and

∇ fµ(S) =
∑τ∈D e−〈X̃τ,S〉/µX̃τ
∑τ∈D e−〈X̃τ,S〉/µ

.

Since fµ is a smooth function, we can prove that its gradient is Lipschitz continuous.

Lemma 4. For any S1,S2 ∈ P , then

‖∇ fµ(S1)−∇ fµ(S2)‖ ≤Cµ‖S1−S2‖,

where Cµ= 2maxτ∈D ‖X̃τ‖2/µ.

Proof. It suffices to see ‖∇2 fµ(S)‖ ≤ 2maxτ∈D ‖X̃τ‖2/µ. To this end,

∇2 fµ(S) = (∑τ∈D e−〈X̃τ,S〉/µX̃τ)
⊗

(∑τ∈D e−〈X̃τ,S〉/µX̃τ)

µ
(
∑τ∈D e−〈X̃τ,S〉/µ

)2 − ∑τ∈D e−〈X̃τ,S〉/µX̃τ
⊗
X̃τ

µ∑τ∈D e−〈X̃τ,S〉/µ
:= I+ II,

where X
⊗
S denotes the tensor product of matrices X and S. We can estimate the term I as follows:

‖I‖ ≤
(
∑τ∈D e−〈X̃τ,S〉/µ‖X̃τ‖

)(
∑τ∈D e−〈X̃τ,S〉/µ‖X̃τ‖

)

µ
(
∑τ∈D e−〈X̃τ,S〉/µ

)2 ≤
1
µ
max
τ∈D
‖X̃τ‖2,

where, in the above inequality, we used the fact that ‖S
⊗
X‖ ≤ ‖X‖‖S‖ for any X ,S ∈ Sd . The

second term II can be similarly estimated:

‖II‖ ≤max
τ∈D
‖X̃τ‖2/µ.

Putting them together yields the desired result.

The pseudo-code to solve DML-eig is described in Table 1 which is a generalization of Frank-
wolfe algorithm (Frank and Wolfe, 1956) which originally applies to the context of minimizing a
convex function over a feasible polytope. Hazan (2008) first extended the original Frank-Wolfe
algorithm to solve SDP over the spectrahedron P = {M :M ∈ Sd+,Tr(M) = 1}. Recall that D is the
cardinality of D , that is, the number of dissimilar pairs. Then, we have the following convergence
result.

9
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Lemma 5. For any 0< µ≤ 1, let {Sµt : t ∈ N} be generated by the algorithm in Table 1 and Cµ be
defined in Lemma 4. Then we have that

max
S∈P

fµ(S)− fµ(S
µ
t+1)≤Cµα

2
t +(1−αt)

(
max
S∈P

fµ(S)− f (Sµt )
)
.

Proof. By the definition ofCµ in Lemma 4, we have

fµ(S
µ
t+1)≥ fµ(S

µ
t )+αt〈∇ fµ(S

µ
t ),Zt−S

µ
t 〉−Cµα2t . (20)

Since f is concave, for any S ∈ P there holds

〈∇ fµ(S
µ
t ),Zt−S

µ
t 〉 ≥ 〈∇ fµ(S

µ
t ),S−S

µ
t 〉 ≥ fµ(S)− f (Sµt ),

which implies that
〈∇ fµ(S

µ
t ),Zt−S

µ
t 〉 ≥max

S∈P
fµ(S)− fµ(S

µ
t ).

Substituting the above inequality into (20) yields the desired result.

For simplicity, let Rt = maxS∈P fµ(S)− fµ(S
µ
t ). If αt ∈ (0,1] for any t ≥ t0 with some t0 ∈ N,

then by Lemma 5 and a simple induction, for any t ≥ t0 there holds

Rt+1 ≤Cµ
t

∑
j=t0

t

∏
k= j+1

(1−αk)α2j +
t

∏
j=t0

(1−α j)Rt0 . (21)

Combining this inequality and some ideas in Ying and Zhou (2006), one can establish sufficient
conditions on the stepsizes {αt : t ∈ N} such that limt→∞ fµ(S

µ
t ) =minS∈P fµ(S).

Theorem 6. For any fixed µ> 0, let {Sµt : t ∈ N} be generated by the algorithm in Table 1. If the
step sizes satisfy that

∑
t∈N

αt = ∞, lim
t→∞

αt = 0, (22)

then
lim
t→∞

fµ(S
µ
t ) =max

S∈P
fµ(S).

The detailed proof of the above theorem is given in Appendix B. Typical examples of step sizes
satisfying condition (22) are {αt = t−θ : t ∈ N} with 0 < θ ≤ 1. For the particular case θ = 1, by
Lemma 5 we can prove the following result.

Theorem 7. For any 0 < µ≤ 1, let {Sµt : t ∈ N} be generated by Table 1 with step sizes given by
{αt = 2/(t+1) : t ∈ N}. Then, for any t ∈ N we have that

max
S∈P

fµ(S)− fµ(S
µ
t )≤

8maxτ∈D ‖X̃τ‖2

µt
+
4lnD
t

. (23)

Furthermore,

max
S∈P

f (S)− f (Sµt )≤ 2µlnD+
8maxτ∈D ‖X̃τ‖2

µt
+
8lnD
t

.
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Proof. It is easy to see, for any S ∈ P that

| f (S)− fµ(S)|≤ µmax
u∈,

∑
τ∈D

(−uτ lnuτ)≤ µlnD.

Let S∗ = argmaxS∈P f (S) and S
µ
∗ = argmaxS∈P fµ(S). Then, for any t ∈ N,

maxS∈P f (S)− f (Sµt ) = [ f (S∗)− fµ(S∗)]+ [ fµ(S∗)−maxS∈P fµ(S)]
+[ fµ(S

µ
∗)− fµ(S

µ
t )]+ [ fµ(S

µ
t )− f (Sµt )]

≤ [ f (S∗)− fµ(S∗)]+ [ fµ(S
µ
∗)− fµ(S

µ
t )]+ [ fµ(S

µ
t )− f (Sµt )]

≤ 2µlnD+[ fµ(S
µ
∗)− fµ(S

µ
t )]

= 2µlnD+[maxS∈P fµ(S)− fµ(S
µ
t )].

Hence, it suffices to prove (23) by induction. Indeed, for t = 1, we have that

maxS∈P fµ(S)− fµ(S
µ
1) ≤ fµ(S

µ
∗)+µsupu∈,(∑τ∈D(−uτ lnuτ))

≤maxS∈P minu∈,∑τ∈D uτ〈X̃τ,S〉+µlnD
≤maxS∈P minu∈,∑τ∈D uτ‖X̃τ‖‖S‖+µlnD
≤minu∈,∑τ∈D uτ‖X̃τ‖+µlnD
≤minu∈,

[
∑τ∈D uτ+∑τ∈D uτ‖X̃τ‖2

]
+µlnD

≤ 1+maxτ∈D ‖X̃τ‖2+µlnD,

which obviously satisfies (23) with t = 1. Suppose the inequality (23) holds true for some t > 1.
Now by Lemma 5,

Rt+1 ≤Cµα2t +(1−αt)Rt
≤

4Cµ
(t+1)2 +

t−1
t+1

(4Cµ
t + 4lnD

t
)

≤ 4(Cµ+ lnD)
( 1
(t+1)2 +

t−1
(t+1)t

)
≤

4(Cµ+lnD)
t+1 ,

where the second inequality follows from the induction assumption. This proves the inequality (23)
for all t ∈ N which completes the proof of the theorem.

By the above theorem, for any ε > 0, then µ = ε
4lnD and the iteration number t ≥

64(1+maxτ∈D ‖X̃τ‖2) lnD/ε2 yields that maxS∈P f (S)− f (Sµt ) ≤ ε. The time complexity of the
approximate first-order method for DML-eig is of O

(
d2/ε2

)
.

3.2 Approximate Frank-Wolfe Algorithm for LMNN-eig

We can easily extend the above approximate Frank-Wolfe algorithm to solve the eigenvalue opti-
mization formulation of LMNN-eig (formulation (16) or (17)). To this end, let

f (S,ξ) =min
u∈, ∑τ∈D

uτ
(
ξτ+ 〈C̃τ,S〉

)
.

Then, problem (16) is identical to

max
{
f (S,ξ) : (1− γ)∑

τ
ξτ+ γTr(S) = 1,S ∈ S

d
+, ξ≥ 0

}
.

11
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Input:
· smoothing parameter µ> 0 (e.g., 10−5)
· tolerance value tol (e.g., 10−5)
· step sizes {αt ∈ (0,1) : t ∈ N}

Initialization: Sµ1 ∈ Sd+ with Tr(S
µ
1) = 1 and ξ

µ
1 ≥ 0

for t = 1,2,3, . . . do
· (Zµt ,β

µ
t ) = argmax

{
〈Z,∂S fµ(S

µ
t ,ξ

µ
t )〉+ξ#∂ξ fµ(S

µ
t ,ξ

µ
t ) : Z ∈ Sd+, ξ≥ 0

(1− γ)ξ#1+ γTr(Z) = 1
}

· (Sµt+1,ξ
µ
t+1) = (1−αt)(Sµt ,ξ

µ
t )+αt(Z

µ
t ,β

µ
t )

· if | fµ(Sµt+1,ξ
µ
t+1)− fµ(S

µ
t ,ξ

µ
t )|< tol then break

Output: d×d matrix Sµt ∈ Sd+ and slack variables ξ
µ
t

Table 2: Approximate Frank-Wolfe Algorithm for LMNN-eig

In analogy to the smooth techniques applied to DML-eig, we approximate f (S,ξ) by the following
smooth function:

fµ(S,ξ) =min
u∈, ∑τ∈D

uτ(ξτ+ 〈C̃τ,S〉)+µ∑
τ∈D

uτ lnuτ.

One can easily see that
fµ(S,ξ) =−µln

(
∑
τ∈T

e−(〈C̃τ,S〉+ξτ)/µ
)
.

and its gradient function is given by

∇S fµ(S,ξ) =
∑τ∈T e−(〈C̃τ,S〉+ξτ)/µC̃τ
∑τ∈T e−(〈C̃τ,S〉+ξτ)/µ

,

and
∂ fµ(S,ξ)
∂ξτ

=
e−(〈C̃τ,S〉+ξτ)/µ

∑τ∈T e−(〈C̃τ,S〉+ξτ)/µ
.

The approximate Frank-Wolfe algorithm for LMNN-eig is exactly the same as DML-eig in
Table 1. The pseudo-code is listed in Table 2. The key step of the algorithm is to compute the
following problem:

(Zµt ,β
µ
t ) = argmax

{
〈Z,∂S fµ(S

µ
t ,ξ

µ
t )〉+ξ#∂ξ fµ(S

µ
t ,ξ

µ
t ) : Z ∈ Sd+, ξ≥ 0

(1− γ)ξ#1+ γTr(Z) = 1
}
.

Equivalently, one needs to solve, for any A ∈ Sd and β ∈ RT , the following problem:

(Z∗,ξ∗) = argmax
{
〈Z,A〉+ξ#β : Z ∈ Sd+, ξ≥ 0,(1− γ)ξ#1+ γTr(Z) = 1

}
. (24)

Let βmax = βτ∗ with τ∗ ∈ T and v∗ is the largest eigenvector of A. Then, problem (24) is a linear
programming and its optimal value is either

max
{
ξ#β : (1− γ)ξ#1= 1,ξ≥ 0

}
=
βmax
1− γ

,

12
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or

max
{
〈Z,A〉 : γTr(Z) = 1,Z ∈ S

d
+

}
=
λmax(A)

γ
.

The optimal solution of problem (24) is given as follows. If λmax(A)γ >= βmax
1−γ , then Z

∗ = v∗(v∗)#
γ

where v∗ is the largest eigenvector of matrix A and ξ∗ = 0. Otherwise, Z∗ = 0 and the τ∗-th element
of ξ∗ equals 1

1−γ , that is, (ξ
∗)τ∗ =

1
1−γ and the other entries of ξ

∗ all zeros. In analogy to the
arguments for Theorem 7, for step sizes {αt = 2

t+1 : t ∈N} one can exactly prove the time complexity
of LMNN-eig is O(d2/ε2).

4. Related Work and Discussion

There is a large amount of work on metric learning including distance metric learning for k-means
clustering (Xing et al., 2002), relevant component analysis (RCA) (Bar-Hillel et al., 2005), max-
imally collapsing metric learning (MCML) (Goldberger et al., 2004), neighborhood component
analysis (NCA) (Goldberger et al., 2004) and an information-theoretic approach to metric learning
(ITML) (Davis et al., 2007) etc. We refer the readers to Yang and Jin (2007) for a nice survey on
metric learning. Below we discuss some specific metric learning models which are closely related
to our work.

Xing et al. (2002) developed the metric learning model (2) to learn a Mahalanobis metric for
k-means clustering. The main idea is to maximize the distance between points in the dissimilarity
set under the constraint that the distance between points in the similarity set is upper-bounded. A
projection gradient method is employed to obtain the optimal solution. Specifically, at each iteration
the algorithm takes a gradient ascent step of the objective function and then projects it back to the
set of constraints and the cone of the p.s.d. matrices. The projection to the p.s.d. cone needs the
computation of the full eigen-decomposition with time complexity O(d3). The projection gradient
method usually takes a large number of iterations to become convergent. It is worth mentioning that
the metric learning model proposed in Xing et al. (2002) is a global method in the sense that the
model aggregates all similarity constraints together as well as all dissimilarity constraints. In con-
trast to Xing et al. (2002), DML-eig aims to maximize the minimal distance between dissimilar pairs
instead of maximizing the summation of their distances. Consequently, DML-eig would intuitively
force the dissimilar samples to be far more separated from similar samples. This intuition may
account for the superior performance of DML-eig which will be shown soon in the experimental
section.

Weinberger et al. (2005) developed a large margin framework to learn a Mahalanobis distance
metric for k-nearest neighbor (k-NN) classification (LMNN). The main intuition behind LMNN is
that k-nearest neighbors always belong to the same class while examples from different classes are
separated by a large margin. In contrast to the global method (Xing et al., 2002), LMNN is a local
method in the sense that only triplets from the k-nearest neighbors are used. Our method DML-eig
is a local method which only uses the similar pairs and dissimilar pairs from k-nearest neighbors.

Since every M ∈ Sd+ can be factored as M = AA# for some A ∈ Rd×d , LMNN becomes an
unconstrained optimization problem with an unconstrained variable A. Weinberger et al. (2005)
used this idea and proposed to use the sub-gradient method to obtain the optimal solution. Since the
modified problem w.r.t. variable A is generally not convex, the sub-gradient method would lead to
local minimizers. For some special SDP problems, it was shown in Burer and Monteiro (2003) that
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such dilemma will not happen. Specifically, Burer and Monteiro (2003) considered the following
SDPs:

min
{
Tr(CM) : Tr(AiM) = bi, i= 1, . . . ,m,M ∈ S

d
+

}
. (25)

It was proved that if A∗ is a local minimum of the modified problem:

min
{
Tr(CAA#) : Tr(AiAA#) = bi, i= 1, . . . ,m,A ∈ R

d×d
}
,

thenM∗ = A∗(A∗)# is a global minimum of the primal problem (25). However, since the hinge loss
is not smooth, it is unclear how their proof can be adapted to the case of LMNN.

Rosales and Fung (2006) proposed the following element-sparse metric learning for
high-dimensional data sets

min
M∈Sd+

∑
t=(i, j,k)∈T

(1+ x#i jMxi j− x
#
k jMxk j)++ γ ∑

!,k∈Nd

|M!k|. (26)

In order to solve the optimization problem, they further proposed to restrict M to the space of
diagonal dominance matrices which reduces formulation (26) to a linear programming problem.
Such a restriction would only result in a sub-optimal solution.

Shalev-Shwartz et al. (2004) developed an appealing online learning model for learning a Ma-
halanobis distance metric. In each time, given a pair of examples the p.s.d. distance matrix is
updated by a rank-one matrix which only needs the time complexity O(d2). However, since the
pairs of similarly labeled and differently labeled examples are usually of order O(n2), the online
learning procedure takes many rank-one matrix updates. Jin et al. (2009) established generalization
bounds for large margin metric learning and proposed an adaptive way to adjust the step sizes of
the online metric learning method in order to guarantee the output matrix in each step is positive
semi-definite. Since the pairs of similarity and dissimilarity are usually of order O(n2) where n is
the sample number, the online learning procedure generally needs many matrix updates.

Shen et al. (2009) recently employed the exponential loss for metric learning which can be
written by

min
M∈Sd+

∑
τ=(i, j,k)∈T

e〈Cτ,M〉+Tr(M),

where T is the triplet set andCτ = (xi−x j)(xi−x j)#− (x j−xk)(x j−xk)# for any τ= (i, j,k) ∈ T .
A boosting-based algorithm called BoostMetric was developed which is based on the idea that
each p.s.d. matrix can be decomposed into a linear positive combination of trace-one and rank-
one matrices. The algorithm is essentially a column-generation scheme which iteratively finds the
linear combination coefficients of the current basis set of rank-one matrices and then update the
basis set of trace-one and rank-one matrices. The updating of rank-one and trace-one matrix only
involves the computation of the largest eigenvector which is of time complexity O(d2). However,
the number of linear combination for the p.s.d. matrix can be infinite and the convergence rate of
this column-generation algorithm is not clear.

Recently, Guillaumin et al. (2009) proposed a metric learning model with logistic regression
loss which is referred to as LDML. Promising results were reported in its application to face ver-
ification problems. LDML employed the gradient descent algorithm to obtain the optimal solu-
tion. However, in order to reduce the computational time, the algorithm ignored the positive semi-
definiteness of the distance matrix which would only lead to a suboptimal solution.
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Data No. n d "class " T "D
Wine 1 178 13 3 1134 378
Iris 2 150 4 3 954 315
Breast 3 569 30 2 3591 1197
Diabetes 4 768 8 2 4842 1614
Waveform 5 5000 21 3 3150 1050
Segment 6 2310 19 7 14553 4851
Optdigits 7 2680 64 10 24120 8040
Face 8 400 2576 40 2520 840
USPS 9 9298 256 10 58626 19542

Table 3: Description of data sets n is the number of samples and d is the dimensionality. For AT&T
face data set, we use PCA to reduce its dimension to 64.

5. Experiments

In this section we compare our proposed method DML-eig and LMNN-eig with a few methods:
the method proposed in Xing et al. (2002) denoted by Xing, LMNN (Weinberger et al., 2005)
and its accelerated version mLMNN (Weinberger and Saul, 2008), ITML (Davis et al., 2007),
BoostMetric (Shen et al., 2009) and the baseline algorithm that uses the standard Euclidean distance
denoted by Euc. For all the data sets we have set k = 3 for nearest neighbor classification. The
trade-off parameters in ITML, LMNN and LMNN-eig are tuned via three-fold cross validation.
The smoothing parameter for DML-eig and LMNN-eig is set to be µ= 10−4 and the maximum
iteration for DML-eig, BoostMetric, LMNN-eig is set to be 103.

We first run experiments on 9 data sets, that is, 1) wine, 2) iris, 3) Breast-Cancer, 4) the Indian
Pima Diabetes, 5) Waveform, 6) Segment, 7) Optdigits, 8) AT&T Face data set 2 and 9) USPS. The
statistics of data sets summarized in Table 3. All experimental results are obtained by averaging
over 10 runs (except 1 run for USPS due to its large size). For each run, we randomly split the data
sets 70% for training and 30% for test validation. We have used the same mechanism in Weinberger
et al. (2005) to generate training triplets. Briefly speaking, for each training point xi, k nearest
neighbors that have same labels as yi (targets) as well as k nearest neighbors that have different
labels from yi (imposers) are found. From xi and its corresponding targets and imposers, we then
construct the set of similar pairs S (same labels) and the set of dissimilar pairs D (distinct labels),
and the set of triplets T . As mentioned above, the original formulation in Xing et al. (2002) used all
pairwise constraints. We emphasize here, for fairness of comparison (especially the running time
comparison), that all methods including the Xing’s method used the same set of similar/dissimilar
pairs generated locally as above.

Finally we will apply the developed models and algorithms on a large and challenging face
verification data set called Labeled Faces in the Wild (LFW).3 It contains 13233 labeled faces of
5749 people, for 1680 people there are two or more faces. Furthermore, the data is challenging
and difficult due to face variations in scale, pose, lighting, background, expression, hairstyle, and
glasses, as the faces are detected in images in the wild, taken from Yahoo! News.

2. Data sets can be found at http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html.
3. Data set can be found at http://vis-www.cs.umass.edu/lfw/index.html.
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Euc. Xing LMNN ITML BoostMetric DML-eig LMNN-eig
1 3.46(3.60) 4.04(4.00) 3.08(2.07) 1.15(2.07) 2.31(2.18) 1.35(1.30) 2.88(1.87)
2 5.11(2.58) 6.67(3.11) 4.22(1.95) 4.44(2.57) 3.56(2.52) 3.11(1.15) 4.00(2.30)
3 6.47(1.33) 8.18 (1.58) 5.35(1.43) 6.82(1.57) 3.82(1.55) 3.53(0.88) 4.94(1.28)
4 31.09(2.03) 32.09 (3.56) 29.70(3.20) 29.96(2.97) 26.78(2.12) 27.71(3.93) 31.13(2.24)
5 18.87(0.65) 16.43(1.00) 18.61(0.72) 15.94(0.83) 16.86(0.90) 15.33(0.80) 18.49(0.21)
6 5.61(0.92) 5.26(0.60) 3.69(0.70) 5.02(0.70) 4.21(0.48) 2.97(0.55) 3.61(0.83)
7 1.67(0.24) 1.57(0.28) 1.37(0.25) 1.46(0.29) 1.38(0.33) 1.45(0.22) 1.43(0.42)
8 6.67(1.67) 7.75(0.69) 2.08(1.53) 2.42(2.17) 2.25(1.25) 1.67(1.24) 1.67(1.76)
9 3.05 - 2.98 3.92 3.34 3.66 3.13

Table 4: Average test error (%) of different metric learning methods (standard deviation are in
parentheses). The best performance is denoted in bold type. The notation “–” means
that the method does not converge in a reasonable time.

data Xing LMNN/mLMNN ITML BoostMetric LMNN-eig DML-eig
1 1.00 0.87/1.01 4.63 0.49 0.30 0.23
2 2.41 0.57/0.62 3.56 0.10 0.92 0.43
3 3.08 2.71/0.75 4.54 2.04 3.71 3.18
4 2.45 1.73/1.03 3.95 0.20 6.78 0.03
5 231.33 8.83/5.54 7.83 11.36 36.95 1.45
6 109.13 1.73/4.25 61.55 9.06 5.06 1.76
7 59.24 24.81/15.92 37.42 93.73 86.38 2.67
8 182.56 5.54/1.50 40.38 60.31 18.42 2.58
9 – 723.49/454.21 726.88 694.84 572.04 52.48

Table 5: Average running time (seconds) of different methods. The notation “–” means that the
method does not converge in a reasonable time.

5.1 Generalization and Running Time

As we can see from Table 4, DML-eig consistently improves k-NN classification using Euclidean
distance on most data sets. Hence, learning a Mahalanobis metric from training data does lead
to improvements in k-NN classification. Also, we can see that DML-eig is competitive with the
state-of-the-art methods: LMNN, ITML and BoostMetric. Indeed, DML-eig outperforms other
algorithms on 5 out of 9 data sets. As expected, LMNN-eig performs similarly or slightly better
than LMNN since these two models are essentially the same. In Table 5, we list the average CPU
time of different algorithms. We can see that the method proposed in Xing et al. (2002) generally
needs more time since it needs the full eigen-decomposition of a matrix per iteration. DML-eig,
BoostMetric and LMNN are among the fastest algorithms while LMNN-eig is slower than LMNN
and mLMNN in most cases. The accelerated version mLMNN is faster than LMNN.

On the left-hand side of Figure 1, we plot the running time versus the reduced dimension by
principal component analysis (PCA) for AT&T data set. We can observe that LMNN, BoostMetric,
LMNN-eig and DML-eig are faster than ITML and Xing’s method. When the dimension is low,
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LMNN, BoostMetric, LMNN-eig and DML-eig are similar. As the dimension increases, DML-eig
and mLMNN are faster. On this data set, LMNN-eig runs slower than mLMNN. The reason could
be that mLMNN used the techniques of ball trees and employed only an active set of triplets per
iteration. Our algorithms have not been combined with the techniques of ball trees and are imple-
mented in MATLAB and better improvements are expected if used in C/C++. On the right-hand side
of Figure 1, we also plot the test errors of various methods across different PCA dimensions. Al-
most every method performs better than the baseline method using the standard Euclidean distance
metric. DML-eig performs slightly better than other methods. We observe that, with increasing
PCA dimensions, DML-eig, BoostMetric and ITML yield relatively stable performance across dif-
ferent PCA dimensions. In contrast, the performance of other baseline methods such as LMNN and
Xing’s method varied as the PCA dimensions changed.
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Figure 1: Performance on AT&T Face data set. Left figure: running time (seconds) versus PCA
dimension. Right figure: test error (%) versus PCA dimension; the pink line is the per-
formance of k-NN classifier (k = 3) using the standard Euclidean distance.

5.2 Application to Face Verification

In this experiment we investigate our proposed method (DML-eig) for face verification. The task
of face verification is to determine whether two face images are from the same identity or not. It is
a highly active area of research and finds application in access control, image search, security and
many other areas. The large variation in lighting, pose, expression etc. of the face images poses
great challenges to the face verification algorithms. Inference that is based on the raw pixels of
the image data or features extracted from the images is usually unreliable as the data show large
variation and are high-dimensional.

Metric learning provides a viable solution by comparing the image pairs based on the metric
learnt from the face data. Here we evaluate our new metric learning method using a large scale face
database—Labeled Faces in the Wild (LFW) (Huang et al., 2007). There are a total of 13233 images
and 5749 people in the database. These face images are automatically captured from news articles
on the web. Recently it has become a benchmark to test new face verification algorithms (Wolf
et al., 2008; Guillaumin et al., 2009; Wolf et al., 2009; Taigman et al., 2009; Pinto et al., 2011).
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The images we used are in gray scale and aligned in two ways. One is “funneled” (Huang et al.,
2007) and the other is “aligned” using a commercial face alignment software by Taigman et al.
(2009). These images are divided into ten folds where the subject identities are mutually exclusive.
In each fold, there are 300 pairs of images from the same identity and another 300 pairs of images
from different identities. We followed the standard procedure for training and test in the technical
report of Huang et al. (2007). The performance of the algorithms is evaluated by average (and
standard error of ) correct verification rate and the ROC curve of the 10-fold cross validation test.

We investigated several descriptors (features) from face images in this experiment. As for the
“funneled” images, we used SIFT descriptors computed at the fixed facial key-points (e.g., corners
of eyes and nose). These data are available from Guillaumin et al. (2009). We focus on the SIFT
descriptor to evaluate our algorithm as it provides a fair comparison to Guillaumin et al. (2009). To
compare with the state-of-the-art methods in face verification, we further investigated three types
of features for the “aligned” images: 1) raw pixel data by concatenating the intensity value of each
pixel in the image; 2) Local Binary Patterns (LBP) (Ojala et al., 2002); and 3) LBP’s variation,
three-Patch Local Binary Patterns (TPLBP) (Wolf et al., 2008). The original dimensionality of the
features is quite high (3456 ∼ 12000) so we reduced the dimension using PCA. These descriptors
were tested with both their original value and the square root of them (Wolf et al., 2008, 2009;
Guillaumin et al., 2009).

There are two configuration for forming the training sets. One is “restricted configuration”:
only same/not-same labels are used during training and no information about the actual names of
the people (class labels) in the image pairs should be used. In the past, most of the published work
on this data set using the restricted protocol (e.g., Guillaumin et al., 2009; Wolf et al., 2009; Pinto
et al., 2011). Another is “unrestricted configuration”: all available information including the names
of the people in the images can be used for training. So far there are only two published results on
the unrestricted configuration (Guillaumin et al., 2009; Taigman et al., 2009). Here we mainly focus
on the restricted configuration.

LMNN and BoostMetric are not applicable in this restricted configuration setting since they
need label information to generate the triplet set. Therefore, we only compared our DML-eig
method with LDML (Guillaumin et al., 2009) and ITML (Davis et al., 2007). For each of the
ten-fold cross-validation test, we use the data from 2700 pairs of images from the same identities
and another 2700 pairs of images from the different identities to learn a metric. Then test it using
the other 600 image pairs. The performance is evaluated using accurate verification rate .

Table 6 illustrates the performances of our algorithm and ITML and LDML. The best verifica-
tion rate of DML-eig is 81.27%. It outperforms LDML (77.50%) and ITML (76.20%) in their best
settings. Note that the performance of DML-eig is consistently better than LDML and ITML in
each PCA dimension.

By varying the dimension of principal components of the SIFT descriptor, the performance of
DML-eig of the 10-fold cross validation test is plotted in Figure 2. The best performance is achieved
when the dimension of principal components is 100. So we fix this dimension for SIFT feature in
the following experiment. As mentioned in Guillaumin et al. (2009), the peak performance in a
specific PCA dimension is due to the limit of training samples. The PCA dimension achieving the
best performance is 35 for LDML and 55 for ITML. This number for DML-eig is 100 which is larger
than that of both LDML and ITML. It shows that the DML-eig metric is less prone to overfitting
than both LDML and ITML.
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Method PCA Dim. Original Square Root
ITML 35 0.7537±0.0158 0.7627±0.0161
LDML 35 0.7660±0.0070 0.7750±0.0050
DML-eig 35 0.7742±0.0213 0.7793±0.0214
ITML 40 0.7618±0.0125 0.7643±0.0121
LDML 40 – –
DML-eig 40 0.7752±0.0198 0.7838±0.0195
ITML 55 0.7530±0.0185 0.7557±0.0187
LDML 55 0.7280±0.0060 0.7280±0.0040
DML-eig 55 0.7900±0.0189 0.7938±0.0163
ITML 100 0.7340±0.0250 0.7403±0.0216
LDML 100 – –
DML-eig 100 0.8055±0.0171 0.8127±0.0230

Table 6: Performance comparison on LFW database in the restricted configuration (mean verifica-
tion accuracy and standard error of the mean of 10-fold cross validation test) with only
SIFT descriptors. “Square Root” means the features preprocessed by taking square root
before fed into metric learning method. The result of LDML is cited from Guillaumin
et al. (2009) where it was reported that the best result of LDML is achieved with PCA
dimension 35. Our result of ITML is very similar to that reported in Guillaumin et al.
(2009).

Method Accuracy
High-Throughput Brain-Inspired Features, aligned (Pinto et al., 2011) 0.8813±0.0058

LDML + Combined, funneled (Guillaumin et al., 2009) 0.7927±0.0060
DML-eig + Combining four descriptors (this work) 0.8565±0.0056

Table 7: Performance comparison of DML-eig and other state-of-the-art methods in the restricted
configuration (mean verification rate and standard error of the mean of 10-fold cross val-
idation test) based on combination of different types of descriptors. The descriptors vary
in different study. The best result up to date is achieved using sophisticated large scale
feature search (Pinto et al., 2011).

Besides the SIFT descriptor, we also investigated to combine it with other three types of de-
scriptors aforementioned. Following Wolf et al. (2008); Guillaumin et al. (2009), we combine the
distance scores from 4 different descriptors using a linear Support Vector Machine (SVM). The
performance of DML-eig is compared to the other state-of-the-art methods in Table 7 and Figure
3. Note that each of these published results use its own learning technique and different feature
extraction approaches which makes the conclusion hard to draw.
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Figure 2: Performance of DML-eig, ITML and LDMLmetric by varying the dimension of the prin-
cipal components using SIFT descriptor. The result of LDML is copied from Guillaumin
et al. (2009).

The best result reported to date is 88.13% in restricted configuration which performs sophis-
ticated large scale feature search (Pinto et al., 2011). This work used multiple complimentary
representations which are derived through training set augmentation, alternative face comparison
functions, and feature set searches with a varying number of model layers. These individual feature
representations are then combined using kernel techniques. The results by other state-of-the-art
methods are also based on different descriptors (Guillaumin et al., 2009; Wolf et al., 2009). The
best result achieved by DML-eig is 85.65%, which is close to the other state-of-the-art approaches.
In addition, we note that the performance of DML-eig based on the single SIFT descriptor (81.27%
in Table 6) is better than that of LDML based on 4 types of descriptors (79.27% in Table 7). The
ROC curves of different methods are depicted in Figure 3. We can see that DML-eig outperforms
ITML and LDML while it is suboptimal to the best up-to-date method (Pinto et al., 2011) which,
however, employed sophisticated feature search method.

Finally, the performance of DML-eig metric may be further improved by exploring different
number of nearest neighbors and different types of descriptors such as those used in Pinto et al.
(2011), making it a competitive candidate for the task of face verification.
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Figure 3: ROC curve of DML-eig and other the state of arts methods for face verification on LFW
data set.

6. Conclusion

The main theme of this paper is to develop a new eigenvalue-optimization framework for metric
learning. Within this context, we first proposed a novel metric learning model which was shown to
be equivalent to a well-known eigenvalue optimization problem (Overton, 1988; Lewis and Over-
ton, 1996). This appealing optimization formulation was further extended to LMNN (Weinberger
et al., 2005) and maximum margin matrix factorization (Srebro et al., 2004). Then, we developed
efficient first-order algorithms for metric learning which only involve the computation of the largest
eigenvector of a matrix. Their convergence rates were rigorously established. Finally, experiments
on various data sets have shown that our proposed approach is competitive with state-of-the-art met-
ric learning methods. In particular, we reported promising results on the Labeled Faces in the Wild
(LFW) data set.

In future we will exploit the extension of the above eigenvalue optimization framework to other
machine learning tasks such as spectral graph cuts and semi-definite embedding (Weinberger et al.,
2004). Another direction for investigation is to develop a kernelized version of DML-eig using the
techniques in Jain et al. (2010). Finally, we will also investigate the performance of our methods
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on the LFW data set in the unrestricted configuration setting, and embed the technique of ball trees
(Weinberger and Saul, 2008) into our algorithms to further increase the computational speed.
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Appendix A. Eigenvalue Optimization for Maximum-margin Matrix Factorization

Another important problem is low-rank matrix completion which recently has attracted much atten-
tion. This line of research involves computing a large matrix with a nuclear-norm (summation of
singular values) regularization and the optimization problem here also consists of an SDP. Such tasks
include multi-task feature learning (Argyriou et al., 2006) and low-rank matrix completion (Bach,
2008; Candes and Recht, 2008; Srebro et al., 2004). It has successful applications to collaborative
filtering for predicting customers’ preferences to products, where the matrix’s rows and columns
respectively identify the “customers” and “products”, and a matrix entry encodes customers’ pref-
erence of a product (e.g., Netflix data set, http://www.netflixprize.com/).

Similar eigenvalue optimization formulation can be developed for maximum-margin matrix
factorization (MMMF) for collaborative filtering (Srebro et al., 2004). Given a partially labeled
Yia ∈ {±1} with ia ∈ S, the target of MMMF is to learn a large matrix X ∈ Rm×n where each entry
Xia indicates the preference of the customer i for product a. The following large margin model was
proposed in Srebro et al. (2004) to learn X :

minX ∑ia∈S ξia+ γ‖X‖∗
s.t. 1−YiaXia ≤ ξia,

ξia ≥ 0, ∀ia ∈ S,

where ‖X‖∗ is the nuclear norm of X , that is, the summation of its singular values. The above model
was further formulated as an SDP problem:

minM γTr(M)+∑ia∈S ξia

M =
( A X
X# B

)
∈ S

(m+n)
+ ,

YiaXia+ξia ≥ 1, ∀ia ∈ S.

(27)

Let ei be a column vector with its i-th element one and all others zero, then we haveMi(m+a) = Xia =
〈Cia,M〉 with Cia = eie#(m+a). Consequently, the constraint condition in problem (27) can be written
as minia∈S〈Yia,Cia〉+ ξia ≥ 1. Using exact arguments for proving Theorem 3, we can formulate
MMMF as an eigenvalue optimization problem.

Theorem 8. MMMF formulation (27) is equivalent to

max
{
min
u∈, ∑ia∈S

uia
(
ξia+ 〈YiaCia,M〉

)
: ξ#1+ γTr(M) = 1,M ∈ S (m+n)

+ , ξ≥ 0
}
.
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In particular it is equivalent to the following eigenvalue optimization problem:

min
u∈,

max
(
umax,

1
γ
λmax

(
∑
ia∈S

uiaYiaCia
))

. (28)

As mentioned above, MMMF (27) is a standard SDP. Indeed, Srebro et al. (2004) proposed to
employ standard SDP solvers (e.g., CSDP Borchers, 1999) to obtain the optimal solution. However,
such generic solvers are only able to handle problems with about a hundred users and a hundred
items. The eigenvalue-optimization formulation potentially provides more efficient algorithms for
MMMF. Since the paper mainly focuses on metric learning, we leave its empirical implementation
for future study.

Appendix B. Proof of Theorem 6

In this appendix we give the proof of Theorem 6. The spirit of the proof is very close to that
of Theorem 1 in Ying and Zhou (2006) where similar conditions on step sizes were derived to
guarantee the convergence of stochastic online learning algorithms in reproducing kernel Hilbert
spaces.

Proof of Theorem 6. According to the assumption (22) on the step size, we can assume that, for
any t ≥ t0, that αt ≤ 1/2. Hence, the inequality (21) holds true. We will estimate the terms on the
left-hand side of (21) one by one.

For the second term on the righthand side of (21), observe that ∏t
j=t0(1 − α j) ≤

exp
{
−∑tj=t0 α j

}
→ 0 as t → ∞. Therefore, for any ε > 0 there exists some t1 ∈ N such that the

second term on the righthand side of (21) is bounded by ε whenever t ≥ t1.
To deal with the first term on the righthand side of (21), we use the assumption lim j→∞α j = 0

and know that there exists some j(ε) such that α j ≤ ε for every j ≥ j(ε). Write

t

∑
j=t0

α2j
t

∏
k= j+1

(1−αk) =
j(ε)

∑
j=t0

α2j
t

∏
k= j+1

(1−αk)+
t

∑
j= j(ε)+1

α2j
t

∏
k= j+1

(1−αk). (29)

Since j(ε) is fixed, we can find some t2 ∈ N such that for each t ≥ t2, there holds ∑tj=t(ε)+1α j ≥

∑t2j= j(ε)+1α j ≥ log j(ε)
4ε . It follows that for each 1 ≤ j ≤ j(ε), there holds ∏t

k= j+1(1− αk) ≤
exp

{
−∑tk= j+1αk

}
≤ exp

{
−∑tk= j(ε)+1αk

}
≤ 4ε

j(ε) . This in connection with the bound α j ≤ 1/2
for each j ≥ t0 tells us that the first term of (29) is bounded as

t(ε)

∑
j=t0

α2j
t

∏
k= j+1

(1−αk)≤
4ε
j(ε)

j(ε)

∑
j=t0

α2j ≤ ε.

The second term on the righthand side of (29) is dominated by ε∑t−1j= j(ε)+1α j∏t
k= j+1(1−αk).

Noting the fact that α j = 1− (1−α j) implies
t

∑
j= j(ε)+1

α j

t

∏
k= j+1

(1−αk) =
t

∑
j= j(ε)+1

[ t

∏
k= j+1

(1−αk)−
t

∏
k= j

(1−αk)
]

=
[
1−

t

∏
k= j(ε)+1

(1−αk)
]
≤ 1.
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Therefore, when t ≥ max{t1, t2}, combining the estimation with inequality (21), we have Rt+1 ≤
(1+Cµ)ε. This proves the theorem.
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Abstract
We present a unifying framework for information theoretic feature selection, bringing almost two
decades of research on heuristic filter criteria under a single theoretical interpretation. This is in
response to the question: “what are the implicit statistical assumptions of feature selection criteria
based on mutual information?”. To answer this, we adopt a different strategy than is usual in the
feature selection literature—instead of trying to define a criterion, we derive one, directly from a
clearly specified objective function: the conditional likelihood of the training labels. While many
hand-designed heuristic criteria try to optimize a definition of feature ‘relevancy’ and ‘redundancy’,
our approach leads to a probabilistic framework which naturally incorporates these concepts. As
a result we can unify the numerous criteria published over the last two decades, and show them
to be low-order approximations to the exact (but intractable) optimisation problem. The primary
contribution is to show that common heuristics for information based feature selection (including
Markov Blanket algorithms as a special case) are approximate iterative maximisers of the con-
ditional likelihood. A large empirical study provides strong evidence to favour certain classes of
criteria, in particular those that balance the relative size of the relevancy/redundancy terms. Overall
we conclude that the JMI criterion (Yang and Moody, 1999; Meyer et al., 2008) provides the best
tradeoff in terms of accuracy, stability, and flexibility with small data samples.
Keywords: feature selection, mutual information, conditional likelihood

1. Introduction

High dimensional data sets are a significant challenge for Machine Learning. Some of the most
practically relevant and high-impact applications, such as gene expression data, may easily have
more than 10,000 features. Many of these features may be completely irrelevant to the task at
hand, or redundant in the context of others. Learning in this situation raises important issues, for
example, over-fitting to irrelevant aspects of the data, and the computational burden of processing
many similar features that provide redundant information. It is therefore an important research
direction to automatically identify meaningful smaller subsets of these variables, that is, feature
selection.

Feature selection techniques can be broadly grouped into approaches that are classifier-dependent
(‘wrapper’ and ‘embedded’ methods), and classifier-independent (‘filter’ methods). Wrapper meth-
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ods search the space of feature subsets, using the training/validation accuracy of a particular classi-
fier as the measure of utility for a candidate subset. This may deliver significant advantages in gen-
eralisation, though has the disadvantage of a considerable computational expense, and may produce
subsets that are overly specific to the classifier used. As a result, any change in the learning model is
likely to render the feature set suboptimal. Embedded methods (Guyon et al., 2006, Chapter 3) ex-
ploit the structure of specific classes of learning models to guide the feature selection process. While
the defining component of a wrapper method is simply the search procedure, the defining compo-
nent of an embedded method is a criterion derived through fundamental knowledge of a specific
class of functions. An example is the method introduced by Weston et al. (2001), selecting features
to minimize a generalisation bound that holds for Support Vector Machines. These methods are
less computationally expensive, and less prone to overfitting than wrappers, but still use quite strict
model structure assumptions. In contrast, filter methods (Duch, 2006) separate the classification
and feature selection components, and define a heuristic scoring criterion to act as a proxy measure
of the classification accuracy. Filters evaluate statistics of the data independently of any particular
classifier, thereby extracting features that are generic, having incorporated few assumptions.

Each of these three approaches has its advantages and disadvantages, the primary distinguish-
ing factors being speed of computation, and the chance of overfitting. In general, in terms of speed,
filters are faster than embedded methods which are in turn faster than wrappers. In terms of overfit-
ting, wrappers have higher learning capacity so are more likely to overfit than embedded methods,
which in turn are more likely to overfit than filter methods. All of this of course changes with ex-
tremes of data/feature availability—for example, embedded methods will likely outperform filter
methods in generalisation error as the number of datapoints increases, and wrappers become more
computationally unfeasible as the number of features increases. A primary advantage of filters is
that they are relatively cheap in terms of computational expense, and are generally more amenable
to a theoretical analysis of their design. Such theoretical analysis is the focus of this article.

The defining component of a filter method is the relevance index (also known as a selec-
tion/scoring criterion), quantifying the ‘utility’ of including a particular feature in the set. Nu-
merous hand-designed heuristics have been suggested (Duch, 2006), all attempting to maximise
feature ‘relevancy’ and minimise ‘redundancy’. However, few of these are motivated from a solid
theoretical foundation. It is preferable to start from a more principled perspective—the desired
approach is outlined eloquently by Guyon:

“It is important to start with a clean mathematical statement of the problem addressed
[...] It should be made clear how optimally the chosen approach addresses the problem
stated. Finally, the eventual approximations made by the algorithm to solve the optimi-
sation problem stated should be explained. An interesting topic of research would be
to ‘retrofit’ successful heuristic algorithms in a theoretical framework.” (Guyon et al.,
2006, pg. 21)

In this work we adopt this approach—instead of trying to define feature relevance indices, we
derive them starting from a clearly specified objective function. The objective we choose is a well
accepted statistical principle, the conditional likelihood of the class labels given the features. As a
result we are able to provide deeper insight into the feature selection problem, and achieve precisely
the goal above, to retrofit numerous hand-designed heuristics into a theoretical framework.
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2. Background

In this section we give a brief introduction to information theoretic concepts, followed by a summary
of how they have been used to tackle the feature selection problem.

2.1 Entropy and Mutual Information

The fundamental unit of information is the entropy of a random variable, discussed in several stan-
dard texts, most prominently (Cover and Thomas, 1991). The entropy, denoted H(X), quantifies the
uncertainty present in the distribution of X . It is defined as,

H(X) =−∑
x∈X

p(x) log p(x),

where the lower case x denotes a possible value that the variable X can adopt from the alphabet
X . To compute1 this, we need an estimate of the distribution p(X). When X is discrete this can
be estimated by frequency counts from data, that is p̂(x) = #x

N , the fraction of observations taking
on value x from the total N. We provide more discussion on this issue in Section 3.3. If the
distribution is highly biased toward one particular event x ∈ X , that is, little uncertainty over the
outcome, then the entropy is low. If all events are equally likely, that is, maximum uncertainty over
the outcome, then H(X) is maximal.2 Following the standard rules of probability theory, entropy
can be conditioned on other events. The conditional entropy of X given Y is denoted,

H(X |Y ) =− ∑
y∈Y

p(y)∑
x∈X

p(x|y) log p(x|y).

This can be thought of as the amount of uncertainty remaining in X after we learn the outcome of Y .
We can now define the Mutual Information (Shannon, 1948) between X and Y , that is, the amount
of information shared by X and Y , as follows:

I(X ;Y ) = H(X)−H(X |Y )

= ∑
x∈X
∑
y∈Y

p(xy) log
p(xy)

p(x)p(y)
.

This is the difference of two entropies—the uncertainty before Y is known, H(X), and the uncer-
tainty after Y is known, H(X |Y ). This can also be interpreted as the amount of uncertainty in X
which is removed by knowing Y , thus following the intuitive meaning of mutual information as the
amount of information that one variable provides about another. It should be noted that the Mutual
Information is symmetric, that is, I(X ;Y ) = I(Y ;X), and is zero if and only if the variables are sta-
tistically independent, that is p(xy) = p(x)p(y). The relation between these quantities can be seen
in Figure 1. The Mutual Information can also be conditioned—the conditional information is,

I(X ;Y |Z) = H(X |Z)−H(X |YZ)

= ∑
z∈Z

p(z)∑
x∈X
∑
y∈Y

p(xy|z) log
p(xy|z)

p(x|z)p(y|z)
.

1. The base of the logarithm is arbitrary, but decides the ‘units’ of the entropy. When using base 2, the units are ‘bits’,
when using base e, the units are ‘nats.’

2. In general, 0≤ H(X)≤ log(|X |).
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Figure 1: Illustration of various information theoretic quantities.

This can be thought of as the information still shared between X and Y after the value of a third
variable, Z, is revealed. The conditional mutual information will emerge as a particularly important
property in understanding the results of this work.

This section has briefly covered the principles of information theory; in the following section
we discuss motivations for using it to solve the feature selection problem.

2.2 Filter Criteria Based on Mutual Information

Filter methods are defined by a criterion J, also referred to as a ‘relevance index’ or ‘scoring’
criterion (Duch, 2006), which is intended to measure how potentially useful a feature or feature
subset may be when used in a classifier. An intuitive J would be some measure of correlation
between the feature and the class label—the intuition being that a stronger correlation between
these should imply a greater predictive ability when using the feature. For a class label Y , the
mutual information score for a feature Xk is

Jmim(Xk) = I(Xk;Y ). (1)

This heuristic, which considers a score for each feature independently of others, has been used
many times in the literature, for example, Lewis (1992). We refer to this feature scoring criterion
as ‘MIM’, standing for Mutual Information Maximisation. To use this measure we simply rank the
features in order of their MIM score, and select the top K features, where K is decided by some
predefined need for a certain number of features or some other stopping criterion (Duch, 2006). A
commonly cited justification for this measure is that the mutual information can be used to write
both an upper and lower bound on the Bayes error rate (Fano, 1961; Hellman and Raviv, 1970). An
important limitation is that this assumes that each feature is independent of all other features—and
effectively ranks the features in descending order of their individual mutual information content.
However, where features may be interdependent, this is known to be suboptimal. In general, it
is widely accepted that a useful and parsimonious set of features should not only be individually
relevant, but also should not be redundant with respect to each other—features should not be highly
correlated. The reader is warned that while this statement seems appealingly intuitive, it is not
strictly correct, as will be expanded upon in later sections. In spite of this, several criteria have
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been proposed that attempt to pursue this ‘relevancy-redundancy’ goal. For example, Battiti (1994)
presents theMutual Information Feature Selection (MIFS) criterion:

Jmi f s(Xk) = I(Xk;Y )−β ∑
Xj∈S

I(Xk;Xj),

where S is the set of currently selected features. This includes the I(Xk;Y ) term to ensure feature
relevance, but introduces a penalty to enforce low correlations with features already selected in
S. Note that this assumes we are selecting features sequentially, iteratively constructing our final
feature subset. For a survey of other search methods than simple sequential selection, the reader
is referred to Duch (2006); however it should be noted that all theoretical results presented in this
paper will be generally applicable to any search procedure, and based solely on properties of the
criteria themselves. The β in the MIFS criterion is a configurable parameter, which must be set
experimentally. Using β = 0 would be equivalent to Jmim(Xk), selecting features independently,
while a larger value will place more emphasis on reducing inter-feature dependencies. In experi-
ments, Battiti found that β = 1 is often optimal, though with no strong theory to explain why. The
MIFS criterion focuses on reducing redundancy; an alternative approach was proposed by Yang and
Moody (1999), and also later by Meyer et al. (2008) using the Joint Mutual Information (JMI), to
focus on increasing complementary information between features. The JMI score for feature Xk is

Jjmi(Xk) = ∑
Xj∈S

I(XkXj;Y ).

This is the information between the targets and a joint random variable XkXj, defined by pair-
ing the candidate Xk with each feature previously selected. The idea is if the candidate feature is
‘complementary’ with existing features, we should include it.

The MIFS and JMI schemes were the first of many criteria that attempted to manage the
relevance-redundancy tradeoff with various heuristic terms, however it is clear they have very dif-
ferent motivations. The criteria identified in the literature 1992-2011 are listed in Table 1. The
practice in this research problem has been to hand-design criteria, piecing criteria together as a jig-
saw of information theoretic terms—the overall aim to manage the relevance-redundancy trade-off,
with each new criterion motivated from a different direction. Several questions arise here: Which
criterion should we believe? What do they assume about the data? Are there other useful criteria,
as yet undiscovered? In the following section we offer a novel perspective on this problem.

3. A Novel Approach

In the following sections we formulate the feature selection task as a conditional likelihood problem.
We will demonstrate that precise links can be drawn between the well-accepted statistical framework
of likelihood functions, and the current feature selection heuristics of mutual information criteria.

3.1 A Conditional Likelihood Problem

We assume an underlying i.i.d. process p : X→Y , from which we have a sample of N observations.
Each observation is a pair (x,y), consisting of a d-dimensional feature vector x= [x1, ...,xd]T , and
a target class y, drawn from the underlying random variables X = {X1, ...,Xd} and Y . Furthermore,
we assume that p(y|x) is defined by a subset of the d features in x, while the remaining features are
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Criterion Full name Authors
MIM Mutual Information Maximisation Lewis (1992)
MIFS Mutual Information Feature Selection Battiti (1994)
KS Koller-Sahami metric Koller and Sahami (1996)
JMI Joint Mutual Information Yang and Moody (1999)
MIFS-U MIFS-‘Uniform’ Kwak and Choi (2002)
IF Informative Fragments Vidal-Naquet and Ullman (2003)
FCBF Fast Correlation Based Filter Yu and Liu (2004)
AMIFS Adaptive MIFS Tesmer and Estevez (2004)
CMIM Conditional Mutual Info Maximisation Fleuret (2004)
MRMR Max-Relevance Min-Redundancy Peng et al. (2005)
ICAP Interaction Capping Jakulin (2005)
CIFE Conditional Infomax Feature Extraction Lin and Tang (2006)
DISR Double Input Symmetrical Relevance Meyer and Bontempi (2006)
MINRED Minimum Redundancy Duch (2006)
IGFS Interaction Gain Feature Selection El Akadi et al. (2008)
SOA Second Order Approximation Guo and Nixon (2009)
CMIFS Conditional MIFS Cheng et al. (2011)

Table 1: Various information-based criteria from the literature. Sections 3 and 4 will show how
these can all be interpreted in a single theoretical framework.

irrelevant. Our modeling task is therefore two-fold: firstly to identify the features that play a func-
tional role, and secondly to use these features to perform predictions. In this work we concentrate
on the first stage, that of selecting the relevant features.

We adopt a d-dimensional binary vector θ: a 1 indicating the feature is selected, a 0 indicating it
is discarded. Notation xθ indicates the vector of selected features, that is, the full vector x projected
onto the dimensions specified by θ. Notation xθ̃ is the complement, that is, the unselected features.
The full feature vector can therefore be expressed as x= {xθ,xθ̃}. As mentioned, we assume the
process p is defined by a subset of the features, so for some unknown optimal vector θ∗, we have
that p(y|x) = p(y|xθ∗). We approximate p using a hypothetical predictive model q, with two layers
of parameters: θ representing which features are selected, and τ representing parameters used to
predict y. Our problem statement is to identify the minimal subset of features such that wemaximize
the conditional likelihood of the training labels, with respect to these parameters. For i.i.d. data
D = {(xi,yi); i= 1..N} the conditional likelihood of the labels given parameters {θ,τ} is

L(θ,τ|D) =
N

∏
i=1

q(yi|xiθ,τ).

The (scaled) conditional log-likelihood is

!=
1
N

N

∑
i=1
logq(yi|xiθ,τ). (2)

This is the error function we wish to optimize with respect to the parameters {τ,θ}; the scaling
term has no effect on the optima, but simplifies exposition later. Using conditional likelihood has
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become popular in so-called discriminative modelling applications, where we are interested only
in the classification performance; for example Grossman and Domingos (2004) used it to learn
Bayesian Network classifiers. We will expand upon this link to discriminative models in Section
9.3. Maximising conditional likelihood corresponds to minimising KL-divergence between the true
and predicted class posterior probabilities—for classification, we often only require the correct
class, and not precise estimates of the posteriors, hence Equation (2) is a proxy lower bound for
classification accuracy.

We now introduce the quantity p(y|xθ): this is the true distribution of the class labels given the
selected features xθ. It is important to note the distinction from p(y|x), the true distribution given
all features. Multiplying and dividing q by p(y|xθ), we can re-write the above as,

! =
1
N

N

∑
i=1
log

q(yi|xiθ,τ)
p(yi|xiθ)

+
1
N

N

∑
i=1
log p(yi|xiθ). (3)

The second term in (3) can be similarly expanded, introducing the probability p(y|x):

! =
1
N

N

∑
i=1
log

q(yi|xiθ,τ)
p(yi|xiθ)

+
1
N

N

∑
i=1
log

p(yi|xiθ)
p(yi|xi)

+
1
N

N

∑
i=1
log p(yi|xi).

These are finite sample approximations, drawing datapoints i.i.d. with respect to the distribution
p(xy). We use Exy{·} to denote statistical expectation, and for convenience we negate the above,
turning our maximisation problem into a minimisation. This gives us,

−! ≈ Exy
{
log

p(y|xθ)
q(y|xθ,τ)

}
+Exy

{
log

p(y|x)
p(y|xθ)

}
−Exy

{
log p(y|x)

}
. (4)

These three terms have interesting properties which together define the feature selection prob-
lem. It is particularly interesting to note that the second term is precisely that introduced by Koller
and Sahami (1996) in their definitions of optimal feature selection. In their work, the term was
adopted ad-hoc as a sensible objective to follow—here we have shown it to be a direct and nat-
ural consequence of adopting the conditional likelihood as an objective function. Remembering
x= {xθ,xθ̃}, this second term can be developed:

∆KS = Exy
{
log

p(y|x)
p(y|xθ)

}

= ∑
xy
p(xy) log

p(y|xθxθ̃)
p(y|xθ)

= ∑
xy
p(xy) log

p(y|xθxθ̃)
p(y|xθ)

p(xθ̃|xθ)
p(xθ̃|xθ)

= ∑
xy
p(xy) log

p(xθ̃y|xθ)
p(xθ̃|xθ)p(y|xθ)

= I(Xθ̃;Y |Xθ). (5)

This is the conditional mutual information between the class label and the remaining features, given
the selected features. We can note also that the third term in (4) is another information theoretic
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quantity, the conditional entropy H(Y |X). In summary, we see that our objective function can be
decomposed into three distinct terms, each with its own interpretation:

lim
N→∞
−! = Exy

{
log

p(y|xθ)
q(y|xθ,τ)

}
+ I(Xθ̃;Y |Xθ)+H(Y |X). (6)

The first term is a likelihood ratio between the true and the predicted class distributions given
the selected features, averaged over the input space. The size of this term will depend on how well
the model q can approximate p, given the supplied features.3 When θ takes on the true value θ∗ (or
consists of a superset of θ∗) this becomes a KL-divergence p||q. The second term is I(Xθ̃;Y |Xθ),
the conditional mutual information between the class label and the unselected features, given the
selected features. The size of this term depends solely on the choice of features, and will decrease
as the selected feature set Xθ explains more about Y , until eventually becoming zero when the
remaining features Xθ̃ contain no additional information about Y in the context of Xθ. It can be
noted that due to the chain rule, we have

I(X ;Y ) = I(Xθ;Y )+ I(Xθ̃;Y |Xθ),

hence minimizing I(Xθ̃;Y |Xθ) is equivalent to maximising I(Xθ;Y ). The final term is H(Y |X), the
conditional entropy of the labels given all features. This term quantifies the uncertainty still remain-
ing in the label even when we know all possible features; it is an irreducible constant, independent
of all parameters, and in fact forms a bound on the Bayes error (Fano, 1961).

These three terms make explicit the effect of the feature selection parameters θ, separating them
from the effect of the parameters τ in the model that uses those features. If we somehow had the
optimal feature subset θ∗, which perfectly captured the underlying process p, then I(Xθ̃;Y |Xθ)would
be zero. The remaining (reducible) error is then down to the KL divergence p||q, expressing how
well the predictive model q can make use of the provided features. Of course, different models q
will have different predictive ability: a good feature subset will not necessarily be put to good use if
the model is too simple to express the underlying function. This perspective was also considered by
Tsamardinos and Aliferis (2003), and earlier by Kohavi and John (1997)—the above results place
these in the context of a precise objective function, the conditional likelihood. For the remainder of
the paper we will use the same assumption as that made implicitly by all filter selection methods.
For completeness, here we make the assumption explicit:

Definition 1 : Filter assumption
Given an objective function for a classifier, we can address the problems of optimizing the feature set
and optimizing the classifier in two stages: first picking good features, then building the classifier
to use them.

This implies that the second term in (6) can be optimized independently of the first. In this section
we have formulated the feature selection task as a conditional likelihood problem. In the following,
we consider how this problem statement relates to the existing literature, and discuss how to solve
it in practice: including how to optimize the feature selection parameters, and the estimation of the
necessary distributions.

3. In fact, if q is a consistent estimator, this term will approach zero with large N.
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3.2 Optimizing the Feature Selection Parameters

Under the filter assumption in Definition 1, Equation (6) demonstrates that the optima of the condi-
tional likelihood coincide with that of the conditional mutual information:

argmax
θ

L(θ|D) = argmin
θ

I(Xθ̃;Y |Xθ). (7)

There may of course be multiple global optima, in addition to the trivial minimum of selecting all
features. With this in mind, we can introduce a minimality constraint on the size of the feature set,
and define our problem:

θ∗ = argmin
θ′

{|θ′| : θ′ = argmin
θ

I(Xθ̃;Y |Xθ)}. (8)

This is the smallest feature set Xθ, such that the mutual information I(Xθ̃;Y |Xθ) is minimal, and
thus the conditional likelihood is maximal. It should be remembered that the likelihood is only our
proxy for classification error, and the minimal feature set in terms of classification could be smaller
than that which optimises likelihood. In the following paragraphs, we consider how this problem is
implicitly tackled by methods already in the literature.

A common heuristic approach is a sequential search considering features one-by-one for ad-
dition/removal; this is used for example in Markov Blanket learning algorithms such as IAMB
(Tsamardinos et al., 2003). We will now demonstrate that this sequential search heuristic is in fact
equivalent to a greedy iterative optimisation of Equation (8). To understand this we must time-index
the feature sets. Notation Xθt/Xθ̃t indicates the selected and unselected feature sets at timestep t—
with a slight abuse of notation treating these interchangeably as sets and random variables.

Definition 2 : Forward Selection Step with Mutual Information
The forward selection step adds the feature with the maximum mutual information in the context of
the currently selected set Xθt . The operations performed are:

Xk = argmax
Xk∈Xθ̃t

I(Xk;Y |Xθt ),

Xθt+1 ← Xθt ∪Xk,
Xθ̃t+1 ← Xθ̃t\Xk.

A subtle (but important) implementation point for this selection heuristic is that it should not add
another feature if ∀Xk, I(Xk;Y |Xθ) = 0. This ensures we will not unnecessarily increase the size of
the feature set.

Theorem 3 The forward selection mutual information heuristic adds the feature that generates the
largest possible increase in the conditional likelihood—a greedy iterative maximisation.

Proof With the definitions above and the chain rule of mutual information, we have that:

I(Xθ̃t+1 ;Y |Xθt+1) = I(Xθ̃t ;Y |Xθt )− I(Xk;Y |Xθt ).

The feature Xk that maximises I(Xk;Y |Xθt ) is the same that minimizes I(Xθ̃t+1 ;Y |Xθt+1); therefore
the forward step is a greedy minimization of our objective I(Xθ̃;Y |Xθ), and therefore maximises the
conditional likelihood.
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Definition 4 : Backward Elimination Step with Mutual Information
In a backward step, a feature is removed—the utility of a feature Xk is considered as its mutual
information with the target, conditioned on all other elements of the selected set without Xk. The
operations performed are:

Xk = argmin
Xk∈Xθt

I(Xk;Y |{Xθt\Xk}).

Xθt+1 ← Xθt\Xk
Xθ̃t+1 ← Xθ̃t ∪Xk

Theorem 5 The backward elimination mutual information heuristic removes the feature that causes
the minimum possible decrease in the conditional likelihood.

Proof With these definitions and the chain rule of mutual information, we have that:

I(Xθ̃t+1 ;Y |Xθt+1) = I(Xθ̃t ;Y |Xθt )+ I(Xk;Y |Xθt+1).

The feature Xk that minimizes I(Xk;Y |Xθt+1) is that which keeps I(Xθ̃t+1 ;Y |Xθt+1) as close as possi-
ble to I(Xθ̃t ;Y |Xθt ); therefore the backward elimination step removes a feature while attempting to
maintain the likelihood as close as possible to its current value.

To strictly achieve our optimization goal, a backward step should only remove a feature if
I(Xk;Y |{Xθt\Xk}) = 0. In practice, working with real data, there will likely be estimation errors
(see the following section) and thus very rarely the strict zero will be observed. This brings us to an
interesting corollary regarding IAMB (Tsamardinos and Aliferis, 2003).

Corollary 6 Since the IAMB algorithm uses precisely these forward/backward selection heuristics,
it is a greedy iterative maximisation of the conditional likelihood. In IAMB, a backward elimination
step is only accepted if I(Xk;Y |{Xθt\Xk})≈ 0, and otherwise the procedure terminates.

In Tsamardinos and Aliferis (2003) it is shown that IAMB returns the Markov Blanket of any
target node in a Bayesian network, and that this set coincides with the strongly relevant features in
the definitions from Kohavi and John (1997). The precise links to this literature are explored further
in Section 7. The IAMB family of algorithms adopt a common assumption, that the data is faithful
to some unknown Bayesian Network. In the cases where this assumption holds, the procedure was
proven to identify the unique Markov Blanket. Since IAMB uses precisely the forward/backward
steps we have derived, we can conclude that the Markov Blanket coincides with the (unique) maxi-
mum of the conditional likelihood function. A more recent variation of the IAMB algorithm, called
MMMB (Min-Max Markov Blanket) uses a series of optimisations to mitigate the requirement of
exponential amounts of data to estimate the relevant statistical quantities. These optimisations do
not change the underlying behaviour of the algorithm, as it still maximises the conditional likelihood
for the selected feature set, however they do slightly obscure the strong link to our framework.
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3.3 Estimation of the Mutual Information Terms

In considering the forward/backward heuristics, we must take account of the fact that we do not
have perfect knowledge of the mutual information. This is because we have implicitly assumed
we have access to the true distributions p(xy), p(y|xθ), etc. In practice we have to estimate these
from data. The problem calculating mutual information reduces to that of entropy estimation, and
is fundamental in statistics (Paninski, 2003). The mutual information is defined as the expected
logarithm of a ratio:

I(X ;Y ) = Exy
{
log

p(xy)
p(x)p(y)

}
.

We can estimate this, since the Strong Law of Large Numbers assures us that the sample estimate
using p̂ converges almost surely to the expected value—for a dataset of N i.i.d. observations (xi,yi),

I(X ;Y )≈ Î(X ;Y ) =
1
N

N

∑
i=1
log

p̂(xiyi)
p̂(xi) p̂(yi)

.

In order to calculate this we need the estimated distributions p̂(xy), p̂(x), and p̂(y). The computation
of entropies for continuous or ordinal data is highly non-trivial, and requires an assumed model of
the underlying distributions—to simplify experiments throughout this article, we use discrete data,
and estimate distributions with histogram estimators using fixed-width bins. The probability of
any particular event p(X = x) is estimated by maximum likelihood, the frequency of occurrence of
the event X = x divided by the total number of events (i.e., datapoints). For more information on
alternative entropy estimation procedures, we refer the reader to Paninski (2003).

At this point we must note that the approximation above holds only if N is large relative to
the dimension of the distributions over x and y. For example if x,y are binary, N ≈ 100 should
be more than sufficient to get reliable estimates; however if x,y are multinomial, this will likely
be insufficient. In the context of the sequential selection heuristics we have discussed, we are
approximating I(Xk;Y |Xθ) as,

I(Xk;Y |Xθ)≈ Î(Xk;Y |Xθ) =
1
N

N

∑
i=1
log

p̂(xiky
i|xiθ)

p̂(xik|xiθ) p̂(yi|xiθ)
. (9)

As the dimension of the variable Xθ grows (i.e., as we add more features) then the necessary
probability distributions become more high dimensional, and hence our estimate of the mutual
information becomes less reliable. This in turn causes increasingly poor judgements for the in-
clusion/exclusion of features. For precisely this reason, the research community have developed
various low-dimensional approximations to (9). In the following sections, we will investigate the
implicit statistical assumptions and empirical effects of these approximations.

In the remainder of this paper, we use I(X ;Y ) to denote the ideal case of being able to compute
the mutual information, though in practice on real data we use the finite sample estimate Î(X ;Y ).

3.4 Summary

In these sections we have in effect reverse-engineered a mutual information-based selection scheme,
starting from a clearly defined conditional likelihood problem, and discussed estimation of the var-
ious quantities involved. In the following sections we will show that we can retrofit numerous
existing relevancy-redundancy heuristics from the feature selection literature into this probabilistic
framework.
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4. Retrofitting Successful Heuristics

In the previous section, starting from a clearly defined conditional likelihood problem, we derived
a greedy optimization process which assesses features based on a simple scoring criterion on the
utility of including a feature Xk ∈ Xθ̃. The score for a feature Xk is,

Jcmi(Xk) = I(Xk;Y |S), (10)

where cmi stands for conditional mutual information, and for notational brevity we now use S= Xθ
for the currently selected set. An important question is, how does (10) relate to existing heuristics
in the literature, such as MIFS? We will see that MIFS, and certain other criteria, can be phrased
cleanly as linear combinations of Shannon entropy terms, while some are non-linear combinations,
involving max or min operations.

4.1 Criteria as Linear Combinations of Shannon Information Terms

Repeating the MIFS criterion for clarity,

Jmi f s(Xk) = I(Xk;Y )−β ∑
Xj∈S

I(Xk;Xj). (11)

We can see that we first need to rearrange (10) into the form of a simple relevancy term between Xk
andY , plus some additional terms, before we can compare it to MIFS. Using the identity I(A;B|C)−
I(A;B) = I(A;C|B)− I(A;C), we can re-express (10) as,

Jcmi(Xk) = I(Xk;Y |S) = I(Xk;Y )− I(Xk;S)+ I(Xk;S|Y ). (12)

It is interesting to see terms in this expression corresponding to the concepts of ‘relevancy’ and
‘redundancy’, that is, I(Xk;Y ) and I(Xk;S). The score will be increased if the relevancy of Xk is
large and the redundancy with existing features is small. This is in accordance with a common view
in the feature selection literature, observing that we wish to avoid redundant variables. However,
we can also see an important additional term I(Xk;S|Y ), which is not traditionally accounted for in
the feature selection literature—we call this the conditional redundancy. This term has the opposite
sign to the redundancy I(Xk;S), hence Jcmi will be increased when this is large, that is, a strong class-
conditional dependence of Xk with the existing set S. Thus, we come to the important conclusion
that the inclusion of correlated features can be useful, provided the correlation within classes is
stronger than the overall correlation. We note that this is a similar observation to that of Guyon
et al. (2006), that “correlation does not imply redundancy”—Equation (12) effectively embodies
this statement in information theoretic terms.

The sum of the last two terms in (12) represents the three-way interaction between the existing
feature set S, the target Y , and the candidate feature Xk being considered for inclusion in S. To
further understand this, we can note the following property:

I(XkS;Y ) = I(S;Y )+ I(Xk;Y |S) = I(S;Y )+ I(Xk;Y )− I(Xk;S)+ I(Xk;S|Y ).

We see that if I(Xk;S)> I(Xk;S|Y ), then the total utility when including Xk, that is I(XkS;Y ), is less
than the sum of the individual relevancies I(S;Y )+ I(Xk;Y ). This can be interpreted as Xk having
unnecessary duplicated information. In the opposite case, when I(Xk;S) < I(Xk;S|Y ), then Xk and
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S combine well and provide more information together than by the sum of their parts, I(S;Y ), and
I(Xk;Y ).

The important point to take away from this expression is that the terms are in a trade-off—we
do not require a feature with low redundancy for its own sake, but instead require a feature that best
trades off the three terms so as to maximise the score overall. Much like the bias-variance dilemma,
attempting to decrease one term is likely to increase another.

The relation of (10) and (11) can be seen with assumptions on the underlying distribution p(xy).
Writing the latter two terms of (12) as entropies:

Jcmi(Xk) = I(Xk;Y )
− H(S)+H(S|Xk)
+ H(S|Y )−H(S|XkY ). (13)

To develop this further, we require an assumption.

Assumption 1 For all unselected features Xk ∈ Xθ̃, assume the following,

p(xθ|xk) = ∏
j∈S

p(x j|xk)

p(xθ|xky) = ∏
j∈S

p(x j|xky).

This states that the selected features Xθ are independent and class-conditionally independent given
the unselected feature Xk under consideration.

Using this, Equation (13) becomes,

J′cmi(Xk) = I(Xk;Y )
− H(S)+∑

j∈S
H(Xj|Xk)

+ H(S|Y )−∑
j∈S
H(Xj|XkY ).

where the prime on J indicates we are making assumptions on the distribution. Now, if we introduce
∑ j∈SH(Xj)−∑ j∈SH(Xj), and∑ j∈SH(Xj|Y )−∑ j∈SH(Xj|Y ), we recover mutual information terms,
between the candidate feature and each member of the set S, plus some additional terms,

J′cmi(Xk) = I(Xk;Y )
− ∑

j∈S
I(Xj;Xk)+∑

j∈S
H(Xj)−H(S)

+ ∑
j∈S
I(Xj;Xk|Y )−∑

j∈S
H(Xj|Y )+H(S|Y ). (14)

Several of the terms in (14) are constant with respect to Xk—as such, removing them will have no
effect on the choice of feature. Removing these terms, we have an equivalent criterion,

J′cmi(Xk) = I(Xk;Y )−∑
j∈S
I(Xj;Xk)+∑

j∈S
I(Xj;Xk|Y ). (15)
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This has in fact already appeared in the literature as a filter criterion, originally proposed by Lin
and Tang (2006), as Conditional Infomax Feature Extraction (CIFE), though it has been repeatedly
rediscovered by other authors (El Akadi et al., 2008; Guo and Nixon, 2009). It is particularly
interesting as it represents a sort of ‘root’ criterion, from which several others can be derived. For
example, the link to MIFS can be seen with one further assumption, that the features are pairwise
class-conditionally independent.

Assumption 2 For all features i, j, assume p(xix j|y) = p(xi|y)p(x j|y). This states that the features
are pairwise class-conditionally independent.

With this assumption, the term ∑ I(Xj;Xk|Y ) will be zero, and (15) becomes (11), the MIFS
criterion, with β = 1. The β parameter in MIFS can be interpreted as encoding a strength of belief
in another assumption, that of unconditional independence.

Assumption 3 For all features i, j, assume p(xix j) = p(xi)p(x j). This states that the features are
pairwise independent.

A β close to zero implies very strong belief in the independence statement, indicating that any
measured association I(Xj;Xk) is in fact spurious, possibly due to noise in the data. A β value closer
to 1 implies a lesser belief, that any measured dependency I(Xj;Xk) should be incorporated into the
feature score exactly as observed. Since MIM is produced by setting β = 0, we can see that MIM
also adopts Assumption 3. The same line of reasoning can be applied to a very similar criterion
proposed by Peng et al. (2005), theMinimum-Redundancy Maximum-Relevance criterion,

Jmrmr(Xk) = I(Xk;Y )−
1
|S|∑j∈S

I(Xk;Xj).

Since mRMR omits the conditional redundancy term entirely, it is implicitly using Assumption 2.
The β coefficient has been set inversely proportional to the size of the current feature set. If we
have a large set S, then β will be extremely small. The interpretation is then that as the set S grows,
mRMR adopts a stronger belief in Assumption 3. In the original paper, (Peng et al., 2005, Section
2.3) it was claimed that mRMR is equivalent to (10). In this section, through making explicit the
intrinsic assumptions of the criterion, we have clearly illustrated that this claim is incorrect.

Balagani and Phoha (2010) present an analysis of the three criteria mRMR, MIFS and CIFE,
arriving at similar results to our own: that these criteria make highly restrictive assumptions on
the underlying data distributions. Though the conclusions are similar, our approach includes their
results as a special case, and makes explicit the link to a likelihood function.

The relation of the MIFS/mRMR to Equation (15) is relatively straightforward. It is more chal-
lenging to consider how closely other criteria might be re-expressed in this form. Yang and Moody
(1999) propose using Joint Mutual Information (JMI),

Jjmi(Xk) =∑
j∈S
I(XkXj;Y ). (16)

Using some relatively simple manipulations (see appendix) this can be re-written as,

Jjmi(Xk) = I(Xk;Y )−
1
|S|∑j∈S

[
I(Xk;Xj)− I(Xk;Xj|Y )

]
. (17)
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This criterion (17) returns exactly the same set of features as the JMI criterion (16); however in
this form, we can see the relation to our proposed framework. The JMI criterion, like mRMR, has a
stronger belief in the pairwise independence assumptions as the feature set S grows. Similarities can
of course be observed between JMI, MIFS and mRMR—the differences being the scaling factor and
the conditional term—and their subsequent relation to Equation (15). It is in fact possible to identify
numerous criteria from the literature that can all be re-written into a common form, corresponding to
variations upon (15). A space of potential criteria can be imagined, where we parameterize criterion
(15) as so:

J′cmi = I(Xk;Y )−β∑
j∈S
I(Xj;Xk)+ γ∑

j∈S
I(Xj;Xk|Y ). (18)

Figure 2 shows how the criteria we have discussed so far can all be fitted inside this unit square
corresponding to β/γ parameters. MIFS sits on the left hand axis of the square—with γ = 0 and
β∈ [0,1]. The MIM criterion, Equation (1), which simply assesses each feature individually without
any regard of others, sits at the bottom left, with γ= 0,β= 0. The top right of the square corresponds
to γ= 1,β= 1, which is the CIFE criterion (Lin and Tang, 2006), also suggested by El Akadi et al.
(2008) and Guo and Nixon (2009). A very similar criterion, using an assumption to approximate
the terms, was proposed by Cheng et al. (2011).

The JMI and mRMR criteria are unique in that theymove linearlywithin the space as the feature
set S grows. As the size of the set S increases they move closer towards the origin and the MIM
criterion. The particularly interesting point about this property is that the relative magnitude of
the relevancy term to the redundancy terms stays approximately constant as S grows, whereas with
MIFS, the redundancy term will in general be |S| times bigger than the relevancy term. The conse-
quences of this will be explored in the experimental section of this paper. Any criterion expressible
in the unit square has made independence Assumption 1. In addition, any criteria that sit at points
other than β= 1,γ= 1 have adopted varying degrees of belief in Assumptions 2 and 3.

A further interesting point about this square is simply that it is sparsely populated. An obvious
unexplored region is the bottom right, the corner corresponding to β = 0,γ = 1; though there is
no clear intuitive justification for this point, for completeness in the experimental section we will
evaluate it, as the conditional redundancy or ‘condred’ criterion. In previous work (Brown, 2009)
we explored this unit square, though derived from an expansion of the mutual information function
rather than directly from the conditional likelihood. While this resulted in an identical expression
to (18), the probabilistic framework we present here is far more expressive, allowing exact specifi-
cation of the underlying assumptions.

The unit square of Figure 2 describes linear criteria, named as so since they are linear combi-
nations of the relevance/redundancy terms. There exist other criteria that follow a similar form, but
involving other operations, making them non-linear.

4.2 Criteria as Non-Linear Combinations of Shannon Information Terms

Fleuret (2004) proposed the Conditional Mutual Information Maximization criterion,

Jcmim(Xk) = min
Xj∈S

[
I(Xk;Y |Xj)

]
.

This can be re-written,

Jcmim(Xk) = I(Xk;Y )−max
Xj∈S

[
I(Xk;Xj)− I(Xk;Xj|Y )

]
. (19)
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Figure 2: The full space of linear filter criteria, describing several examples from Table 1. Note
that all criteria in this space adopt Assumption 1. Additionally, the γ and β axes represent
the criteria belief in Assumptions 2 and 3, respectively. The left hand axis is where
the mRMR and MIFS algorithms sit. The bottom left corner, MIM, is the assumption of
completely independent features, using just marginal mutual information. Note that some
criteria are equivalent at particular sizes of the current feature set |S|.

The proof is again available in the appendix. Due to themax operator, the probabilistic interpretation
is a little less straightforward. It is clear however that CMIM adopts Assumption 1, since it evaluates
only pairwise feature statistics.

Vidal-Naquet and Ullman (2003) propose another criterion used in Computer Vision, which we
refer to as Informative Fragments,

Ji f (Xk) = min
Xj∈S

[
I(XkXj;Y )− I(Xj;Y )

]
.

The authors motivate this criterion by noting that it measures the gain of combining a new feature
Xk with each existing feature Xj, over simply using Xj by itself. The Xj with the least ‘gain’ from
being paired with Xk is taken as the score for Xk. Interestingly, using the chain rule I(XkXj;Y ) =
I(Xj;Y )+ I(Xk;Y |Xj), therefore IF is equivalent to CMIM, that is, Ji f (Xk) = Jcmim(Xk), making the
same assumptions. Jakulin (2005) proposed the criterion,

Jicap(Xk) = I(Xk;Y )− ∑
Xj∈S

max
[
0,{I(Xk;Xj)− I(Xk;Xj|Y )}

]
.

Again, this adopts Assumption 1, using the same redundancy and conditional redundancy terms, yet
the exact probabilistic interpretation is unclear.

An interesting class of criteria use a normalisation term on the mutual information to offset
the inherent bias toward high arity features (Duch, 2006). An example of this is Double Input
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Symmetrical Relevance (Meyer and Bontempi, 2006), a modification of the JMI criterion:

Jdisr(Xk) = ∑
Xj∈S

I(XkXj;Y )
H(XkXjY )

.

The inclusion of this normalisation term breaks the strong theoretical link to a likelihood function,
but again for completeness we will include this in our empirical investigations. While the criteria
in the unit square can have their probabilistic assumptions made explicit, the nonlinearity in the
CMIM, ICAP and DISR criteria make such an interpretation far more difficult.

4.3 Summary of Theoretical Findings

In this section we have shown that numerous criteria published over the past two decades of research
can be ‘retro-fitted’ into the framework we have proposed—the criteria are approximations to (10),
each making different assumptions on the underlying distributions. Since in the previous section we
saw that accepting the top ranked feature according to (10) provides the maximum possible increase
in the likelihood, we see now that the criteria are approximatemaximisers of the likelihood. Whether
or not they indeed provide the maximum increase at each step will depend on how well the implicit
assumptions on the data can be trusted. Also, it should be remembered that even if we used (10), it
is not guaranteed to find the global optimum of the likelihood, since (a) it is a greedy search, and (b)
finite data will mean distributions cannot be accurately modelled. In this case, we have reached the
limit of what a theoretical analysis can tell us about the criteria, and we must close the remaining
‘gaps’ in our understanding with an experimental study.

5. Experiments

In this section we empirically evaluate some of the criteria in the literature against one another. Note
that we are not pursuing an exhaustive analysis, attempting to identify the ‘winning’ criterion that
provides best performance overall4—rather, we primarily observe how the theoretical properties
of criteria relate to the similarity of the returned feature sets. While these properties are interest-
ing, we of course must acknowledge that classification performance is the ultimate evaluation of a
criterion—hence we also include here classification results on UCI data sets and in Section 6 on the
well-known benchmark NIPS Feature Selection Challenge.

In the following sections, we ask the questions: “how stable is a criterion to small changes in
the training data set?”, “how similar are the criteria to each other?”, “how do the different criteria
behave in limited and extreme small-sample situations?”, and finally, “what is the relation between
stability and accuracy?”.

To address these questions, we use the 15 data sets detailed in Table 2. These are chosen to have
a wide variety of example-feature ratios, and a range of multi-class problems. The features within
each data set have a variety of characteristics—some binary/discrete, and some continuous. Con-
tinuous features were discretized, using an equal-width strategy into 5 bins, while features already
with a categorical range were left untouched. The ‘ratio’ statistic quoted in the final column is an
indicator of the difficulty of the feature selection for each data set. This uses the number of data-
points (N), the median arity of the features (m), and the number of classes (c)—the ratio quoted in

4. In any case, the No Free Lunch Theorem applies here also (Tsamardinos and Aliferis, 2003).
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the table for each data set is N
mc , hence a smaller value indicates a more challenging feature selection

problem.
A key point of this work is to understand the statistical assumptions on the data imposed by the

feature selection criteria—if our classification model were to make even more assumptions, this is
likely to obscure the experimental observations relating performance to theoretical properties. For
this reason, in all experiments we use a simple nearest neighbour classifier (k = 3), this is chosen
as it makes few (if any) assumptions about the data, and we avoid the need for parameter tuning.
For the feature selection search procedure, the filter criteria are applied using a simple forward
selection, to select a fixed number of features, specified in each experiment, before being used with
the classifier.

Data Features Examples Classes Ratio
breast 30 569 2 57
congress 16 435 2 72
heart 13 270 2 34
ionosphere 34 351 2 35
krvskp 36 3196 2 799
landsat 36 6435 6 214
lungcancer 56 32 3 4
parkinsons 22 195 2 20
semeion 256 1593 10 80
sonar 60 208 2 21
soybeansmall 35 47 4 6
spect 22 267 2 67
splice 60 3175 3 265
waveform 40 5000 3 333
wine 13 178 3 12

Table 2: Data sets used in experiments. The final column indicates the difficulty of the data in
feature selection, a smaller value indicating a more challenging problem.

5.1 How Stable are the Criteria to Small Changes in the Data?

The set of features selected by any procedure will of course depend on the data provided. It is a
plausible complaint if the set of returned features varies wildly with only slight variations in the
supplied data. This is an issue reminiscent of the bias-variance dilemma, where the sensitivity of a
classifier to its initial conditions causes high variance responses. However, while the bias-variance
decomposition is well-defined and understood, the corresponding issue for feature selection, the
‘stability’, has only recently been studied. The stability of a feature selection criterion requires
a measure to quantify the ‘similarity’ between two selected feature sets. This was first discussed
by Kalousis et al. (2007), who investigated several measures, with the final recommendation being
the Tanimoto distance between sets. Such set-intersection measures seem appropriate, but have
limitations; for example, if two criteria selected identical feature sets of size 10, we might be less
surprised if we knew the overall pool of features was of size 12, than if it was size 12,000. To account
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for this, Kuncheva (2007) presents a consistency index, based on the hypergeometric distribution
with a correction for chance.

Definition 7 The consistency for two subsets A,B ⊂ X, such that |A| = |B| = k, and r = |A∩B|,
where 0< k < |X |= n, is

C(A,B) =
rn− k2

k(n− k)
.

The consistency takes values in the range [−1,+1], with a positive value indicating similar sets,
a zero value indicating a purely random relation, and a negative value indicating a strong anti-
correlation between the features sets.

One problem with the consistency index is that it does not take feature redundancy into account.
That is, two procedures could select features which have different array indices, so are identified as
‘different’, but in fact are so highly correlated that they are effectively identical. A method to deal
with this situation was proposed by Yu et al. (2008). This method constructs a weighted complete
bipartite graph, where the two node sets correspond to two different feature sets, and weights are
assigned to the arcs are the normalized mutual information between the features at the nodes, also
sometimes referred to as the symmetrical uncertainty. The weight between node i in set A, and node
j in set B, is

w(A(i),B( j)) =
I(XA(i);XB( j))

H(XA(i))+H(XB( j))
.

The Hungarian algorithm is then applied to identify the maximum weighted matching between the
two node sets, and the overall similarity between sets A and B is the final matching cost. This is the
information consistency of the two sets. For more details, we refer to Yu et al. (2008).

We now compare these two measures on the criteria from the previous sections. For each data
set, we take a bootstrap sample and select a set of features using each feature selection criterion.
The (information) stability of a single criterion is quantified as the average pairwise (information)
consistency across 50 bootstraps from the training data.

Figure 3 shows Kuncheva’s stability measure on average over 15 data sets, selecting feature sets
of size 10; note that the criteria have been displayed ordered left-to-right by their median value of
stability over the 15 data sets. The marginal mutual information, MIM, is as expected the most
stable, given that it has the lowest dimensional distribution to approximate. The next most stable is
JMI which includes the relevancy/redundancy terms, but averages over the current feature set; this
averaging process might therefore be interpreted empirically as a form of ‘smoothing’, enabling the
criteria overall to be resistant to poor estimation of probability distributions. It can be noted that the
far right of Figure 3 consists of the MIFS, ICAP and CIFE criteria, all of which do not attempt to
average the redundancy terms.

Figure 4 shows the same data sets, but instead the information stability is computed; as men-
tioned, this should take into account the fact that some features are highly correlated. Interestingly,
the two box-plots show broadly similar results. MIM is the most stable, and CIFE is the least stable,
though here we see that JMI, DISR, and MRMR are actually more stable than Kuncheva’s stability
index can reflect. An interesting line of future research might be to combine the best of these two
stability measures—one that can take into account both feature redundancy and a correction for
random chance.
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Figure 3: Kuncheva’s Stability Index across 15 data sets. The box indicates the upper/lower quar-
tiles, the horizontal line within each shows the median value, while the dotted crossbars
indicate the maximum/minimum values. For convenience of interpretation, criteria on the
x-axis are ordered by their median value.

Figure 4: Yu et al’s Information Stability Index across 15 data sets. For comparison, criteria on the
x-axis are ordered identically to Figure 3. The general picture emerges similarly, though
the information stability index is able to take feature redundancy into account, showing
that some criteria are slightly more stable than expected.
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(a) Kuncheva’s Consistency Index. (b) Yu et al’s Information Stability Index.

Figure 5: Relations between feature sets generated by different criteria, on average over 15 data
sets. 2-D visualisation generated by classical multi-dimensional scaling.

5.2 How Similar are the Criteria?

Two criteria can be directly compared with the same methodology: by measuring the consistency
and information consistency between selected feature subsets on a common set of data. We calculate
the mean consistencies between two feature sets of size 10, repeatedly selected over 50 bootstraps
from the original data. This is then arranged in a similarity matrix, and we use classical multi-
dimensional scaling to visualise this as a 2-d map, shown in Figures 5a and 5b. Note again that while
the indices may return different absolute values (one is a normalized mean of a hypergeometric
distribution and the other is a pairwise sum of mutual information terms) they show very similar
relative ‘distances’ between criteria.

Both diagrams show a cluster of several criteria, and 4 clear outliers: MIFS, CIFE, ICAP and
CondRed. The 5 criteria clustering in the upper left of the space appear to return relatively similar
feature sets. The 4 outliers appear to return quite significantly different feature sets, both from
the clustered set, and from each other. A common characteristic of these 4 outliers is that they do
not scale the redundancy or conditional redundancy information terms. In these criteria, the upper
bound on the redundancy term ∑ j∈S I(Xk;Xj) grows linearly with the number of selected features,
whilst the upper bound on the relevancy term I(Xk;Y ) remains constant. When this happens the
relevancy term is overwhelmed by the redundancy term and thus the criterion selects features with
minimal redundancy, rather than trading off between the two terms. This leads to strongly divergent
feature sets being selected, which is reflected in the stability of the criteria. Each of the outliers
are different from each other as they have different combinations of redundancy and conditional
redundancy. We will see this ‘balance’ between relevancy and redundancy emerge as a common
theme in the experiments over the next few sections.
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5.3 How do Criteria Behave in Limited and Extreme Small-sample Situations?

To assess how criteria behave in data poor situations, we vary the number of datapoints supplied to
perform the feature selection. The procedure was to randomly select 140 datapoints, then use the
remaining data as a hold-out set. From this 140, the number provided to each criterion was increased
in steps of 10, from a minimal set of size 20. To allow a reasonable testing set size, we limited this
assessment to only data sets with at least 200 datapoints total; this gives us 11 data sets from the 15,
omitting lungcancer, parkinsons, soybeansmall, and wine. For each data set we select 10 features
and apply the 3-nn classifier, recording the rank-order of the criteria in terms of their generalisation
error. This process was repeated and averaged over 50 trials, giving the results in Figure 6.

To aid interpretation we label MIM with a simple point marker, MIFS, CIFE, CondRed, and
ICAP with a circle, and the remaining criteria (DISR, JMI, mRMR and CMIM) with a star. The
criteria labelled with a star balance the relative magnitude of the relevancy and redundancy terms,
those with a circle do not attempt to balance them, and MIM contains no redundancy term. There
is a clear separation between those criteria with a star outperforming those with a circle, and MIM
varying in performance between the two groups as we allow more training datapoints.

Notice that the highest ranked criteria coincide with those in the cluster at the top left of Figures
5a and 5b. We suggest that the relative difference in performance is due to the same reason noted
in Section 5.2, that the redundancy term grows with the size of the selected feature set. In this case,
the redundancy term eventually grows to outweigh the relevancy by a large degree, and the new
features are selected solely on the basis of redundancy, ignoring the relevance, thus leading to poor
classification performance.
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Figure 6: Average ranks of criteria in terms of test error, selecting 10 features, across 11 data sets.
Note the clear dominance of criteria which do not allow the redundancy term to over-
whelm the relevancy term (unfilled markers) over those that allow redundancy to grow
with the size of the feature set (filled markers).
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Data Features Examples Classes
Colon 2000 62 2
Leukemia 7070 72 2
Lung 325 73 7
Lymph 4026 96 9
NCI9 9712 60 9

Table 3: Data sets from Peng et al. (2005), used in experiments.

5.4 Extreme Small-Sample Experiments

In the previous sections we discussed two theoretical properties of information-based feature se-
lection criteria: whether it balances the relative magnitude of relevancy against redundancy, and
whether it includes a class-conditional redundancy term. Empirically on the UCI data sets, we see
that the balancing is far more important than the inclusion of the conditional redundancy term—for
example, MRMR succeeds in many cases, while MIFS performs poorly. Now, we consider whether
same property may hold in extreme small-sample situations, when the number of examples is so
low that reliable estimation of distributions becomes extremely difficult. We use data sourced from
Peng et al. (2005), detailed in Table 3. Results are shown in Figure 7, selecting 50 features from
each data set and plotting leave-one-out classification error. It should of course be remembered that
on such small data sets, making just one additional datapoint error can result in seemingly large
changes in accuracy. For example, the difference between the best and worst criteria on Leukemia
was just 3 datapoints. In contrast to the UCI results, the picture is less clear. On Colon, the criteria
all perform similarly; this is the least complex of all the data sets, having the smallest number of
classes with a (relatively) small number of features. As we move through the data sets with in-
creasing numbers of features/classes, we see that MIFS, CONDRED, CIFE and ICAP start to break
away, performing poorly compared to the others. Again, we note that these do not attempt to bal-
ance relevancy/redundancy. This difference is clearest on the NCI9 data, the most complex with 9
classes and 9712 features. However, as we may expect with such high dimensional and challenging
problems, there are some exceptions—the Colon data as mentioned, and also the Lung data where
ICAP/MIFS perform well.

5.5 What is the Relation Between Stability and Accuracy?

An important question is whether we can find a good balance between the stability of a criterion
and the classification accuracy. This was considered by Gulgezen et al. (2009), who studied the sta-
bility/accuracy trade-off for the MRMR criterion. In the following, we consider this trade-off in the
context of Pareto-optimality, across the 9 criteria, and the 15 data sets from Table 2. Experimental
protocol was to take 50 bootstraps from the data set, each time calculating the out-of-bag error using
the 3-nn. The stability measure was Kuncheva’s stability index calculated from the 50 feature sets,
and the accuracy was the mean out-of-bag accuracy across the 50 bootstraps. The experiments were
also repeated using the Information Stability measure, revealing almost identical results. Results
using Kuncheva’s stability index are shown in Figure 8.

The Pareto-optimal set is defined as the set of criteria for which no other criterion has both
a higher accuracy and a higher stability, hence the members of the Pareto-optimal set are said to
be non-dominated (Fonseca and Fleming, 1996). Thus, each of the subfigures of Figure 8, criteria
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Figure 7: LOO results on Peng’s data sets : Colon, Lymphoma, Leukemia, Lung, NCI9.
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Figure 8: Stabilty (y-axes) versus Accuracy (x-axes) over 50 bootstraps for each of the UCI data
sets. The pareto-optimal rankings are summarised in Table 4.
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Accuracy/Stability(Yu) Accuracy/Stability(Kuncheva) Accuracy
JMI (1.6) JMI (1.5) JMI (2.6)
DISR (2.3) DISR (2.2) MRMR (3.6)
MIM (2.4) MIM (2.3) DISR (3.7)
MRMR (2.5) MRMR (2.5) CMIM (4.5)
CMIM (3.3) CONDRED (3.2) ICAP (5.3)
ICAP (3.6) CMIM (3.4) MIM (5.4)

CONDRED (3.7) ICAP (4.3) CIFE (5.9)
CIFE (4.3) CIFE (4.8) MIFS (6.5)
MIFS (4.5) MIFS (4.9) CONDRED (7.4)

Table 4: Column 1: Non-dominated Rank of different criteria for the trade-off of accuracy/stability.
Criteria with a higher rank (closer to 1.0) provide a better tradeoff than those with a lower
rank. Column 2: As column 1 but using Kuncheva’s Stability Index. Column 3: Average
ranks for accuracy alone.

that appear further to the top-right of the space dominate those toward the bottom left—in such a
situation there is no reason to choose those at the bottom left, since they are dominated on both
objectives by other criteria.

A summary (for both stability and information stability) is provided in the first two columns of
Table 4, showing the non-dominated rank of the different criteria. This is computed per data set
as the number of other criteria which dominate a given criterion, in the Pareto-optimal sense, then
averaged over the 15 data sets. We can see that these rankings are similar to the results earlier,
with MIFS, ICAP, CIFE and CondRed performing poorly. We note that JMI, (which both balances
the relevancy and redundancy terms and includes the conditional redundancy) outperforms all other
criteria.

We present the average accuracy ranks across the 50 bootstraps in column 3. These are similar
to the results from Figure 6 but use a bootstrap of the full data set, rather than a small sample
from it. Following Demšar (2006) we analysed these ranks using a Friedman test to determine
which criteria are statistically significantly different from each other. We then used a Nemenyi post-
hoc test to determine which criteria differed, with statistical significances at 90%, 95%, and 99%
confidences. These give a partial ordering for the criteria which we present in Figure 9, showing
a Significant Dominance Partial Order diagram. Note that this style of diagram encapsulates the
same information as a Critical Difference diagram (Demšar, 2006), but allows us to display multiple
levels of statistical significance. A bold line connecting two criteria signifies a difference at the 99%
confidence level, a dashed line at the 95% level, and a dotted line at the 90% level. Absence of a link
signifies that we do not have the statistical power to determine the difference one way or another.
Reading Figure 9, we see that with 99% confidence JMI is significantly superior to CondRed, and
MIFS, but not statistically significantly different from the other criteria. As we lower our confidence
level, more differences appear, for example MRMR and MIFS are only significantly different at the
90% confidence level.
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Figure 9: Significant dominance partial-order diagram. Criteria are placed top to bottom in the di-
agram by their rank taken from column 3 of Table 4. A link joining two criteria means
a statistically significant difference is observed with a Nemenyi post-hoc test at the spec-
ified confidence level. For example JMI is significantly superior to MIFS (β = 1) at the
99% confidence level. Note that the absence of a link does not signify the lack of a statis-
tically significant difference, but that the Nemenyi test does not have sufficient power (in
terms of number of data sets) to determine the outcome (Demšar, 2006). It is interesting
to note that the four bottom ranked criteria correspond to the corners of the unit square
in Figure 2; while the top three (JMI/MRMR/DISR) are all very similar, scaling the re-
dundancy terms by the size of the feature set. The middle ranks belong to CMIM/ICAP,
which are similar in that they use the min/max strategy instead of a linear combination of
terms.
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5.6 Summary of Empirical Findings

From experiments in this section, we conclude that the balance of relevancy/redundancy terms is
extremely important, while the inclusion of a class conditional term seems to matter less. We find
that some criteria are inherently more stable than others, and that the trade-off between accuracy
(using a simple k-nn classifier) and stability of the feature sets differs between criteria. The best
overall trade-off for accuracy/stability was found in the JMI and MRMR criteria. In the following
section we re-assess these findings, in the context of two problems posed for the NIPS Feature
Selection Challenge.

6. Performance on the NIPS Feature Selection Challenge

In this section we investigate performance of the criteria on data sets taken from the NIPS Feature
Selection Challenge (Guyon, 2003).

6.1 Experimental Protocols

We present results using GISETTE (a handwriting recognition task), andMADELON (an artificially
generated data set).

Data Features Examples (Tr/Val) Classes
GISETTE 5000 6000/1000 2
MADELON 500 2000/600 2

Table 5: Data sets from the NIPS challenge, used in experiments.

To apply the mutual information criteria, we estimate the necessary distributions using his-
togram estimators: features were discretized independently into 10 equal width bins, with bin
boundaries determined from training data. After the feature selection process the original (undis-
cretised) data sets were used to classify the validation data. Each criterion was used to generate
a ranking for the top 200 features in each data set. We show results using the full top 200 for
GISETTE, but only the top 20 for MADELON as after this point all criteria demonstrated severe
overfitting. We use the Balanced Error Rate, for fair comparison with previously published work on
the NIPS data sets. We accept that this does not necessarily share the same optima as the classifi-
cation error (to which the conditional likelihood relates), and leave investigations of this to future
work.

Validation data results are presented in Figure 10 (GISETTE) and Figure 11 (MADELON). The
minimum of the validation error was used to select the best performing feature set size, the training
data alone used to classify the testing data, and finally test labels were submitted to the challenge
website. Test results are provided in Table 6 for GISETTE, and Table 7 for MADELON.5

Unlike in Section 5, the data sets we have used from the NIPS Feature Selection Challenge
have a greater number of datapoints (GISETTE has 6000 training examples, MADELON has 2000)
and thus we can present results using a direct implementation of Equation (10) as a criterion. We
refer to this criterion as CMI, as it is using the conditional mutual information to score features.
Unfortunately there are still estimation errors in this calculation when selecting a large number of

5. We do not provide classification confidences as we used a nearest neighbour classifier and thus the AUC is equal to
1− BER.
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Figure 10: Validation Error curve using GISETTE.
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Figure 11: Validation Error curve using MADELON.
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features, even given the large number of datapoints and so the criterion fails to select features after
a certain point, as each feature appears equally irrelevant. In GISETTE, CMI selected 13 features,
and so the top 10 features were used and thus one result is shown. In MADELON, CMI selected 7
features and so 7 results are shown.

6.2 Results on Test Data

In Table 6 there are several distinctions between the criteria, the most striking of which is the failure
of MIFS to select an informative feature set. The importance of balancing the magnitude of the
relevancy and the redundancy can be seen whilst looking at the other criteria in this test. Those
criteria which balance the magnitudes, (CMIM, JMI, & mRMR) perform better than those which
do not (ICAP,CIFE). The DISR criterion forms an outlier here as it performs poorly when compared
to JMI. The only difference between these two criteria is the normalization in DISR—as such, this is
the likely cause of the observed poor performance, the introduction of more variance by estimating
the normalization H(XkXjY ).

We can also see how important the low dimensional approximation is, as even with 6000 training
examples CMI cannot estimate the required joint distribution to avoid selecting probes, despite being
a direct iterative maximisation of the conditional likelihood in the limit of datapoints.

Criterion BER AUC Features (%) Probes (%)
MIM 4.18 95.82 4.00 0.00
MIFS 42.00 58.00 4.00 58.50
CIFE 6.85 93.15 2.00 0.00
ICAP 4.17 95.83 1.60 0.00
CMIM 2.86 97.14 2.80 0.00
CMI 8.06 91.94 0.20 20.00
mRMR 2.94 97.06 3.20 0.00
JMI 3.51 96.49 4.00 0.00
DISR 8.03 91.97 4.00 0.00
Winning Challenge Entry 1.35 98.71 18.3 0.0

Table 6: NIPS FS Challenge Results: GISETTE.

The MADELON results (Table 7) show a particularly interesting point—the top performers (in
terms of BER) are JMI and CIFE. Both these criteria include the class-conditional redundancy term,
but CIFE does not balance the influence of relevancy against redundancy. In this case, it appears
the ‘balancing’ issue, so important in our previous experiments seems to have little importance—
instead, the presence of the conditional redundancy term is the differentiating factor between criteria
(note the poor performance of MIFS/MRMR). This is perhaps not surprising given the nature of the
MADELON data, constructed precisely to require features to be evaluated jointly.

It is interesting to note that the challenge organisers benchmarked a 3-NN using the optimal
feature set, achieving a 10% test error (Guyon, 2003). Many of the criteria managed to select feature
sets which achieved a similar error rate using a 3-NN, and it is likely that a more sophisticated
classifier is required to further improve performance.

This concludes our experimental study—in the following, we make further links to the literature
for the theoretical framework, and discuss implications for future work.
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Criterion BER AUC Features (%) Probes (%)
MIM 10.78 89.22 2.20 0.00
MIFS 46.06 53.94 2.60 92.31
CIFE 9.50 90.50 3.80 0.00
ICAP 11.11 88.89 1.60 0.00
CMIM 11.83 88.17 2.20 0.00
CMI 21.39 78.61 0.80 0.00
mRMR 35.83 64.17 3.40 82.35
JMI 9.50 90.50 3.20 0.00
DISR 9.56 90.44 3.40 0.00
Winning Challenge Entry 7.11 96.95 1.6 0.0

Table 7: NIPS FS Challenge Results: MADELON.

7. Related Work: Strong and Weak Relevance

Kohavi and John (1997) proposed definitions of strong and weak feature relevance. The definitions
are formed from statements about the conditional probability distributions of the variables involved.
We can re-state the definitions of Kohavi and John (hereafter KJ) in terms of mutual information,
and see how they can fit into our conditional likelihood maximisation framework. In the notation
below, notation Xi indicates the ith feature in the overall set X , and notation X\i indicates the set
{X\Xi}, all features except the ith.

Definition 8 : Strongly Relevant Feature (Kohavi and John, 1997)
Feature Xi is strongly relevant to Y iff there exists an assignment of values xi, y, x\i for which
p(Xi = xi,X\i = x\i)> 0 and p(Y = y|Xi = xi,X\i = x\i) .= p(Y = y|X\i = x\i).

Corollary 9 A feature Xi is strongly relevant iff I(Xi;Y |X\i)> 0.

Proof The KL divergence DKL(p(y|xz) || p(y|z)) > 0 iff p(y|xz) .= p(y|z) for some assignment of
values x,y,z. A simple re-application of the manipulations leading to Equation (5) demonstrates that
the expected KL-divergence Exz{p(y|xz)||p(y|z)} is equal to the mutual information I(X ;Y |Z). In
the definition of strong relevance, if there exists a single assignment of values xi, y, x\i that satisfies
the inequality, then Ex{p(y|xix\i)||p(y|x\i)}> 0 and therefore I(Xi;Y |X\i)> 0.

Given the framework we have presented, we can note that this strong relevance comes from a com-
bination of three terms,

I(Xi;Y |X\i) = I(Xi;Y )− I(Xi;X\i)+ I(Xi;X\i|Y ).

This view of strong relevance demonstrates explicitly that a feature may be individually irrelevant
(i.e., p(y|xi) = p(y) and thus I(Xi;Y ) = 0), but still strongly relevant if I(Xi;X\i|Y )− I(Xi;X\i)> 0.

Definition 10 : Weakly Relevant Feature (Kohavi and John, 1997)
Feature Xi is weakly relevant to Y iff it is not strongly relevant and there exists a subset Z ⊂ X\i, and
an assignment of values xi, y, z for which p(Xi = xi,Z = z)> 0 such that p(Y = y|Xi = xi,Z = z) .=
p(Y = y|Z = z).

57



BROWN, POCOCK, ZHAO AND LUJÁN

Corollary 11 A feature Xi is weakly relevant to Y iff it is not strongly relevant and I(Xi;Y |Z) > 0
for some Z ⊂ X\i.

Proof This follows immediately from the proof for the strong relevance above.

It is interesting, and somewhat non-intuitive, that there can be cases where there are no strongly
relevant features, but all are weakly relevant. This will occur for example in a data set where all
features have exact duplicates: we have 2M features and ∀i, XM+i = Xi. In this case, for any Xk
(such that k<M) we will have I(Xk;Y |X\i) = 0 since its duplicate feature XM+k will carry the same
information. In this case, for any feature Xk (such that k <M) that is strongly relevant in the data
set {X1, ...,XM}, it is weakly relevant in the data set {X1, ...,X2M}.

This issue can be dealt with by refining our definition of relevance with respect to a subset of
the full feature space. A particular subset about which we have some information is the currently
selected set S. We can relate our framework to KJ’s definitions in this context. Following KJ’s
formulations,

Definition 12 : Relevance with respect to the current set S.
Feature Xi is relevant to Y with respect to S iff there exists an assignment of values xi, y, s for which
p(Xi = xi,S= s)> 0 and p(Y = y|Xi = xi,S= s) .= p(Y = y|S= s).

Corollary 13 Feature Xi is relevant to Y with respect to S, iff I(Xi;Y |S)> 0.

A feature that is relevant with respect to S is either strongly or weakly relevant (in the KJ sense)
but it is not possible to determine in which class it lies, as we have not conditioned on X\i. Notice
that the definition coincides exactly with the forward selection heuristic (Definition 2), which we
have shown is a hill-climber on the conditional likelihood. As a result, we see that hill-climbing on
the conditional likelihood corresponds to adding themost relevant feature with respect to the current
set S. Again we re-emphasize, that the resultant gain in the likelihood comes from a combination of
three sources:

I(Xi;Y |S) = I(Xi;Y )− I(Xi;S)+ I(Xi;S|Y ).

It could easily be the case that I(Xi;Y ) = 0, that is a feature is entirely irrelevant when considered
on its own—but the sum of the two redundancy terms results in a positive value for I(Xi;Y |S). We
see that if a criterion does not attempt to model both of the redundancy terms, even if only using
low dimensional approximations, it runs the risk of evaluating the relevance of Xi incorrectly.

Definition 14 : Irrelevance with respect to the current set S.
Feature Xi is irrelevant to Y with respect to S iff ∀ xi, y, s for which p(Xi = xi,S = s) > 0 and
p(Y = y|Xi = xi,S= s) = p(Y = y|S= s).

Corollary 15 Feature Xi is irrelevant to Y with respect to S, iff I(Xi;Y |S) = 0.

In a forward step, if a feature Xi is irrelevant with respect to S, adding it alone to S will not increase
the conditional likelihood. However, there may be further additions to S in the future, giving us a
selected set S′; we may then find that Xi is then relevant with respect to S′. In a backward step we
check whether a feature is irrelevant with respect to {S\Xi}, using the test I(Xi;Y |{S\Xi}) = 0. In
this case, removing this feature will not decrease the conditional likelihood.
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8. Related Work: Structure Learning in Bayesian Networks

The framework we have described also serves to highlight a number of important links to the liter-
ature on structure learning of directed acyclic graphical (DAG) models (Korb, 2011). The problem
of DAG learning from observed data is known to be NP-hard (Chickering et al., 2004), and as
such there exist two main families of approximate algorithms. Metric or Score-and-Search learn-
ers construct a graph by searching the space of DAGs directly, assigning a score to each based on
properties of the graph in relation to the observed data; probably the most well-known score is the
BIC measure (Korb, 2011). However, the space of DAGs is superexponential in the number of vari-
ables, and hence an exhaustive search rapidly becomes computationally infeasible. Grossman and
Domingos (2004) proposed a greedy hill-climbing search over structures, using conditional likeli-
hood as a scoring criterion. Their work found significant advantage from using this ‘discriminative’
learning objective, as opposed to the traditional ‘generative’ joint likelihood. The potential of this
discriminative model perspective will be expanded upon in Section 9.3.

Constraint learners approach the problem from a constructivist point of view, adding and remov-
ing arcs from a single DAG according to conditional independence tests given the data. When the
candidate DAG passes all conditional independence statements observed in the data, it is considered
to be a good model. In the current paper, for a feature to be eligible for inclusion, we required that
I(Xk;Y |S)> 0. This is equivalent to a conditional independence test Xk ⊥⊥/ Y | S. One well-known
problem with constraint learners is that if a test gives an incorrect result, the error can ‘cascade’,
causing the algorithm to draw further incorrect conclusions on the network structure. This problem
is also true of the popular greedy-search heuristics that we have described in this work.

In Section 3.2, we showed that Markov Blanket algorithms (Tsamardinos et al., 2003) are an
example of the framework we propose. Specifically, the solution to Equation (7) is a (possibly non-
unique) Markov Blanket, and the solution to Equation (8) is exactly the Markov boundary, that is, a
minimal, unique blanket. It is interesting to note that these algorithms, which are a restricted class
of structure learners, assume faithfulness of the data distribution. We can see straightforwardly that
all criteria we have considered, when combined with a greedy forward selection, also make this
assumption.

9. Conclusion

This work has presented a unifying framework for information theoretic feature selection, bringing
almost two decades of research on heuristic scoring criteria under a single theoretical interpretation.
This is achieved via a novel interpretation of information theoretic feature selection as an optimiza-
tion of the conditional likelihood—this is in contrast to the current view of mutual information, as a
heuristic measure of feature relevancy.

9.1 Summary of Contributions

In Section 3 we showed how to decompose the conditional likelihood into three terms, each with
their own interpretation in relation to the feature selection problem. One of these emerges as a
conditional mutual information. This observation allows us to answer the following question:

What are the implicit statistical assumptions of mutual information criteria? The investigations
have revealed that the various criteria published over the past two decades are all approximate iter-
ative maximisers of the conditional likelihood. The approximations are due to implicit assumptions
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on the data distribution: some are more restrictive than others, and are detailed in Section 4. The
approximations, while heuristic, are necessary due to the need to estimate high dimensional proba-
bility distributions. The popular Markov Blanket learning algorithm IAMB is included in this class
of procedures, hence can also bee seen as an iterative maximiser of the conditional likelihood.

The main differences between criteria are whether they include a class-conditional term, and
whether they provide a mechanism to balance the relative size of the redundancy terms against the
relevancy term. To ascertain how these differences impact the criteria in practice, we conducted an
empirical study of 9 different heuristic mutual information criteria across 22 data sets. We analyzed
how the criteria behave in large/small sample situations, how the stability of returned feature sets
varies between criteria, and how similar criteria are in the feature sets they return. In particular, the
following questions were investigated:

How do the theoretical properties translate to classifier accuracy? Summarising the perfor-
mance of the criteria under the above conditions, including the class-conditional term is not always
necessary. Various criteria, for example MRMR, are successful without this term. However, with-
out this term criteria are blind to certain classes of problems, for example, the MADELON data set,
and will perform poorly in these cases. Balancing the relevancy and redundancy terms is however
extremely important—criteria like MIFS, or CIFE, that allow redundancy to swamp relevancy, are
ranked lowest for accuracy in almost all experiments. In addition, this imbalance tends to cause
large instability in the returned feature sets—being highly sensitive to the supplied data.

How stable are the criteria to small changes in the data? Several criteria return wildly different
feature sets with just small changes in the data, while others return similar sets each time, hence
are ‘stable’ procedures. The most stable was the univariate mutual information, followed closely by
JMI (Yang and Moody, 1999; Meyer et al., 2008); while among the least stable are MIFS (Battiti,
1994) and ICAP (Jakulin, 2005). As visualised by multi-dimensional scaling in Figure 5, several
criteria appear to return quite similar sets, while there are some outliers.

How do criteria behave in limited and extreme small-sample situations? In extreme small-
sample situations, it appears the above rules (regarding the conditional term and the balancing of
relevancy-redundancy) can be broken—the poor estimation of distributions means the theoretical
properties do not translate immediately to performance.

9.2 Advice for the Practitioner

From our investigations we have identified three desirable characteristics of an information based
selection criterion. The first is whether it includes reference to a conditional redundancy term—
criteria that do not incorporate it are effectively blind to an entire class of problems, those with strong
class-conditional dependencies. The second is whether it keeps the relative size of the redundancy
term from swamping the relevancy term. We find this to be essential—without this control, the
relevancy of the kth feature can easily be ignored in the selection process due to the k−1 redundancy
terms. The third is simply whether the criterion is a low-dimensional approximation, hence making
it usable with small sample sizes. On GISETTE with 6000 examples, we were unable to select more
than 13 features with any kind of reliability. Therefore, low dimensional approximations, the focus
of this article, are essential.

A summary of the criteria is shown in Table 8. Overall we find only 3 criteria that satisfy these
properties: CMIM, JMI and DISR. We recommend the JMI criterion, as from empirical investi-
gations it has the best trade-off (in the Pareto-optimal sense) of accuracy and stability. DISR is
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a normalised variant of JMI—in practice we found little need for this normalisation and the extra
computation involved. If higher stability is required—the MIM criterion, as expected, displayed the
highest stability with respect to variations in the data—therefore in extreme data-poor situations we
would recommend this as a first step. If speed is required, the CMIM criterion admits an fast exact
implementation giving orders of magnitude speed-up over a straightforward implementation—refer
to Fleuret (2004) for details.

To aid replicability of this work, implementations of all criteria we have discussed are provided
at: http://www.cs.man.ac.uk/∼gbrown/fstoolbox/

MIM mRMR MIFS CMIM JMI DISR ICAP CIFE CMI

Cond Redund term? ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔

Balances rel/red? ✔ ✔ ✗ ✔ ✔ ✔ ✗ ✗ ✔

Estimable? ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✗

Table 8: Summary of criteria. They have been arranged left to right in order of ascending estimation
difficulty. Cond Redund term: does it include the conditional redundancy term? Balances
rel/red: does it balance the relevance and redundancy terms? Estimable: does it use a low
dimensional approximation, making it usable with small samples?

9.3 Future Work

While advice on the suitability of existing criteria is of course useful, perhaps a more interest-
ing result of this work is the perspective it brings to the feature selection problem. We were able
to explicitly state an objective function, and derive an appropriate information-based criterion to
maximise it. This begs the question, what selection criteria would result from different objective
functions? Dmochowski et al. (2010) study a weighted conditional likelihood, and its suitabil-
ity for cost-sensitive problems—it is possible (though outside the scope of this paper) to derive
information-based criteria in this context. The reverse question is equally interesting, what objec-
tive functions are implied by other existing criteria, such as the Gini Index? The KL-divergence
(which defines the mutual information) is a special case of a wider family of measures, based on
the f -divergence—could we obtain similar efficient criteria that pursue these measures, and what
overall objectives do they imply?

In this work we explored criteria that use pairwise (i.e., I(Xk;Xj)) approximations to the derived
objective. These approximations are commonly used as they provide a reasonable heuristic while
still being (relatively) simple to estimate. There has been work which suggests relaxing this pairwise
approximation, and thus increasing the number of terms (Brown, 2009; Meyer et al., 2008), but there
is little exploration of how much data is required to estimate these multivariate information terms. A
theoretical analysis of the tradeoff between estimation accuracy and additional information provided
by these more complex terms could provide interesting directions for improving the power of filter
feature selection techniques.

A very interesting direction concerns the motivation behind the conditional likelihood as an ob-
jective. It can be noted that the conditional likelihood, though a well-accepted objective function in
its own right, can be derived from a probabilistic discriminative model, as follows. We approximate
the true distribution p with our model q, with three distinct parameter sets: θ for feature selection,
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τ for classification, and λ modelling the input distribution p(x). Following Minka (2005), in the
construction of a discriminative model, our joint likelihood is

L(D,θ,τ,λ) = p(θ,τ)p(λ)
N

∏
i=1

q(yi|xi,θ,τ)q(xi|λ).

In this type of model, we wish to maximize L with respect to θ (our feature selection parameters)
and τ (our model parameters), and are not concerned with the generative parameters λ. Excluding
the generative terms gives

L(D,θ,τ,λ) ∝ p(θ,τ)
N

∏
i=1

q(yi|xi,θ,τ).

When we have no particular bias or prior knowledge over which subset of features or parameters
are more likely (i.e., a flat prior p(θ,τ)), this reduces to the conditional likelihood:

L(D,θ,τ,λ) ∝
N

∏
i=1

q(yi|xi,θ,τ),

which was exactly our starting point for the current paper. An obvious extension here is to take
a non-uniform prior over features. An important direction for machine learning is to incorporate
domain knowledge. A non-uniform prior would mean influencing the search procedure to incorpo-
rate our background knowledge of the features. This is applicable for example in gene expression
data, when we may have information about the metabolic pathways in which genes participate, and
therefore which genes are likely to influence certain biological functions. This is outside the scope
of this paper but is the focus of our current research.
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Appendix A.

The following proofs make use of the identity, I(A;B|C)− I(A;B) = I(A;C|B)− I(A;C).

A.1 Proof of Equation (17)

The Joint Mutual Information criterion (Yang and Moody, 1999) can be written,

Jjmi(Xk)= ∑
Xj∈S

I(XkXj;Y ),

= ∑
Xj∈S

[
I(Xj;Y )+ I(Xk;Y |Xj)

]
.
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The term ∑Xj∈S I(Xj;Y ) in the above is constant with respect to the Xk argument that we are inter-
ested in, so can be omitted. The criterion therefore reduces to (17) as follows,

Jjmi(Xk) = ∑
Xj∈S

[
I(Xk;Y |Xj)

]

= ∑
Xj∈S

[
I(Xk;Y )− I(Xk;Xj)+ I(Xk;Xj|Y )

]

= |S|× I(Xk;Y )− ∑
Xj∈S

[
I(Xk;Xj)− I(Xk;Xj|Y )

]

∝ I(Xk;Y )−
1
|S| ∑Xj∈S

[
I(Xk;Xj)− I(Xk;Xj|Y )

]
.

A.2 Proof of Equation (19)

The rearrangement of the Conditional Mutual Information criterion (Fleuret, 2004) follows a very
similar procedure. The original, and its rewriting are,

Jcmim(Xk) = min
Xj∈S

[
I(Xk;Y |Xj)

]

= min
Xj∈S

[
I(Xk;Y )− I(Xk;Xj)+ I(Xk;Xj|Y )

]

= I(Xk;Y )+min
Xj∈S

[
I(Xk;Xj|Y )− I(Xk;Xj)

]

= I(Xk;Y )−max
Xj∈S

[
I(Xk;Xj)− I(Xk;Xj|Y )

]
,

which is exactly Equation (19).
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Abstract
We present a new active learning algorithm based on nonparametric estimators of the regression
function. Our investigation provides probabilistic bounds for the rates of convergence of the gen-
eralization error achievable by proposed method over a broad class of underlying distributions. We
also prove minimax lower bounds which show that the obtained rates are almost tight.
Keywords: active learning, selective sampling, model selection, classification, confidence bands

1. Introduction

Let (S,B) be a measurable space and let (X ,Y ) ∈ S× {−1,1} be a random couple with unknown
distribution P. The marginal distribution of the design variable X will be denoted by Π. Let
η(x) := E(Y |X = x) be the regression function. The goal of binary classification is to predict
label Y based on the observation X . Prediction is based on a classifier - a measurable func-
tion f : S $→ {−1,1}. The quality of a classifier is measured in terms of its generalization error,
R( f ) = Pr(Y &= f (X)). In practice, the distribution P remains unknown but the learning algorithm
has access to the training data - the i.i.d. sample (Xi,Yi), i= 1 . . .n from P. It often happens that the
cost of obtaining the training data is associated with labeling the observations Xi while the pool of
observations itself is almost unlimited. This suggests to measure the performance of a learning algo-
rithm in terms of its label complexity, the number of labels Yi required to obtain a classifier with the
desired accuracy. Active learning theory is mainly devoted to design and analysis of the algorithms
that can take advantage of this modified framework. Most of these procedures can be characterized
by the following property: at each step k, observation Xk is sampled from a distribution Π̂k that de-
pends on previously obtained (Xi,Yi), i ≤ k− 1(while passive learners obtain all available training
data at the same time). Π̂k is designed to be supported on a set where classification is difficult and
requires more labeled data to be collected. The situation when active learners outperform passive
algorithms might occur when the so-called Tsybakov’s low noise assumption is satisfied: there exist
constants B,γ> 0 such that

∀ t > 0, Π(x : |η(x)|≤ t)≤ Btγ. (1)

This assumption provides a convenient way to characterize the noise level of the problem and will
play a crucial role in our investigation.

The topic of active learning is widely present in the literature; see Balcan et al. (2009), Hanneke
(2011), Castro and Nowak (2008) for review. It was discovered that in some cases the generaliza-
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tion error of a resulting classifier can converge to zero exponentially fast with respect to its label
complexity(while the best rate for passive learning is usually polynomial with respect to the cardi-
nality of the training data set). However, available algorithms that adapt to the unknown parameters
of the problem(γ in Tsybakov’s low noise assumption, regularity of the decision boundary) involve
empirical risk minimization with binary loss, along with other computationally hard problems, see
Balcan et al. (2008), Dasgupta et al. (2008), Hanneke (2011) and Koltchinskii (2010). On the other
hand, the algorithms that can be effectively implemented, as in Castro and Nowak (2008), are not
adaptive.

The majority of the previous work in the field was done under standard complexity assumptions
on the set of possible classifiers(such as polynomial growth of the covering numbers). Castro and
Nowak (2008) derived their results under the regularity conditions on the decision boundary and
the noise assumption which is slightly more restrictive then (1). Essentially, they proved that if
the decision boundary is a graph of the Hölder smooth function g ∈ Σ(β,K, [0,1]d−1) (see Section
2 for definitions) and the noise assumption is satisfied with γ > 0, then the minimax lower bound
for the expected excess risk of the active classifier is of order C ·N− β(1+γ)

2β+γ(d−1) and the upper bound is
C(N/ logN)−

β(1+γ)
2β+γ(d−1) , where N is the label budget. However, the construction of the classifier that

achieves an upper bound assumes β and γ to be known.
In this paper, we consider the problem of active learning under classical nonparametric as-

sumptions on the regression function - namely, we assume that it belongs to a certain Hölder class
Σ(β,K, [0,1]d) and satisfies to the low noise condition (1) with some positive γ. In this case, the
work of Audibert and Tsybakov (2005) showed that plug-in classifiers can attain optimal rates in
the passive learning framework, namely, that the expected excess risk of a classifier ĝ = sign η̂ is
bounded above byC ·N− β(1+γ)

2β+d (which is the optimal rate), where η̂ is the local polynomial estimator
of the regression function and N is the size of the training data set. We were able to partially extend
this claim to the case of active learning: first, we obtain minimax lower bounds for the excess risk
of an active classifier in terms of its label complexity. Second, we propose a new algorithm that
is based on plug-in classifiers, attains almost optimal rates over a broad class of distributions and
possesses adaptivity with respect to β,γ(within the certain range of these parameters).

The paper is organized as follows: the next section introduces remaining notations and specifies
the main assumptions made throughout the paper. This is followed by a qualitative description of
our learning algorithm. The second part of the work contains the statements and proofs of our main
results - minimax upper and lower bounds for the excess risk.

2. Preliminaries

Our active learning framework is governed by the following rules:

1. Observations are sampled sequentially: Xk is sampled from the modified distribution Π̂k that
depends on (X1,Y1), . . . ,(Xk−1,Yk−1).

2. Yk is sampled from the conditional distribution PY |X(·|X = x). Labels are conditionally inde-
pendent given the feature vectors Xi, i≤ n.

Usually, the distribution Π̂k is supported on a set where classification is difficult.
Given the probability measure Q on S× {−1,1}, we denote the integral with respect to this

measure by Qg :=
∫
gdQ. Let F be a class of bounded, measurable functions. The risk and the
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excess risk of f ∈ F with respect to the measure Q are defined by

RQ( f ) :=QIy&=sign f (x)

EQ( f ) := RQ( f )− inf
g∈F

RQ(g),

where IA is the indicator of event A . We will omit the subindex Q when the underlying measure is
clear from the context. Recall that we denoted the distribution of (X ,Y ) by P. The minimal possible
risk with respect to P is

R∗ = inf
g:S $→[−1,1]

Pr(Y &= sign g(X)) ,

where the infimum is taken over all measurable functions. It is well known that it is attained for any
g such that sign g(x) = sign η(x) Π - a.s. Given g ∈ F , A ∈ B, δ> 0, define

F∞,A(g;δ) := { f ∈ F : ‖ f −g‖∞,A ≤ δ} ,

where ‖ f −g‖∞,A = sup
x∈A

| f (x)−g(x)|. For A ∈ B , define the function class

F |A := { f |A, f ∈ F } ,

where f |A(x) := f (x)IA(x). From now on, we restrict our attention to the case S= [0,1]d . Let K > 0.

Definition 1 We say that g : Rd $→ R belongs to Σ(β,K, [0,1]d), the (β,K, [0,1]d) - Hölder class of
functions, if g is +β, times continuously differentiable and for all x,x1 ∈ [0,1]d satisfies

|g(x1)−Tx(x1)|≤ K‖x− x1‖β∞,

where Tx is the Taylor polynomial of degree +β, of g at the point x.

Definition 2 P (β,γ) is the class of probability distributions on [0,1]d×{−1,+1}with the following
properties:

1. ∀ t > 0, Π(x : |η(x)|≤ t)≤ Btγ;

2. η(x) ∈ Σ(β,K, [0,1]d).

We do not mention the dependence of P (β,γ) on the fixed constants B,K explicitly, but this should
not cause any uncertainty.

Finally, let us define P ∗
U(β,γ) and PU(β,γ), the subclasses of P (β,γ), by imposing two additional

assumptions. Along with the formal descriptions of these assumptions, we shall try to provide some
motivation behind them. The first deals with the marginal Π. For an integer M ≥ 1, let

GM :=
{(

k1
M
, . . . ,

kd
M

)
, ki = 1 . . .M, i= 1 . . .d

}

be the regular grid on the unit cube [0,1]d with mesh size M−1. It naturally defines a partition into
a set of Md open cubes Ri, i = 1 . . .Md with edges of length M−1 and vertices in GM. Below, we
consider the nested sequence of grids {G2m , m≥ 1} and corresponding dyadic partitions of the unit
cube.
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Definition 3 We will say that Π is (u1,u2)-regular with respect to {G2m} if for any m ≥ 1, any
element of the partition Ri, i≤ 2dm such that Ri∩ supp(Π) &= /0, we have

u1 ·2−dm ≤Π(Ri)≤ u2 ·2−dm,

where 0< u1 ≤ u2 < ∞.

Assumption 1 Π is (u1,u2) - regular.

In particular, (u1,u2)-regularity holds for the distribution with a density p on [0,1]d such that 0 <
u1 ≤ p(x)≤ u2 < ∞.

Let us mention that our definition of regularity is of rather technical nature; for most of the paper,
the reader might think ofΠ as being uniform on [0,1]d( however, we need slightly more complicated
marginal to construct the minimax lower bounds for the excess risk). It is known that estimation of
regression function in sup-norm is sensitive to the geometry of design distribution, mainly because
the quality of estimation depends on the local amount of data at every point; conditions similar
to our Assumption 1 were used in the previous works where this problem appeared, for example,
strong density assumption in Audibert and Tsybakov (2005) and Assumption D in Gaı̈ffas (2007).

A useful characteristic of (u1,u2) - regular distribution Π is that this property is stable with re-
spect to restrictions ofΠ to certain subsets of its support. This fact fits the active learning framework
particularly well.

Definition 4 We say that Q belongs to PU(β,γ) if Q ∈ P (β,γ) and Assumption 1 is satisfied for
some u1,u2.

The second assumption is crucial in derivation of the upper bounds. The space of piecewise-constant
functions which is used to construct the estimators of η(x) is defined via

Fm =

{
2dm

∑
i=1

λiIRi(·) : |λi|≤ 1, i= 1 . . .2
dm

}

,

where {Ri}2
dm

i=1 forms the dyadic partition of the unit cube. Note that Fm can be viewed as a ‖ · ‖∞-
unit ball in the linear span of first 2dm Haar basis functions in [0,1]d . Moreover, {Fm, m≥ 1} is
a nested family, which is a desirable property for the model selection procedures. By η̄m(x) we
denote the L2(Π) - projection of the regression function onto Fm.

We will say that the set A ⊂ [0,1]d approximates the decision boundary {x : η(x) = 0} if there
exists t > 0 such that

{x : |η(x)|≤ t}Π ⊆ AΠ ⊆ {x : |η(x)|≤ 3t}Π , (2)

where for any set A we define AΠ := A∩ supp(Π). The most important example we have in mind
is the following: let η̂ be some estimator of η with ‖η̂−η‖∞,supp(Π) ≤ t, and define the 2t - band
around η by

F̂ =
{
f : η̂(x)−2t ≤ f (x)≤ η̂(x)+2t ∀x ∈ [0,1]d

}
.

Take A =
{
x : ∃ f1, f2 ∈ F̂ s.t. sign f1(x) &= sign f2(x)

}
, then it is easy to see that A satisfies (2).

Modified design distributions used by our algorithm are supported on the sets with similar structure.
Let σ(Fm) be the sigma-algebra generated by Fm and A ∈ σ(Fm).
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Assumption 2 There exists B2 > 0 such that for all m≥ 1, A ∈ σ(Fm) satisfying (2) and such that
AΠ &= /0 the following holds true:

∫

[0,1]d

(η− η̄m)
2Π(dx|x ∈ AΠ)≥ B2‖η− η̄m‖2∞,AΠ .

Appearance of Assumption 2 is motivated by the structure of our learning algorithm - namely, it is
based on adaptive confidence bands for the regression function. Nonparametric confidence bands
is a big topic in statistical literature, and the review of this subject is not our goal. We just men-
tion that it is impossible to construct adaptive confidence bands of optimal size over the whole⋃
β≤1

Σ
(
β,K, [0,1]d

)
. Low (1997); Hoffmann and Nickl (to appear) discuss the subject in details.

However, it is possible to construct adaptive L2 - confidence balls (see an example following The-
orem 6.1 in Koltchinskii, 2011). For functions satisfying Assumption 2, this fact allows to obtain
confidence bands of desired size. In particular,

(a) functions that are differentiable, with gradient being bounded away from 0 in the vicinity of
decision boundary;

(b) Lipschitz continuous functions that are convex in the vicinity of decision boundary

satisfy Assumption 2. For precise statements, see Propositions 15, 16 in Appendix A. A different
approach to adaptive confidence bands in case of one-dimensional density estimation is presented
in Giné and Nickl (2010). Finally, we define P ∗

U(β,γ):

Definition 5 We say that Q belongs to P ∗
U(β,γ) if Q ∈ PU(β,γ) and Assumption 2 is satisfied for

some B2 > 0.

2.1 Learning Algorithm

Now we give a brief description of the algorithm, since several definitions appear naturally in this
context. First, let us emphasize that the marginal distribution Π is assumed to be known to the
learner. This is not a restriction, since we are not limited in the use of unlabeled data and Π can be
estimated to any desired accuracy. Our construction is based on so-called plug-in classifiers of the
form f̂ (·) = sign η̂(·), where η̂ is a piecewise-constant estimator of the regression function. As we
have already mentioned above, it was shown in Audibert and Tsybakov (2005) that in the passive
learning framework plug-in classifiers attain optimal rate for the excess risk of order N− β(1+γ)

2β+d , with
η̂ being the local polynomial estimator.

Our active learning algorithm iteratively improves the classifier by constructing shrinking con-
fidence bands for the regression function. On every step k, the piecewise-constant estimator η̂k is
obtained via the model selection procedure which allows adaptation to the unknown smoothness(for
Hölder exponent≤ 1). The estimator is further used to construct a confidence band F̂k for η(x). The
active set associated with F̂k is defined as

Âk = A(F̂k) :=
{
x ∈ supp(Π) : ∃ f1, f2 ∈ F̂k,sign f1(x) &= sign f2(x)

}
.

Clearly, this is the set where the confidence band crosses zero level and where classification is
potentially difficult. Âk serves as a support of the modified distribution Π̂k+1: on step k+1, labelY is

71



MINSKER

requested only for observations X ∈ Âk, forcing the labeled data to concentrate in the domain where
higher precision is needed. This allows one to obtain a tighter confidence band for the regression
function restricted to the active set. Since Âk approaches the decision boundary, its size is controlled
by the low noise assumption. The algorithm does not require a priori knowledge of the noise and
regularity parameters, being adaptive for γ> 0,β≤ 1. Further details are given in Section 3.2.
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Figure 1: Active Learning Algorithm

2.2 Comparison Inequalities

Before proceeding with the main results, let us recall the well-known connections between the
binary risk and the ‖ · ‖∞, ‖ · ‖L2(Π) - norm risks:

Proposition 6 Under the low noise assumption,

RP( f )−R∗ ≤ D1‖( f −η)I {sign f &= sign η}‖1+γ∞ ; (3)

RP( f )−R∗ ≤ D2‖( f −η)I {sign f &= sign η}‖
2(1+γ)
2+γ

L2(Π); (4)

RP( f )−R∗ ≥ D3Π(sign f &= sign η)
1+γ
γ . (5)

Proof For (3) and (4), see Audibert and Tsybakov (2005), Lemmas 5.1 and 5.2 respectively, and
for (5)—Koltchinskii (2011), Lemma 5.2.

3. Main Results

The question we address below is: what are the best possible rates that can be achieved by active
algorithms in our framework and how these rates can be attained.

3.1 Minimax Lower Bounds For the Excess Risk

The goal of this section is to prove that for P ∈ P (β,γ), no active learner can output a classifier with
expected excess risk converging to zero faster than N− β(1+γ)

2β+d−βγ . Our result builds upon the minimax
bounds of Audibert and Tsybakov (2005), Castro and Nowak (2008).
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Remark The theorem below is proved for a smaller class P ∗
U(β,γ), which implies the result for

P (β,γ).

Theorem 7 Let β,γ,d be such that βγ≤ d. Then there exists C > 0 such that for all n large enough
and for any active classifier f̂n(x) we have

sup
P∈P ∗

U (β,γ)
ERP( f̂n)−R∗ ≥CN− β(1+γ)

2β+d−βγ .

Proof We proceed by constructing the appropriate family of classifiers fσ(x) = sign ησ(x), in a
way similar to Theorem 3.5 in Audibert and Tsybakov (2005), and then apply Theorem 2.5 from
Tsybakov (2009). We present it below for reader’s convenience.

Theorem 8 Let Σ be a class of models, d : Σ× Σ $→ R - the pseudometric and
{
Pf , f ∈ Σ

}
- a

collection of probability measures associated with Σ. Assume there exists a subset { f0, . . . , fM} of Σ
such that

1. d( fi, f j)≥ 2s> 0 for all 0≤ i< j ≤M;

2. Pf j 2 Pf0 for every 1≤ j ≤M;

3. 1
M

M
∑
j=1
KL(Pf j ,Pf0)≤ α logM, 0< α< 1

8 .

Then

inf
f̂
sup
f∈Σ

Pf
(
d( f̂ , f )≥ s

)
≥

√
M

1+
√
M

(

1−2α−

√
2α
logM

)

,

where the infimum is taken over all possible estimators of f based on a sample from Pf and KL(·, ·)
is the Kullback-Leibler divergence.

Going back to the proof, let q= 2l , l ≥ 1 and

Gq :=
{(

2k1−1
2q

, . . . ,
2kd−1
2q

)
, ki = 1 . . .q, i= 1 . . .d

}

be the grid on [0,1]d . For x ∈ [0,1]d , let

nq(x) = argmin
{
‖x− xk‖2 : xk ∈ Gq

}
.

If nq(x) is not unique, we choose a representative with the smallest ‖ · ‖2 norm. The unit cube is
partitioned with respect to Gq as follows: x1,x2 belong to the same subset if nq(x1) = nq(x2). Let
′ 5′ be some order on the elements of Gq such that x 5 y implies ‖x‖2 ≥ ‖y‖2. Assume that the
elements of the partition are enumerated with respect to the order of their centers induced by ′ 5′:

[0,1]d =
qd⋃
i=1

Ri. Fix 1≤ m≤ qd and let

S :=
m⋃
i=1

Ri
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Note that the partition is ordered in such a way that there always exists 1≤ k ≤ q
√
d with

B+

(
0,
k
q

)
⊆ S⊆ B+

(

0,
k+3

√
d

q

)

, (6)

where B+(0,R) :=
{
x ∈ Rd

+ : ‖x‖2 ≤ R
}
. In other words, (6) means that that the difference between

the radii of inscribed and circumscribed spherical sectors of S is of orderC(d)q−1.
Let v> r1 > r2 be three integers satisfying

2−v < 2−r1 < 2−r1
√
d < 2−r2

√
d < 2−1. (7)

Define u(x) : R $→ R+ by

u(x) :=
∫ ∞
x U(t)dt
1/2∫
2−v

U(t)dt
, (8)

where

U(t) :=

{
exp
(
− 1

(1/2−x)(x−2−v)

)
, x ∈ (2−v, 12)

0 else.

Note that u(x) is an infinitely differentiable function such that u(x) = 1, x ∈ [0,2−v] and u(x) =
0, x≥ 1

2 . Finally, for x ∈ Rd let
Φ(x) :=Cu(‖x‖2),

whereC :=CL,β is chosen such that Φ ∈ Σ(β,L,Rd).
Let rS := inf{r > 0 : B+(0,r)⊇ S} and

A0 :=

{⋃
i
Ri : Ri∩B+

(
0,rS+q−

βγ
d

)
= /0

}

.

Note that

rS ≤ c
m1/d

q
, (9)

since Vol(S) = mq−d .
Define Hm = {Pσ : σ ∈ {−1,1}m} to be the hypercube of probability distributions on [0,1]d ×

{−1,+1}. The marginal distribution Π of X is independent of σ: define its density p by

p(x) =






2d(r1−1)
2d(r1−r2)−1 , x ∈ B∞

(
z, 2

−r2
q

)
\B∞

(
z, 2

−r1
q

)
, z ∈ Gq∩S,

c0, x ∈ A0,
0 else.

where B∞(z,r) := {x : ‖x− z‖∞ ≤ r}, c0 := 1−mq−d
Vol(A0) (note that Π(Ri) = q−d ∀i ≤ m) and r1,r2 are

defined in (7). In particular, Π satisfies Assumption 1 since it is supported on the union of dyadic
cubes and has bounded above and below on supp(Π) density. Let

Ψ(x) := u
(
1/2−q

βγ
d dist2(x,B+(0,rS))

)
,
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Figure 2: Geometry of the support

where u(·) is defined in (8) and dist2(x,A) := inf{‖x− y‖2, y ∈ A}.
Finally, the regression function ησ(x) = EPσ(Y |X = x) is defined via

ησ(x) :=

{
σiq−βΦ(q[x−nq(x)]), x ∈ Ri, 1≤ i≤ m
1

CL,β
√
d
dist2(x,B+(0,rS))

d
γ ·Ψ(x), x ∈ [0,1]d \S.

The graph of ησ is a surface consisting of small ”bumps” spread around S and tending away from
0 monotonically with respect to dist2(·,B+(0,rS)) on [0,1]d \S. Clearly, ησ(x) satisfies smoothness
requirement, 1 since for x ∈ [0,1]d

dist2(x,B+(0,rS)) = (‖x‖2− rS)∨0.

Let’s check that it also satisfies the low noise condition. Since |ησ| ≥Cq−β on the support of Π, it
is enough to consider t =Czq−β for z> 1:

Π(|ησ(x)|≤Czq−β)≤ mq−d+Π
(
dist2(x,B+(0,rS))≤Czγ/dq−

βγ
d

)
≤

≤ mq−d+C2
(
rS+Czγ/dq−

βγ
d

)d
≤

≤ mq−d+C3mq−d+C4zγq−βγ ≤

≤ Ĉtγ,

if mq−d = O(q−βγ). Here, the first inequality follows from considering ησ on S and A0 separately,
and second inequality follows from (9) and direct computation of the sphere volume.

Finally, ησ satisfies Assumption 2 with some B2 := B2(q) since on supp(Π)

0< c1(q)≤ ‖∇ησ(x)‖2 ≤ c2(q)< ∞.

The next step in the proof is to choose the subset of H which is “well-separated”: this can be done
due to the following fact (see Tsybakov, 2009, Lemma 2.9):

1. Ψ(x) is introduced to provide extra smoothness at the boundary of B+(0,rS).
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Proposition 9 (Gilbert-Varshamov) For m≥ 8, there exists

{σ0, . . . ,σM}⊂ {−1,1}m

such that σ0 = {1,1, . . . ,1}, ρ(σi,σ j) ≥ m
8 ∀ 0 ≤ i < k ≤M and M ≥ 2m/8 where ρ stands for the

Hamming distance.

Let H ′ := {Pσ0 , . . . ,PσM} be chosen such that {σ0, . . . ,σM} satisfies the proposition above. Next,
following the proof of Theorems 1 and 3 in Castro and Nowak (2008), we note that ∀σ∈H ′, σ &= σ0

KL(Pσ,N‖Pσ0,N)≤ 8N maxx∈[0,1]
(ησ(x)−ησ0(x))

2 ≤ 32C2L,βNq
−2β, (10)

where Pσ,N is the joint distribution of (Xi,Yi)Ni=1 under hypothesis that the distribution of couple
(X ,Y ) is Pσ. Let us briefly sketch the derivation of (10); see also the proof of Theorem 1 in Castro
and Nowak (2008). Denote

X̄k := (X1, . . . ,Xk),
Ȳk := (Y1, . . . ,Yk).

Then dPσ,N admits the following factorization:

dPσ,N(X̄N ,ȲN) =
N

∏
i=1

Pσ(Yi|Xi)dP(Xi|X̄i−1,Ȳi−1),

where dP(Xi|X̄i−1,Ȳi−1) does not depend on σ but only on the active learning algorithm. As a
consequence,

KL(Pσ,N‖Pσ0,N) = EPσ,N log
dPσ,N(X̄N ,ȲN)
dPσ0,N(X̄n,ȲN)

= EPσ,N log
∏N
i=1Pσ(Yi|Xi)

∏N
i=1Pσ0(Yi|Xi)

=

=
N

∑
i=1

EPσ,N

[
EPσ

(
log

Pσ(Yi|Xi)
Pσ0(Yi|Xi)

|Xi
)]

≤

≤ N max
x∈[0,1]d

EPσ

(
log

Pσ(Y1|X1)
Pσ0(Y1|X1)

|X1 = x
)
≤

≤ 8N max
x∈[0,1]d

(ησ(x)−ησ0(x))
2,

where the last inequality follows from Lemma 1 (Castro and Nowak, 2008). Also, note that we have
maxx∈[0,1]d in our bounds rather than the average over x that would appear in the passive learning
framework.

It remains to choose q,m in appropriate way: set q = +C1N
1

2β+d−βγ , and m = +C2qd−βγ, where
C1, C2 are such that qd ≥ m ≥ 1 and 32C2L,βNq

−2β < m
64 which is possible for N big enough. In

particular, mq−d = O(q−βγ). Together with the bound (10), this gives

1
M ∑

σ∈H ′
KL(Pσ‖Pσ0)≤ 32C2uNq−2β <

m
82

=
1
8
log |H ′|,
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so that conditions of Theorem 8 are satisfied. Setting

fσ(x) := sign ησ(x),

we finally have ∀σ1 &= σ2 ∈H ′

d( fσ1 , fσ2) :=Π(sign ησ1(x) &= sign ησ2(x))≥
m
8qd

≥C4N
− βγ
2β+d−βγ ,

where the lower bound just follows by construction of our hypotheses. Since under the low noise
assumption RP( f̂n)−R∗ ≥ cΠ( f̂n &= sign η)

1+γ
γ (see (5)), we conclude by Theorem 8 that

inf
f̂N

sup
P∈P ∗

U (β,γ)
Pr
(
RP( f̂n)−R∗ ≥C4N− β(1+γ)

2β+d−βγ

)
≥

≥ inf
f̂N

sup
P∈P ∗

U (β,γ)
Pr
(
Π( f̂n(x) &= sign ηP(x))≥

C4
2
N− βγ

2β+d−βγ

)
≥ τ> 0.

3.2 Upper Bounds For the Excess Risk

Below, we present a new active learning algorithm which is computationally tractable, adaptive
with respect to β,γ( in a certain range of these parameters) and can be applied in the nonparametric
setting. We show that the classifier constructed by the algorithm attains the rates of Theorem 7, up
to polylogarithmic factor, if 0< β≤ 1 and βγ≤ d (the last condition covers the most interesting case
when the regression function hits or crosses the decision boundary in the interior of the support ofΠ;
for detailed statement about the connection between the behavior of the regression function near the
decision boundary with parameters β, γ, see Proposition 3.4 in Audibert and Tsybakov, 2005). The
problem of adaptation to higher order of smoothness (β> 1) is still awaiting its complete solution;
we address these questions below in our final remarks.

For the purpose of this section, the regularity assumption reads as follows: there exists 0< β≤ 1
such that ∀x1,x2 ∈ [0,1]d

|η(x1)−η(x2)|≤ B1‖x1− x2‖β∞. (11)

Since we want to be able to construct non-asymptotic confidence bands, some estimates on the size
of constants in (11) and Assumption 2 are needed. Below, we will additionally assume that

B1 ≤ logN,
B2 ≥ log−1N,

where N is the label budget. This can be replaced by any known bounds on B1,B2.
Let A ∈ σ(Fm) with AΠ := A∩ supp(Π) &= /0. Define

Π̂A(dx) :=Π(dx|x ∈ AΠ)
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and dm := dimFm|AΠ . Next, we introduce a simple estimator of the regression function on the set
AΠ. Given the resolution level m and an iid sample (Xi,Yi), i≤ N with Xi ∼ Π̂A, let

η̂m,A(x) := ∑
i:Ri∩AΠ &= /0

∑N
j=1YjIRi(Xj)
N · Π̂A(Ri)

IRi(x). (12)

Since we assumed that the marginal Π is known, the estimator is well-defined. The following
proposition provides the information about concentration of η̂m around its mean:

Proposition 10 For all t > 0,

Pr

(

max
x∈AΠ

|η̂m,A(x)−η̄m(x)| ≥ t

√
2dmΠ(A)
u1N

)

≤

≤ 2dm exp

(
−t2

2(1+ t
3

√
2dmΠ(A)/u1N)

)

,

Proof This is a straightforward application of the Bernstein’s inequality to the random variables

SiN :=
N

∑
j=1
YjIRi(Xj), i ∈ {i : Ri∩AΠ &= /0} ,

and the union bound: indeed, note that E(YIRi(Xj))2 = Π̂A(Ri), so that

Pr
(∣∣∣∣S

i
N−N

∫
Ri
ηdΠ̂A

∣∣∣∣≥ tNΠ̂A(Ri)
)
≤ 2exp

(
−
NΠ̂A(Ri)t2

2+2t/3

)
,

and the rest follows by simple algebra using that Π̂A(Ri) ≥ u1
2dmΠ(A) by the (u1,u2)-regularity of Π.

Given a sequence of hypotheses classes Gm, m≥ 1, define the index set

J (N) :=
{
m ∈ N : 1≤ dimGm ≤

N
log2N

}
(13)

- the set of possible “resolution levels” of an estimator based on N classified observations(an upper
bound corresponds to the fact that we want the estimator to be consistent). When talking about
model selection procedures below, we will implicitly assume that the model index is chosen from
the corresponding set J . The role of Gm will be played by Fm|A for appropriately chosen set A. We
are now ready to present the active learning algorithm followed by its detailed analysis(see Table
1).
Remark Note that on every iteration, Algorithm 1a uses the whole sample to select the resolu-

tion level m̂k and to build the estimator η̂k. While being suitable for practical implementation, this
is not convenient for theoretical analysis. We will prove the upper bounds for a slighly modified
version: namely, on every iteration k labeled data is divided into two subsamples Sk,1 and Sk,2 of
approximately equal size, |Sk,1| 9 |Sk,2| 9

⌊ 1
2Nk ·Π(Âk)

⌋
. Then S1,k is used to select the resolution

level m̂k and Sk,2 - to construct η̂k. We will call this modified version Algorithm 1b.
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Algorithm 1a
input label budget N; confidence α;
m̂0 = 0, F̂0 := Fm̂0 , η̂0 ≡ 0;
LB := N; // label budget
N0 := 2+log2

√
N,;

s(k)(m,N,α) := s(m,N,α) := m(logN+ log 1α);
k := 0;
while LB≥ 0 do
k := k+1;
Nk := 2Nk−1;
Âk :=

{
x ∈ [0,1]d : ∃ f1, f2 ∈ F̂k−1,sign ( f1(x)) &= sign ( f2(x))

}
;

if Âk∩ supp(Π) = /0 or LB< +Nk ·Π(Âk), then
break; output ĝ := sign η̂k−1
else

for i= 1 . . .+Nk ·Π(Âk),
sample i.i.d

(
X (k)
i ,Y (k)

i

)
with X (k)

i ∼ Π̂k :=Π(dx|x ∈ Âk);
end for;
LB := LB−+Nk ·Π(Âk),;
P̂k := 1

+Nk·Π(Âk),
∑
i
δX (k)

i ,Y (k)
i

// ”active” empirical measure

m̂k := argmin m≥m̂k−1

[
inf f∈Fm P̂k(Y − f (X))2+K1 2

dmΠ(Âk)+s(m−m̂k−1,N,α)
+Nk·Π(Âk),

]

η̂k := η̂m̂k,Âk // see (12)

δk := D̃ · log2 Nα
√

2dm̂k
Nk ;

F̂k :=
{
f ∈ Fm̂k : f |Âk ∈ F∞,Âk(η̂k;δk), f |[0,1]d\Âk ≡ η̂k−1|[0,1]d\Âk

}
;

end;

Table 1: Active Learning Algorithm

As a first step towards the analysis ofAlgorithm 1b, let us prove the useful fact about the general
model selection scheme. Given an iid sample (Xi,Yi), i≤ N, set sm = m(s+ log log2N), m≥ 1 and

m̂ := m̂(s) = argmin m∈J (N)

[
inf
f∈Fm

PN(Y − f (X))2+K1
2dm+ sm

N

]
,

m̄ :=min
{
m≥ 1 : inf

f∈Fm
E( f (X)−η(X))2 ≤ K2

2dm

N

}
.

Theorem 11 There exist an absolute constant K1 big enough such that, with probability ≥ 1− e−s,

m̂≤ m̄.

Proof See Appendix B.

Straightforward application of this result immediately yields the following:
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Corollary 12 Suppose η(x) ∈ Σ(β,L, [0,1]d). Then, with probability ≥ 1− e−s,

2m̂ ≤C1 ·N
1

2β+d

Proof By definition of m̄, we have

m̄≤ 1+max
{
m : inf

f∈Fm
E( f (X)−η(X))2 > K2

2dm

N

}
≤

≤ 1+max
{
m : L22−2βm > K2

2dm

N

}
,

and the claim follows.

With this bound in hand, we are ready to formulate and prove the main result of this section:

Theorem 13 Suppose that P ∈ P ∗
U(β,γ) with B1 ≤ logN, B2 ≥ log−1N and βγ ≤ d. Then, with

probability ≥ 1−3α, the classifier ĝ returned by Algorithm 1b with label budget N satisfies

RP(ĝ)−R∗ ≤ Const ·N− β(1+γ)
2β+d−βγ logp

N
α
,

where p≤ 2βγ(1+γ)
2β+d−βγ and B1, B2 are the constants from (11) and Assumption 2.

Remarks

1. Note that when βγ > d
3 , N

− β(1+γ)
2β+d−βγ is a fast rate, that is, faster than N− 1

2 ; at the same time,

the passive learning rate N− β(1+γ)
2β+d is guaranteed to be fast only when βγ> d

2 , see Audibert and
Tsybakov (2005).

2. For α̂9 N− β(1+γ)
2β+d−βγ Algorithm 1b returns a classifier ĝα̂ that satisfies

ERP(ĝα̂)−R∗ ≤ Const ·N− β(1+γ)
2β+d−βγ logp N.

This is a direct corollary of Theorem 13 and the inequality

E|Z|≤ t+‖Z‖∞Pr(|Z|≥ t).

Proof Our main goal is to construct high probability bounds for the size of the active sets defined
by Algorithm 1b. In turn, these bounds depend on the size of the confidence bands for η(x), and
the previous result(Theorem 11) is used to obtain the required estimates. Suppose L is the number
of steps performed by the algorithm before termination; clearly, L≤ N.

Let Nactk := +Nk ·Π(Âk), be the number of labels requested on k-th step of the algorithm: this
choice guarantees that the ”density” of labeled examples doubles on every step.

Claim: the following bound for the size of the active set holds uniformly for all 2≤ k ≤ L with
probability at least 1−2α:

Π(Âk)≤ CN
− βγ
2β+d

k

(
log

N
α

)2γ
. (14)

80
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It is not hard to finish the proof assuming (14) is true: indeed, it implies that the number of labels
requested on step k satisfies

Nactk = +NkΠ(Âk), ≤C ·N
2β+d−βγ
2β+d

k

(
log

N
α

)2γ

with probability ≥ 1−2α. Since ∑
k
Nactk ≤ N, one easily deduces that on the last iteration L we have

NL ≥ c
(

N
log2γ(N/α)

) 2β+d
2β+d−βγ

(15)

To obtain the risk bound of the theorem from here, we apply 2 inequality (3) from Proposition 6:

RP(ĝ)−R∗ ≤ D1‖(η̂L−η) · I {sign η̂L &= sign η}‖1+γ∞ . (16)

It remains to estimate ‖η̂L−η‖∞,ÂL : we will show below while proving (14) that

‖η̂L−η‖∞,ÂL ≤C ·N
− β
2β+d

L log2
N
α
.

Together with (15) and (16), it implies the final result.
To finish the proof, it remains to establish (14). Recall that η̄k stands for the L2(Π) - projection

of η onto Fm̂k . An important role in the argument is played by the bound on the L2(Π̂k) - norm of
the “bias” (η̄k−η): together with Assumption 2, it allows to estimate ‖η̄k−η‖∞,Âk . The required
bound follows from the following oracle inequality: there exists an event B of probability ≥ 1−α
such that on this event for every 1≤ k ≤ L

‖η̄k−η‖2L2(Π̂k)
≤ inf

m≥m̂k−1

[

inf
f∈Fm

‖ f −η‖2L2(Π̂k)
+ (17)

+K1
2dmΠ(Âk)+(m− m̂k−1) log(N/α)

NkΠ(Âk)

]

.

It general form, this inequality is given by Theorem 6.1 in Koltchinskii (2011) and provides the
estimate for ‖η̂k−η‖L2(Π̂k)

, so it automatically implies the weaker bound for the bias term only.
To deduce (17), we use the mentioned general inequality L times(once for every iteration) and the
union bound. The quantity 2dmΠ(Âk) in (17) plays the role of the dimension, which is justified
below. Let k ≥ 1 be fixed. For m≥ m̂k−1, consider hypothesis classes

Fm|Âk :=
{
f IÂk , f ∈ Fm

}
.

An obvious but important fact is that for P ∈ PU(β,γ), the dimension of Fm|Âk is bounded by u
−1
1 ·

2mΠ(Âk): indeed,

Π(Âk) = ∑
j:Rj∩Âk &= /0

Π(Rj)≥ u12−dm ·#
{
j : Rj ∩ Âk &= /0

}
,

2. alternatively, inequality (4) can be used but results in a slightly inferior logarithmic factor.
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hence
dimFm|Âk = #

{
j : Rj ∩ Âk &= /0

}
≤ u−11 ·2mΠ(Âk). (18)

Theorem 11 applies conditionally on
{
X ( j)
i

}Nj

i=1
, j ≤ k− 1 with sample of size Nactk and s =

log(N/α): to apply the theorem, note that, by definition of Âk, it is independent of X
(k)
i , i= 1 . . .Nactk .

Arguing as in Corollary 12 and using (18), we conclude that the following inequality holds with
probability ≥ 1− α

N for every fixed k:

2m̂k ≤C ·N
1

2β+d
k . (19)

Let E1 be an event of probability ≥ 1−α such that on this event bound (19) holds for every step k,
k≤ L and let E2 be an event of probability≥ 1−α on which inequalities (17) are satisfied. Suppose
that event E1 ∩E2 occurs and let k0 be a fixed arbitrary integer 2 ≤ k0 ≤ L+ 1. It is enough to
assume that Âk0−1 is nonempty(otherwise, the bound trivially holds), so that it contains at least one
cube with sidelength 2−m̂k0−2 and

Π(Âk0−1)≥ u12−dm̂k0−1 ≥ cN
− d
2β+d

k0 . (20)

Consider inequality (17) with k = k0−1 and 2m 9 N
1

2β+d
k0−1. By (20), we have

‖η̄k0−1−η‖2L2(Π̂k0−1)
≤CN

− 2β
2β+d

k0−1 log2
N
α
. (21)

For convenience and brevity, denote Ω := supp(Π). Now Assumption 2 comes into play: it implies,
together with (21) that

CN
− β
2β+d

k0−1 log
N
α

≥ ‖η̄k0−1−η‖L2(Π̂k0−1)
≥ B2‖η̄k0−1−η‖∞,Ω∩Âk0−1 . (22)

To bound
‖η̂k0−1(x)− η̄k0−1(x)‖∞,Ω∩Âk0−1

we apply Proposition 10. Recall that m̂k0−1 depends only on the subsample Sk0−1,1 but not on Sk0−1,2.
Let

Tk :=
{{

X ( j)
i ,Y ( j)

i

}Nactj
i=1

, j ≤ k−1
}
∪Sk,1

be the random vector that defines Âk and resolution level m̂k. Note that for any x,

E(η̂k0−1(x)|Tk0−1)
a.s.
= η̄m̂k0−1(x).

Proposition 10 thus implies

Pr

(

max
x∈Ω∩Âk0−1

|η̂k0−1(x)− η̄m̂k0−1(x)| ≥ Kt

√
2dm̂k0−1

Nk0−1

∣∣∣∣∣Tk0−1

)

≤

≤ N exp
(

−t2

2(1+ t
3C3)

)
.
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Choosing t = c log(N/α) and taking expectation, the inequality(now unconditional) becomes

Pr



 max
x∈Ω∩Âk0−1

|η̂m̂k0−1(x)− η̄m̂k0−1(x)| ≤ K

√
2dm̂k0−1 log2(N/α)

Nk0−1



≥ 1−α. (23)

Let E3 be the event on which (23) holds true. Combined, the estimates (19),(22) and (23) imply that
on E1∩E2∩E3

‖η− η̂k0−1‖∞,Ω∩Âk0−1 ≤ ‖η− η̄k0−1‖∞,Ω∩Âk0−1 +‖η̄k0−1− η̂k0−1‖∞,Ω∩Âk0−1

≤
C
B2
N
− β
2β+d

k0−1 log
N
α
+K

√
2dm̂k0−1 log2(N/α)

Nk0−1
≤ (24)

≤ (K+C) ·N
− β
2β+d

k0−1 log2
N
α
,

where we used the assumption B2 ≥ log−1N. Now the width of the confidence band is defined via

δk := 2(K+C) ·N
− β
2β+d

k0−1 log2
N
α

(25)

(in particular, D̃ from Algorithm 1a is equal to 2(K+C)). With the bound (24) available, it is
straightforward to finish the proof of the claim. Indeed, by (25) and the definition of the active set,
the necessary condition for x ∈Ω∩ Âk0 is

|η(x)|≤ 3(K+C) ·N
− β
2β+d

k0−1 log2
N
α
,

so that

Π(Âk0) =Π(Ω∩ Âk0)≤Π

(
|η(x)|≤ 3(K+C) ·N

− β
2β+d

k0−1 log2
N
α

)
≤

≤ B̃N
− βγ
2β+d

k0−1 log2γ
N
α
.

by the low noise assumption. This completes the proof of the claim since Pr(E1∩E2∩E3) ≥
1−3α.

We conclude this section by discussing running time of the active learning algorithm. Assume that
the algorithm has access to the sampling subroutine that, given A⊂ [0,1]d withΠ(A)> 0, generates
i.i.d. (Xi,Yi) with Xi ∼Π(dx|x ∈ A).

Proposition 14 The running time of Algorithm 1a(1b) with label budget N is

O(dN log2N).

Remark In view of Theorem 13, the running time required to output a classifier ĝ such that RP(ĝ)−
R∗ ≤ ε with probability ≥ 1−α is

O




(
1
ε

) 2β+d−βγ
β(1+γ)

poly
(
log

1
εα

)

 .
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Proof We will use the notations of Theorem 13. Let Nactk be the number of labels requested by
the algorithm on step k. The resolution level m̂k is always chosen such that Âk is partitioned into
at most Nactk dyadic cubes, see (13). This means that the estimator η̂k takes at most Nactk distinct
values. The key observation is that for any k, the active set Âk+1 is always represented as the union
of a finite number(at most Nactk ) of dyadic cubes: to determine if a cube Rj ⊂ Âk+1, it is enough to
take a point x ∈ Rj and compare sign(η̂k(x)−δk) with sign(η̂k(x)+δk): Rj ∈ Âk+1 only if the signs
are different(so that the confidence band crosses zero level). This can be done in O(Nactk ) steps.

Next, resolution level m̂k can be found in O(Nactk log2N) steps: there are at most log2Nactk models
to consider; for each m, inf f∈Fm P̂k(Y − f (X))2 is found explicitly and is achieved for the piecewise-

constant f̂ (x) = ∑i Y
(k)
i IR j (X

(k)
i )

∑i IR j (X
(k)
i )

, x ∈ Rj. Sorting of the data required for this computation is done in

O(dNactk logN) steps for each m, so the whole k-th iteration running time is O(dNactk log2N). Since
∑
k
Nactk ≤ N, the result follows.

4. Conclusion and Open Problems

We have shown that active learning can significantly improve the quality of a classifier over the
passive algorithm for a large class of underlying distributions. Presented method achieves fast rates
of convergence for the excess risk, moreover, it is adaptive(in the certain range of smoothness and
noise parameters) and involves minimization only with respect to quadratic loss(rather than the 0−1
loss).

The natural question related to our results is:

• Can we implement adaptive smooth estimators in the learning algorithm to extend our results
beyond the case β≤ 1?

The answer to this second question is so far an open problem. Our conjecture is that the correct
rate of convergence for the excess risk is, up to logarithmic factors, N− β(1+γ)

2β+d−γ(β∧1) , which coincides
with presented results for β≤ 1. This rate can be derived from an argument similar to the proof of
Theorem 13 under the assumption that on every step k one could construct an estimator η̂k with

‖η− η̂k‖∞,Âk ! N
− β
2β+d

k .

At the same time, the active set associated to η̂k should maintain some structure which is suitable
for the iterative nature of the algorithm. Transforming these ideas into a rigorous proof is a goal of
our future work.
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Appendix A. Functions Satisfying Assumption 2

In the propositions below, we will assume for simplicity that the marginal distribution Π is abso-
lutely continuous with respect to Lebesgue measure with density p(x) such that

0< p1 ≤ p(x)≤ p2 < ∞ for all x ∈ [0,1]d.

Given t ∈ (0,1], define At := {x : |η(x)|≤ t}.

Proposition 15 Suppose η is Lipschitz continuous with Lipschitz constant S. Assume also that for
some t∗ > 0 we have

(a) Π
(
At∗/3

)
> 0;

(b) η is twice differentiable for all x ∈ At∗;

(c) infx∈At∗ ‖∇η(x)‖1 ≥ s> 0;

(d) supx∈At∗ ‖D
2η(x)‖ ≤C < ∞ where ‖ ·‖ is the operator norm.

Then η satisfies Assumption 2.

Proof By intermediate value theorem, for any cube Ri, 1 ≤ i ≤ 2dm there exists x0 ∈ Ri such that
η̄m(x) = η(x0), x ∈ Ri. This implies

|η(x)− η̄m(x)|= |η(x)−η(x0)|= |∇η(ξ) · (x− x0)|≤
≤ ‖∇η(ξ)‖1‖x− x0‖∞ ≤ S ·2−m.

On the other hand, if Ri ⊂ At∗ then

|η(x)− η̄m(x)|= |η(x)−η(x0)|=

= |∇η(x0) · (x− x0)+
1
2
[D2η(ξ)](x− x0) · (x− x0)|≥

≥ |∇η(x0) · (x− x0)|−
1
2
sup
ξ
‖D2η(ξ)‖max

x∈Ri
‖x− x0‖22 ≥ (26)

≥ |∇η(x0) · (x− x0)|−C12−2m.

Note that a strictly positive continuous function

h(y,u) =
∫

[0,1]d

(u · (x− y))2dx

achieves its minimal value h∗> 0 on a compact set [0,1]d×
{
u ∈ Rd : ‖u‖1 = 1

}
. This implies(using

(26) and the inequality (a−b)2 ≥ a2
2 −b2)

Π−1(Ri)
∫

Ri

(η(x)− η̄m(x))2p(x)dx≥

≥
1
2
(p22dm)−1

∫

Ri

(∇η(x0) · (x− x0))2p1dx−C212−4m ≥

≥
1
2
p1
p2

‖∇η(x0)‖212−2m ·h∗ −C212−4m ≥ c22−2m for m≥ m0.
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Now take a set A ∈ σ(Fm), m≥ m0 from Assumption 2. There are 2 possibilities: either A⊂ At∗ or
A⊃ At∗/3. In the first case the computation above implies∫

[0,1]d

(η− η̄m)
2Π(dx|x ∈ A)≥ c22−2m =

c2
S2
S22−2m ≥

≥
c2
S2

‖η− η̄m‖2∞,A.

If the second case occurs, note that, since
{
x : 0< |η(x)|< t∗

3
}
has nonempty interior, it must con-

tain a dyadic cube R∗ with edge length 2−m∗ . Then for any m≥max(m0,m∗)∫

[0,1]d

(η− η̄m)
2Π(dx|x ∈ A)≥

≥Π−1(A)
∫

R∗

(η− η̄m)
2Π(dx)≥

c2
4
2−2mΠ(R∗)≥

≥
c2
S2
Π(R∗)‖η− η̄m‖2∞,A

and the claim follows.

The next proposition describes conditions which allow functions to have vanishing gradient on
decision boundary but requires convexity and regular behaviour of the gradient.

Everywhere below, ∇η denotes the subgradient of a convex function η.

For 0< t1 < t2, define G(t1, t2) :=
sup

x∈At2 \At1

‖∇η(x)‖1

inf
x∈At2 \At1

‖∇η(x)‖1 . In case when ∇η(x) is not unique, we choose

a representative that makes G(t1, t2) as small as possible.

Proposition 16 Suppose η(x) is Lipschitz continuous with Lipschitz constant S. Moreover, assume
that there exists t∗ > 0 and q : (0,∞) $→ (0,∞) such that At∗ ⊂ (0,1)d and

(a) b1tγ ≤Π(At)≤ b2tγ ∀t < t∗;

(b) For all 0< t1 < t2 ≤ t∗, G(t1, t2)≤ q
(
t2
t1

)
;

(c) Restriction of η to any convex subset of At∗ is convex.

Then η satisfies Assumption 2.
Remark The statement remains valid if we replace η by |η| in (c).

Proof Assume that for some t ≤ t∗ and k > 0

R⊂ At \At/k
is a dyadic cube with edge length 2−m and let x0 be such that η̄m(x) = η(x0), x ∈ R. Note that η
is convex on R due to (c). Using the subgradient inequality η(x)−η(x0) ≥ ∇η(x0) · (x− x0), we
obtain ∫

R

(η(x)−η(x0))2dΠ(x)≥
∫

R

(η(x)−η(x0))2I {∇η(x0) · (x− x0)≥ 0}dΠ(x)

≥
∫

R

(∇η(x0) · (x− x0))2 I {∇η(x0) · (x− x0)≥ 0}dΠ(x). (27)
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The next step is to show that under our assumptions x0 can be chosen such that

dist∞(x0,∂R)≥ ν2−m, (28)

where ν = ν(k) is independent of m. In this case any part of R cut by a hyperplane through x0
contains half of a ball B(x0,r0) of radius r0 = ν(k)2−m and the last integral in (27) can be further
bounded below to get

∫

R

(η(x)−η(x0))2dΠ(x)≥
1
2

∫

B(x0,r0)

(∇η(x0) · (x− x0))2 p1dx≥

≥ c(k)‖∇η(x0)‖212−2m2−dm. (29)

It remains to show (28). Assume that for all y such that η(y) = η(x0) we have

dist∞(y,∂R)≤ δ2−m

for some δ> 0. This implies that the boundary of the convex set

{x ∈ R : η(x)≤ η(x0)}

is contained in Rδ := {x ∈ R : dist∞(x,∂R)≤ δ2−m}. There are two possibilities: either
{x ∈ R : η(x)≤ η(x0)}⊇ R\Rδ or {x ∈ R : η(x)≤ η(x0)}⊂ Rδ.
We consider the first case only(the proof in the second case is similar). First, note that by (b) for all
x ∈ Rδ ‖∇η(x)‖1 ≤ q(k)‖∇η(x0)‖1 and

η(x)≤ η(x0)+‖∇η(x)‖1δ2−m ≤
≤ η(x0)+q(k)‖∇η(x0)‖1δ2−m. (30)

Let xc be the center of the cube R and u - the unit vector in direction ∇η(xc). Observe that

η(xc+(1−3δ)2−mu)−η(xc)≥ ∇η(xc) · (1−3δ)2−mu=
= (1−3δ)2−m‖∇η(xc)‖2.

On the other hand, xc+(1−3δ)2−mu ∈ R\Rδ and

η(xc+(1−3δ)2−mu)≤ η(x0),

hence η(xc)≤ η(x0)− c(1−3δ)2−m‖∇η(xc)‖1. Consequently, for all

x ∈ B(xc,δ) :=
{
x : ‖x− xc‖∞ ≤

1
2
c2−m(1−3δ)

}

we have

η(x)≤ η(xc)+‖∇η(xc)‖1‖x− xc‖∞ ≤

≤ η(x0)−
1
2
c2−m(1−3δ)‖∇η(xc)‖1. (31)
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Finally, recall that η(x0) is the average value of η on R. Together with (30) and (31) this gives

Π(R)η(x0) =
∫

R

η(x)dΠ=
∫

Rδ

η(x)dΠ+
∫

R\Rδ

η(x)dΠ≤

≤ (η(x0)+q(k)‖∇η(x0)‖1δ2−m)Π(Rδ)+
+(η(x0)− c22−m(1−3δ)‖∇η(x0)‖1)Π(B(xc,δ))+
+η(x0)Π(R\ (Rδ∪B(xc,δ))) =
=Π(R)η(x0)+q(k)‖∇η(x0)‖1δ2−mΠ(Rδ)−
− c22−m(1−3δ)‖∇η(x0)‖1Π(B(xc,δ)) .

Since Π(Rδ)≤ p22−dm and Π(B(xc,δ))≥ c32−dm(1−3δ)d , the inequality above implies

c4q(k)δ≥ (1−3δ)d+1

which is impossible for small δ (e.g., for δ< c
q(k)(3d+4) ).

Let A be a set from condition 2. If A⊇ At∗/3, then there exists a dyadic cube R∗ with edge length
2−m∗ such that R∗ ⊂ At∗/3 \At∗/k for some k > 0, and the claim follows from (29) as in Proposition
15.

Assume now that At ⊂ A⊂ A3t and 3t ≤ t∗. Condition (a) of the proposition implies that for any
ε> 0 we can choose k(ε)> 0 large enough so that

Π(A\At/k)≥Π(A)−b2(t/k)γ ≥Π(A)−
b2
b1
k−γΠ(At)≥ (1− ε)Π(A). (32)

This means that for any partition of A into dyadic cubes Ri with edge length 2−m at least half of
them satisfy

Π(Ri \At/k)≥ (1− cε)Π(Ri). (33)

Let I be the index set of cardinality |I |≥ cΠ(A)2dm−1 such that (33) is true for i∈ I . Since Ri∩At/k
is convex, there exists3 z = z(ε) ∈ N such that for any such cube Ri there exists a dyadic sub-cube
with edge length 2−(m+z) entirely contained in Ri \At/k:

Ti ⊂ Ri \At/k ⊂ A3t \At/k.

It follows that Π
(⋃
i
Ti
)
≥ c̃(ε)Π(A). Recall that condition (b) implies

sup
x∈∪iTi

‖∇η(x)‖1

inf
x∈∪iTi

‖∇η(x)‖1
≤ q(3k).

Finally, sup
x∈A3t

‖∇η(x)‖2 is attained at the boundary point, that is for some x∗ : |η(x∗)| = 3t, and by

(b)
sup
x∈A3t

‖∇η(x)‖1 ≤
√
d‖∇η(x∗)‖1 ≤ q(3k)

√
d inf
x∈A3t\At/k

‖∇η(x)‖1.

3. If, on the contrary, every sub-cube with edge length 2−(m+z) contains a point from At/k, then At/k must contain the
convex hull of these points which would contradict (32) for large z.
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PLUG-IN APPROACH TO ACTIVE LEARNING

Application of (29) to every cube Ti gives

∑
i∈I

∫

Ti

(η(x)− η̄m+z(x))2dΠ(x)≥ c1(k)Π(A)|I | inf
x∈A3t\At/k

‖∇η(x)‖212−2m2−dm ≥

≥ c2(k)Π(A) sup
x∈A3t

‖∇η(x)‖212−2m ≥ c3(k)Π(A)‖η− η̄(m)‖2∞,A

concluding the proof.

Appendix B. Proof of Theorem 11

The main ideas of this proof, which significantly simplifies and clarifies initial author’s version, are
due to V. Koltchinskii. For convenience and brevity, let us introduce additional notations. Recall
that

sm = m(s+ log log2N).

Let

τN(m,s) := K1
2dm+ sm

N
,

πN(m,s) := K2
2dm+ s+ log log2N

N
.

By EP(F , f ) (or EPN (F , f )) we denote the excess risk of f ∈ F with respect to the true (or empiri-
cal) measure:

EP(F , f ) := P(y− f (x))2− inf
g∈F

P(y−g(x))2,

EPN (F , f ) := PN(y− f (x))2− inf
g∈F

PN(y−g(x))2.

It follows from Theorem 4.2 in Koltchinskii (2011) and the union bound that there exists an event B
of probability ≥ 1− e−s such that on this event the following holds for all m such that dm≤ logN:

EP(Fm, f̂m̂)≤ πN(m,s),
∀ f ∈ Fm, EP(Fm, f )≤ 2(EPN (Fm, f )∨πN(m,s)), (34)

∀ f ∈ Fm, EPN (Fm, f )≤
3
2
(EP(Fm, f )∨πN(m,s)).

We will show that on B , {m̂≤ m̄} holds. Indeed, assume that, on the contrary, m̂> m̄; by definition
of m̂, we have

PN(Y − f̂m̂)2+ τN(m̂,s)≤ PN(Y − f̂m̄)2+ τN(m̄,s),

which implies
EPN (Fm̂, f̂m̄)≥ τN(m̂,s)− τN(m̄,s)> 3πN(m̂,s)

for K1 big enough. By (34),

EPN (Fm̂, f̂m̄) = inf
f∈Fm̄

EPN (Fm̂, f )≤
3
2

(
inf
f∈Fm̄

EP(Fm̂, f )∨πN(m̂,s)
)
,
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and combination the two inequalities above yields

inf
f∈Fm̄

EP(Fm̂, f )> πN(m̂,s). (35)

Since for any m EP(Fm, f )≤ E( f (X)−η(X))2, the definition of m̄ and (35) imply that

πN(m̄,s)≥ inf
f∈Fm̄

E( f (X)−η(X))2 > πN(m̂,s),

contradicting our assumption, hence proving the claim.
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Abstract
This paper studies the construction of a refinement kernel for a given operator-valued reproducing
kernel such that the vector-valued reproducing kernel Hilbert space of the refinement kernel con-
tains that of the given kernel as a subspace. The study is motivated from the need of updating the
current operator-valued reproducing kernel in multi-task learning when underfitting or overfitting
occurs. Numerical simulations confirm that the established refinement kernel method is able to
meet this need. Various characterizations are provided based on feature maps and vector-valued
integral representations of operator-valued reproducing kernels. Concrete examples of refining
translation invariant and finite Hilbert-Schmidt operator-valued reproducing kernels are provided.
Other examples include refinement of Hessian of scalar-valued translation-invariant kernels and
transformation kernels. Existence and properties of operator-valued reproducing kernels preserved
during the refinement process are also investigated.
Keywords: vector-valued reproducing kernel Hilbert spaces, operator-valued reproducing kernels,
refinement, embedding, translation invariant kernels, Hessian of Gaussian kernels, Hilbert-Schmidt
kernels, numerical experiments

1. Introduction

Machine learning designs algorithms for the purpose of inferring from finite empirical data a func-
tion dependency which can then be used to understand or predict generation of new data. Past
research has mainly focused on single task learning problems where the function to be learned is
scalar-valued. Built upon the theory of scalar-valued reproducing kernels (Aronszajn, 1950), kernel
methods have proven useful in single task learning (Schölkopf and Smola, 2002; Shawe-Taylor and
Cristianini, 2004; Vapnik, 1998). The approach might be justified in three ways. Firstly, as inputs for
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P. R. China.
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learning algorithms are sample data, requiring the sampling process to be stable seems inevitable.
Thanks to the existence of an inner product, Hilbert spaces are the class of normed vector spaces
that we can handle best. These two considerations lead immediately to the notion of reproducing
kernel Hilbert spaces (RKHS). Secondly, a reasonable learning scheme is expected to make use of
the similarity between a new input and the existing inputs for prediction. Inner products provide
a natural measurement of similarities. It is well-known that a bivariate function is a scalar-valued
reproducing kernel if and only if it is representable as some inner product of the feature of inputs
(Schölkopf and Smola, 2002). Finally, finding a feature map and taking the inner product of the
feature of two inputs are equivalent to choosing a scalar-valued reproducing kernel and performing
function evaluations of it. This brings computational efficiency and gives birth to the important “ker-
nel trick” (Schölkopf and Smola, 2002) in machine learning. For references on single task learning
and scalar-valued RKHS, we recommend Aronszajn (1950), Cucker and Smale (2002), Cucker and
Zhou (2007), Evgeniou et al. (2000), Schölkopf and Smola (2002), Shawe-Taylor and Cristianini
(2004) and Vapnik (1998); Zhang et al. (2009).

In this paper, we are concerned with multi-task learning where the function to be reconstructed
from finite sample data takes range in a finite-dimensional Euclidean space, or more generally, a
Hilbert space. Motivated by the success of kernel methods in single task learning, it was proposed
in Evgeniou et al. (2005) and Micchelli and Pontil (2005) to develop algorithms for multi-task
learning in the framework of vector-valued RKHS. We attempt to contribute to the theory of vector-
valued RKHS by studying a special embedding relationship between two vector-valued RKHS.
We shall briefly review existing work on vector-valued RKHS and the associated operator-valued
reproducing kernels. The study of vector-valued RKHS dates back to Pedrick (1957). The notion
of matrix-valued or operator-valued reproducing kernels was also obtained in Burbea and Masani
(1984). References Mukherjee and Wu (2006), Mukherjee and Zhou (2006) and Ying and Campbell
(2008) were devoted to learning a multi-variate function and its gradient simultaneously. Reference
Carmeli et al. (2006) established the Mercer theorem for vector-valued RKHS and characterized
those spaces with elements being p-integrable vector-valued functions. Various characterizations
and examples of universal operator-valued reproducing kernels were provided in Caponnetto et al.
(2008) and Carmeli et al. (2010). The latter (Carmeli et al., 2010) also examined basic operations
of operator-valued reproducing kernels and extended the Bochner characterization of translation
invariant reproducing kernels to the operator-valued case.

The purpose of this paper is to study the refinement relationship of two vector-valued reproduc-
ing kernels. We say that a vector-valued reproducing kernel is a refinement of another kernel of
such type if the RKHS of the first kernel contains that of the latter one as a linear subspace and their
norms coincide on the smaller space. The precise definition will be given in the next section after
we provide necessary preliminaries on vector-valued RKHS. The study is motivated by the need of
updating a vector-valued reproducing kernel for multi-task machine learning when underfitting or
overfitting occurs. Detailed explanations of this motivation will be presented in the next section.
Mathematically, a thorough understanding of the refinement relationship is essential to the estab-
lishment of a multi-scale decomposition of vector-valued RKHS, which in turn is the foundation
for extending multi-scale analysis (Daubechies, 1992; Mallat, 1989) to kernel methods. In fact, a
special refinement method by a bijective mapping from the input space to itself provides such a
decomposition. As the procedure is similar to the scalar-valued case, we refer interested authors to
Xu and Zhang (2007) for the details. The notion of refinement of scalar-valued kernels was initiated
and extensively investigated by the first two authors (Xu and Zhang, 2007, 2009). Therefore, a gen-
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eral principle we shall follow is to briefly mention or even completely omit arguments that are not
essentially different from the scalar-valued case. As we proceed with the study, it will become clear
that nontrivial obstacles in extending the scalar-valued theory to vector-valued RKHS are mainly
caused by the complexity in the vector-valued integral representation of the operator-valued repro-
ducing kernels under investigation, by the complicated form of the feature map involved, which is
also operator-valued, and by the infinite-dimensionality of the output space in some occasions.

To be more specific, we would personally regard the following results to be mathematically
nontrivial: Theorem 11 of characterizing the refinement of kernels defined by the integral of scalar-
valued kernels with respect to an operator-valued measure, Proposition 10 of studying the refinement
of positive operators, Lemma 13 of proving the disjointness of the RKHS of translation-invariant
kernels of different types, and Theorem 21 about the refinement of finite Hilbert-Schmidt kernels.
Besides, compared to the scalar-valued case in Xu and Zhang (2009), Sections 5.2 and 5.3 about the
refinement of Hessian kernels and transformation kernels are unique, and Section 7 of numerical ex-
periments is novel. By contrast, the discussion of general characterizations and finite-dimensional
RKHS in Section 3, refinement of kernels defined by the integral of operator-value kernels with
respect to a scalar-valued measure in Section 4.1, and Section 6 about the existence of refinement
and properties preserved by the refinement process can be viewed as either trivial extensions or
not of sufficient mathematical depth. We also remark that every vector-valued RKHS is isometri-
cally isomorphic to a scalar-valued RKHS on an extended input space (see Proposition 6 below).
However, this does not mean that the question of studying refinement of operator-valued kernels
can be trivially reduced to that about scalar-valued kernels. The isometry procedure will usually
make the resulting scalar-valued kernel and extended input space complex and difficult to analyze.
Moreover, favorable properties such as translation invariance and Hilbert-Schmidt structure of the
original kernels are generally lost in the process. Therefore, an independent study of the refinement
of operator-valued kernels is necessary and challenging.

This paper is organized as follows. We shall introduce necessary preliminaries on vector-valued
RKHS and motivate our study from multi-tasking learning in the next section. In Section 3, we
shall present three general characterizations of the refinement relationship by examining the differ-
ence of two given kernels, the feature map representation of kernels, and the associated kernels on
the extended input space. Recall that most scalar-valued reproducing kernels are represented by
integrals. In the operator-valued case, we have two types of integral representations: the integral
of operator-valued reproducing kernels with respect to a scalar-valued measure, and the integral
of scalar-valued reproducing kernels with respect to an operator-valued measure. As a key part of
this paper, we shall investigate in Section 4 specifications of the general characterizations when
the operator-valued reproducing kernels are given by such integrals. In Section 5, we present con-
crete examples of refinement by looking into translation-invariant operator-valued kernels, Hessian
of a scalar-valued kernels, Hilbert-Schmidt kernels, etc. Section 6 treats specially the existence of
nontrivial refinements and desirable properties of operator-valued reproducing kernels that can be
preserved during the refinement process. In Section 7, we perform three numerical simulations to
show the effect of the refinement kernel method in updating operator-valued reproducing kernels
for multi-task learning. Finally, we conclude the paper in Section 8.
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2. Kernel Refinement

To explain our motivation frommulti-task learning in details, we first recall the definition of operator-
valued reproducing kernels. Throughout the paper, we let X and Λ denote a prescribed set and a
separable Hilbert space, respectively. We shall call X the input space and Λ the output space. To
avoid confusion, elements in X and Λ will be denoted by x,y, and ξ,η, respectively. Unless specifi-
cally mentioned, all the normed vector spaces in the paper are over the field C of complex numbers.
Let L(Λ) be the set of all the bounded linear operators from Λ to Λ, and L+(Λ) its subset of those
linear operators A that are self-adjoint and positive, namely,

(Aξ,ξ)Λ ≥ 0 for all ξ ∈ Λ,

where (·, ·)Λ is the inner product on Λ. The adjoint of A ∈ L(Λ) is denoted by A∗. An L(Λ)-valued
reproducing kernel on X is a function K : X×X →L(Λ) such that K(x,y) =K(y,x)∗ for all x,y∈ X ,
and such that for all x j ∈ X , ξ j ∈ Λ, j ∈ Nn := {1,2, . . . ,n}, n ∈ N,

n

∑
j=1

n

∑
k=1

(K(x j,xk)ξ j,ξk)Λ ≥ 0. (1)

For each L(Λ)-valued reproducing kernel K on X , there exists a unique Hilbert space, denoted by
HK , consisting of Λ-valued functions on X such that

K(x, ·)ξ ∈HK for all x ∈ X and ξ ∈ Λ (2)

and
( f (x),ξ)Λ = ( f ,K(x, ·)ξ)HK for all f ∈HK , x ∈ X , and ξ ∈ Λ. (3)

It is implied by the above two properties that the point evaluation at each x ∈ X :

δx( f ) := f (x), f ∈HK

is continuous from HK to Λ. In other words, HK is a Λ-valued RKHS. We call it the RKHS of K.
Conversely, for each Λ-valued RKHS on X , there exists a unique L(Λ)-valued reproducing kernel
K on X that satisfies (2) and (3). For this reason, we also call K the reproducing kernel (or kernel for
short) ofHK . The bijective correspondence between L(Λ)-valued reproducing kernels andΛ-valued
RKHS is central to the theory of vector-valued RKHS.

Given two L(Λ)-valued reproducing kernels K,G on X , we shall investigate in this paper the
fundamental embedding relationship HK ' HG in the sense that HK ⊆ HG and for all f ∈ HK ,
‖ f‖HK = ‖ f‖HG . Here, ‖ ·‖W denotes the norm of a normed vector spaceW . We callG a refinement
of K if there does hold HK 'HG. Such a refinement is said to be nontrivial if G *= K.

We motivate this study from the kernel methods for multi-task learning and from the multi-scale
decomposition of vector-valued RKHS. Let z := {(x j,ξ j) : j ∈ Nn}⊆ X ×Λ be given sample data.
A typical kernel method infers from z the minimizer fz of

min
f∈HK

1
n

n

∑
j=1
C(x j,ξ j, f (x j))+σφ(‖ f‖HK ), (4)
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where K is a selected L(Λ)-valued reproducing kernel on X , C a prescribed loss function, σ a
positive regularization parameter, and φ a regularizer. The ideal predictor f0 : X → Λ that we are
pursuing is the one that minimizes

E( f ) :=
∫
X×Λ

C(x,ξ, f (ξ))dP

among all possible functions f from X to Λ. Here P is an unknown probability measure on X ×Λ
that dominates the generation of data from X×Λ. We wish that E( fz)−E( f0) can converge to zero
in probability as the number n of sampling points tends to infinity. Whether this will happen depends
heavily on the choice of the kernel K. The error E( fz)−E( f0) can be decomposed into the sum
of the approximation error and sampling error (Schölkopf and Smola, 2002; Vapnik, 1998). The
approximation error occurs as we search the minimizer in a restricted set of candidate functions,
namely, HK . It becomes smaller as HK enlarges. The sampling error is caused by replacing the
expectation E( f ) of the loss functionC(x,ξ, f (ξ)) with the sample mean

1
n

n

∑
j=1
C(x j,ξ j, f (x j)).

By the law of large numbers, the sample mean converges to the expectation in probability as n→∞
for a fixed f ∈ HK . However, as fz varies according to changes in the sample data z, we need
a uniform version of the law of large number on HK in order to well control the sampling error.
Therefore, the sampling error usually increases as HK enlarges, or to be more precisely, as the
capacity of HK increases.

By the above analysis, we might encounter two situations after the choice of an L(Λ)-valued
reproducing kernel K:

— overfitting, which occurs when the capacity ofHK is too large, forcing the minimizer obtained
from (4) to imitate artificial function dependency in the sample data, and thus causing the
sampling error to be out of control;

— underfitting, which occurs when HK is too small for the minimizer of (4) to describe the de-
sired function dependency implied in the data, and thus failing in bounding the approximation
error.

When one of the above situations happens, a remedy is to modify the reproducing kernel. Specifi-
cally, one might want to find another L(Λ)-valued reproducing kernel G such that HK ' HG when
there is underfitting, or such that HG 'HK when there is overfitting. We see that in either case, we
need to make use of the refinement relationship. We shall verify in the last section through extensive
numerical simulations that the refinement kernel method is indeed able to provide an appropriate
update of an operator-valued reproducing kernel when underfitting or overfitting occurs.

Before moving on to the characterization of refinement of operator-valued reproducing kernels,
we collect here notations that will be frequently used in the rest of the paper. They will also be (or
have been) defined when first used.

– X : a general input space,

– Λ: a Hilbert space, serving as the output space,
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– ‖ ·‖Λ: the norm on a Hilbert or Banach space Λ,

– W : a Hilbert space, usually serving as the feature space of reproducing kernels,

– L(Λ): the space of bounded linear operators from Λ to Λ,

– L+(Λ): the set of self-adjoint and positive bounded linear operators from Λ to Λ,

– L(Λ,W ): the space of bounded linear operators from Λ toW ,

– K,G: L(Λ)-valued reproducing kernels,

– HK ,HG: the RKHS of kernels K,G, respectively,

– HK 'HG: G is a refinement of K, namely, HK ⊆HG and ‖ f‖HK = ‖ f‖HG for all f ∈HK ,

– X̃ : the extended input space X×Λ,

– K̃: the scalar-valued kernel (11) associated with an L(Λ)-valued kernel K,

– µ,ν: scalar-valued or operator-valued measures,

– |µ|: the variation (19) of a measure µ,

– (Ω,F ,µ): a measure space,

– µ' ν: means that µ is the restriction of ν on some measurable set,

– L2(Ω,B,dµ): the Hilbert space (16) of square integrable B-valued functions on Ω with re-
spect to the measure µ,

– L2(Ω,dµ): the Hilbert space of scalar-valued square integrable functions on Ω with respect
to the measure µ,

– L∞(Ω,dµ): the Banach space of essentially bounded measurable functions on Ω with respect
to the measure µ,

– A' B: see (29) for this refinement relation of two positive operators,

– B(Rd ,Λ): the set of all the L+(Λ)-valued measures of bounded variation on the σ-algebra of
Borel subsets in Rd ,

– γc,γs: the continuous part γc and singular part γs in the Lebesgue decomposition (38) of a
Borel measure γ,

– Lc,Ls: the continuous and singular parts (39) of a translation-invariant kernel,

– Λ⊗W : the tensor product of two Hilbert spaces Λ andW ,

–
√
A: the square root of a positive bounded linear operator A.
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3. General Characterizations

The relationship between the RKHS of the sum of two operator-valued reproducing kernels and
those of the summand kernels has been made clear in Theorem 1 on page 44 of Pedrick (1957). Our
first characterization of refinement is a direct consequence of this result.

Proposition 1 Let K,G be two L(Λ)-valued reproducing kernels on X. Then HK 'HG if and only
if G−K is an L(Λ)-valued reproducing kernel on X andHK∩HG−K = {0}. IfHK 'HG thenHG−K
is the orthogonal complement of HK in HG.

Every reproducing kernel has a feature map representation. Specifically, K is an L(Λ)-valued
reproducing kernel on X if and only if there exists a Hilbert space W and a mapping Φ : X →
L(Λ,W ) such that

K(x,y) =Φ(y)∗Φ(x), x,y ∈ X , (5)

where L(Λ,W ) denotes the set of bounded linear operators from Λ toW , and Φ(y)∗ is the adjoint
operator of Φ(y). We call Φ a feature map of K. The following lemma is useful in identifying the
RKHS of a reproducing kernel given by a feature map representation (5).

Lemma 2 If K is an L(Λ)-valued reproducing kernel on X given by (5) then

HK = {Φ(·)∗u : u ∈W }

with inner product
(Φ(·)∗u,Φ(·)∗v)HK := (PΦu,PΦv)W , u,v ∈W ,

where PΦ is the orthogonal projection ofW onto

WΦ := span{Φ(x)ξ : x ∈ X , ξ ∈ Λ}.

The second characterization can be proved using Lemma 2 and the same arguments with those
for the scalar-valued case (Xu and Zhang, 2007).

Theorem 3 Suppose that L(Λ)-valued reproducing kernels K and G are given by the feature maps
Φ : X → L(Λ,W ) and Φ′ : X → L(Λ,W ′), respectively. Assume that WΦ =W and W ′

Φ′ =W ′.
Then HK 'HG if and only if there exists a bounded linear operator T fromW ′ toW such that

TΦ′(x) =Φ(x) for all x ∈ X ,

and the adjoint operator T ∗ :W →W ′ is isometric. In this case, G is a nontrivial refinement of K
if and only if T is not injective.

To illustrate the above useful results, we shall present a concrete example aiming at refining
L(Λ)-valued reproducing kernels K with a finite-dimensional RKHS. A simple observation is made
regarding such a kernel.

Proposition 4 A Λ-valued RKHS HK is of finite dimension n ∈N if and only if there exists an n×n
hermitian and strictly positive-definite matrix A and n linearly independent functions φ j : X → Λ,
j ∈ Nn such that

K(x,y)ξ=
n

∑
j=1

n

∑
k=1

Ajk(ξ,φ j(x))Λφk(y), x,y ∈ X , ξ ∈ Λ. (6)
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Proof Assume that HK is n dimensional with orthogonal basis {φ j : j ∈ Nn}. As K(x, ·)ξ ∈HK for
all x ∈ X , ξ ∈ Λ, there exist functions c j : X×Λ→ C such that

K(x,y)ξ=
n

∑
j=1

c j(ξ,x)φ j(y), x, y ∈ X , ξ ∈ Λ.

Since {φ j : j ∈ Nn} is a basis for HK , each function f ∈HK has the form

f =
n

∑
j=1

d jφ j, d j ∈ C, j ∈ Nn.

Clearly, ‖ f‖ := (∑n
j=1 |d j|2)

1/2 is a norm on HK . It is equivalent to the original one on HK as
dimHK < ∞. It is implied that there exists someC > 0 such that

n

∑
j=1

|c j(ξ,x)|2 ≤C‖K(x, ·)ξ‖2HK
=C(K(x,x)ξ,ξ)Λ ≤C‖ξ‖2Λ‖K(x,x)‖. (7)

Obviously, for each x ∈ X and j ∈ Nn, c j(·,x) is a linear functional on Λ. This together with (7)
implies that c j(·,x) are bounded linear functionals on Λ. By the Riesz representation theorem, there
exists ψ j : X → Λ, j ∈ Nn such that

c j(ξ,x) = (ξ,ψ j(x))Λ.

We conclude that K has the form

K(x,y)ξ=
n

∑
j=1

(ξ,ψ j(x))Λφ j(y), x, y ∈ X , ξ ∈ Λ. (8)

Since {φ j : j ∈ Nn} is an orthogonal basis for HK , by (3),

(ξ,ψ j(x))Λ = (K(x, ·)ξ,φ j)HK = (ξ,φ j(x))Λ, ξ ∈ Λ, x ∈ X .

It follows that ψ j = φ j, j ∈ Nn. Substituting this into (8) yields that

K(x,y)ξ=
n

∑
j=1

(ξ,φ j(x))Λφ j(y), x, y ∈ X , ξ ∈ Λ,

which indeed is a special form of (6).
Conversely, assume that K has the form (6). We setWA := I2A(Nn) := {c= (c j : j ∈ Nn) ∈ Cn}

with inner product

(c,d)I2A(Nn) :=
n

∑
j=1

n

∑
k=1

c jd̄kA jk.

Introduce Φ : X → L(Λ,WA) by setting Φ(x)ξ := ((ξ,φ j(x))Λ : j ∈Nn). Direct computations show
that

Φ∗(x)u=
n

∑
j=1

n

∑
k=1

φ j(x)ukA jk, u= (u j : j ∈ Nn) ∈WA.
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Thus, we see that K(x,y) = Φ(y)∗Φ(x), x, y ∈ X , implying that K is an L(Λ)-valued reproducing
kernel. By the linear independence of φ j, j ∈ Nn, span{Φ(x)ξ : x ∈ X , ξ ∈ Λ} = WA. We hence
apply Lemma 2 to get that

HK = {Φ(·)∗u : u ∈WA}= span{φ j : j ∈ Nn},

which is of dimension n.

By the above proposition, we let φ j, j ∈ Nm be linearly independent functions from X to Λ,
where m ≥ n are fixed positive integers. Let A and B be n× n and m×m hermitian and strictly
positive-definite matrices, respectively. We define K by (6) in terms of matrix A and G by

G(x,y)ξ :=
m

∑
j=1

m

∑
k=1

Bjk(ξ,φ j(x))Λφk(y), x, y ∈ X (9)

and shall investigate conditions for G to be a refinement of K.

Proposition 5 Let K, G be defined by (6) and (9), respectively. Then HK 'HG if and only if B−1 is
an augmentation of A−1, namely, B−1

jk = A−1
jk , j, k ∈ Nn. In particular, if K, G have the form

K(x,y)ξ= ∑
j∈Nn

a j(ξ,φ j(x))Λφ j(y), G(x,y)ξ= ∑
k∈Nm

bk(ξ,φk(x))Λφk(y)

for some positive constants a j, bk, then HK ' HG if and only if a j = b j, j ∈ Nn. In both cases if
HK 'HG then G is a nontrivial refinement of K if and only if m> n.

Proof It suffices to prove the first claim. We observe that K, G have the feature spacesW = I2A(Nn)
andW ′ = I2B(Nm), respectively, with feature maps

Φ(x)ξ := ((ξ,φ j(x))Λ : j ∈ Nn), Φ′(x)ξ := ((ξ,φk(x))Λ : k ∈ Nm), x ∈ X , ξ ∈ Λ.

Suppose that HK ' HG, then by Theorem 3, there exists a bounded linear operator T :W ′ →W
with properties as described there. It can be represented by an n×m matrix D as

(TΦ′(x)ξ) j =
m

∑
k=1

Djk(ξ,φk(x))Λ = (ξ,φ j(x))Λ, x ∈ X ,ξ ∈ Λ, (10)

which implies that D = [In,0], where In denotes the n× n identity matrix. The adjoint operator T ∗

of T is then represented by

T ∗u= B−1
[

A
0

]

u, u ∈ Cn.

Since T ∗ is isometric, we get that

(T ∗u,T ∗v)W ′ = (u,v)W ,

which has the form
v∗[A,0]B−1BB−1

[

A
0

]

u= v∗Au, u, v ∈ Cn.
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We derive from the above equation that

[A,0]B−1
[

A
0

]

= A.

Therefore, B−1 is an augmentation of A−1. Conversely, if this is true then T :W ′ →W defined by

Tu′ := [In,0]u′, u′ ∈ Cm

satisfies the two properties in Theorem 3. As a result, HK 'HG.

It is worthwhile to point out that the above characterization is independent of the Hilbert space
Λ.

Unlike the previous two characterizations, the third one comes as a surprise, telling us that
theoretically we are able to reduce our consideration to the scalar-valued case.

Introduce for each L(Λ)-valued reproducing kernel K on X a scalar-valued reproducing kernel
K̃ on the extended input space X̃ := X×Λ by setting

K̃((x,ξ),(y,η)) := (K(x,y)ξ,η)Λ, x,y ∈ X , ξ,η ∈ Λ. (11)

By (1), K̃ is indeed positive-definite.

Proposition 6 There holds HK ' HG if and only if HK̃ ' HG̃. Furthermore, G is a nontrivial
refinement of K on X if and only if G̃ is a nontrivial refinement of K̃ on X̃.

Proof We first explore the close relationship between HK and HK̃ . By (3),

K̃((x,ξ),(y,η)) = (K(x,y)ξ,η)Λ = (K(x, ·)ξ,K(y, ·)η)HK ,

which provides a natural feature map Φ : X̃ →HK of K̃

Φ((x,ξ)) := K(x, ·)ξ, x ∈ X , ξ ∈ Λ.

The density condition WΦ = HK is clearly satisfied by (3). We hence obtain by (2) that every
function f̃ in HK̃ is of the form

f̃ (x,ξ) := ( f (x),ξ)Λ for some f ∈HK

with
‖ f̃‖HK̃

= ‖ f‖HK .

Similar observations can be made about HG̃.
It follows immediately that HK̃ ' HG̃ if HK ' HG. On the other hand, suppose that HK̃ ' HG̃.

Then for each f ∈HK there exists some g ∈HG such that

( f (x),ξ)Λ = f̃ (x,ξ) = g̃(x,ξ) = (g(x),ξ)Λ for all x ∈ X , ξ ∈ Λ (12)

and
‖ f‖HK = ‖ f̃‖HK̃

= ‖g̃‖HG̃
= ‖g‖HG .
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Equation (12) implies that f = g. Therefore, HK 'HG.

It appears by Proposition 6 that we do not have to bother studying refinement of operator-valued
reproducing kernels. Although the strategy sometimes does simplify the problem, the difficulty is
generally not reduced significantly. Instead, the result might be viewed as transferring the complex-
ity to the input space. Moreover, desirable properties such as translation invariance of the original
kernels might be lost in the process. As a result, an independent study of the operator-valued case
remains necessary and challenging.

4. Integral Representations

We shall characterize in this section the refinement of operator-valued kernels defined by two kinds
of integral representations: the integral of operator-valued kernels with respect to a scalar-valued
measure, and the integral of scalar-valued kernels with respect to an operator-valued measure. The
characterizations to be established are crucial to the study of this paper as many useful operator-
valued kernels are of an integral representation. Typical examples include the important translation-
invariant operator-valued kernels and hessian kernels to be considered in the next section. We
also point out in advance the difference in the refinement for the two kinds of integral represen-
tations. Firstly, the first refinement corresponds to the same feature map and different measures,
while the other when the Radon-Nikodym property is engaged has different feature maps and the
same measure. The arguments of the proofs and the obtained results are essential different. The
characterization of the first kind of refinement can be viewed as a straightforward generalization of
that obtained in Xu and Zhang (2009), while the other one is mathematically nontrivial.

This section will be built on the theory of vector-valued measures and integrals (Berberian,
1966; Diestel and Uhl, 1977). Necessary preliminaries on the subjects will be explained in sufficient
details.

4.1 Operator-valued Kernels With Respect to Scalar-valued Measures

Let us first introduce integration of a vector-valued function with respect to a scalar-valued measure.
Let F be a σ-algebra of subsets of a fixed set Ω, µ a finite nonnegative measure on F , and B a
Banach space. We are concerned with B-valued functions on Ω. A function f :Ω→ B is said to be
simple if

f =
n

∑
j=1

a jχEj (13)

for some finitely many a j ∈ B and pairwise disjoint subsets Ej ∈ F , j ∈ Nn. A function f :Ω→ B
is called µ-measurable if there exists a sequence of B-valued simple functions fn on Ω such that

lim
n→∞

‖ fn(t)− f (t)‖B = 0 for µ− a.e. t ∈Ω,

where µ− a.e. stands for “everywhere except for a set of zero µ measure”. Finally, a B-valued
function f on Ω is called µ-Bochner integrable if there exists a sequence of simple functions fn :
Ω→ B such that

lim
n→∞

∫
Ω
‖ fn(t)− f (t)‖B dµ(t) = 0. (14)
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The integral of a simple function f of the form (13) on any E ∈ F with respect to µ is defined by
∫
E
f dµ :=

n

∑
j=1

a j µ(Ej ∩E).

In general, suppose that f is a µ-Bochner integrable function from Ω to B , that is, (14) holds true.
Then it is obvious that for each E ∈ F ,

∫
E fndµ, n ∈ N form a Cauchy sequence in B . Therefore,

∫
E
f dµ := lim

n→∞

∫
E
fndµ.

The resulting integral
∫
E f dµ is an element in B .

It is known that a µ-measurable function f :Ω→ B is Bochner integrable if and only if
∫
Ω
‖ f (t)‖Bdµ(t)<+∞.

This provides a way for us to comprehend the integral
∫
E f dµ in the most needed case when f is

L(Λ)-valued. If B = L(Λ) then we have for each E ∈ F that
(∫

E
f dµξ,η

)

Λ
=

∫
E
( f (t)ξ,η)Λdµ(t), ξ,η ∈ Λ. (15)

Clearly, the right hand side above defines a sesquilinear form on Λ×Λ which is bounded as
∣

∣

∣

∣

∫
E
( f (t)ξ,η)Λdµ(t)

∣

∣

∣

∣

≤
∫
E
‖ f (t)‖L(Λ)dµ(t) ‖ξ‖Λ‖η‖Λ,

where ‖ ·‖L(Λ) is the operator norm on L(Λ). As a result, (15) gives an equivalent way of defining
the integral

∫
E f dµ as a bounded linear operator on Λ (Conway, 1990).

We introduce another notation before returning to reproducing kernels. Denote by L2(Ω,B,dµ)
the Banach space of all the µ-measurable functions f :Ω→ B such that

‖ f‖L2(Ω,B,dµ) :=
(∫

Ω
‖ f (t)‖2Bdµ(t)

)1/2
<+∞. (16)

WhenB =C, L2(Ω,C,dµ)will be abbreviated as L2(Ω,dµ). WhenB is a Hilbert space, L2(Ω,B,dµ)
is also a Hilbert space with the inner product

( f ,g)L2(Ω,B,dµ) :=
∫
Ω
( f (t),g(t))Bdµ(t), f ,g ∈ L2(Ω,B,dµ).

The discussion in this section by far can be found in Diestel and Uhl (1977).
Let µ,ν be two finite nonnegative measures on a σ-algebra F of subsets of Ω. To intro-

duce our L(Λ)-valued reproducing kernels, we also let W be a Hilbert space and φ a mapping
from X ×Ω to L(Λ,W ) such that for each x ∈ X , φ(x, ·) belongs to both L2(Ω,L(Λ,W ),dµ) and
L2(Ω,L(Λ,W ),dν). We shall investigate conditions that ensure HK 'HG where

K(x,y) =
∫
Ω
φ(y, t)∗φ(x, t)dµ(t), x,y ∈ X (17)
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and

G(x,y) =
∫
Ω
φ(y, t)∗φ(x, t)dν(t), x,y ∈ X , (18)

where φ(y, t)∗ is the adjoint operator of φ(y, t). Note that K,G are well-defined as the integrand is
Bochner integrable with respect to both µ and ν. For instance, we observe by the Cauchy-Schwartz
inequality for all x,y ∈ X that

∫
Ω
‖φ(y, t)∗φ(x, t)‖L(Λ)dµ(t) ≤

∫
Ω
‖φ(y, t)∗‖L(W ,Λ)‖φ(x, t)‖L(Λ,W )dµ(t)

=
∫
Ω
‖φ(y, t)‖L(Λ,W )‖φ(x, t)‖L(Λ,W )dµ(t)

≤ ‖φ(y, ·)‖L2(Ω,L(Λ,W ),dµ)‖φ(x, ·)‖L2(Ω,L(Λ,W ),dµ).

An alternative of expressing K,G is for all x,y ∈ X , ξ,η ∈ Λ that

K̃((x,ξ),(y,η)) = (K(x,y)ξ,η)Λ =
∫
Ω
(φ(x, t)ξ,φ(y, t)η)W dµ(t)

and

G̃((x,ξ),(y,η)) = (G(x,y)ξ,η)Λ =
∫
Ω
(φ(x, t)ξ,φ(y, t)η)W dν(t).

When Λ = W = C, a characterization of HK ' HG in terms of µ,ν has been established in
Xu and Zhang (2009). The relation, between the two measures, which we shall need is absolute
continuity. We say that µ is absolutely continuous with respect to ν if for all E ∈ F , ν(E) = 0
implies µ(E) = 0. In this case, by the Radon-Nikodym theorem (see, Rudin, 1987, page 121) for
scalar-valued measures, there exists a nonnegative ν-integrable function, denoted by dµ/dν, such
that

µ(E) =
∫
E

dµ
dν

(t)dν(t) for all E ∈ F .

We write µ' ν if µ is absolutely continuous with respect to ν and dµ/dν ∈ {0,1} ν− a.e. Thus,
µ' ν if and only if µ is the restriction of ν on some measurable set in F .

When Λ =W = C, it was proved in Theorem 8 of Xu and Zhang (2009) that if span{φ(x, ·) :
x ∈ X} is dense in both L2(Ω,dµ) and L2(Ω,dν) then G is a refinement of K if and only if µ' ν. If
µ' ν then G is a nontrivial refinement of K if and only if ν(Ω)> µ(Ω).

Theorem 7 Let K,G be given by (17) and (18). If span{φ(x, ·)ξ : x ∈ X , ξ ∈ Λ} is dense in both
L2(Ω,W ,dµ) and L2(Ω,W ,dν) then HK ' HG if and only if µ' ν. In this case, the refinement G
of K is nontrivial if and only if ν(Ω)−µ(Ω)> 0.

Proof WhenW = C, as a direct consequence of Theorem 8 in Xu and Zhang (2009), HK̃ 'HG̃ if
and only if µ' ν. The result hence follows from Proposition 6. WhenW is a general Hilbert space,
it can be proved by arguments similar to those in Xu and Zhang (2009).
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4.2 Scalar-valued Kernels with Respect to Operator-valued Measures

Again, B is a Banach space and F denotes a σ-algebra consisting of subsets of a fixed set Ω. A
B-valued measure on F is a function from F to B that is countably additive in the sense that for
every sequence of pairwise disjoint sets Ej ∈ F , j ∈ N

µ
( ∞⋃
j=1

Ej

)

=
∞

∑
j=1

µ(Ej),

where the series converges in the norm of B . Every B-valued measure µ on F comes with a scalar-
valued measure |µ| on F defined by

|µ|(E) := sup
P
∑
F∈P

‖µ(F)‖B , E ∈ F , (19)

where the supremum is taken over all partitions P of E into countably many pairwise disjoint mem-
bers of F . We call |µ| the variation of µ and shall only work with these vector-valued measures
µ that are of bounded variation, that is, |µ|(Ω) < +∞. We note that µ vanishes on sets of zero |µ|
measure. It implies that µ is absolutely continuous with respect to |µ| in the sense that

lim
|µ(E)|→0

µ(E) = 0.

The only type of integration that we shall need is to integrate a bounded F -measurable scalar-
valued function with respect to a B-valued measure of bounded variation. Denote by L∞(Ω,d|µ|)
the Banach space of essentially bounded F -measurable functions on Ω with the norm

‖ f‖L∞(Ω,d|µ|) := inf{a≥ 0 : |µ|({| f |> a}) = 0} .

For a simple function f :Ω→ C of the form

f =
n

∑
j=1

α jχEj ,

where α j ∈ C and Ej are pairwise disjoint members in F , we define
∫
E
f dµ :=

n

∑
j=1

α jµ(Ej ∩E), E ∈ F .

Clearly,
∥

∥

∥

∥

∫
E
f dµ

∥

∥

∥

∥

B
≤ ‖ f‖L∞(Ω,d|µ|)|µ|(E).

Therefore, the map sending a simple function f to
∫
E f dµ can be uniquely extended to a bounded

linear operator from L∞(Ω,d|µ|) to B . The outcome of the application of the resulting operator on
a general f ∈ L∞(Ω,d|µ|) is still denoted by

∫
E f dµ. This is how the B-valued integral is defined.

It is time to present the second type of reproducing kernels defined by integration:

K(x,y) :=
∫
Ω
Ψ(x,y, t)dµ(t), x,y ∈ X , (20)

where µ is an L+(Λ)-valued measure on F of bounded variation, and Ψ is a scalar-valued func-
tion such that Ψ(·, ·, t) is a scalar-valued reproducing kernel on X for all t ∈ Ω and for all x,y ∈ X ,
Ψ(x,y, ·) is bounded and F -measurable. We verify that (20) indeed defines an L(Λ)-valued repro-
ducing kernel.
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Proposition 8 With the above assumptions on Ψ and µ, the function K defined by (20) is an L(Λ)-
valued reproducing kernel on X.

Proof Fix finite x j ∈ X and ξ j ∈ Λ, j ∈ Nn. For any ε> 0, there exist simple functions

f j,k :=
m

∑
l=1

α j,k,lχEl , j,k ∈ Nn

such that
‖Ψ(x j,xk, ·)− f j,k‖L∞(Ω,d|µ|) < ε, j,k ∈ Nn. (21)

Here, α j,k,l ∈ C and El are pairwise disjoint sets in F with |µ|(El) > 0, l ∈ Nm. By (21) and the
definition of integration in this section,

∣

∣

∣

∣

∣

n

∑
j=1

n

∑
k=1

(K(x j,xk)ξ j,ξk)Λ−
n

∑
j=1

n

∑
k=1

((∫
Ω
f j,kdµ

)

ξ j,ξk

)

Λ

∣

∣

∣

∣

∣

≤ ε|µ|(Ω)
( n

∑
j=1

‖ξ j‖Λ
)2

. (22)

We may choose by (21) for each l ∈ Nm some tl ∈ El such that
∣

∣Ψ(x j,xk, tl)−α j,k,l
∣

∣≤ ε.

Letting

S :=
n

∑
j=1

n

∑
k=1

m

∑
l=1

Ψ(x j,xk, tl)(µ(El)ξ j,ξk)Λ,

we get by the above equation that
∣

∣

∣

∣

∣

n

∑
j=1

n

∑
k=1

((∫
Ω
f j,kdµ

)

ξ j,ξk

)

Λ
−S

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

n

∑
j=1

n

∑
k=1

m

∑
l=1

|α j,k,l−Ψ(x j,xk, tl)|(µ(El)ξ j,ξk)Λ

∣

∣

∣

∣

∣

≤ ε
n

∑
j=1

n

∑
k=1

m

∑
l=1

‖µ(El)‖L(Λ)‖ξ j‖Λ‖ξk‖Λ ≤ ε|µ|(Ω)
( n

∑
j=1

‖ξ j‖Λ
)2

.

(23)

Combining (22) and (23) yields that
∣

∣

∣

∣

∣

n

∑
j=1

n

∑
k=1

(K(x j,xk)ξ j,ξk)Λ−S

∣

∣

∣

∣

∣

≤ 2ε|µ|(Ω)
( n

∑
j=1

‖ξ j‖Λ
)2

. (24)

Since Ψ(·, ·, tl) is a scalar-valued reproducing kernel on X , [Ψ(x j,xk, tl) : j,k ∈ Nn] is a positive
semi-definite matrix for each l ∈ Nm. So are [(µ(El)ξ j,ξk)Λ : j,k ∈ Nn], l ∈ Nm as µ(El) ∈ L+(Λ).
By the Schur product theorem (see, for example, Horn and Johnson, 1991, page 309), the Hadamard
product of two positive semi-definite matrices remains positive semi-definite. We obtain by this fact
that S> 0, which together with (24), and the fact that ε can be arbitrarily small, proves (1).

To investigate the refinement relationship, we shall consider a simplified version of (20) that
covers a large class of operator-valued reproducing kernels. Let φ : X ×Ω→ C be such that φ(x, ·)
is a bounded F -measurable function for every x ∈ X and such that

span{φ(x, ·) : x ∈ X}= L2(Ω,dγ) for any finite nonnegative measure γ on F . (25)
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We shall see by the concrete examples in the next section that the denseness requirement (25) is not
too restricted in applications. The kernels we shall consider are

K(x,y) :=
∫
Ω
φ(x, t)φ(y, t)dµ(t), x,y ∈ X (26)

and
G(x,y) :=

∫
Ω
φ(x, t)φ(y, t)dν(t), x,y ∈ X , (27)

where µ,ν are two L+(Λ)-valued measures on F of bounded variation. By Proposition 8, K,G
are L(Λ)-valued reproducing kernels on X . Our idea is to use the Radon-Nikodym property of
vector-valued measures to study the refinement property.

Let B be a Banach space and γ a finite nonnegative measure on F . We say that a B-valued
measure ρ on F of bounded variation has the Radon-Nikodym property with respect to γ if there is
a γ-Bochner integrable function Γ :Ω→ L+(Λ) such that for all E ∈ F

ρ(E) =
∫
E
Γdγ.

Apparently, this could only be true when ρ is absolutely continuous with respect to γ. For this reason,
we also say that the space B has the Radon-Nikodym property with respect to γ if every B-valued
measure of bounded variation that is absolutely continuous with respect to γ has the Radon-Nikodym
property with respect to γ. Moreover, B is said to have the Radon-Nikodym property if it has it with
respect to any finite nonnegative measure on any measure space F .

Strikingly different from the scalar-valued case, a Banach space B may not have the Radon-
Nikodym property. For instance, the Banach space c0 of all sequences α := (α j ∈ C : j ∈ N) with

lim
j→∞

|α j|= 0

under the norm ‖α‖c0 := sup{|α j| : j ∈ N} does not have the property with respect to the Lebesgue
measure (see, Diestel and Uhl, 1977, page 60). Consequently, the space L(Λ) does not have the
Radon-Nikodym property when Λ is infinite-dimensional. To see this, since Λ is separable we let
{e j : j ∈ N} be an orthonormal basis for Λ. Denote by L0(Λ) the set of all the operators T ∈ L(Λ)
such that

Te j = α je j, j ∈ N

for some α ∈ c0. One sees that ‖T‖L(Λ) = ‖α‖c0 (Conway, 1990). As a result, L0(Λ) is a closed
subspace of L(Λ) that is isometrically isomorphic to c0. Since c0 does not have the Radon-Nikodym
property, neither does L0(Λ). A Banach space has the Radon-Nikodym property if and only if each
of its closed linear subspaces does (Diestel and Uhl, 1977). By this fact, L(Λ) does not have Radon-
Nikodym property.

We shall focus on the situation where this desired property holds. For example, reflexive Banach
spaces have the Radon-Nikodym property (Diestel and Uhl, 1977). In applications, Λ is usually
finite-dimensional. In this case, L(Λ) is of finite dimension as well. Any two norms on a finite-
dimensional Banach space are equivalent and a finite-dimensional L(Λ) can be endowed with a
norm that makes it a Hilbert space. It yields that L(Λ) is reflexive. The conclusion is that when Λ
is finite-dimensional, L(Λ) does have the Radon-Nikodym property. Another way of overcoming
the difficulty is to confine to a subclass of L(Λ), for example, to the Schatten class (Birman and
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Solomjak, 1987). Denote for each compact operator T ∈ L(Λ) by s j(T ), j ∈ N, the nonnegative
square root of the j-th largest eigenvalue of T ∗T . It is called the j-th singular number of T . For
p ∈ (1,+∞), the p-th Schatten class Sp(Λ) consists of all the compact linear operators T ∈ L(Λ)
with the norm

‖T‖Sp(Λ) :=
( ∞

∑
j=1

(s j(T ))p
)1/p

<+∞.

The p-th Schatten class Sp(Λ) is a reflexive Banach space and hence has the Radon-Nikodym prop-
erty. When p= 2, S2(Λ) is the class of Hilbert-Schmidt operators and

‖T‖S2(Λ) =
( ∞

∑
j=1

‖Te j‖Λ
)1/2

.

We shall not go into further details about the Radon-Nikodym property. Interested readers are
referred to Chapter III of Diestel and Uhl (1977) and the references therein.

The assumption we shall need is that there exists a finite nonnegative measure γ on F such
that both µ and ν have the Radon-Nikodym property with respect to γ. In other words, there exist
γ-Bochner integrable functions Γµ,Γν :Ω→ L+(Λ) such that

µ(E) =
∫
E
Γµdγ and ν(E) =

∫
E
Γνdγ for all E ∈ F . (28)

Such two functions exist if γ := |µ|+ |ν| and µ,ν take values in the p-th Schatten class of L(Λ),
1< p<+∞.

Suppose that K,G are given by (26) and (27), where φ,µ,ν satisfy (25) and (28). Our purpose is
to investigate HK ' HG. To this end, let us first identify HK̃ and HG̃. We shall only present results
for HK̃ as those for HG̃ have a similar form.

Lemma 9 The RKHS HK̃ consists of functions Ff of the form

Ff (x,ξ) :=
∫
Ω
(Γµ(t) f (t),ξ)Λφ(x, t)dγ(t), x ∈ X , ξ ∈ Λ,

where f can be an arbitrary element from the Hilbert spaceWµ of γ-measurable functions from Ω
to Λ such that

‖ f‖Wµ :=
(∫

Ω
(Γµ(t) f (t), f (t))Λdγ(t)

)1/2
<+∞.

Moreover, ‖Ff ‖HK̃
= ‖ f‖Wµ for all f ∈Wµ.

Proof We observe for all x,y ∈ X and ξ,η ∈ Λ that

K̃((x,ξ),(y,η)) =
∫
Ω
φ(x, t)φ(y, t)(Γµ(t)ξ,η)Λdγ(t).

Thus, we may chooseWµ as a feature space for K̃. The associated feature map Φµ : X×Λ→Wµ is
then selected as

Φµ(x,ξ)(t) := φ(x, t)ξ, t ∈Ω.

107



ZHANG, XU AND ZHANG

We next verify the denseness condition that span{Φµ(x,ξ) : x ∈ X , ξ ∈ Λ} =Wµ. Suppose that
f ∈Wµ is orthogonal to Φµ(x,ξ) for all x ∈ X and ξ ∈ Λ, that is,

∫
Ω
(Γµ f (t),ξ)Λφ(x, t)dγ(t) = 0 for all x ∈ X , ξ ∈ Λ.

By (25),
(Γµ(t) f (t),ξ)Λ = 0 γ− a.e.

As this holds for an arbitrary ξ ∈ Λ, Γµ(t) f (t) = 0 γ− a.e. It implies that ‖ f‖Wµ = 0. The result
now follows immediately from Lemma 2.

For two operators A,B ∈ L+(Λ), we write A ' B if for all ξ ∈ Λ there exists some η ∈ Λ such
that

Aξ= Bη and (Aξ,ξ)Λ = (Bη,η)Λ. (29)

We make a simple observation about this special relationship between two linear operators.
Let ker(A) and ran(A) be the kernel and range of A, respectively. If ran(A) is closed then as A

is self-adjoint, there holds the direct sum decomposition

Λ= ker(A)⊕ ran(A). (30)

Thus, A is bijective and bounded from ran(A) to ran(A). By the open mapping theorem, it has a
bounded inverse on ran(A), which we denote by A−1.

Proposition 10 Suppose that A,B ∈ L+(Λ) have closed range. Then A' B if and only if

ran(A)⊆ ran(B) (31)

and
PB,AB−1 = A−1 on ran(A), (32)

where PB,A denotes the orthogonal projection from ran(B) to ran(A). Particularly, if A is onto then
A' B if and only if A= B.

Proof Let A,B have closed range. Suppose first that A ' B. Then (31) clearly holds true. Set for
each ξ ∈ ran(A)

ηξ := B−1Aξ.

Clearly, the mapping ξ→ ηξ is linear from ran(A) to ran(B). Thus, we have for arbitrary ξ,ξ′ ∈ Λ
that

(Aξ′+Aξ,ξ′+ξ)Λ = (Bηξ′+ξ,ηξ′+ξ)Λ = (Bηξ′ +Bηξ,ηξ′ +ηξ)Λ,

which implies that
Re(Aξ′,ξ)Λ = Re(Bηξ′ ,ηξ)Λ.

A textbook trick yields that for all ξ,ξ′ ∈ ran(A),

(Aξ′,ξ)Λ = (Bηξ′ ,ηξ)Λ = (Aξ′,ηξ)Λ.

108



REFINEMENT OF OPERATOR-VALUED REPRODUCING KERNELS

We hence obtain that ξ−ηξ ∈ ker(A) for all ξ ∈ ran(A). Consequently,

Aξ−AB−1Aξ= Aξ−Aηξ = 0 for all ξ ∈ ran(A),

from which (32) follows.
On the other hand, suppose that (31) and (32) hold true. Then we choose for each ξ ∈ Λ

η := B−1Aξ

and verify that Bη= Aξ and

(Bη,η)Λ = (Aξ,B−1Aξ)Λ = (Aξ,PB,AB−1Aξ)Λ = (Aξ,A−1Aξ)Λ = (Aξ,ξ)Λ.

Finally, if A is onto then by (31), ran(A) = ran(B) = Λ. According to (30), both A and B are in-
jective. Therefore, they possess a bounded inverse on Λ. It implies that PB,A is the identity operator
on Λ. By Equation (32), A= B. The proof is complete.

We are ready to present the main result of this section.

Theorem 11 Let K,G be given by (26) and (27), where φ,µ,ν satisfy (25) and (28). ThenHK 'HG
if and only if Γµ' Γν γ−a.e.

Proof By Proposition 6 and Lemma 9, HK ' HG if and only if for all f ∈Wµ, there exists some
g ∈Wν such that∫

Ω
(Γµ(t) f (t),ξ)Λφ(x, t)dγ(t) =

∫
Ω
(Γν(t)g(t),ξ)Λφ(x, t)dγ(t) for all x ∈ X , ξ ∈ Λ (33)

and ∫
Ω
(Γµ(t) f (t), f (t))Λdγ(t) =

∫
Ω
(Γν(t)g(t),g(t))Λdγ(t). (34)

By the denseness condition (25), (33) holds true if and only if

(Γµ(t) f (t),ξ)Λ = (Γν(t)g(t),ξ)Λ for γ− a.e. t ∈Ω and all ξ ∈ Λ,

which is equivalent to
Γµ(t) f (t) = Γν(t)g(t) for γ− a.e. t ∈Ω. (35)

We conclude that HK ' HG if and only if for every f ∈Wµ, there exists some g ∈Wν such that
Equations (34) and (35) hold true.

Suppose that Γµ' Γν γ− a.e. Then clearly, for each f ∈Wµ, we can find a function g :Ω→ Λ
which is defined γ-almost everywhere and satisfies (35) and

(Γµ(t) f (t), f (t))Λ = (Γν(t)g(t),g(t))Λ for γ− a.e. t ∈Ω.

The above equation implies (34). Therefore, HK 'HG.
On the other hand, suppose that we can find for every f ∈Wµ some g f ∈Wν satisfying (34) and

(35). The function g f can be chosen so that f → g f is linear fromWµ toWν. A trick similar to that
used in Lemma 9 enables us to obtain from (34) and (35) that

∫
Ω
(Γµ(t) f ′(t), f (t)−g f (t))Λdγ(t) = 0 for all f ′ ∈Wµ.
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Letting f ′ := φ(x, ·)ξ for arbitrary x ∈ X and ξ∈Λ in the above equation and invoking (25), we have
that

Γµ(t)( f (t)−g f (t)) = 0 for γ− a.e. t ∈Ω.

By the above equation and (35), we get for γ-almost every t ∈Ω that

(Γν(t)g f (t),g f (t))Λ = (Γµ(t) f (t),g f (t))Λ = ( f (t),Γµ(t)g f (t))Λ = ( f (t),Γµ(t) f (t))Λ = (Γµ(t) f (t), f (t))Λ.

Since (35) and the above equation are true for an arbitrary f ∈Wµ, Γµ' Γν γ− a.e.

5. Examples

We present in this section several concrete examples of refinement of operator-valued reproducing
kernels. They are built on the general characterizations established in the last two sections.

5.1 Translation Invariant Reproducing Kernels

Let d ∈N andK be an L(Λ)-valued reproducing kernel onRd . We say thatK is translation invariant
if for all x,y,a ∈ Rd

K(x−a,y−a) = K(x,y).

A celebrated characterization due to Bochner (1959) states that every continuous scalar-valued
translation invariant reproducing kernel on Rd must be the Fourier transform of a finite nonneg-
ative Borel measure on Rd , and vice versa. This result has been generalized to the operator-valued
case (Berberian, 1966; Carmeli et al., 2010; Fillmore, 1970). Specifically, a continuous function K
from Rd×Rd to L(Λ) is a translation invariant reproducing kernel if and only if it has the form

K(x,y) =
∫
Rd
ei(x−y)·tdµ(t), x,y ∈ Rd , (36)

for some µ∈ B(Rd,Λ), the set of all the L+(Λ)-valued measures of bounded variation on the σ-
algebra of Borel subsets in Rd . Let G be the kernel given by

G(x,y) =
∫
Rd
ei(x−y)·tdν(t), x,y ∈ Rd , (37)

where ν ∈ B(Rd,Λ). The purpose of this subsection is to characterize HK ' HG in terms of µ,ν.
To this end, we first investigate the structure of the RKHS of a translation invariant L(Λ)-valued
reproducing kernel.

Let γ be an arbitrary measure in B(Rd ,Λ) and L the associated translation invariant reproducing
kernel defined by

L(x,y) =
∫
Rd
ei(x−y)·tdγ(t), x,y ∈ Rd .

There exists a decomposition of γ with respect to the Lebesgue measure dx on Rd (Diestel and Uhl,
1977) as follows:

γ= γc+ γs, (38)
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where γc,γs are the unique measures in B(Rd ,Λ) such that γc is absolutely continuous with respect
to dx, and for each continuous linear functional λ on L(Λ), the scalar-valued measure λγs and dx
are mutually singular. It follows from this decomposition of measures a decomposition of L:

L= Lc+Ls,

where
Lc(x,y) =

∫
Rd
ei(x−y)·tdγc(t), Ls(x,y) =

∫
Rd
ei(x−y)·tdγs(t), x,y ∈ Rd . (39)

Our first observation is thatHL is the orthogonal direct sum ofHLc andHLs . Two lemmas are needed
to prove this useful fact.

Lemma 12 Let Lc,Ls be given by (39). Then for all ξ ∈ Λ and x,y ∈ Rd

(La(x,y)ξ,ξ)Λ =
∫
Rd
ei(x−y)·tdγa,ξ(t), a= c or s, (40)

where γa,ξ is a scalar-valued Borel measure on Rd defined for each Borel set E ⊆ Rd by

γa,ξ(E) := (γa(E)ξ,ξ)Λ, a= c or s.

Proof Let a∈ {c,s}, ξ∈Λ, x,y∈Rd , and sn be a sequence of simple functions onRd that converges
to ei(x−y)·t in L∞(Rd ,dx). Then

lim
n→∞

((∫
Rd
sndγa

)

ξ,ξ

)

Λ
= (La(x,y)ξ,ξ)Λ.

By definition, we have for each n ∈ N that

lim
n→∞

((∫
Rd
sndγa

)

ξ,ξ

)

Λ
=

∫
Rd
sndγa,ξ.

As
lim
n→∞

∫
Rd
sndγa,ξ =

∫
Rd
ei(x−y)·tdγa,ξ(t),

we conclude from the previous two equations that (40) holds true.

Lemma 13 There holds HLc ∩HLs = {0}.

Proof We introduce for each ξ ∈ Λ two scalar-valued translation invariant reproducing kernels on
Rd by setting

Aa(x,y) := (La(x,y)ξ,ξ)Λ, x,y ∈ Rd , a ∈ {c,s}.

By Lemma 12, we have the alternative representations for Ac and As

Aa(x,y) =
∫
Rd
ei(x−y)·tdγa,ξ(t), x,y ∈ Rd , a= c or s.
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By the Lebesgue decomposition of γ, γc,ξ is absolutely continuous with respect to dx while γs,ξ
and dx are mutually singular. As a consequence, HAc ∩HAs = {0} by Lemma 17 in Xu and Zhang
(2009).

Let a ∈ {c,s}. By (3),

Aa(x,y) = (La(x, ·)ξ,La(y, ·)ξ)HLa
, x,y ∈ Rd .

A feature map for Aa may hence be chosen as

Φa(x) := La(x, ·)ξ, x ∈ Rd

with the feature space being HLa . We identify by Lemma 2 that

HAa = {( f̃ (·),ξ)Λ : f̃ ∈HLa}. (41)

Assume that HLc ∩HLs *= {0}. Then there exist nontrivial functions f̃ ∈ HLc and g̃ ∈ HLs such
that f̃ = g̃. As a result, there exists some ξ ∈ Λ such that ( f̃ (·),ξ)Λ is not the trivial function. By
equation (41)

( f̃ (·),ξ)Λ = (g̃(·),ξ)Λ ∈HAc ∩HAs ,

contradicting the fact that HAc ∩HAs = {0}.

Theorem 14 The space HL is the orthogonal direct sum of HLc and HLs , namely, HL =HLc
⊕

HLs .

Proof The result follows directly from Lemma 13 and Proposition 1.

We are now in a position to study the refinement relationship HK 'HG, where K,G are defined
by (36) and (37). Firstly, the task can be separated into two related ones according to the Lebesgue
decomposition of measures µ,ν.

Proposition 15 There holds HK 'HG if and only if HKc 'HGc and HKs 'HGs.

Proof By Theorem 14, HK = HKc
⊕

HKs and HG = HGc
⊕

HGs . Therefore, if HKc ' HGc and
HKs 'HGs then HK 'HG.

On the other hand, suppose that HK ' HG. Let f ∈ HKc . Then f ∈ HK and ‖ f‖HKc
= ‖ f‖HK .

Since HK 'HG, there exists g ∈HGc and h ∈HGs such that

f = g+h

and
‖ f‖2HKc

= ‖ f‖2HK
= ‖g+h‖2HG

= ‖g‖2HGc
+‖h‖2HGs

.

Therefore, to show that HKc ' HGc it suffices to show that h = 0. Assume that h *= 0. Note that
f −g ∈HKc+Gc (Pedrick, 1957), we get that

HKc+Gc ∩HGs *= {0}. (42)
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However,
(Kc+Gc)(x,y) =

∫
Rd
ei(x−y)·td(µc+νc)(t), x,y ∈ Rd

and µc+νc is absolutely continuous with respect to dx. Thus, Equation (42) contradicts Lemma 13.
The contradiction proves that HKc 'HGc . Likewise, one can prove that HKs 'HGs .

By Proposition 15, we shall study HKc ' HGc and HKs ' HGs separately. We shall restrict
ourselves to the case when the measures corresponding to Kc and Gc have the Radon-Nikodym
property with respect to the Lebesgue measure and the measures corresponding to Ks and Gs are
discrete. Specifically, the kernels to be considered are of the following special forms:

Kc(x,y) :=
∫
Rd
ei(x−y)·tϕ1(t)dt, Gc(x,y) :=

∫
Rd
ei(x−y)·tϕ2(t)dt, x,y ∈ Rd (43)

and
Ks(x,y) := ∑

j∈J1
ei(x−y)·t jA j, Gs(x,y) := ∑

k∈J2
ei(x−y)·tkBk, x,y ∈ Rd .

Here, ϕ1,ϕ2 are two dx-Bochner integrable functions from Rd to L+(Λ), {t j : j ∈ J1} and {tk : k ∈
J2} are countable sets of pairwise distinct points in Rd , and Aj,Bj are nonzero operators in L+(Λ)
such that

∑
j∈J1

‖Aj‖L(Λ) <+∞, ∑
k∈J2

‖Bk‖L(Λ) <+∞.

The following characterization is a direct consequence of Theorem 11.

Proposition 16 Let Kc,Gc be given by (43). ThenHKc 'HGc if and only if ϕ1(t)' ϕ2(t) for almost
every t ∈ Rd except for a subset in Rd of zero Lebesgue measure.

Proof As ϕ1,ϕ2 are dx-Bochner integrable,
∫
Rd

‖ϕ j(t)‖L(Λ)dt <+∞, j = 1,2.

Define a finite nonnegative Borel measure γ on Rd by setting for each Borel subset E in Rd

γ(E) :=
∫
E
‖ϕ1(t)‖L(Λ) +‖ϕ2(t)‖L(Λ)dt.

Evidently, Kc,Gc have the form

Kc(x,y) =
∫
Rd
ei(x−y)·tΓ1(t)dγ(t), Gc(x,y) =

∫
Rd
ei(x−y)·tΓ2(t)dγ(t), x,y ∈ Rd ,

where for j = 1,2,

Γ j(t) :=







ϕ j(t)
‖ϕ1(t)‖L(Λ) +‖ϕ2(t)‖L(Λ)

, if ‖ϕ1(t)‖L(Λ) +‖ϕ2(t)‖L(Λ) > 0,

0, otherwise.

It is also clear that span{eix·t : x ∈ Rd} is dense in L2(Rd ,dγ). By Theorem 11, HKc ' HGc if and
only if Γ1'Γ2 γ−a.e. Note that Γ1(t)'Γ2(t) if and only if ϕ1(t)'ϕ2(t). If ϕ1'ϕ2 dx−a.e. then
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Γ1 ' Γ2 γ− a.e. as γ is absolutely continuous with respect to the Lebesgue measure. On the other
hand, suppose that Γ1 ' Γ2 γ− a.e. Set

E := {t ∈ Rd : ‖ϕ1(t)‖L(Λ) +‖ϕ2(t)‖L(Λ) > 0}.

For t ∈ Ec, ϕ1(t) = ϕ2(t) = 0, and thus, ϕ1(t) ' ϕ2(t). Assume that there exists a Borel subset
F ⊆ Rd with a positive Lebesgue measure on which ϕ1(t) ! ϕ2(t). Then F ⊆ E. We reach that
γ(F)> 0 and Γ1(t)! Γ2(t) for t ∈ F , contradicting the fact that Γ1 ' Γ2 γ− a.e.

For Ks,Gs, we have the following result.

Proposition 17 There holds HKs 'HGs if and only if

(1) {t j : j ∈ J1}⊆ {tk : k ∈ J2};

(2) for each j ∈ J1, A j ' Bj. Here, re-indexing by condition (1) if necessary, we may assume that
J1 ⊆ J2.

Proof Introduce a discrete scalar-valued Borel measure γ that is supported on {t j : j ∈ J1}∪ {tk :
k ∈ J2} by setting

γ({tk}) :=







‖Ak‖L(Λ) +‖Bk‖L(Λ), k ∈ J1∩J2,
‖Bk‖L(Λ), k ∈ J2 \J1,
‖Ak‖L(Λ), k ∈ J1 \J2.

We also let
ΓA(t j) :=

Aj

γ({t j})
, j ∈ J1 and ΓA(tk) :=

Bk
γ({tk})

, k ∈ J2.

They are discrete L(Λ)-valued functions supported on {t j : j ∈ J1} and {tk : k ∈ J2}, respectively.
We reach the following integral representation:

Ks(x,y) =
∫
Rd
ei(x−y)·tΓA(t)dγ(t) and Gs(x,y) =

∫
Rd
ei(x−y)·tΓB(t)dγ(t), x,y ∈ Rd .

By Theorem 11, HKs ' HGs if and only if ΓA ' ΓB γ− a.e. It is straightforward to verify that the
latter is equivalent to conditions (1)-(2).

5.2 Hessian of Scalar-valued Reproducing Kernels

Propositions 16 and 17 were established based on Theorem 11. In this subsection, we shall consider
special translation invariant reproducing kernels and establish the characterization of refinement
using Theorem 7.

Let k be a continuously differentiable translation invariant reproducing kernel on Rd . We con-
sider the following matrix-valued functions

K(x,y) := ∇2xyk(x,y) :=
[

∂2k
∂x j∂yk

(x,y) : j,k ∈ Nd

]

, x,y ∈ Rd . (44)
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To ensure that K is an L(Cd)-valued reproducing kernels on Rd , we make use of the Bochner
theorem to get some finite nonnegative Borel measure µ on Rd such that

k(x,y) =
∫
Rd
ei(x−y)·tdµ(t), x,y ∈ Rd (45)

and impose the requirement that ∫
Rd
ttT dµ(t)<+∞. (46)

One sees by the Lebesgue dominated convergence theorem that

K(x,y) =
∫
Rd
ei(x−y)·tttT dµ(t), x,y ∈ Rd , (47)

where we view t ∈ Rd as a d× 1 vector and tT denotes its transpose [t1, t2, . . . , td]. By the general
integral representation (17) of operator-valued reproducing kernels, K defined by (44) is an L(Cd)-
valued reproducing kernel on Rd . Matrix-valued translation invariant reproducing kernels of the
form (44) are useful for the development of divergence-free kernel methods for solving some spe-
cial partial differential equations (see, for example, Lowitzsh, 2003; Wendland, 2009, and the refer-
ences therein). Another class of kernels constructed from the Hessian of a scalar-valued translation
invariant reproducing kernel is widely applied to the learning of a multivariate function together
with its gradient simultaneously (Mukherjee and Wu, 2006; Mukherjee and Zhou, 2006; Ying and
Campbell, 2008). Such applications make use of kernels of the form

K(x,y) :=
[

k(x,y) (∇yk(x,y))∗
∇xk(x,y) ∇2xyk(x,y)

]

. (48)

One sees that under condition (46)

K(x,y) =
∫
Rd
ei(x−y)·tρ(t)ρ(t)∗dµ(t), x,y ∈ Rd ,

where
ρ(t) = [1, it1, it2, . . . , itd]T , t ∈ Rd .

We aim at refining matrix-valued reproducing kernels of the forms (44) and (48) in this subsection.
Specifically, we let ν be another finite nonnegative Borel measure on Rd satisfying

∫
Rd
ttT dν(t)<+∞ (49)

and define for x,y ∈ Rd

g(x,y) :=
∫
Rd
ei(x−y)·tdν(t), G(x,y) := ∇2xyg(x,y), G(x,y) :=

[

g(x,y) (∇yg(x,y))∗
∇xg(x,y) ∇2xyg(x,y)

]

. (50)

Our purpose is to characterize HK 'HG and HK 'HG in terms of k,g and µ,ν.

Theorem 18 Let µ,ν be finite nonnegative Borel measures on Rd satisfying (46) and (49), and
k,g defined by (45) and (50). Then K,G,K,G are matrix-valued translation invariant reproducing
kernels on Rd. The four relationships HK 'HG, HK 'HG, Hk 'Hg, and µ' ν are equivalent.
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Proof By Theorem 7 or a result in Xu and Zhang (2009), Hk ' Hg if and only if µ' ν. We shall
show by Theorem 7 that HK 'HG if and only if µ' ν. The equivalence of HK 'HG and µ' ν can
be proved similarly. Set

φ(x, t) := eix·ttT , x, t ∈ Rd .

Then for each x, t ∈Rd , φ(x, t) is a linear functional fromCd toC. We observe by (47) that (17) holds
true. So does (18). To apply Theorem 7, it remains to verify that span{φ(x, ·)ξ : x ∈ Rd , ξ ∈ Cd}
is dense in the Hilbert space L2(Rd ,dµ), which is straightforward. The claim follows immediately
from Theorem 7.

5.3 Transformation Reproducing Kernels

Let us consider a particular class of matrix-valued reproducing kernels whose universality was stud-
ied in Caponnetto et al. (2008). The kernels we shall construct are from an input space X to output
space Λ = Cn, where n ∈ N. To this end, we let k,g be two scalar-valued reproducing kernels on
another input space Y and Tp be mappings from X to Y , p ∈ Nn. Set

K(x,y) := [k(Tpx,Tqy) : p,q ∈ Nn], G(x,y) := [g(Tpx,Tqy) : p,q ∈ Nn], x,y ∈ X . (51)

It is known that K,G defined above are indeed L(Cn)-valued reproducing kernels (Caponnetto et al.,
2008). This also becomes clear in the proof below. We are interested in the conditions forHK 'HG
to hold.

Proposition 19 Let K,G be defined by (51). Then HK ' HG if and only if Hk 'Hg, where k̄, ḡ are
the restriction of k,g on ∪np=1Tp(X). In particular, if

n⋃
p=1

Tp(X) = Y (52)

then HK 'HG if and only if Hk 'Hg.

Proof It is legitimate to assume that (52) holds true as otherwise, we may replace Y by ∪np=1Tp(X),
and k,g by k̄, ḡ, respectively.

Choose arbitrary feature maps and feature spaces Φ1 : Y →W1 for k and Φ2 : Y →W2 for g
such that

spanΦ j(Y ) =W j, j = 1,2. (53)

By Proposition 6, HK 'HG if and only if HK̃ 'HG̃. We observe for all x,y ∈ X and ξ,η ∈ Cn that

K̃((x,ξ),(y,η)) = (K(x,y)ξ,η)Cn =
n

∑
p=1

n

∑
q=1

ξpηqk(Tpx,Tqy)

=
n

∑
p=1

n

∑
q=1

ξpηq(Φ1(Tpx),Φ1(Tqy))W1

=

( n

∑
p=1

ξpΦ1(Tpx),
n

∑
q=1

ηqΦ1(Tqy)
)

W1

.
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Thus, Φ̃1 : X×Cn →W1 defined by

Φ̃1(x,ξ) :=
n

∑
p=1

ξpΦ1(Tpx), x ∈ X , ξ ∈ Cn

is a feature map for K̃. We next verify that span{Φ̃1(x,ξ) : x ∈ X , ξ ∈Cn} is dense inW1. Assume
that u ∈W1 is orthogonal to this linear span, that is,

(

u,
n

∑
p=1

ξpΦ1(Tpx)
)

W1

= 0 for all x ∈ X , ξ ∈ Cn.

Then we have (u,Φ1(Tpx))W1 = 0 for all x ∈ X and p∈Nn. It follows from (52) and (53) that u= 0.
Similar facts hold for G̃.

By Lemma 2, HK̃ 'HG̃ if and only if for every u ∈W1, there exists v ∈W2 such that

(

u,
n

∑
p=1

ξpΦ1(Tpx)
)

W1

=

(

v,
n

∑
p=1

ξpΦ2(Tpx)
)

W2

for all x ∈ X (54)

and
‖u‖W1 = ‖v‖W2 . (55)

Recall also that Hk 'Hg if and only if for all u ∈W1 there exists some v ∈W2 satisfying (55) and

(u,Φ1(y))W1 = (v,Φ2(y))W2 for all y ∈ Y. (56)

Clearly, (56) implies (54). Conversely, if (54) holds true then we get that

(u,Φ1(Tpx))W1 = (v,Φ2(Tpx))W2 for all x ∈ X and p ∈ Nn,

which together with (52) implies (56). We conclude that HK̃ 'HG̃ if and only if Hk 'Hg.

A more general case of refinement of transformation reproducing kernels is discussed below. It
can be proved by arguments similar to those for the previous proposition.

Proposition 20 Let Tp,Sp be mappings from X to Y and k,g be scalar-valued reproducing kernels
on Y . Define

K(x,y) := [k(Tpx,Tqy) : p,q ∈ Nn], G(x,y) := [g(Spx,Sqy) : p,q ∈ Nn], x,y ∈ X .

Suppose that for all p ∈ Nn, span{k(Tpx, ·) : x ∈ X} and span{g(Spx, ·) : x ∈ X} are dense in Hk
and Hg, respectively. Then HK 'HG if and only if Hkp 'Hgp for all p ∈ Nn, where

kp(x,y) := k(Tpx,Tpy), gp(x,y) := g(Spx,Spy), x,y ∈ X .
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5.4 Finite Hilbert-Schmidt Reproducing Kernels

We consider refinement of finite Hilbert-Schmidt reproducing kernels in this subsection. Let Bj,Cj
be invertible operators in L+(Λ), n≤ m ∈ N, and Ψ j, j ∈ Nm, be scalar-valued reproducing kernels
on the input space X . Define

K(x,y) :=
n

∑
j=1

BjΨ j(x,y), G(x,y) =
m

∑
j=1
CjΨ j(x,y), x,y ∈ X . (57)

By the general integral representation (20) and Proposition 8, K,G above are L(Λ)-valued repro-
ducing kernels on X . To ensure that representation (57) can not be further simplified, we shall work
under the assumption that

HΨ j ∩HΨ j
= {0} for all j ∈ Nm, (58)

where
Ψ j := ∑

k∈Nm\{ j}
Ψk.

Theorem 21 Let K,G be defined by (57), where B j,Cj ∈ L+(Λ) are invertible and Ψ j, j ∈ Nm,
are scalar-valued reproducing kernels on X satisfying (58). Then HK ' HG if and only if B j =Cj,
j ∈ Nn.

Proof We first find a feature map for K̃ and G̃. Let φ j : X →W j be an arbitrary feature map for Ψ j
such that spanφ j(X) is dense inW j, and denote by Λ⊗W j the tensor product of Hilbert spaces Λ
andW j, j ∈ Nm. The space Λ⊗W j is a Hilbert space with the inner product

(ξ⊗u,η⊗ v)Λ⊗W j := (ξ,η)Λ(u,v)W j , ξ,η ∈ Λ, u,v ∈W j.

SetW the orthogonal direct sum of Λ⊗W j, j ∈ Nn, whose inner product is defined by

((ξ j⊗u j : j ∈Nn),(η j⊗v j : j ∈Nn))W :=
n

∑
j=1

(ξ j,η j)Λ(u j,v j)W j , ξ j,η j ∈Λ, u j,v j ∈W j, j ∈Nn.

We claim that Φ : X×Λ→W defined by

Φ(x,ξ) := (
√

Bjξ⊗φ j(x) : j ∈ Nn), x ∈ X , ξ ∈ Λ

is a feature map for K̃. Here,
√

Bj, the square root of Bj, is the the unique operator A in L+(Λ) such
that A2 = Bj. We verify for all x,y ∈ X and ξ,η ∈ Λ that

(Φ(x,ξ),Φ(y,η))W =
n

∑
j=1

(
√

Bjξ,
√

Bjη)Λ(φ j(x),φ j(y))W j =
n

∑
j=1

(Bjξ,η)ΛΨ j(x,y)

= (K(x,y)ξ,η) = K̃((x,ξ),(y,η)).

We next show that the denseness condition

span{Φ(x,ξ) : x ∈ X , ξ ∈ Λ}=W (59)
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is satisfied. To this end, suppose that we have wj ∈ Λ⊗W j, j ∈ Nn such that

((wj : j ∈ Nn),Φ(x,ξ))W =
n

∑
j=1

(wj,
√

Bjξ⊗φ j(x))Λ⊗W j = 0 for all x ∈ X and ξ ∈ Λ. (60)

Let {ei : i ∈ I} and { fk : k ∈ J j} be an orthonormal basis for Λ andW j, respectively. Then {ei⊗ fk :
i ∈ I,k ∈ J j} is an orthonormal basis for Λ⊗W j. Note that although I or J j might be uncountable,
for each ξ ∈ Λ, u ∈W j and w ∈ Λ⊗W j, the sets {i ∈ I : (ξ,ei)λ *= 0}, {k ∈ I j : (u, fk)W j *= 0} and
{(i, j) ∈ I× J j : (w,ei⊗ fk)Λ⊗W j *= 0} are all countable. By resorting to these orthonormal bases,
we see that

(wj,
√

Bjξ⊗φ j(x))Λ⊗W j = ∑
k∈J j
∑
i∈I
(wj,ei⊗ fk)Λ⊗W j(ei,

√

Bjξ)Λ( fk,φ j(x))W j .

One verifies by the Cauchy-Schwartz inequality that

∑
k∈J j
∑
i∈I
(wj,ei⊗ fk)Λ⊗W j(ei,

√

Bjξ)Λ fk

converges in W j. As a consequence, (wj,
√

Bjξ⊗ φ j(·))Λ⊗W j ∈ HΨ j . This together with (60)
implies by the assumption (58) that

(wj,
√

Bjξ⊗φ j(x))Λ⊗W j = 0 for all j ∈ Nn, x ∈ X and ξ ∈ Λ.

The above equation can be equivalently formulated as
(

∑
k∈J j
∑
i∈I
(wj,ei⊗ fk)Λ⊗W j(ei,

√

Bjξ)Λ fk,φ j(x)
)

W j

= 0

By the denseness of φ j(X) inW j,

∑
i∈I
(wj,ei⊗ fk)Λ⊗W j(ei,

√

Bjξ)Λ = 0 for all j ∈ Nn, k ∈ J j and ξ ∈ Λ.

We thus have for all j ∈ Nn and k ∈ J j that ∑i∈I(wj,ei⊗ fk)Λ⊗W j ei = 0, which implies

(wj,ei⊗ fk)Λ⊗W j = 0 for all j ∈ Nn, k ∈ J j, i ∈ I.

Therefore, wj = 0 for all j ∈ Nn. Equation (59) hence holds true. Similar facts hold for G̃.
By Proposition 6, HK ' HG is equivalent to HK̃ ' HG̃, which by the above discussion and

Lemma 2 holds true if and only if for all wj ∈ Λ⊗W j, j ∈ Nn there exist unique w̃ j ∈ Λ⊗W j,
j ∈ Nm such that

n

∑
j=1

(wj,
√

Bjξ⊗φ j(x))Λ⊗W j =
m

∑
j=1

(w̃ j,
√

Cjξ⊗φ j(x))Λ⊗W j for all ξ ∈ Λ and x ∈ X (61)

and
n

∑
j=1

(wj,wj)Λ⊗W j =
m

∑
j=1

(w̃ j, w̃ j)Λ⊗W j . (62)
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Let wj ∈Λ⊗W j, j ∈Nn be given. If Bj =Cj for j ∈Nn then we set w̃ j :=wj for j ∈Nn, and w̃ j = 0
for n+ 1 ≤ j ≤ m. Clearly, such a choice satisfies Equations (61) and (62). Therefore, HK ' HG.
Conversely, suppose that HK ' HG. Then for the special choice wj := ξ j⊗ u j, ξ j ∈ Λ, u j ∈W j,
j ∈Nn, there exists w̃ j ∈Λ⊗W j, j ∈Nm satisfying (61) and (62). As w̃ j is unique by the denseness
of the feature map for G̃, we must have wj = (

√

Cj
−1√Bjξ j)⊗ u j for j ∈ Nn, and w̃ j = 0 for

n+1≤ j ≤ m. This together with (62) yields that
n

∑
j=1

(ξ j,ξ j)Λ(u j,u j)W j =
n

∑
j=1

(
√

BjC−1
j
√

Bjξ j,ξ j)Λ(u j,u j)W j .

By successively making ξ j⊗u j *= 0 and ξk⊗uk = 0 for k ∈ Nn \{ j}, for j ∈ Nn, we reach that

(ξ j,ξ j)Λ = (
√

BjC−1
j
√

Bjξ j,ξ j)Λ for all ξ j ∈ Λ and j ∈ Nn.

As
√

BjC−1
j
√

Bj is hermitian, it equals the identity operator on Λ. It follows that Bj = Cj for all
j ∈ Nn. The proof is complete.

As a corollary of Theorem 21, we obtain an orthogonal decomposition of HK .

Corollary 22 Let K be defined by (57), where B j are invertible and Ψ j, j ∈ Nn satisfy (58). Then

HK =
n⊕
j=1

HBjΨ j

and
H∑kj=1BjΨ j

'H∑k+1j=1BjΨ j
for k ∈ Nn−1.

A simplest case of (57) occurs when HΨ j is of dimension 1 for j ∈Nm, which is covered below.

Corollary 23 Let B j,Ck ∈ L+(Λ) be invertible for j ∈Nn and k ∈Nm, and ψk : X →C, k ∈Nm, be
linearly independent. Set

K(x,y) :=
n

∑
j=1

Bjψ j(x)ψ j(y), G(x,y) :=
m

∑
k=1

Ckψk(x)ψk(y), x,y ∈ X .

Then HK 'HG if and only if B j =Cj for all j ∈ Nn.

More generally, we might consider K,G defined by two distinct classes of linearly independent
functions from X toC. The result below can be proved using arguments similar to those for Theorem
21.

Proposition 24 Let n≤m ∈Nn, B j,Ck ∈ L+(Λ) be invertible for j ∈Nn and k ∈Nm, and {ψ j : j ∈
Nn} and {ϕk : k ∈ Nm} be two classes of linearly independent functions from X to C. Set

K(x,y) :=
n

∑
j=1

Bjψ j(x)ψ j(y), G(x,y) :=
m

∑
k=1

Ckϕk(x)ϕk(y), x,y ∈ X .

Then HK 'HG if and only if
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(1) ψ j ∈ span{ϕk : k ∈ Nm} for all j ∈ Nn;

(2) the coefficients λ jl ∈ C in the linear span

ψ j =
m

∑
l=1

λ jlϕl , j ∈ Nn

satisfy
m

∑
l=1

λ jlλklC−1
l = δ j,kB−1

j for all j,k ∈ Nn.

We close this section with several concrete examples of finite Hilbert-Schmidt reproducing ker-
nels of the form described in Corollary 23 and Proposition 24:

• polynomial kernels:

K(x,y) :=
n

∑
j=1

xα j · yα jB j, x,y ∈ Rd

where α j are multi-indices and Bj are invertible operators in L+(Λ), or

K(x,y) :=
n

∑
j=1

(x · y)β jB j, x,y ∈ Rd

where β j are nonnegative integers.

• exponential kernels:

K(x,y) :=
n

∑
j=1

ei(x−y)·t jB j, x,y ∈ Rd

where t j ∈ Rd .

6. Existence

This section is devoted to the existence of nontrivial refinement of operator-valued reproducing
kernels. Most of the results to be presented here are straightforward extensions of those in the
scalar-valued case (Xu and Zhang, 2009).

Let X be the input space and Λ be a Hilbert space. The reproducing kernels under consideration
are L(Λ)-valued.

Proposition 25 There does not exist a nontrivial refinement of an L(Λ)-valued reproducing kernel
K on X if and only if HK = ΛX , the set of all the functions from X to Λ. If the cardinality of X is
infinite then every L(Λ)-valued reproducing kernel on X has a nontrivial refinement.

Surprisingly, nontrivial results about the existence appear when X is of finite cardinality.

Proposition 26 Let X consist of finitely many points x j, j ∈ Nn for some n ∈ Nn. A necessary
condition for an L(Λ)-valued reproducing kernel on X to have no nontrivial refinements is that

n

∑
j=1

n

∑
k=1

(K(x j,xk)ξ j,ξk)Λ > 0 for all ξ j ∈ Λ, j ∈ Nn with
n

∑
j=1

‖ξ j‖Λ > 0. (63)
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A sufficient condition for K to have no nontrivial refinements is that

n

∑
j=1

n

∑
k=1

(K(x j,xk)ξ j,ξk)Λ ≥ λ
n

∑
j=1

‖ξ j‖2Λ for all ξ j ∈ Λ, j ∈ Nn (64)

for some constant λ> 0. Consequently, if Λ is finite-dimensional then K does not have a nontrivial
refinement if and only if (63) holds true.

Proof Suppose that there exist ξ j ∈ Λ, j ∈ Nn, at least one of which is nonzero, such that

n

∑
j=1

n

∑
k=1

(K(x j,xk)ξ j,ξk)Λ = 0.

This implies that
n

∑
j=1

K(x j, ·)ξ j = 0.

We get by (3) that for all f ∈HK

n

∑
j=1

( f (x j),ξ j)Λ =

(

f ,
n

∑
j=1

K(x j, ·)ξ j
)

HK

= 0.

As a consequence, HK does not contain the function f : X → Λ taking values f (x j) = ξ j for j ∈Nn.
By Proposition 25, there exist nontrivial refinements for K on X .

Suppose that (64) holds true for some positive constant λ. Assume that HK is a proper subset of
ΛX . Then there exists some nonzero vector (ξk : k ∈ Nn) ∈ Λn orthogonal to ( f (xk) : k ∈ Nn) in Λn
for all f ∈HK . Letting f = ∑n

j=1K(x j, ·)ξ j yields that

n

∑
j=1

n

∑
k=1

(K(x j,xk)ξ j,ξk)Λ =
n

∑
k=1

( f (xk),ξk)Λ = 0,

contradicting (64).
We complete the proof by pointing out that when Λ is finite-dimensional, (63) and (64) are

equivalent.

It is worthwhile to note that when Λ is infinite-dimensional, condition (63) might not be suffi-
cient for K to not have a nontrivial refinement. We give a concrete example to illustrate this.

Let X be a singleton {x}, Λ := !2(N) consisting of square-summable sequences indexed by N,
and K(x1,x1) be the operator T on !2(N) defined by

Ta :=
(

a j
j
: j ∈ N

)

, a ∈ !2(N).

Apparently, T ∈L+(!2(N)) and condition (63) is satisfied. Let f ∈HK . Then there exist an ∈ !2(N),
n∈N such that K(x, ·)an converges to f inHK . Being a Cauchy sequence inHK , {K(x, ·)an : n∈N}
satisfies

lim
n,m→∞

‖K(x, ·)an−K(x, ·)am‖2HK
= 0.
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By (3),

‖K(x, ·)an−K(x, ·)am‖2HK
= (K(x, ·)(an−am),K(x, ·)(an−am))HK

= (K(x,x)(an−am),an−am)!2(N) = (T (an−am),an−am)!2(N)
= ‖

√
Tan−

√
Tam‖2!2(N).

Combining the above two equations yields
√
Tan converges to some b ∈ !2(Nn). We now have for

each c ∈ !2(N) that

( f (x),c)!2(N) = ( f ,K(x, ·)c)HK = lim
n→∞

(K(x, ·)an,K(x, ·)c)HK

= lim
n→∞

(K(x,x)an,c)!2(N) = lim
n→∞

(Tan,c)!2(N)
= lim

n→∞
(
√
Tan,

√
Tc)!2(N) = (b,

√
Tc)!2(N)

= (
√
Tb,c)!2(N),

which implies that f (x) =
√
Tb. Since this is true for an arbitrary function f ∈ HK , the function

g : X → Λ defined by

g(x) :=
(

1
j
: j ∈ N

)

is not in HK . Thus, K has a nontrivial refinement on X .
In the process of refining an operator-valued reproducing kernel, it is usually desirable to pre-

serve favorable properties of the original kernel. We shall show that this is feasible as far as continu-
ity and universality of operator-valued reproducing kernels are concerned. Let X be a metric space
and K an L(Λ)-valued reproducing kernel that is continuous from X×X to L(Λ) when the latter is
equipped with the operator norm. Then one sees that HK consists of continuous functions from X
to Λ. For each compact subset Z ⊆ X , denote by C (Z,Λ) the Banach space of all the continuous
functions from Z to Λ with the norm

‖ f‖C (Z,Λ) :=max
x∈Z

‖ f (x)‖Λ, f ∈ C (Z,Λ).

Following Micchelli et al. (2006) and Caponnetto et al. (2008), we call K a universal kernel on X if
for all compact sets Z ⊆ X and all continuous functions f : X → Λ there exist

fn ∈ span{K(x, ·)ξ : x ∈ Z, ξ ∈ Λ}, n ∈ N,

such that
lim
n→∞

‖ fn− f‖C (Z,Λ) = 0.

In other words, K is universal if for all compact subsets Z ⊆ X , the closure of span{K(x, ·)ξ : x ∈
Z, ξ ∈ Λ} in C (Z,Λ) equals the whose space C (Z,Λ).

For the preservation of continuity, we have the following affirmative result, whose proof is
similar to the scalar-valued case (Xu and Zhang, 2009).

Proposition 27 Let X be a metric space with infinite cardinality. Then every continuous L(Λ)-
valued reproducing kernel on X has a nontrivial continuous refinement.

The following lemma about universality has been proved in Caponnetto et al. (2008), and in
Micchelli et al. (2006) in the scalar-valued case. We provide a simplified proof here.
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Lemma 28 Let K be a continuous L(Λ)-valued reproducing kernel on X with the feature map
representation (5), where Φ : X → L(Λ,W ) is continuous. Then for each compact subset Z ⊆ X,

span{K(x, ·)ξ : x ∈ Z, ξ ∈ Λ}= {Φ(·)∗u : u ∈W },

where the closures are relative to the norm in C (Z,Λ).

Proof All the closures to appear in the proof are relative to the norm in C (Z,Λ). Let KZ be the
restriction of K on Z. Then the restriction of Φ on Z remains a feature map for KZ . By Lemma 2,

HKZ = {Φ(·)∗u : u ∈W }. (65)

It hence suffices to show that

span{K(x, ·)ξ : x ∈ Z, ξ ∈ Λ}= span{KZ(x, ·)ξ : x ∈ Z, ξ ∈ Λ}=HKZ .

As span{KZ(x, ·)ξ : x ∈ Z, ξ ∈ Λ}⊆HKZ ,

span{KZ(x, ·)ξ : x ∈ Z, ξ ∈ Λ}⊆HKZ . (66)

On the other hand, for each f ∈ HKZ there exist fn ∈ span{KZ(x, ·)ξ : x ∈ Z, ξ ∈ Λ}, n ∈ N that
converges to f in the norm of HKZ . It follows that fn converges to f in the norm of C (Z,Λ).
Therefore, f ∈ span{KZ(x, ·)ξ : x ∈ Z, ξ ∈ Λ}, implying that

HKZ ⊆ span{KZ(x, ·)ξ : x ∈ Z, ξ ∈ Λ}. (67)

Combining Equations (65), (66), and (67) proves the result.

The following positive result about universality can be proved by Lemma 28 and arguments
similar to those used in Proposition 14 of Xu and Zhang (2009).

Proposition 29 Let X be a metric space and K a continuous L(Λ)-valued reproducing kernel on
X. Then every continuous refinement of K on X remains universal.

7. Numerical Experiments

We present in this final section three numerical experiments on the application of refinement of
operator-valued reproducing kernels to multi-task learning. Suppose that f0 is a function from the
input space X to the output space Λ that we desire to learn from its finite sample data {(x j,ξ j) : j ∈
Nm}⊆ X×Λ. Here m is the number of sampling points and

ξ j = f0(x j)+δ j, j ∈ Nm

where δ j ∈ Λ is the noise dominated by some unknown probability measure. To deal with the noise
and have an acceptable generalization error, we use the following regularization network

min
f∈HK

1
m

m

∑
j=1

‖ f (x j)−ξ j‖2Λ+σ‖ f‖2HK
, (68)
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where K is a chosen Λ-valued reproducing kernel on X . Our experiments will be designed so that
underfitting and overfitting both have the chance to occur. To echo with the motivations in Section
2, when underfitting happens in the first experiment, we shall find a refinement G of K aiming
at improving the performance of the minimizer of (68) in prediction. On the other hand, when
overfitting appears in the second experiment, we shall then find a Λ-valued reproducing kernel L on
X such that HL 'HK with the same purpose.

Before moving on to the experiments, we make a remark on how (68) can be solved. The
issue has been understood in the work by Micchelli and Pontil (2005). We say that K is strictly
positive-definite if for all finite y j ∈ X , j ∈ Np, and for all η j ∈ Λ, j ∈ Np all of which are not zero

p

∑
j=1

p

∑
k=1

(K(y j,yk)η j,ηk)Λ > 0.

If K is strictly positive-definite then the minimizer fK of (68) has the form

fK =
m

∑
j=1

K(x j, ·)η j (69)

where η j’s satisfy
m

∑
k=1

K(xk,x j)ηk+mση j = ξ j, j ∈ Nm. (70)

7.1 Experiment 1: Underfitting

The vector-valued function to be learned from finite examples is from the input space X = [−1,1]
to output space Λ= Rn, where n ∈ N. Specifically, it has the form

f0(x) :=
[

ak|x−bk|+ cke−dkx : k ∈ Nn

]

, x ∈ [−1,1], (71)

where a,b,c,d are constant vectors to be randomly generated. The L+(Rn)-valued reproducing
kernel that we shall use in the regularization network (68) is a Gaussian kernel

K(x,y) := Sexp
(

−
(x− y)2

2

)

, x,y ∈ R,

where S ∈ L+(Rn) is strictly positive-definite. It can be identified by Lemma 2 that functions in HK
are of the form

√
Sv, where v is an Rn-valued function whose components come from the RKHS

HG of the scalar-valued Gaussian kernel

G(x,y) := exp
(

−
(x− y)2

2

)

, x,y ∈ R. (72)

Thus, each component of
√
Sv is from HG . The function f0 to be approximated is defined by (71).

As |x−bk| is not even continuously differentiable, functions from the RKHS of the Gaussian kernel
(72) with a fixed variance may not well approximate f0. Underfitting is hence expected. If this is
indeed observed then a remedy is to use the refinement of K given by

G(x,y) := Sexp
(

−
(x− y)2

2

)

+T (1+ xy)3, x,y ∈ R,
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where T ∈ L+(Rn) is also strictly positive-definite. The RKHS of the scalar-valued polynomial
kernel (1+ xy)3 clearly does not have a nontrivial intersection with the RKHS of the scalar-valued
Gaussian kernel. Thus, by Corollary 22, HK ' HG, namely, G is a nontrivial refinement of K.
Furthermore, as low order polynomials are added, the ability for functions in HG to approximate
the function |x− bk| is expected to be superior to those in HK . We perform extensive numerical
simulations to confirm these conjectures.

The dimension n will be chosen from {2,4,8,16}. The number m of sampling points will be
set to be 30. The sampling points x j, j ∈Nm will be randomly sampled from [−1,1] by the uniform
distribution and the outputs ξ j are generated by

ξ j = f0(x j)+δ j, j ∈ Nm, (73)

where δ j are vectors whose components will be randomly generated by the uniform distribution on
[−δ,δ]with δ being the noise level selected from {0.1,0.3,0.5}. For each dimension n∈ {2,4,8,16}
and noise level δ ∈ {0.1,0.3,0.5}, we run 50 simulations. In each of the simulations, we do the
followings:

1. the components of the coefficient vectors a,b,c,d in the function f0 given by (71) are ran-
domly generated by the uniform distribution on [1,3], [−1,1], [−2,2], and [0,3], respectively;

2. the sampling points are randomly sampled from [−1,1] by the uniform distribution and the
outputs ξ j are then generated by (73);

3. the matrices S and T are given by S = A′A and T = B′B where A,B are n× n real matrices
whose components are randomly sampled from [1,3] by the uniform distribution;

4. we then solve the minimizer fK of (68) by (69) and (70);

5. for the refinement kernel G, we also obtain fG as the minimizer of

min
f∈HG

1
m

m

∑
j=1

‖ f (x j)−ξ j‖2Λ+σ‖ f‖2HG
, (74)

6. the regularization parameters in (68) and (74) are optimally chosen so that the relative square
approximation errors

EK :=
∫ 1
−1 ‖ fK(t)− f0(t)‖2dt∫ 1

−1 ‖ f0(t)‖2dt
, EG :=

∫ 1
−1 ‖ fG(t)− f0(t)‖2dt∫ 1

−1 ‖ f0(t)‖2dt
. (75)

are minimized, respectively.

We call (EK ,EG) obtained in each simulation an instance of approximation errors. Hence, we
have 50 instances for each pair of (n,δ). They are said to form a group. There are 12 groups
of instances of approximation errors. For each (n,δ), we shall calculate the mean and standard
deviation of the difference EK−EG in the corresponding group as a measurement of the difference
in the performance of learning schemes (68) and (74). Before that, outliers of instances should be
excluded. Although we do not know the distributions of EK and EG, we shall use the three-sigma
rule in statistics. In other words, we regard an instance (EK ,EG) as an outlier if the deviation of EK

126



REFINEMENT OF OPERATOR-VALUED REPRODUCING KERNELS

n=2 n=4 n=8 n=16

δ= 0.1

(0.1024,0.0084) (0.0215,0.0182) (0.0230,0.0070) (0.0712,0.0015)
(0.0091,0.0081) (0.4095,0.0034) (0.0513,0.0091) (0.0364,0.0124)
(0.4128,0.0006) (0.1554,0.0011)
(0.6783,0.0025) (0.1464,0.0026)

δ= 0.3
(0.0286,0.0228) (0.0663,0.0321) (0.0407,0.0194) (0.1592,0.0018)
(0.4811,0.0020) (0.1892,0.0041) (0.1809,0.0023) (0.0309,0.0127)

(0.1674,0.0095) (0.0229,0.0099)

δ= 0.5
(0.2053,0.0020) (0.0377,0.0376) (0.2445,0.0028) (0.1612,0.0043)
(0.1267,0.0034) (0.3547,0.0033) (0.2762,0.0020) (0.0541,0.0081)
(0.0669,0.0465) (0.0119,0.0264)

Table 1: Outliers of instances of approximation errors (EK ,EG). An instance (EK ,EL) is consid-
ered to be an outlier if the deviation of one of its components to the respective mean in the
group is more than three times the standard deviation of the group. Outliers are listed in an
independent table because they should be excluded from the calculation of the mean and
standard deviation of the approximation errors. Another reason is that adding them will
make the plot of the approximation errors highly disproportional.

or EG to their respective mean in the group exceeds three times their respective standard deviation.
There are 32 outliers among the entire 600 instances, which are listed below in Table 1.

We make a few observations from Table 1. Firstly, EG is smaller than EK except for only one
instance. For a large portion of the outliers, the approximation error EK is considerably large (larger
than 10%), a sign of underfitting of the kernel K. Those instances are of the greatest interest to us
as we desire to see if the refinement kernel G can make a remedy when underfitting does happen.
We see from Table 1 that for all of those outliers, the refinement kernel G always brings down the
relative approximation error to be less than 1%. The improvement brought by G for other instances
is also significant. The observations indicate that (74) performs significantly better in learning the
function (71) from finite examples than (68). For further comparison, we compute the mean and
standard deviation of the difference EK−EG of the approximation errors after excluding the above
outliers. The results are tabulated in Table 2 below. Note that a positive value of the mean implies
that (74) performs better than (68). It is worthwhile to point out that among all the rest 568 instances
excluding the outliers, there are only 33 where EG is larger than EK . The largest value of EG−EK
is 0.0020. Therefore, we conclude that for all the (n,δ), (74) is superior to (68), and the larger the
standard deviation in Table 2 is, the greater improvement the refinement kernel G brings.

We shall also plot the 12 groups of approximation errors EK ,EG for a visual comparison. To
this end, we take out the instances for which EK is too large to have an appropriate range in the
vertical axes in the figures. Therefore, Figures 1 and 2 are not full embodiment of the improvement
of (74) over (68). Nevertheless, one sees that the improvement brought by the refinement kernel G
in these relatively well-behaved instances is still dramatic.
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n=2 n=4 n=8 n=16

δ= 0.1 0.0098 0.0139 0.0160 0.0108
(0.0182) (0.0335) (0.0241) (0.0135)

δ= 0.3 0.0076 0.0141 0.0143 0.0188
(0.0144) (0.0245) (0.0208) (0.0259)

δ= 0.5 0.0054 0.0127 0.0103 0.0091
(0.0121) (0.0307) (0.0186) (0.0102)

Table 2: The mean and standard deviation (in parentheses) of EK −EG. The outliers of instances
listed in Table 1 are not counted toward these calculations. If they were added, the im-
provement brought by the refinement kernel G would have been more dramatic.
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Figure 1: Relative approximation errors EK ,EG for n= 2,4 and δ= 0.1,0.3,0.5. The outliers listed
in Table 1 are not plotted here as they would make the figure highly disproportional.

7.2 Experiment 2: Overfitting

The target function we consider in the second experiment is

f0(x) =
[

ak
1+25(x−bk)2

+ cke−dkx : k ∈ Nn

]

, x ∈ [−1,1], (76)

where the components of the vectors a,b,c,d ∈Rn will be randomly sampled by the uniform distri-
bution from [1,4], [0, 12 ], [−2,2], and [0,2] respectively in the numerical simulations. The dimension

128



REFINEMENT OF OPERATOR-VALUED REPRODUCING KERNELS

0 5 10 15 20 25 30 35 40 45
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
n = 8, δ = 0.1

kernel K
kernel G

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06
n = 16, δ = 0.1

kernel K
kernel G

0 10 20 30 40 50
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

n = 8, δ = 0.3

0 10 20 30 40 50
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
n = 16, δ = 0.3

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05
n = 8, δ = 0.5

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03
n = 16, δ = 0.5

Figure 2: Relative approximation errors EK ,EG for n = 8,16 and δ = 0.1,0.3,0.5. The outliers
listed in Table 1 are not plotted in the figure here.

n will be chosen from {2,4,8,16}. We fix m := 20 and shall sample the inputs x j, j ∈Nm randomly
by the uniform distribution from [−1,1]. Similarly, the outputs ξ j ∈ Rn, j ∈ Nm will be generated
by (73) where the noise level is to be selected from {0.1,0.3,0.5}.

In the first step, we substitute the sample data {(x j,ξ j) : j ∈Nm} into the regularization network
(68) with the following kernel

K(x,y) := Sexp
(

−
(x− y)2

2

)

+T (1+ xy)18, x,y ∈ [−1,1], (77)

where S= A′A and T = B′Bwith A,B being n×n real-matrices whose components will be randomly
sampled by the uniform distribution from [1,2]. The target function (76) contains translations of the
Runge function

1
1+25x2

, x ∈ [−1,1].

It is well-known that approximating the Runge function by high order polynomial interpolations
leads to overfitting. One sees by (70) that the regulation network (68) might be regarded as a
regularized interpolation. Note also that the order of the polynomial kernel in (77) is 18, which is
close to the number m = 20 of sampling points. Overfitting is hence expected. When this occurs,
we propose to reduce the order of the polynomial kernel by considering

L(x,y) := Sexp
(

−
(x− y)2

2

)

+T
10

∑
k=0

(

18
k

)

(xy)k, x,y ∈ [−1,1].
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δ= 0.1 δ= 0.3 δ= 0.5

n=2 (0.9000, 0.7843) (2.9906,1.3509) (1.8065, 0.8044),(1.1332, 0.3213)
(19.6416, 7.6578)

n=4

(8.2450,5.8717) (1.1760,0.1354) (4.6316,7.0497),(2.0850,1.3204)
(1.6654,2.0466) ( 0.4591, 0.7845) (2.4657,1.1386)
(18.9615,12.0513) (5.7967,0.6122)
(0.9536, 1.0998) (5.1196,2.6692)

n=8

(0.9102,1.3862) (1.3517, 1.8339) (0.6369, 0.3698),(0.6945,0.2878)
(1.2233,0.9489) (0.8450,0.2605) (2.2371, 2.4008)
(0.6711,0.2249) (0.3571, 0.7221) (1.0738,0.4172)

(2.2403, 2.0108) (1.0561,0.3067)
(5.6153,5.0954) (0.6791,1.0980)
(2.0763,1.3718) (3.6689,3.9566)
(2.2567,1.4024) (1.1238,0.2467)

n=16

(4.4905, 5.8886) (26.0758,7.6125) (73.0854,42.6904),(1.6070, 1.4224)
(7.9187, 4.3445) (1.2255, 0.3181) (3.2674, 2.2622),(2.1632, 1.7059)
(2.1619, 0.5061) (0.5140, 0.1817) (2.8067, 0.5791),(9.0120, 3.5443)
(17.5145, 13.7894) (2.4289, 1.9022) (0.6064, 0.3365),(4.0484 , 0.4220)

(1.0064, 0.8287)

Table 3: Outliers of instances of relative approximation errors (EK ,EL).

By Corollary 22, HL ' HK , namely, K is a refinement of L. We shall demonstrate by numerical
simulations that

min
f∈HL

1
m

m

∑
j=1

‖ f (x j)−ξ j‖2+σ‖ f‖2HL
(78)

outperforms (68) with the kernel (77). To this end, we shall conduct numerical experiments similar
to those in the last subsection. Let fK and fL be the minimizer of (68) and (78), respectively. We shall
measure the performance by the relative square approximation errors EK and EL, which are defined
in the same way as (75). For each pair of (n,δ), where n ∈ {2,4,8,16} and δ ∈ {0.1,0.3,0.5}, we
run 20 numerical simulations where the regularization parameters σ are to be chosen so that EK and
EL are minimized, respectively. As in the first experiment, we shall calculate the mean and standard
deviation of EK and EL in each group after taking out some outliers. We shall also plot the relative
errors for comparison. The results are shown below in the form of tables and figures.

We have more outliers compared to the first experiment. Using fewer sampling points and
approximating the Runge function by polynomials both contributes to this. We observe that for
the majority of these outliers, EL is significantly smaller than EK , showing improvement of learn-
ing scheme (78) over (68). For further comparison, we shall compute the mean and variances of
EK−EL and plot the relative approximation errors EK and EL for the rest of instances.

A positive value of the mean in Table 4 implies that (78) performs better than (68). It is observed
that kernel L brings improvement for all the choices of n ∈ {2,4,8,16} and δ ∈ {0.1,0.3,0.5}.
We also remark that among all the 188 instances counted in Table 4, there are only 32 for which
EL > EK . The mean and standard deviation of EL−EK for these 32 instances are 0.0264 and
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n=2 n=4 n=8 n=16

δ= 0.1 0.0289 0.0511 0.0173 0.0157
(0.0846) (0.0587) (0.0779) (0.0146)

δ= 0.3 0.0404 0.0661 0.0671 0.0657
(0.0922) (0.0705) (0.0929) (0.0918)

δ= 0.5 0.0629 0.0130 0.0484 0.0625
(0.1098) (0.0233) (0.0758) (0.0821)

Table 4: The mean and standard deviation (in parentheses) of EK −EL. The outliers of instances
listed in Table 3 are not counted toward these calculations. If they were added, the im-
provement brought by the refinement kernel G would have been more dramatic.
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Figure 3: Relative approximation errors EK ,EL for n= 2,4 and δ= 0.1,0.3,0.5. The outliers listed
in Table 3 are not plotted here as they will make the figure highly disproportional.

0.0306. We conclude that compared to (68), (78) improves the performance considerably in learn-
ing the function (76).

7.3 Experiment 3: Impact of Irrelevant Signals

Suggested by one of the anonymous reviewers, we shall examine the impact of irrelevant signals
in the refinement kernel method. More specifically, we plan to apply the refinement kernel method
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Figure 4: Relative approximation errors EK ,EL for n = 8,16 and δ = 0.1,0.3,0.5. The outliers
listed in Table 3 are not plotted here.

δ= 0.1 δ= 0.3 δ= 0.5

n= 4
(0.0164, 0.0083) (0.1760,0.0074) (0.1550, 0.0049)
(0.2930, 0.0044) ( 0.0415, 0.0189) (0.0837, 0.0302)
(0.0074, 0.0076) (0.1464, 0.0254)

Table 5: Outliers of instances of relative approximation errors (EK ,EG).

to the learning a vector-valued function whose components might be irrelevant. To avoid repetition
and save space, we shall consider the underfitting case only and limit ourself to dimension n = 4.
The instance investigated here is the function f0 of the form (71), where we shall set a3 = a4 = c1 =
c2 = 0. Thus, the first two components are irrelevant with the last two components of f0. We then
proceed with the same simulation procedures as those in experiment 1.

We obtain 3 groups of relative approximation error (EK ,EG) corresponding to the noise level
δ = 0.1,0.3,0.5. As in experiment 1, we first list all the outliers by the three-sigma rule in Table 5
below.

We observe from Table 5 that under the impact of irrelevant signals, among the above outliers,
EG is smaller than EK except for only one instance (0.0074,0.0076). In 4 instances of the outliers,
EK is larger than 14%, while the refinement kernelG always brings down the relative approximation
error to be less than 3%. In the overall 150 instances of relative approximation errors computed,
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δ= 0.1 δ= 0.3 δ= 0.5

n= 4 0.0077 0.0114 0.0117
(0.0131) (0.0257) (0.0205)

Table 6: The mean and standard deviation (in parentheses) of EK −EG. The outliers of instances
listed in Table 5 are not counted toward these calculations. If they were added, the im-
provement brought by the refinement kernel G would have been more dramatic.
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Figure 5: Relative approximation errors EK ,EG for n = 4 and δ = 0.1,0.3,0.5. The outliers listed
in Table 5 are not plotted here as they would make the figure highly disproportional.

there are only 13 instances where EK is smaller than EG. For all these instances, EG are of the same
magnitude level with EK , showing competitive performance. For further comparison, we compute
the mean and standard deviation of the difference EK −EG after the above outliers are excluded.
The results are shown in Table 6 below.

Finally, we plot the 3 groups of relative approximation errors EK ,EG for a visual comparison
after the outliers in Table 5 are excluded.

We conclude from Tables 5, 6 and Figure 5 that for the learning problem considered in this
subsection, the refinement kernel method works well under the impact of irrelevant signals.
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8. Conclusion and Discussion

The refinement relationship between two operator-valued reproducing kernels provides a promising
way of updating kernels for multi-task machine learning when overfitting or underfitting occurs.
We establish several general characterizations of the refinement relationship. Particular attention
has been paid to the case when the kernels under investigation have a vector-valued integral repre-
sentation, the most general form of operator-valued reproducing kernels. By the characterizations,
we present concrete examples of refining the translation invariant operator-valued reproducing ker-
nels, Hessian of the scalar-valued Gaussian kernel, and finite Hilbert-Schmidt operator-valued re-
producing kernels. Three numerical experiments confirm the potential usefulness of the proposed
refinement method in updating kernels for multi-task learning. We plan to investigate the effect of
the method by real application data in another occasion.

We discuss three issues that might deserve future research attention. The first one concerns
about the computational saving brought by the refinement kernel method. Suppose a minimizer in
an RKHS resulting from a particular learning algorithm is already computed but turns out to be
unsatisfactory due to underfitting. When the kernel corresponding to the RKHS is refined, instead
of running the algorithm from the scratch in the updated RKHS, we are wondering if the original
minimizer can be made use of in order to reduce computational costs. In the scalar-valued case,
it has been shown that this can be done for the classical regularization networks (Xu and Zhang,
2009). For the vector-valued case, one would need to carefully handle the complexity brought
by the high dimension of the output space in order to establish a similar analysis. The second
question is whether a multi-resolution analysis for vector-valued RKHS can be achieved by using
the refinement kernel method. Our initial thinking and impression is that the approach in Xu and
Zhang (2007) of using a bijective self-mapping of the input space can be carried over without much
difficulty. Finally, we look at the requirement in the definition of refinement that the norm on the
RKHS of the refinement kernel should coincide with that in the RKHS of the original kernel. As
seen by the results in Section 5 and those in Xu and Zhang (2009), this strong condition poses a
serious restriction in searching for refinement kernels. A remedy is to ask the two norms to be
equivalent in the smaller space or to even just focus on the inclusion relation. Study along this
direction has been done for scalar-valued kernels (Zhang and Zhao, 2011). It is shown there that
this relaxation brings more freedom and choices in choosing kernels for refinement. Vector-valued
counterparts are yet to be investigated. This approach also connects to a popular way of updating
kernels pointed out by one of the reviewers, which is to tune a parameter (for example, the variance
in the Gaussian kernel, the degree in a polynomial kernel, etc.) in the kernel. Although this practice
seldom corresponds to a refinement, it does sometimes fall into the approach considered in Zhang
and Zhao (2011). Examples include the exponential kernels, the inverse multiquadrics, the B-spline
kernels, and the polynomial kernels (Zhang and Zhao, 2011).
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Abstract
Given a set V of n elements we wish to linearly order them given pairwise preference labels which
may be non-transitive (due to irrationality or arbitrary noise).

The goal is to linearly order the elements while disagreeing with as few pairwise preference
labels as possible. Our performance is measured by two parameters: The number of disagreements
(loss) and the query complexity (number of pairwise preference labels). Our algorithm adaptively
queries at most O(ε−6n log5 n) preference labels for a regret of ε times the optimal loss. As a
function of n, this is asymptotically better than standard (non-adaptive) learning bounds achievable
for the same problem.

Our main result takes us a step closer toward settling an open problem posed by learning-to-
rank (from pairwise information) theoreticians and practitioners: What is a provably correct way to
sample preference labels? To further show the power and practicality of our solution, we analyze a
typical test case in which a large margin linear relaxation is used for efficiently solving the simpler
learning problems in our decomposition.
Keywords: statistical learning theory, active learning, ranking, pairwise ranking, preferences

1. Introduction

We study the problem of learning to rank from pairwise preferences, and solve a long-standing open
problem that has led to development of many heuristics but no provable results.

The setting is as follows: We are given a set V of n elements from some universe, and we wish
to linearly order them given pairwise preference labels. given two elements u,v ∈ V , a pairwise
preference label is obtained as a response, typically from a human, to the questionwhich if preferred,
u or v? We assume no abstention, hence, either u is preferred to v (denoted u≺ v) or the other way
around.

The goal is to linearly order the elements from the most preferred to the least preferred, while
disagreeing with as few pairwise preference labels as possible. Our performance is measured by
two parameters: The loss (number of pairwise preference labels we disagree with) and the query
complexity (number of pairwise preference labels we obtain). This is a typical learning problem,
with the exception that the sample space is finite, consisting of

(n
2
)

possibilities only.
The loss minimization problem given the entire n× n preference matrix is a well known NP-

hard problem called MFAST (minimum feedback arc-set in tournaments) (Alon, 2006). Recently,
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Kenyon-Mathieu and Schudy (2007) have devised a PTAS for it, namely, a polynomial (in n) -time
algorithm computing a solution with loss at most (1+ε) the optimal, for and ε> 0 (the degree of the
polynomial may depend on ε). In our case each edge from the input graph is given for a unit cost.
Our main algorithm is derived from Kenyon et al’s algorithm. Our output, however, is not a solution
to MFAST, but rather a reduction of the original learning problem to a different, simpler one. The
reduced problem can be solved using any general ERM (empirical risk minimization) black-box.
The sampling of preference labels from the original problem is adaptive, hence the combination of
our algorithm and any ERM blackbox is an active learning one. We give examples with an SVM
based ERM black-box toward the end.

1.1 Our Setting vs. The Usual “Learning to Rank” Problem

Our setting defers from much of the learning to rank (LTR) literature. Usually, the labels used in
LTR problems are responses to individual elements, and not to pairs of elements. A typical example
is the 1..5 scale rating for restaurants, or 0,1 rating (irrelevant/relevant) for candidate documents
retrieved for a query (known as the binary ranking problem). The goal there is, as in ours, to order
the elements while disagreeing with as little pairwise relations as possible, where a pairwise relation
is derived from any two elements rated differently. Note that the underlying preference graph there
is transitive, hence no combinatorial problem due to nontransitivity. In fact, some view the rating
setting as an ordinal regression problem and not a ranking problem. Here the preference graph may
contain cycles, and is hence agnostic with respect to the concept class we are allowed to output
from, namely, permutations. We note that some LTR literature does consider the pairwise prefer-
ence label approach, and there is much justification to it (see Carterette et al. 2008; Hüllermeier
et al. 2008 and reference therein). As far as we know, our work provides a sound solution to a
problem addressed by machine learning practitioners (e.g., Carterette et al. 2008) who use pairwise
preferences as labels for the task of learning to rank items, but wish to avoid obtaining labels for the
quadratically many preference pairs, without compromising low error bounds. We also show that
the problem of quadraticity found in much work dealing with pairwise preference based learning
to rank (e.g., from Crammer and Singer 2001 the [pairwise] approach is time consuming since it
requires increasing the sample size ... to O(n2)) can be alleviated in the light of new advances in
combinatorial optimization (Ailon et al., 2008a; Kenyon-Mathieu and Schudy, 2007).

1.2 Using Kenyon and Schudy’s PTAS as a Starting Point

As mentioned above, our main algorithm is derived from the PTAS of Kenyon-Mathieu and Schudy
(2007), but it is important to note a significant difference between our work and theirs. A good
way to explain this is to compare two learners, Larry and Linda. On the first day, Larry queries all
(n
2
)

pairwise preference labels and sends them to a perfect solver for MFAST. Linda uses our work
to query only O(npoly(logn,ε−1)) preference labels and obtains a decomposition of the original
input V into an ordered list of sub-problems V1, . . . ,Vk where each Vi is contained in V . Using
the same perfect solver for the induced subproblems corresponding to each part and concatenating
the individual output permutations, Linda will incur a loss of at most (1+ ε) that of Larry. If
the decomposition is nontrivial, then Linda enjoys reduced query complexity for a small regret
compared to Larry. The next day, both Larry and Linda realize that the perfect MFAST solver
cannot deal with large inputs (the problem is NP Hard). They cannot use the PTAS of Kenyon-
Mathieu and Schudy (2007) because they seek a multiplicative regret of (1+ ε) with respect to the
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optimal solution (we also say a relative regret of ε), and the sought ε makes this infeasible.1 To
remedy this, Larry takes advantage of the fact that the set V does not merely consist of abstract
elements, but rather each u ∈ V is endowed with a feature vector ϕ(u) and hence each pair of
points u,v is endowed with the combined feature vector (ϕ(u),ϕ(v)). As in typical learning, he
posits that the order relation between u,v can be deduced from a linear function of (ϕ(u),ϕ(v)),
and invokes an optimizer (e.g., SVM) on the relaxed problem, with all pairs as input. Note that
Larry may try to sample pairs uniformly to reduce the query complexity (and, perhaps, the running
time of the relaxed solver), but as we show below, he will be discouraged from doing so because
in certain realistic cases a relative regret of ε may entail sampling the entire pairwise preference
space. Linda uses the same relaxed optimizer, say, SVM. The labels she sends to the solver consist
of a uniform sample of pairs from each block Vi, together with all pairs u,v residing in separate
blocks from her aforementioned construction decomposition. From the former label type she would
need only O(npoly(logn,ε−1))many, because (per our decomposition design) within the blocks the
cost of any solution is high, and hence a relative error is tantamount to an absolute error of similar
magnitude, for which careful arguments allow low query complexity. From the latter label type, she
would generate a label for all pairs u,v in distinct Vi,Vj, using a ”made up” label corresponding to
the order of Vi,Vj (recall that the decomposition is ordered).

As the above story suggests, we do not run the PTAS of Kenyon-Mathieu and Schudy (2007)
verbatim, but use it only to obtain a certain decomposition of the input. Among other changes,
a key change to their algorithm is required by replacing a highly sensitive greedy improvement
step into a robust approximate one, by careful sampling. The main difficulty stems from the fact
that after a single greedy improvement step, the sample becomes stale and requires refreshing. We
show a query efficient refreshing technique that allows iterated approximate greedy improvement
steps. Interestingly, the original analysis is amenable to this change. It is also interesting to note
that the sampling scheme used for identifying greedy improvement steps for a current solution are
similar to ideas used by Ailon et al. (2007, 2008b) and Halevy and Kushilevitz (2007) in the context
of property testing and reconstruction, where elements are sampled from exponentially growing
intervals in a linear order.

The 3-approximation algorithm for MFAST using QuickSort by Ailon et al. (2008a) is used in
Kenyon-Mathieu and Schudy (2007) as well as here as an initialization step. Note that this is a sub-
linear algorithm. In fact, it samples onlyO(n logn) pairs from the

(n
2
)

possible, on expectation. Note
also that the pairs from which we query the preference relation in QuickSort are chosen adaptively.

1.3 Our Work in the Context of Machine Learning Reductions

Our main algorithm reduces a given instance to smaller subproblems decomposing it. We compare
the machine learning reduction approach to two other works, that of Balcan et al. (2008) and that
of Ailon and Mohri (2010). The former also considers a reduction of the problem of learning to
rank, but in the bipartite ranking (see Section 1.1) setting where, in the first place, it is assumed
that individual elements are endowed with unknown labels on a scale (of size two). The output is
a permutation, and the loss function is the number of pairwise inversions. Their work shows that
the problem of minimizing the regrets of the underlying binary classification and ranking problems
is, up to a constant, the same thing. Their work, in fact, questions the justification for the so-called

1. The running time of the PTAS is exponential in ε−1. We note here, for the sake of comparison, that our sampling
scheme has complexity polynomial in ε−1.
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binary ranking problem. The latter (Ailon and Mohri, 2010) considers the same setting as here, and
shows a query efficient algorithm that reduces the original instance, which may contain cycles, to a
binary classification problem over an adaptively chosen set of O(n logn) pairs on expectation. The
results there guarantee a total regret of at most twice that of the optimal.2 Here we obtain at most
1+ ε that of the optimal using O(npoly(logn,ε−1)) pairwise queries.

1.4 Our Work in the Context of Active Learning

Active learning is an important field of statistical learning theory and practice (El-Yaniv andWiener,
2010; Balcan et al., 2010; Hanneke, 2007; Dasgupta, 2005; Culotta and McCallum, 2005; Roth and
Small, 2006; Dasgupta et al., 2007; Atlas et al., 1994; Freund et al., 1997; Lindenbaum et al., 2004;
Begleiter et al., 2008; Balcan et al., 2009; Angluin, 2004; Dasgupta et al., 2009; Fine et al., 2002;
Baram et al., 2004; Atlas et al., 1994; Friedman, 2009; Atlas et al., 1990; Yu et al., 2006). In the most
general setting, one wishes to improve on standard query complexity bounds (using, for example,
VC or Rademacher complexity) by actively choosing which instances to obtain labels for. Many
heuristics have been developed, while algorithms with provable bounds (especially in the agnostic
case) are known for few problems. Balcan et al. (2010) show that any learning algorithm for a finite
VC dimensional space admits an active learning algorithm which asymptotically beats, in query
complexity, that of a passive learning algorithm. Their guarantees are, however, unverifiable in the
sense that the learner does not know when to stop querying in order to achieve a certain error. Also,
their scheme still requires a considerable amount of work in order to be applicable for individual
problems. It is an interesting open question to apply it to the problem at hand and compare the
results with our algorithms’ guarantees. Also, Balcan et al. (2009) proposed an active learning
algorithm called A2. A useful measure of complexity which was later defined by Hanneke (2007)
is key in analysis of A2. He defined a disagreement coefficient for a concept space and showed how
this measure could be used for active learning in certain cases. We show in Appendix B why this
measure does not help here.

1.5 Our Work in the Context of Noisy Sorting

There is much literature in theoretical computer science on sorting noisy data. For example, Braver-
man and Mossel (2008) present an algorithm with an O(n logn) query complexity for exact order
reconstruction when the input is Bayesian with certain natural priors. Feige et al. (2002) consider a
scenario in which the input preference graph is transitive, but queries may result in noisy compar-
isons which may be inconsistent with previous information (hence, querying the same pair multiple
times would result in difference independent responses). Ajtai et al. (2009) consider a setting in
which each element has a latent value, and comparisons of two elements with similar value may
result in errors. In this work the input is not Bayesian, query responses are fixed and elements do
not have a latent value.

1.6 Paper Organization

In Section 2 we present basic definitions and lemmata, and in particular define what a good decom-
position is and how it can be used in learning permutations from pairwise preferences. Section 3
presents our main active learning algorithm which is, in fact, an algorithm for producing a good

2. Additionally, they consider the so called binary ranking, which is not the problem here.
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decomposition query efficiently. The main result is presented in Theorem 7. Section 4 discusses our
main results as a preconditioner for a standard SVM relaxation for the hard combinatorial problems
underlying the problem of minimum feedback-arcset in sparse graphs.

2. Notation and Basic Lemmata

We start by introducing basic notations and definitions of the problem, together with results from
statistical learning theory which we will later improve.

2.1 The Learning Theoretical Problem

Let V denote a finite set that we wish to rank. In a more general setting we are given a sequence
V 1,V 2, . . . of sets, but there is enough structure and interest in the single set case, which we focus
on in this work. Denote by n the cardinality of V . We assume there is an underlying preference
functionW on pairs of elements in V , which is unknown to us. For any ordered pair u,v ∈ V , the
preference valueW (u,v) takes the value of 1 if u is deemed preferred over v, and 0 otherwise. We
enforceW (u,v)+W (v,u) = 1, hence, (V,W ) is a tournament. We assume thatW is agnostic in the
sense that it does not necessarily encode a transitive preference function, and may contain errors
and inconsistencies. For convenience, for any two real numbers a,b we will let [a,b] denote the
interval {x : a≤ x≤ b} if a≤ b and {x : b≤ x≤ a} otherwise.

Assume now that we wish to predict W using a hypothesis h from some concept class H .
The hypothesis h will take an ordered pair (u,v) ∈ V as input, and will output label of 1 to assert
that u precedes v and 0 otherwise. We want H to contain only consistent hypotheses, satisfying
transitivity (i.e., if h(u,v) = h(v,w) = 1 then h(u,w) = 1). A typical way to do this is using a linear
score function: Each u∈V is endowed with a feature vector ϕ(u) in some RKHS H, a weight vector
w ∈ H is used for parametrizing each hw ∈H , and the prediction is as follows:3

hw(u,v) =











1 〈w,ϕ(u)〉> 〈w,ϕ(v)〉
0 〈w,ϕ(u)〉< 〈w,ϕ(v)〉
1u<v otherwise

.

Our work is relevant, however, to nonlinear hypothesis classes as well. We denote by Π(V ) the
set permutations on the set V , hence we always assume H ⊆ Π(V ). (Permutations π are natu-
rally viewed as binary classifiers of pairs of elements via the preference predicate: The notation is,
π(u,v) = 1 if and only if u ≺π v, namely, if u precedes v in π. Slightly abusing notation, we also
view permutations as injective functions from [n] to V , so that the element π(1) ∈ V is in the first,
most preferred position and π(n) is the least preferred one. We also define the function ρπ inverse
to π as the unique function satisfying π(ρπ(v)) = v for all v ∈ V . Hence, u ≺π v is equivalent to
ρπ(u)< ρπ(v). )

As in standard ERM setting, we assume a non-negative risk functionCu,v penalizing the error of
h with respect to the pair u,v, namely,

Cu,v(h,V,W ) = 1h(u,v) +=W (u,v) .

3. We assume that V is endowed with an arbitrary linear order relation, so we can formally write u< v to arbitrarily yet
consistently break ties.
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The total loss, C(h,V,W ) is defined as Cu,v summed over all unordered u,v ∈ V . Our goal is to
devise an active learning algorithm for the purpose of minimizing this loss.

In this paper we find an almost optimal solution to the problem using important breakthroughs
in combinatorial optimization of a related problem called minimum feedback arc-set in tournaments
(MFAST). The relation between this NP-Hard problem and our learning problem has been noted
before (Cohen et al., 1998), but no provable almost optimal active learning has been devised, as far
as we know.

2.2 The Combinatorial Optimization Counterpart

MFAST is defined as follows: Assume we are given V andW and its entirety, in other words, we
pay no price for reading W . The goal is to order the elements of V in a full linear order, while
minimizing the total pairwise violation. More precisely, we wish to find a permutation π on the
elements of V such that the total backward cost:

C(π,V,W ) = ∑
u≺πv

W (v,u) (1)

is minimized. The expression in (1) will be referred to as theMFAST cost henceforth.
WhenW is given as input, this problem is known as the minimum feedback arc-set in tourna-

ments (MFAST). A PTAS has been discovered for this NP-Hard very recently (Kenyon-Mathieu and
Schudy, 2007). Though a major theoretical achievement from a combinatorial optimization point of
view, the PTAS is not useful for the purpose of learning to rank from pairwise preferences because
it is not query efficient. Indeed, it may require in some cases to read all quadratically many entries
inW . In this work we fix this drawback, while using their main ideas for the purpose of machine
learning to rank. We are not interested in MFAST per se, but use the algorithm by Kenyon-Mathieu
and Schudy (2007) to obtain a certain useful decomposition of the input (V,W ) from which our
main active learning result easily follows.

Definition 1 Given a set V of size n, an ordered decomposition is a list of pairwise disjoint subsets
V1, . . . ,Vk ⊆V such that ∪ki=1Vi =V. For a given decomposition, we letW |Vi denote the restriction of
W toVi×Vi for i= 1, . . . ,k. Similarly, for a permutation π∈Π(v) we let π|Vi denote the restriction of
the permutation to the elements of Vi (hence, π|Vi ∈Π(Vi)). We say that π∈Π(V ) respects V1, . . . ,Vk
if for all u ∈ Vi,v ∈ Vj, i < j, u ≺π v. We denote the set of permutations π ∈ Π(V ) respecting the
decomposition V1, . . . ,Vk by Π(V1, . . . ,Vk). We say that a subset U of V is small in V if |U | ≤
logn/ log logn, otherwise we say that U is big in V. A decomposition V1, . . . ,Vk is ε-good with
respect to W if:4

• Local chaos:
min

π∈Π(V )
∑

i:Vi big in V

C(π|Vi ,Vi,W|Vi)≥ ε
2 ∑
i:Vi big in V

(

ni
2

)

. (2)

• Approximate optimality:

min
σ∈Π(V1,...,Vk)

C(σ,V,W )≤ (1+ ε) min
π∈Π(V )

C(π,V,W ) . (3)

4. We will just say ε-good ifW is clear from the context.
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Intuitively, an ε-good decomposition identifies a block-ranking of the data that is difficult to rank
in accordance with W internally on average among big blocks (local chaos), yet possible to rank
almost optimally while respecting the decomposition (approximate optimality). We show how to
take advantage of an ε-good decomposition for learning in Section 2.3. The ultimate goal will be to
find an ε-good decomposition of the input set V using O(poly(logn,ε−1)) queries intoW .

2.3 Basic Results from Statistical Learning Theory

In statistical learning theory, one seeks to find a classifier minimizing an expected cost incurred on
a random input by minimizing the empirical cost on a sample thereof. If we view pairs of elements
in V as data points, then the MFAST cost can be cast, up to normalization, as an expected cost
over a random draw of a data point. The distribution space is finite, hence we may view this as a
transductive learning algorithm. Recall our notation of π(u,v) denoting the indicator function for
the predicate u ≺π v. Thus π is viewed as a binary hypothesis function over

(V
2
)

, and Π(V ) can be
viewed as the concept class of all binary hypotheses satisfying transitivity: π(u,v)+π(v,y)≥ π(u,y)
for all u,v,y.

A sample E of unordered pairs gives rise to a partial cost,CE defined as follows:

Definition 2 Let (V,E) denote an undirected graph over V , which may contain parallel edges (E is
a multi-set). The partial MFAST cost CE(π) is defined as

CE(π,V,W ) =

(

n
2

)

|E|−1 ∑
(u,v)∈E
u<πv

W (v,u) .

(The accounting of parallel edges in E is clear.) The functionCE(·, ·, ·) can be viewed as an empirical
unbiased estimator ofC(π,V,W ) if E ⊆

(V
2
)

is chosen uniformly at random among all (multi)subsets
of a given size.

The basic question in statistical learning theory is, how good is the minimizer π of CE , in terms
ofC? The notion of VC dimension by Vapnik and Chervonenkis (1971) gives us a nontrivial bound
which is, albeit suboptimal (as we shall soon see), a good start for our purpose.

Lemma 3 The VC dimension of the set of permutations on V , viewed as binary classifiers on pairs
of elements, is n−1.

It is easy to show that the VC dimension is at most O(n logn). Indeed, the number of permutations
is at most n!, and the VC dimension is always bounded by the log of the concept class cardinality.
That the bound is linear was proven by Ailon and Radinsky (2011). We present the proof here in
Appendix A for completeness. The implications of the VC bound are as follows.

Proposition 4 Assume E is chosen uniformly at random (with repetitions) as a sample of m ele-
ments from

(V
2
)

, where m> n. Then with probability at least 1−δ over the sample, all permutations
π satisfy:

|CE(π,V,W )−C(π,V,W )|= n2O

(
√

n logm+ log(1/δ)
m

)

.

The consequence of Proposition 4 are as follows: If we want to minimize C(π,V,W ) over π to
within an additive error of µn2, and succeed in doing so with probability at least 1−δ, it is enough
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to choose a sample E of O(µ−2(n logn+ logδ−1)) elements from
(V
2
)

uniformly at random (with
repetitions), and optimize CE(π,V,W ). Assume from now on that δ is at least e−n, so that we get a
more manageable sample bound of O(µ−2n logn). Before turning to optimizingCE(π,V,W ), a hard
problem in its own right (Karp, 1972; Dinur and Safra, 2002), we should first understand whether
this bound is at all good for various scenarios. We need some basic notions of distance between
permutations. For two permutations π,σ, the Kendall-Tau distance dτ(π,σ) is defined as

dτ(π,σ) = ∑
u +=v
1[(u≺π v)∧ (v≺σ u)] .

The Spearman Footrule distance dfoot(π,σ) is defined as

dfoot(π,σ) =∑
u
|ρπ(u)−ρσ(u)| .

The following is a well known inequality due to Diaconis and Graham (1977) relating the two
distance measures for all π,σ:

dτ(π,σ)≤ dfoot(π,σ)≤ 2dτ(π,σ) . (4)

Clearly dτ and dfoot are metrics. It is also clear thatC(·,V, ·) is an extension of dτ(·, ·) to distances
between permutations and binary tournaments, with the triangle inequality of the form dτ(π,σ) ≤
C(π,V,W )+C(σ,V,W ) satisfied for allW and π,σ ∈Π(V ).

Assume now that we are able, using Proposition 4 and the ensuing comment, to find a solution
π for MFAST, with an additive regret of O(µn2) with respect to an optimal solution π∗ for some
µ> 0. The triangle inequality implies that the distance dτ(π,π∗) between our solution and the true
optimal is Ω(µn2). By (4), this means that dfoot(π,π∗) = Ω(µn2). By the definition of dfoot, this
means that the average element v ∈ V is translated Ω(µn) positions away from its position in π∗.
In a real life application (e.g., in information retrieval), one may want elements to be at most a
constant γ positions away from their position in a correct permutation. This translates to a sought
regret of O(γn) inC(π,V,W ), or, using the above notation, to µ= γ/n. Clearly, Proposition 4 cannot
guarantee less than a quadratic sample size for such a regret, which is tantamount to queryingW in
its entirety. We can do better: In this work, for any ε> 0 we will achieve a regret ofO(εC(π∗,V,W ))
usingO(ε−6n log5 n) queries intoW , regardless of how small the optimal costC(π∗,V,W ) is. Hence,
our regret is relative to the optimal loss. This is clearly not achievable using Proposition 4. Let us
outline another practical case of interest. Assume a scenario in which a ground truth permutation
π ∈Π(V ) exists, and the noisy preference matrixW is generated by a human responder who errs on
a pair u,v with probability f (|ρπ(u)−ρπ(v)|), where f is some monotonically decreasing function.
Intuitively, this scenario posits that people confuse the order of two elements the “closer” they are
to each other. If, say, f (x) = px−ν for some ν > 0 and p > 0, then the cost of the optimal solution
π would be Θ(pn2−ν) with high probability.5 Proposition 4 tells us that if we wanted to find a
permutation with relative error of ε, namely, of absolute error Θ(εpn2−ν), then we would need
O(ε−2p−2n1+2ν logn) queries. Our result achieves the same error with an almost linear dependence
on n (albeit a worse dependence on ε).

One may argue that the VC bound measures the merits of uniform, non-adaptive sampling too
pessimistically. This isn’t the case. Consider the extreme case in which the optimal cost is zero. We

5. We are assuming stochastic noise for the sake of the example, although this work deals with adversarial noise.

144



ACTIVE LEARNING FROM PAIRWISE PREFERENCES

argue that a uniform sample of pairs requires Ω(n2) query complexity. Indeed, if the optimal cost
is zero then unless one queries all n− 1 consecutive pairs in the unique optimal permutation, one
cannot reveal it. It is now easy to see that sampling o(n2) pairs uniformly (either with or without
repetition) would succeed in doing so with exponentially (in n) small probability. A relative ε
approximation cannot be thus achieved. But we know that an adaptive sample of O(n logn) pairs on
expectation (QuickSort) does better. It is folklore thatΩ(n logn) is also a lower bound in the perfect
(zero cost) case. Hence, one cannot hope to get rid of the logn factor in our main result, Theorem 7
below.

Before continuing, we need need a slight generalization of Proposition 4.

Proposition 5 Let V1, . . . ,Vk be an ordered decomposition of V . Let B denote the set of indices
i ∈ [k] such that Vi is big in V . Assume E is chosen uniformly at random (with repetitions) as a
sample of m elements from

⋃
i∈B
(Vi
2
)

, where m > n. For each i = 1, . . . ,k, let Ei = E ∩
(Vi
2
)

. Define
CE(π,{V1, . . . ,Vk},W ) to be

CE(π,{V1, . . . ,Vk},W ) =

(

∑
i∈B

(

ni
2

)

)

|E|−1∑
i∈B

(

ni
2

)−1
|Ei|CEi(π|Vi ,Vi,W|Vi) . (5)

(The normalization is defined so that the expression is an unbiased estimator of
∑i∈BC(π|Vi ,Vi,W|Vi). If |Ei| = 0 for some i, formally define

(ni
2
)−1|Ei|CEi(π|Vi ,Vi,W|Vi) = 0.) Then

with probability at least 1− e−n over the sample, all permutations π ∈Π(V ) satisfy:
∣

∣

∣

∣

∣

CE(π,{V1, . . . ,Vk},W )−∑
i∈B

C(π|Vi ,Vi,W |Vi)

∣

∣

∣

∣

∣

= ∑
i∈B

(

ni
2

)

O

(
√

n logm+ log(1/δ)
m

)

.

Proof Consider the set of binary functions ∏i∈BΠ(Vi) on the domain
⋃
i∈BVi ×Vi, defined as

follows: If u,v ∈Vj×Vj for some j ∈ B , then

((πi)i∈B)(u,v) = π j(u,v) .

It is clear that the VC dimension of this function set is at most the sum of the VC dimensions of
{Π(Vi)}i∈B , hence by Lemma 3 at most n. The result follows.

2.4 Using an ε-Good Partition

The following lemma explains why an ε-good partition is good for our purpose.

Lemma 6 Fix ε > 0 and assume we have an ε-good partition (Definition 1) V1, . . . ,Vk of V . Let B
denote the set of i ∈ [k] such that Vi is big in V , and let B̄ = [k] \B . Let ni = |Vi| for i = 1, . . . ,n,
and let E denote a random sample of O(ε−6n logn) elements from

⋃
i∈B
(Vi
2
)

, each element chosen
uniformly at random with repetitions. Let Ei denote E ∩

(Vi
2
)

. Let CE(π,{V1, . . . ,Vk},W ) be defined
as in (5). For any π ∈Π(V1, . . . ,Vk) define:

C̃(π) :=CE(π,{V1, . . . ,Vk},W )+∑
i∈B̄

C(π|Vi ,Vi,W|Vi)+ ∑
1≤i< j≤k

∑
(u,v)∈Vi×Vj

1v≺πu .
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Then the following event occurs with probability at least 1− e−n: For all σ ∈Π(V1, . . . ,Vk),
∣

∣C̃(σ)−C(σ,V,W )
∣

∣≤ ε min
π∈Π(V )

C(π,V,W ) . (6)

Also, if σ∗ is any minimizer of C̃(·) over Π(V1, . . . ,Vk), then

C(σ∗,V,W )≤ (1+2ε) min
π∈Π(V )

C(π,V,W ) . (7)

Before we prove the lemma, let us discuss its consequences: Given an ε-good decomposition
V1, . . . ,Vk of V , the theorem implies that if we could optimize C̃(σ) over σ ∈ Π(V1, . . . ,Vk), we
would obtain a permutation π with a relative regret of 2ε with respect to the optimizer ofC(·,V,W )
overΠ(V ). Optimizing ∑i∈B̂C(π|Vi ,Vi,W|Vi) is easy: EachVi is of size at most logn/ log logn, hence
exhaustively searching its corresponding permutation space can be done in polynomial time. In
order to compute the cost of each permutation inside the small sets Vi, we would need to queryW|Vi
in its entirety. This incurs a query cost of at most ∑i∈B̄

(ni
2
)

= O(n logn/ log logn), which is domi-
nated by the cost of obtaining the ε-good partition in the first place (see next section). Optimizing
CE(π,{V1, . . . ,Vk},W ) given E is a tougher nut to crack, is known as the minimum feedback arc-set
(MFAS) problem and is computationally much harder than than MFAST (Karp, 1972; Dinur and
Safra, 2002). For now we focus on query and not computational complexity, and notice that the
size |E| = O(ε−4n logn) of the sample set is all we need. In Section 4 we show a counterpart of
Lemma 6 which provides similar guarantees for practitioners who choose to relax it using SVM, for
which fast solvers exist.
Proof For any permutation σ ∈Π(V1, . . . ,Vk), it is clear that

C̃(σ)−C(σ,V,W ) =CE(σ,{V1, . . . ,Vk},W )−∑
i∈B

C(σ|Vi ,Vi,W|Vi) .

By Proposition 5, with probability at least 1− e−n the absolute value of the RHS is bounded by
ε3∑i∈B

(ni
2
)

, which is at most εminπ∈Π(V )C(π,V,W ) by (2). This establishes (6). Inequality (7) is
obtained from (6) together with (3) and the triangle inequality.

3. A Query Efficient Algorithm for ε-Good Decomposing

The section is dedicated to proving the following:

Theorem 7 Given a set V of size n, a preference oracle W and an error tolerance parameter 0 <
ε< 1, there exists a polynomial time algorithm which returns, with constant probability, an ε-good
partition of V , querying at most O(ε−6n log5 n) locations in W on expectation. The running time of
the algorithm (counting computations) is O(npoly(logn,ε−1)).

Before describing our algorithm, we need some definitions.

Definition 8 Let π denote a permutation over V . Let v∈V and i∈ [n]. We define πv→i to be the per-
mutation obtained by moving the rank of v to i in π, and leaving the rest of the elements in the same
order. For example, if V = {x,y,z} and (π(1),π(2),π(3)) = (x,y,z), then
(πx→3(1),πx→3(2),πx→3(3)) = (y,z,x).
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Definition 9 Fix a permutation π over V , an element v ∈ V and an integer i ∈ [n]. We define
the number TestMove(π,V,W,v, i) as the decrease in the cost C(·,V,W ) achieved by moving from
π to πv→i. More precisely, TestMove(π,V,W,v, i) = C(π,V,W )−C(πv→i,V,W ) . Equivalently, if
i≥ ρπ(v) then

TestMove(π,V,W,v, i) = ∑
u:ρπ(u)∈[ρπ(v)+1,i]

(Wuv−Wvu) .

A similar expression can be written for i< ρπ(v).
Now assume that we have a multi-set E ⊆

(V
2
)

. We define TestMoveE(π,V,W,v, i), for i≥ ρπ(v),
as

TestMoveE(π,V,W,v, i) =
|i−ρπ(v)|

|Ẽ| ∑
u:(u,v)∈Ẽ

(W (u,v)−W (v,u)) ,

where the multiset Ẽ is defined as {(u,v) ∈ E : ρπ(u) ∈ [ρπ(v)+ 1, i]}. Similarly, for i < ρπ(v) we
define

TestMoveE(π,V,W,v, i) =
|i−ρπ(v)|

|Ẽ| ∑
u:(u,v)∈Ẽ

(W (v,u)−W (u,v)) , (8)

where the multiset Ẽ is now defined as {(u,v) ∈ E : ρπ(u) ∈ [i,ρπ(v)−1]}.

Lemma 10 Fix a permutation π over V , an element v ∈V, an integer i ∈ [n] and another integer N.
Let E ⊆

(V
2
)

be a random (multi)-set of size N with elements (v,u1), . . . ,(v,uN), drawn so that for
each j ∈ [N] the element u j is chosen uniformly at random from among the elements lying between
v (exclusive) and position i (inclusive) in π.
Then E[TestMoveE(π,V,W,v, i)] = TestMove(π,V,W,v, i). Additionally, for any δ > 0, except with
probability of failure δ,

|TestMoveE(π,V,W,v, i)−TestMove(π,V,W,v, i)|= O

(

|i−ρπ(v)|
√

logδ−1
N

)

.

The lemma is easily proven using, for example, Hoeffding tail bounds, using the fact that |W (u,v)|≤
1 for all u,v.

3.1 The Decomposition Algorithm

Our decomposition algorithm SampleAndRank is detailed in Algorithm 1, with subroutines in Al-
gorithms 2 and 3. It can be viewed as a query efficient improvement of the main algorithm of
Kenyon-Mathieu and Schudy (2007). Another difference is that we are not interested in an approx-
imation algorithm for MFAST: Whenever we reach a small block (line 3) or a big block with a
probably approximately sufficiently high cost (line 8) in our recursion of Algorithm 2), we simply
output it as a block in our partition. Denote the resulting outputted partition by V1, . . . ,Vk. Denote
by π̂ the minimizer of C(·,V,W ) over Π(V1, . . . ,Vk). Most of the analysis is dedicated to showing
thatC(π̂,V,W )≤ (1+ ε)minπ∈Π(V )C(π,V,W ), thus establishing (3).

In order to achieve an efficient query complexity compared to that of Kenyon-Mathieu and
Schudy (2007), we use procedure ApproxLocalImprove (Algorithm 3) to replace a greedy local
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improvement step there which is not query efficient. Aside from the aforementioned differences,
we also raise here the reader’s awareness to the query efficiency of QuickSort, which was established
by Ailon and Mohri (2010).

SampleAndRank (Algorithm 1) takes the following arguments: The set V we want to rank, the
preference matrixW and an accuracy argument ε. It is implicitly understood that the argumentW
passed to SampleAndRank is given as a query oracle, incurring a unit cost upon each access to a
matrix element by the procedure and any nested calls.

The first step in SampleAndRank is to obtain an expected constant factor approximation π to
MFAST on V,W , incurring an expected low query cost. More precisely, this step returns a random
permutation π with an expected cost of O(1) times that of the optimal solution to MFAST on V,W .
The query complexity of this step is O(n logn) on expectation (Ailon and Mohri, 2010). Before
continuing, we make the following assumption, which holds with constant probability usingMarkov
probability bounds.

Assumption 11 The costC(π,V,W ) of the initial permutation π computed line 2 of SampleAndRank
is at most O(1) times that of the optimal solution π∗ to MFAST on (V,W ), and the query cost in-
curred in the computation is O(n logn).

Following QuickSort, a recursive procedure SampleAndDecompose is called. It implements a
divide-and-conquer algorithm. Before branching, it executes the following steps. Lines 5 to 9 are
responsible for identifying local chaos, with sufficiently high probability. The following line 10
calls a procedure ApproxLocalImprove (Algorithm 3) which is responsible for performing query-
efficient approximate greedy steps. We devote the next Sections 3.2-3.4 to describing this procedure.
The establishment of the ε-goodness of SampleAndRank’s output (establishing (3)) is deferred to
Section 3.5.

3.2 Approximate Local Improvement Steps

The procedure ApproxLocalImprove takes as input a set V of size N, the preference oracle W , a
permutation π on V , two numbers C0, ε and an integer n. The number n is the size of the input
in the root call to SampleAndDecompose, passed down in the recursion, and used for the purpose
of controlling the success probability of each call to the procedure (there are a total of O(n logn)
calls, and a union bound will be used to bound a failure probability, hence each call may fail with
probability inversely polynomial in n). The goal of the procedure is to repeatedly identify, with
high probability, single vertex moves that considerably decrease the cost. Note that in the PTAS
of Kenyon-Mathieu and Schudy (2007), a crucial step in their algorithms entails identifying single
vertex moves that decrease the cost by a magnitude which, given our sought query complexity,
would not be detectable. Hence, our algorithm requires altering this crucial part in their algorithm.

The procedure starts by creating a sample ensemble S = {Ev,i : v ∈ V, i ∈ [B,L]}, where B =
log1Θ(εN/ logn)2 and L = 3logN4. The size of each Ev,i ∈ S is Θ(ε−2 log2 n), and each element
(v,x) ∈ Ev,i was added (with possible multiplicity) by uniformly at random selecting, with repeti-
tions, an element x ∈V positioned at distance at most 2i from the position of v in π. Let Dπ denote
the distribution space from which S was drawn, and let PrX∼Dπ [X = S ] denote the probability of
obtaining a given sample ensemble S .

We want S to enable us to approximate the improvement in cost obtained by moving a single
element u to position j.
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Definition 12 Fix u ∈V and j ∈ [n], and assume log | j−ρπ(u)|≥ B. Let != 3log | j−ρπ(u)|4. We
say that S is successful at u, j if |{x : (u,x) ∈ Eu,!}∩{x : ρπ(x) ∈ [ρπ(u), j]}|=Ω(ε−2 log2 n) .

In words, success of S at u, j means that sufficiently many samples x ∈ V such that ρπ(x) is be-
tween ρπ(u) and j are represented in Eu,!. Conditioned on S being successful at u, j, note that the
denominator of TestMoveE (defined in (8)) does not vanish, and we can thereby define:

Definition 13 S is a good approximation at u, j if
∣

∣TestMoveEu,!(π,V,W,u, j)−TestMove(π,V,W,u, j)
∣

∣≤
1
2
ε| j−ρπ(u)|/ logn ,

where ! is as in Definition 12.

In words, S being a good approximation at u, j allows us to approximate a quantity of interest
TestMove(π,V,W,u, j), and to detect whether it is sufficiently large, and more precisely, at least
Ω(ε| j−ρπ(u)|/ logn).

Definition 14 We say that S is a good approximation if it is successful and a good approximation
at all u ∈V, j ∈ [n] satisfying 3log | j−ρπ(u)|4 ∈ [B,L].

Using Chernoff bounds to ensure that S is successful ∀u, j as in Definition 14, then using Hoeffding
to ensure that S is a good approximation at all such u, j and finally union bounding we get

Lemma 15 Except with probability 1−O(n−4), S is a good approximation.

Algorithm 1 SampleAndRank(V,W,ε)
1: n← |V |
2: π← Expected O(1)-approx solution to MFAST using O(n logn)W -queries on expectation us-
ing QuickSort (Ailon et al., 2008a)

3: return SampleAndDecompose(V,W,ε,n,π)

3.3 Mutating the Pair Sample To Reflect a Single Element Move

Line 17 in ApproxLocalImprove requires elaboration. In lines 15-20, we check whether there exists
an element u and position j, such that moving u to j (giving rise to πu→ j) would considerably im-
prove the MFAST cost of the procedure input, based on a high probability approximate calculation.
The approximation is done using the sample ensemble S . If such an element u exists, we execute
the exchange π← πu→ j. With respect to the new value of the permutation π, the sample ensemble
S becomes stale. By this we mean, that if S was a good approximation with respect to π, then it is
no longer necessarily a good approximation with respect to πu→ j. We must refresh it. Before the
next iteration of the while loop, we perform in line 17 a transformation ϕu→ j to S , so that the re-
sulting sample ensemble ϕu→ j(S) is distributed according to Dπu→ j . More precisely, we will define
a transformation ϕ such that

ϕu→ j(Dπ) = Dπu→ j , (9)

where the left hand side denotes the distribution obtained by drawing from Dπ and applying ϕu→ j
to the result. The transformation ϕu→ j is performed as follows. Denoting ϕu→ j(S) = S ′ = {E ′v,i :
v ∈V, i ∈ [B,L]}, we need to define each E ′v,i.
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Algorithm 2 SampleAndDecompose(V,W,ε,n,π)
1: N← |V |
2: if N ≤ logn/ log logn then
3: return trivial partition {V}
4: end if
5: E← random subset of O(ε−4 logn) elements from

(V
2
)

(with repetitions)
6: C←CE(π,V,W ) (C is an additive O(ε2N2) approximation ofC w.p. ≥ 1−n−4)
7: ifC =Ω(ε2N2) then
8: return trivial partition {V}
9: end if
10: π1← ApproxLocalImprove(V,W,π,ε,n)
11: k← random integer in the range [N/3,2N/3]
12: VL← {v ∈V : ρπ(v)≤ k}, πL← restriction of π1 to VL
13: VR←V \VL, πR← restriction of π1 to VR
14: return concatenation of decomposition SampleAndDecompose(VL,W,ε,n,πL) and decompo-

sition SampleAndDecompose(VR,W,ε,n,πR)

Algorithm 3 ApproxLocalImprove(V,W,π,ε,n) (Note: π used as both input and output)
1: N← |V |, B← 3log(Θ(εN/ logn)4, L← 3logN4
2: if N = O(ε−3 log3 n) then
3: return
4: end if
5: for v ∈V do
6: r← ρπ(v)
7: for i= B . . .L do
8: Ev,i← /0
9: for m= 1..Θ(ε−2 log2 n) do
10: j← integer uniformly at random chosen from [max{1,r−2i},min{n,r+2i}]
11: Ev,i← Ev,i∪{(v,π( j))}
12: end for
13: end for
14: end for
15: while ∃u ∈V and j ∈ [n] s.t. (setting ! := 3log | j−ρπ(u)|4):

! ∈ [B,L] and TestMoveEu,!(π,V,W,u, j)> ε| j−ρπ(u)|/ logn

do
16: for v ∈V and i ∈ [B,L] do
17: refresh sample Ev,i with respect to the move u→ j (see Section 3.3)
18: end for
19: π← πu→ j
20: end while
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Definition 16 We say that Ev,i is interesting in the context of π and πu→ j if the two sets T1,T2 defined
as

T1 = {x ∈V : |ρπ(x)−ρπ(v)|≤ 2i}
T2 = {x ∈V : |ρπu→ j(x)−ρπu→ j(v)|≤ 2

i}

differ.

We set E ′v,i = Ev,i for all v, i for which Ev,i is not interesting.

Observation 17 There are at most O(|ρπ(u)− j| logn) interesting choices of v, i. Additionally, if
v += u, then for T1,T2 as in Definition 16, |T1∆T2|= O(1), where ∆ denotes symmetric difference.

Fix one interesting choice v, i. Let T1,T2 be as in Definition 16. By the last observation, each
of T1 and T2 contains O(1) elements that are not contained in the other. Assume |T1| = |T2|, let
X1 = T1 \ T2, and X2 = T2 \ T1. Fix any injection α : X1 → X2, and extend α : T1 → T2 so that
α(x) = x for all x ∈ T1∩T2. Finally, define

E ′v,i = {(v,α(x)) : (v,x) ∈ Ev,i} . (10)

(The case |T1| += |T2| may occur due to the clipping of the ranges [ρπ(v)− 2i,ρπ(v) + 2i] and
[ρπu→ j(v)− 2i,ρπu→ j(v)+ 2i] to a smaller range. This is a simple technicality which may be taken
care of by formally extending the setV by N additional elements ṽL1 , . . . , ṽLN , extending the definition
of ρπ for all permutation π on V so that ρπ(ṽLa) =−a+1 for all a and similarly N = |V | additional
elements ṽR1 , . . . , ṽRN such that ρπ(ṽRa ) = N+ a. Formally extend W so that W (v, ṽLa) =W (ṽLa ,v) =
W (v, ṽRa ) =W (ṽRa ,v) = 0 for all v ∈V and a. This eliminates the need for clipping ranges in line 10
in ApproxLocalImprove.)

Finally, for v= u we create E ′v,i from scratch by repeating the loop in line 7 for that v.
It is easy to see that (9) holds. We need, however, something stronger that (9). Since our

analysis assumes that S ∼Dπ is successful, we must be able to measure the distance (in total vari-
ation) between the random variable (Dπ| success) defined by the process of drawing from Dπ and
conditioning on the result’s success, and Dπu→ j . By Lemma 15, the total variation distance between
(Dπ| success) andDπu→ j isO(n−4). Using a simple chain rule argument, we conclude the following:

Lemma 18 Fix π0 on V of size N, and fix u1, . . . ,uk ∈V and j1, . . . , jk ∈ [n]. Consider the following
process. We draw S 0 from Dπ0 , and define

S 1 = ϕu1→ j1(S
0),S2 = ϕu2→ j2(S

1), · · · ,Sk = ϕuk→ jk(S
k−1)

π1 = π0u1→ j1 ,π
2 = π1u2→ j2 , · · · ,πk = πk−1uk→ jk .

Consider the random variable Sk conditioned on S0,S1, . . . ,Sk−1 being successful for
π0, . . . ,πk−1, respectively. Then the total variation distance between the distribution of Sk and the
distribution Dπk is at most O(kn−4).
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3.4 Bounding the Query Complexity of Computing ϕu→ j(S)

We now need a notion of distance between S and S ′, measuring how many extra pairs were intro-
duced ino the new sample family. These pairs may incur the cost of querying W . We denote this
measure as dist(S ,S ′), and define it as dist(S ,S ′) :=

∣

∣

⋃
v,i Ev,i∆E ′v,i

∣

∣ .

Lemma 19 Assume S ∼Dπ for some permutation π, and S ′ = ϕu→ j. Then
E[dist(S ,S ′)] = O(ε−3 log3 n).

Proof Denote S = {Ev,i} and S ′ = {E ′v,i}. Fix some v += u. By construction, the sets Ev,i for which
Ev,i += E ′v,i must be interesting, and there are at most O(|ρπ(u)− j| logn) such, using Observation 17.
Fix such a choice of v, i. By (10), Ev,i will indeed differ from E ′v,i only if it contains an element (v,x)
for some x ∈ T1 \T2. But the probability of that is at most

1− (1−O(2−i))Θ(ε
−2 log2 n) ≤ 1− e−Θ(ε

−22−i log2 n) = O(ε−22−i log2 n)

(We used the fact that i ≥ B, where B is as defined in line 1 of ApproxLocalImprove, and N =
Ω(ε−3 log3 n) as guaranteed in line 3 of ApproxLocalImprove.) Therefore, the expected size of
E ′v,i∆Ev,i (counted with multiplicities) is O(ε−22−i log

2 n).
Now consider all the interesting sets Ev1.i1 , . . . ,EvP,iP . For each possible value i it is easy to see

that there are at most 2|ρπ(u)− j| p’s for which ip = i. Therefore,

E

[

P

∑
p=1

|E ′vp,ip∆Evp,ip |

]

= O

(

ε−2|ρπ(u)− j| log2 n
L

∑
i=B
2−i
)

,

where B,L are defined in line 1 in ApproxLocalImprove. Summing over i ∈ [B,L], we get at most
O(ε−3|ρπ(u)− j| log3 n/N). For v = u, the set {Ev,i} is drawn from scratch, clearly contributing
O(ε−2 log3 n) to dist(S ,S ′). The claim follows.

3.5 Analysis of SampleAndDecompose

Throughout the execution of the algorithm, various high probability events must occur in order for
the algorithm guarantees to hold. Let S1,S2, . . . denote the sample families that are given rise to
through the executions of ApproxLocalImprove, either between lines 5 and 14, or as a mutation
done between lines 15 and 20. We will need the first Θ(n4) to be good approximations, based
on Definition 14. Denote this favorable event E1. By Lemma 18, and using a union bound, with
constant probability (say, 0.99) this happens. We also need the cost approximation C obtained in
line 5 to be successful. Denote this favorable event E2. By Hoeffding tail bounds, this happens
with probability 1−O(n−4) for each execution of the line. This line is obviously executed at most
O(n logn) times, and hence we can lower bound the probability of success of all executions by 0.99.

From now throughout, we make the following assumption, which is true by the above with
probability at least 0.97.

Assumption 20 Events E1 and E2 hold true.

Note that by conditioning the remainder of our analysis on this assumption may bias some expec-
tation upper bounds derived earlier and in what follows. This bias can multiply the estimates by at
most 1/0.97, which can be absorbed in the O-notation of these bounds.
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Let π∗ denote the optimal permutation for the root call to SampleAndDecompose with V,W,ε.
The permutation π is, by Assumption 11, a constant factor approximation for MFAST on V,W . Us-
ing the triangle inequality, we conclude that dτ(π,π∗) ≤ C(π,V,W ) + C(π∗,V,W ). Hence,
E[dτ(π,π∗)] = O(C(π∗,V,W )) . From this we conclude, using (4), that

E[dfoot(π,π∗)] = O(C(π∗,V,W )) .

Now consider the recursion tree T of SampleAndDecompose. Denote I the set of internal
nodes, and byL the set of leaves (i.e., executions exiting from line 8). For a call SampleAndDecompose
corresponding to a node X in the recursion tree, denote the input arguments by (VX ,W,ε,n,πX). Let
L[X ],R[X ] denote the left and right children of X respectively. Let kX denote the integer k in 11 in the
context of X ∈ I . Hence, by our definitions, VL[X ],VR[X ],πL[X ] and πR[X ] are precisely VL,VR,πL,πR
from lines 12-13 in the context of node X .

Take, as in line 1, NX = |VX |. Let π∗X denote the optimal MFAST solution for instance (VX ,W|VX ).
By E1 we conclude that the first Θ(n4) times in which we iterate through the while loop in
ApproxLocalImprove (counted over all calls to ApproxLocalImprove), the cost of πXu→ j is an actual
improvement compared to πX (for the current value of πX ,u and j in iteration), and the improvement
in cost is of magnitude at least Ω(ε|ρπX (u)− j|/ logn), which is Ω(ε2NX/ log2 n) due to the use of
B defined in line 1. But this means that the number of iterations of the while loop in line 15 of
ApproxLocalImprove is

O(ε−2C(πX ,VX ,W|VX ) log
2 n/NX) .

Indeed, otherwise the true cost of the running solution would go below 0. Since
C(πX ,VX ,W|VX ) is at most

(NX
2
)

, the number of iterations is hence at most O(ε−2NX log2 n). By
Lemma 19 the expected query complexity incurred by the call to ApproxLocalImprove is therefore
O(ε−5NX log5 n). Summing over the recursion tree, the total query complexity incurred by calls to
ApproxLocalImprove is, on expectation, at most O(ε−5n log6 n).

Now consider the moment at which the while loop of ApproxLocalImprove terminates. Let
π1X denote the permutation obtained at that point, returned to SampleAndDecompose in line 10.
We classify the elements v ∈VX to two families: V shortX denotes all u ∈VX s.t. |ρπ1X (u)−ρπ∗X (u)|=
O(εNX/ logn), andV longX denotesVX \V shortX . We know, by assumption, that the last sample ensemble
S used in ApproxLocalImprove was a good approximation, hence for all u ∈V longX ,

TestMove(π1X ,VX ,W|VX ,u,ρπ∗X (u)) = O(ε|ρπ1X (u)−ρπ∗X (u)|/ logn). (11)

Definition 21 (Kenyon-Mathieu and Schudy, 2007) For u ∈ VX, we say that u crosses kX if the
interval [ρπ1X (u),ρπ∗X (u)] contains the integer kX .

Let V crossX denote the (random) set of elements u ∈VX that cross kX as chosen in line 11. We define
a key quantity TX as in Kenyon-Mathieu and Schudy (2007) as follows:

TX = ∑
u∈V crossX

TestMove(π1X ,VX ,W|VX ,u,ρπ∗X (u)) .

Following (11), the elements u ∈V longX can contribute at most

O



ε ∑
u∈V longX

|ρπ1X (u)−ρπ∗X (u)|/ logn





153



AILON

to TX . Hence the total contribution from such elements is, by definition,

O(εdfoot(π1X ,π∗X)/ logn)

which is, using (4) at most O(εdτ(π1X ,π∗X)/ logn). Using the triangle inequality and the definition
of π∗X , the last expression, in turn, is at most O(εC(π1X ,VX ,W|VX )/ logn).

We now bound the contribution of the elements u ∈ V shortX to TX . The probability of each such
element to cross k is O(|ρπ1X (u)− ρπ∗X (u)|/NX). Hence, the total expected contribution of these
elements to TX is

O



 ∑
u∈V shortX

|ρπ1X (u)−ρπ∗X (u)|
2/NX



 . (12)

Under the constraints ∑u∈V shortX
|ρπ1X (u) − ρπ∗X (u)| ≤ dfoot(π1X ,π∗X) and |ρπ1X (u) − ρπ∗X (u)| =

O(εNX/ logn), the maximal value of (12) is

O(dfoot(π1X ,π∗X)εNX/(NX logn)) = O(dfoot(π1X ,π∗X)ε/ logn) .

Again using (4) and the triangle inequality, the last expression is

O(εC(π1X ,VX ,W|VX )/ logn) .

Combining the accounting for V long and V short, we conclude

EkX [TX ] = O(εC(π∗X ,VX ,W|VX )/ logn) , (13)

where the expectation is over the choice of kX in line 11 of SampleAndDecompose.
We are now in a position to use a key Lemma by Kenyon-Mathieu and Schudy (2007). First we

need a definition: Consider the optimal solution π′X respecting VL[X ],VR[X ] in lines 12 and 13. By
this we mean that π′X must rank all of the elements in VXL before (to the left of) VRX . For the sake
of brevity, letC∗X be shorthand forC(π∗X ,VX ,W|VX ) andC

′
X forC(π

;
X ,VX ,W|VX ).

Lemma 22 (Kenyon-Mathieu and Schudy, 2007) With respect to the distribution of the number kX
in line 11 of SampleAndDecompose,

E[C′X ]≤ O

(

dfoot(π1X ,π∗X)3/2

NX

)

+E[TX ]+C∗X . (14)

Using (4), we can replace dfoot(π1X ,π∗X) with dτ(π1X ,π∗X) in (14). Using the triangle inequality,
we can then, in turn, replace dτ(π1X ,π∗X) withC(π1X ,VX ,W|VX ).

3.6 Summing Over the Recursion Tree

Let us study the implication of (14) for our purpose. Recall that {V1, . . . ,Vk} is the decomposition
returned by SampleAndRank, where each Vi corresponds to a leaf in the recursion tree. Also recall
that π̂ denotes the minimizer of C(·,V,W ) over all permutations in Π(V1, . . . ,Vk) respecting the
decomposition. Given Assumption 20 it suffices, for our purposes, to show that π̂ is a (relative)
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small approximation for MFAST on V,W . Our analysis of this account is basically that of Kenyon-
Mathieu and Schudy (2007), with slight changes stemming from bounds we derive on E[TX ]. We
present the proof in full detail for the sake of completeness. Let RT denote the root node.

For X ∈ I , let βX denote the contribution of the split L[X ],R[X ] to the LHS of (3). More pre-
cisely,

βX = ∑
u∈L[X ],v∈R[X ]

1W (v,u)=1 ,

so we get ∑1≤i< j≤k∑(u,v)∈Vi×Vj 1W (v,u)=1 = ∑X∈I βX .
For any X ∈ I , note also that by our definitions βX =C′X−C∗L[X ]−C

∗
R[X ]. Hence, using Lemma 22

and the ensuing comment,

E[βX ]≤ O

(

E

[

C(π1X ,VX ,W|VX )
3/2

NX

])

+E[TX ]+E[C∗X ]−E[C∗L[X ]]−E[C
∗
R[X ]] ,

where the expectations are over the entire space of random decisions made by the algorithm execu-
tion. Summing the last inequality over X ∈ I , we get (minding the cancellations):

E

[

∑
X∈I

βX

]

≤ O

(

∑
X∈I

E

[

C(π1X ,VX ,W|VX )
3/2

NX

])

+E

[

∑
X∈I

TX

]

+

C∗RT− ∑
X∈L

E[C∗X ] . (15)

The expression E[∑X∈I TX ] is bounded by O(E [∑X∈I ε∑C∗X/ logn]) using (13) (which depends
on Assumption 20). Clearly the sum of C∗X for X ranging over nodes X ∈ I in a particular level is
at most C(πRT,V,W ) (again using Assumption 20 to assert that the cost of π1X is less than the cost
of πX at each node X). By taking Assumption 11 into account, C(πRT,V,W ) is O(C∗RT). Hence,
summing over all O(logn) levels,

E

[

∑
X∈I

TX

]

= O(εC∗RT) .

Let C1X =C(π1X ,VX ,W|VX ) for all x ∈ I . Denote by F the expression in the O-notation of the first
summand in the RHS of (15), more precisely:

F = ∑
X∈I

E

[

C1
3/2
X
NX

]

, (16)

where we remind the reader that NX = |VX |. It will suffice to show that under Assumption 20, the
following inequality holds with probability 1:

G((C1X)X∈I ,(NX)X∈I ) := ∑
X∈I

C1
3/2
X /NX ≤ c3εC1RT , (17)

where c3 > 0 is some global constant. This turns out to require a bit of elementary calculus. A
complete proof of this assertion is not included in the extended abstract of Kenyon-Mathieu and
Schudy (2007). We present a version of the proof here for the sake of completeness.

Under assumption 20, the following two constraints hold uniformly for all X ∈ I with probabil-
ity 1: LettingCX =C(πX ,VX ,W|VX ),
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(A1) If X is other than RT, let Y be its sibling and P their parent. In case Y ∈ I :

C1X +C1Y ≤C1P . (18)

(In case Y ∈ L , we simply have thatC1X ≤C1P.6) To see this, notice thatC1X ≤CX , and simi-
larly, in case Y ∈ I ,C1Y ≤CY . ClearlyCX +CY ≤C1P, because πX ,πY are simply restrictions
of π1P to disjoint blocks of VP. The required inequality (18) is proven.

(A2) C1X ≤ c2ε2N2X for some global c2 > 0.

In order to show (17), we may increase the values C1X for X += RT in the following manner:
Start with the root node. If it has no children, there is nothing to do because then G = 0. If it has
only one child X ∈ I , continuously increase C1X until either C1X = C1RT (making (A1) tight) or
C1X = c2ε2N2X (making (A2) above tight). Then recurse on the subtree rooted by X . In case RT
has two children X ,Y ∈ I (say, X on left), continuously increaseC1X until eitherC1X +C1Y =C1RT
((A1) tight) or untilC1X = c2ε2N2X ((A2) tight) . Then do the same forC1Y , namely, increase it until
(A1) is tight or until C1Y = c2ε2N2Y ((A2) tight). Recursively perform the same procedure for the
subtrees rooted by X ,Y .

After performing the above procedure, let I1 denote the set of internal nodes X for which (A1) is
tight, namely, either the sibling Y of X is a leaf andC1X =C1P (where P is X’s parent) or the sibling
Y ∈ I andC1X +C1Y =C1P (in which case also Y ∈ I1). Let I2 = I \I1. By our construction, for all
X ∈ I2,C1X = c2ε2N2X .

Note that if X ∈ I2 then its children (more precisely, those in I ) cannot be in I1. Indeed, this
would violate (A2) for at least one child, in virtue of the fact that NY lies in the range [NX/3,2NX/3]
for any child Y of X . Hence, the set I1 ∪ {RT} forms a connected subtree which we denote by
T1. Let P ∈ T1 be an internal node in T1. Assume it has one child in T1, call it X . Then
C1X = C1P and in virtue of NX ≤ 2NP/3 we have C1

3/2
P /NP ≤ (2/3)3/2C1

3/2
X /NX . Now assume

P has two children X ,Y ∈ T1. Then C1X +C1Y = C1P. Using elementary calculus, we also have
thatC1

3/2
P /NP ≤ (C1

3/2
X /NX +C1

3/2
Y /NY )/

√
2 (indeed, the extreme case occurs for NX = NY = NP/2

and C1X = C1Y = C1P/2). We conclude that for any P internal in T1, the corresponding contri-
bution C1

3/2
P /NP to G is geometrically dominated by that of its children in I1. Hence the entire

sum G1 = ∑X∈I1∪{RT}C1
3/2
X /NX is bounded by c4∑X∈L1C1

3/2
X /NX for some constant c4, where L1

is the set of leaves of T1. For each such leaf X ∈ L1, we have that C1
3/2
X /NX ≤ c3/22 εC1X (using

(A2)), hence ∑X∈L1C1
3/2
X /NX ≤ ∑X∈L1 c

3/2
2 εC1X ≤ c3/22 εC1R (the rightmost inequality in the chain

follows from {VX}X∈L1 forming a disjoint cover of V =VRT, together with (A1)). We conclude that
G1 ≤ c4c

3/2
2 εC1R.

To conclude (17), it remains to show thatG2=G−G1=∑X∈I2 . For P∈G2, clearlyC1
3/2
P /NP=

c3/22 ε3N3P. Hence, if X ,Y ∈ G2 are children of P in I2 then C1
3/2
P /NP ≥ c5C1

3/2
X /NX +C1

3/2
Y /NY

and if X is the unique child of P in I2, then C1
3/2
P /NP ≥ c5C1

3/2
X /NX , for some global c5 > 1. In

other words, the contribution to G2 corresponding to P geometrically dominates the sum of the
corresponding contributions of its children. We conclude that G2 is at most some constant c6 times
∑X∈root(I2)C1

3/2
X /NX , where root(I2) is the set of roots of the forest induced by I2. As before, it is

clear that {VX}X∈root(I2) is a disjoint collection, hence as before we conclude that G2 ≤ c7εC1R for
some global c7 > 0. The assertion (17) follows, and hence (16).

6. We can say something stronger in this case, but we won’t need it here.
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Plugging our bounds in (15), we conclude that

E

[

∑
X∈I

βX

]

≤C∗RT(1+O(ε))− ∑
X∈L

E[C∗X ] .

ClearlyC(π̂,V,W ) = ∑X∈I βX +∑X∈LC∗X . Hence

E[C(π̂,V,W )] = (1+O(ε))C∗RT = (1+O(ε))C∗ .

We conclude the desired assertion on expectation. Assumption 20, together with a simple counting
of accesses to W gives our main result, Theorem 7, as a simple corollary. A simple counting of
accesses toW proves Theorem 7.

4. Using Our Decomposition as a Preconditioner for SVM

We consider the following practical scenario, which is can be viewed as an improvement over a
version of the well known SVMrank (Joachims, 2002; Herbrich et al., 2000) for the preference
label scenario.

Consider the setting developed in Section 2.1, where each element u in V is endowed with a
feature vector ϕ(u) ∈ Rd for some d (we can also use infinite dimensional spaces via kernels, but
the effective dimension is never more than n= |V |). Assume, additionally, that ‖φ(u)‖2 ≤ 1 for all
u ∈ V (otherwise, normalize). Our hypothesis class H is parametrized by a weight vector w ∈ Rd ,
and each associated permutation πw is obtained by sorting the elements of V in decreasing order of
a score given by scorew(u) = 〈ϕ(u),w〉. In other words, u ≺πw v if scorew(u) > scorew(v) (in case
of ties, assume any arbitrary tie breaking scheme).

The following SVM formulation is a convex relaxation for the problem of optimizingC(h,V,W )
over our chosen concept class H :

(SVM1) minimize F1(w,ξ) =∑
u,v
ξu,v

s.t. ∀u,v :W (u,v) = 1 scorew(u)− scorew(v)≥ 1−ξu,v
∀u,v ξu,v ≥ 0

‖w‖ ≤ c

Instead of optimizing (SVM1) directly, we make the following observation. An ε-good decom-
position V1, . . . ,Vk gives rise to a surrogate learning problem over Π(V1, . . . ,Vk) ⊆ Π(V ), such that
optimizing over the restricted set does not compromise optimality over Π(V ) by more than a rela-
tive regret of ε (property (3)). In turn, optimizing overΠ(V1, . . . ,Vk) can be done separately for each
block Vi. A natural underlying SVM corresponding to this idea is captured as follows:

(SVM2) minimize F2(w,ξ) = ∑
u,v∈∆1∪∆2

ξu,v

s.t. ∀(u,v) ∈ ∆1∪∆2 scorew(u)− scorew(v)≥ 1−ξu,v
∀u,v ξu,v ≥ 0

‖w‖ ≤ c ,
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where ∆1 =
⋃
1≤i< j≤kVi×Vj and ∆2 =

⋃k
i=1{(u,v) : u,v ∈Vi∧W (u,v) = 1}.

Abusing notation, for w ∈Rd s.t. ‖w‖ ≤ c, let F1(w) denote minF1(w,ξ), where the minimum is
taken over all ξ that satisfy the constraints of SVM1. Observe that F1(w) is simply F1(w,ξ), where
ξ is taken as:

ξu,v =

{

max{0,1− scorew(u)+ scorew(v)} W (u,v) = 1
0 otherwise

.

Similarly define F2(w) as the minimizer of F2(w,ξ), which is obtained by setting:

ξu,v =

{

max{0,1− scorew(u)+ scorew(v)} (u,v) ∈ ∆1∪∆2
0 otherwise

. (19)

Let π∗ denote the optimal solution to MFAST on V,W .
We do not know how to directly relate the optimal solution to SVM1 and that of SVM2. How-

ever, we can can replace SVM2 with a careful sampling of constraints thereof, such that (i) the
solution to the subsampled SVM is optimal to within a relative error of ε as a solution to SVM2,
and (ii) the sampling is such that only O(npoly(logn,ε−1)) queries to W are necessary in order
to construct it. This result, which we quantify in what follows, strongly relies on the local chaos
property of the ε-good decomposition (2) and some combinatorics on permutations.

Our subsampled SVM which we denote by SVM3, is obtained as follows. For ease of notation
we assume that all blocks V1, . . . ,Vk are big in V , otherwise a simple accounting of small blocks
needs to be taken care of, adding notational clutter. Let ∆3 be a subsample of size M (chosen
shortly) of ∆2, each element chosen uniformly at random from ∆2 (with repetitions - hence ∆3 is a
multi-set). Define:

(SVM3) minimize F3(w,ξ) = ∑
u,v∈∆1

ξu,v+
∑k
i=1
(ni
2
)

M ∑
u,v∈∆3

ξu,v

s.t. ∀(u,v) ∈ ∆1∪∆3 scorew(u)− scorew(v)≥ 1−ξu,v
∀u,v ξu,v ≥ 0

‖w‖ ≤ c

As before, define F3(w) to be F3(w,ξ), where ξ= ξ(w) is the minimizer of F3(w, ·) and is taken
as

ξu,v =

{

max{0,1− scorew(u)+ scorew(v)} (u,v) ∈ ∆1∪∆3
0 otherwise

.

Our ultimate goal is to show that for quite small M, SVM3 is a good approximation of SVM2.
To that end we first need another lemma.

Lemma 23 Any feasible solution (w,ξ) for SVM1 satisfies ∑u,v ξu,v ≥C(π∗,V,W ).

Proof The following has been proven by Ailon et al. (2008a): Consider non-transitive triangles
induced byW : These are triplets (u,v,y) of elements inV such thatW (u,v) =W (v,y) =W (y,u) = 1.
Note that any permutation must disagree with at least one pair of elements contained in a non-
transitive triangle. Let T denote the set of non-transitive triangles. Now consider an assignment of
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non-negative weights βt for each t ∈ T . We say that the weight system {βt}t∈T packs T if for all
u,v ∈V such thatW (u,v) = 1, the sum ∑(u,v) in t βt is at most 1. (By u,v in t we mean that u,v are
two of the three elements inducing t.) Let {β∗t }t∈T be a weight system packing T with the maximum
possible value of the sum of weights. Then

∑
t∈T

β∗t ≥C(π∗,V,W )/3 . (20)

Now consider one non-transitive triangle t = (u,v,y) ∈ T . We lower bound ξu,v+ ξv,y+ ξy,u
for any ξ such that w,ξ is a feasible solution to SVM1. Letting a = scorew(u)− scorew(v),b =
scorew(v)− scorew(y),c= scorew(y)− scorew(u), we get from the constraints in SVM1 that ξu,v ≥
1−a,ξv,y ≥ 1−b,ξy,u ≥ 1− c. But clearly a+b+ c= 0, hence

ξu,v+ξv,y+ξy,u ≥ 3 . (21)

Now notice that the objective function of SVM1 can be bounded from below as follows:

∑
u,v
ξu,v ≥ ∑

t=(u,v,y)∈T
β∗t (ξu,v+ξv,y+ξy,u)

≥ ∑
t=(u,v,y)∈T

β∗t ·3

≥ C(π∗,V,W ) .

(The first inequality was due to the fact that {β∗t }t∈T is a packing of the non-transitive triangles,
hence the total weight corresponding to each pair u,v is at most 1. The second inequality is from
(21) and the third is from (20).) This concludes the proof.

Theorem 24 Let ε ∈ (0,1) and M =O(ε−6(1+2c)2d log(1/ε)). Then with high constant probabil-
ity, for all w such that ‖w‖ ≤ c,

|F3(w)−F2(w)|= O(εF2(w)) .

Proof Let Bd(c) = {z ∈ Rd : ‖z‖ ≤ c}. Fix a vector w ∈ Bd(c). Over the random choice of ∆3, it
is clear that E[F3(w)] = F2(w). We need a strong concentration bound. From the observation that
|ξu,v|≤ 1+2c for all u,v, we conclude (using Hoeffding bound) that for all µ> 0,

Pr[|F3(w)−F2(w)|≥ µ]≤ exp

{

−µ2M
(

∑k
i=1
(ni
2
)

(1+2c)
)2

}

. (22)

Let η= ε3 and consider an η-net of vectors w in the ball Bd(c). By this we mean a subset Γ⊆ Bd(c)
such that for all z ∈ Bd(c) there exists w ∈ Γ s.t. ‖z−w‖ ≤ η. Standard volumetric arguments imply
that there exists such a set Γ of cardinality at most (c/η)d .

Let z ∈ Γ and w ∈ Bd(c) such that ‖w− z‖ ≤ η. From the definition of F2,F3, it is clear that

|F2(w)−F2(z)|≤
k

∑
i=1

(

ni
2

)

ε3, |F3(w)−F3(z)|≤
k

∑
i=1

(

ni
2

)

ε3 . (23)
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Using (22), we conclude that for any µ> 0, by takingM=O(µ−2(∑
(ni
2
)

)2(1+2c)2d log(cη−1)),
with constant probability over the choice of ∆3, uniformly for all z ∈ Γ:

|F3(z)−F2(z)|≤ µ .

Take µ= ε3∑k
i=1
(ni
2
)

. We conclude (plugging in our choice of µ and the definition of η) that by
choosing

M = O(ε−6(1+2c)2d log(c/ε)) ,

with constant probability, uniformly for all z ∈ Γ:

|F3(z)−F2(z)|≤ ε3
k

∑
i=1

(

ni
2

)

.

Using (23) and the triangle inequality, we conclude that for all w ∈ Bd(c),

|F3(w)−F2(w)|≤ 3ε3
k

∑
i=1

(

ni
2

)

. (24)

By property (2) of the ε-goodness definition, (24) implies

|F3(w)−F2(w)|≤ 3ε min
π∈Π(V )

k

∑
i=1
C(π|Vi ,Vi,W|Vi) = 3ε

k

∑
i=1

min
σ∈Π(Vi)

C(σ,Vi,W|Vi) .

By Lemma 23 applied separately in each block Vi, this implies

|F3(w)−F2(w)|≤ 3ε
k

∑
i=1
∑

u,v∈Vi
ξu,v = 3εF2(w),

(where ξ= ξ(w) is as defined in (19).) This concludes the proof.

5. Limitations and Future Work

Optimality. The exponent of ε−6 in Theorem 7 seems rather high, and it would be interesting to
improve it. A better dependence of ε−4 has been recently claimed by Ailon et al. (2011). It would
be interesting to find the correct bound.

Practicality. Our bounds are asymptotic, and our work calls for experimentation in order to
determine in which cases our sampling technique beats uniform sampling.

Searching in natural permutation subspaces. Algorithm 1, which leads to our main result Theo-
rem 7, is heavily based on dividing and conquering. This is also the main limitation of this work. To
understand this limitation, consider the scenario of Section 4. There, the practitioner searches in the
limited space of linearly induced permutations, namely, permutations induced by a linear functional
applied to the features endowing the elements inV . It is not hard to conceive a scenario in which our
divide and conquer step constrains the algorithm to search in a region of permutations that does not
intersect this restricted search space. This, in fact, was the reason for our inability to relate between
SVM1 and SVM2 (and its subsampled counterpart, SVM3). There is nothing special about linearly
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induced permutations, for this matter. In a recently studied scenario (Jamieson and Nowak, 2011),
for example, one searches in the space of permutations induced by score functions computed as the
distance from a fixed point from some metric space in which V is embedded. The same problem
exists there as well: our sampling algorithm cannot be used to find almost optimal solutions within
any restricted permutation subspace. Interestingly, the main result of Ailon et al. (2011), achieved
while this work has been under review, has alleviated this problem using new techniques.
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Appendix A. Linear VC Bound of Permutation Set

To see why the VC dimension of the set of permutations viewed as binary function over the set of
all possible

(n
2
)

preferences, it is enough to show that any collection of n pairs of elements cannot
be shattered by the set of permutation. (Refer to the definition of VC dimension by Vapnik and
Chervonenkis (1971) for a definition of shattering). Indeed, any such collection must contain a
cycle, and the set of permutations cannot direct a cycle cyclically.

Appendix B. Why The Disagreement Coefficient Does Not Help Here

We now show why a straightforward application of the disagreement coefficient (Hanneke, 2007) is
not useful in our setting. The key idea of Hanneke (2007) is a definition of a measure of distance
between concepts, equalling the volume of data points on which they disagree on. Using this mea-
sure, one then defines a ball Br(π) of radius r around a concept (a permutation) π, in an obvious
way. The disagreement coefficient Θ is then defined as the smallest possible number bounding as
a linear function Θr the volume of points on which the hypotheses in Br are not unanimous on.
Adopting this idea here, the underlying distance between hypotheses (permutations) is simply the
Kendall-tau distance dτ(π,σ) divided by

(n
2
)

. We need to normalize this distance because Hanneke’s
work, as does most statistical machine learning work, assumes a probability measure on the space of
instances (pairs of elements), while we used the counting measure for various reasons of simplicity.
We define the normalized distance function as d̂τ(π,σ) =

(n
2
)−1dτ(π,σ).

If we consider a ball Br(π) of radius r> 2/n around some permutation π on V , then it is easy to
see that there does not exist a pair of elements u,v ∈V on which Br(π) is unanimous on. Indeed, a
simple swap of any two elements results in a permutation π′ satisfying d̂τ(π,π′)≤ 2/n. This means
that the disagreement coefficient, by definition, is it least Ω(n). Recall that the VC dimension
of the space of permutations, viewed as

(n
2
)

-dimensional binary preference vectors, is at most n.
Plugging these bounds into the analysis of Hanneke (2007) of the famous A2 algorithm using the
disagreement coefficient results in a sample complexity which is Ω(n3) for any desired error rate.
Clearly this is suboptimal because the number of pairs is only O(n2).
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Abstract
Online prediction methods are typically presented as serial algorithms running on a single proces-
sor. However, in the age of web-scale prediction problems, it is increasingly common to encounter
situations where a single processor cannot keep up with the high rate at which inputs arrive. In
this work, we present the distributed mini-batch algorithm, a method of converting many serial
gradient-based online prediction algorithms into distributed algorithms. We prove a regret bound
for this method that is asymptotically optimal for smooth convex loss functions and stochastic in-
puts. Moreover, our analysis explicitly takes into account communication latencies between nodes
in the distributed environment. We show how our method can be used to solve the closely-related
distributed stochastic optimization problem, achieving an asymptotically linear speed-up over mul-
tiple processors. Finally, we demonstrate the merits of our approach on a web-scale online predic-
tion problem.

Keywords: distributed computing, online learning, stochastic optimization, regret bounds, convex
optimization

1. Introduction

Many natural prediction problems can be cast as stochastic online prediction problems. These are
often discussed in the serial setting, where the computation takes place on a single processor. How-
ever, when the inputs arrive at a high rate and have to be processed in real time, there may be no
choice but to distribute the computation across multiple cores or multiple cluster nodes. For exam-
ple, modern search engines process thousands of queries a second, and indeed they are implemented
as distributed algorithms that run in massive data-centers. In this paper, we focus on such large-
scale and high-rate online prediction problems, where parallel and distributed computing is critical
to providing a real-time service.
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First, we begin by defining the stochastic online prediction problem. Suppose that we observe a
stream of inputs z1,z2, . . ., where each zi is sampled independently from a fixed unknown distribution
over a sample space Z. Before observing each zi, we predict a point wi from a setW . After making
the prediction wi, we observe zi and suffer the loss f (wi,zi), where f is a predefined loss function.
Then we use zi to improve our prediction mechanism for the future (e.g., using a stochastic gradient
method). The goal is to accumulate the smallest possible loss as we process the sequence of inputs.
More specifically, we measure the quality of our predictions using the notion of regret, defined as

R(m) =
m

∑
i=1

( f (wi,zi)− f (w!,zi)) ,

where w! = argminw∈W Ez[ f (w,z)]. Regret measures the difference between the cumulative loss of
our predictions and the cumulative loss of the fixed predictor w!, which is optimal with respect to
the underlying distribution. Since regret relies on the stochastic inputs zi, it is a random variable. For
simplicity, we focus on bounding the expected regret E[R(m)], and later use these results to obtain
high-probability bounds on the actual regret. In this paper, we restrict our discussion to convex
prediction problems, where the loss function f (w,z) is convex in w for every z ∈ Z, and W is a
closed convex subset of Rn.

Before continuing, we note that the stochastic online prediction problem is closely related, but
not identical, to the stochastic optimization problem (see, e.g., Wets, 1989; Birge and Louveaux,
1997; Nemirovski et al., 2009). The main difference between the two is in their goals: in stochastic
optimization, the goal is to generate a sequence w1,w2, . . . that quickly converges to the minimizer
of the function F(·) =Ez[ f (·,z)]. The motivating application is usually a static (batch) problem, and
not an online process that occurs over time. Large-scale static optimization problems can always be
solved using a serial approach, at the cost of a longer running time. In online prediction, the goal
is to generate a sequence of predictions that accumulates a small loss along the way, as measured
by regret. The relevant motivating application here is providing a real-time service to users, so our
algorithm must keep up with the inputs as they arrive, and we cannot choose to slow down. In this
sense, distributed computing is critical for large-scale online prediction problems. Despite these
important differences, our techniques and results can be readily adapted to the stochastic online
optimization setting.

We model our distributed computing system as a set of k nodes, each of which is an indepen-
dent processor, and a network that enables the nodes to communicate with each other. Each node
receives an incoming stream of examples from an outside source, such as a load balancer/splitter.
As in the real world, we assume that the network has a limited bandwidth, so the nodes cannot sim-
ply share all of their information, and that messages sent over the network incur a non-negligible
latency. However, we assume that network operations are non-blocking, meaning that each node
can continue processing incoming traffic while network operations complete in the background.

How well can we perform in such a distributed environment? At one extreme, an ideal (but
unrealistic) solution to our problem is to run a serial algorithm on a single “super” processor that is k
times faster than a standard node. This solution is optimal, simply because any distributed algorithm
can be simulated on a fast-enough single processor. It is well-known that the optimal regret bound
that can be achieved by a gradient-based serial algorithm on an arbitrary convex loss is O(

√
m)

(e.g., Nemirovski and Yudin, 1983; Cesa-Bianchi and Lugosi, 2006; Abernethy et al., 2009). At the
other extreme, a trivial solution to our problem is to have each node operate in isolation of the other
k−1 nodes, running an independent copy of a serial algorithm, without any communication over
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the network. We call this the no-communication solution. The main disadvantage of this solution
is that the performance guarantee, as measured by regret, scales poorly with the network size k.
More specifically, assuming that each node processes m/k inputs, the expected regret per node is
O(
√

m/k). Therefore, the total regret across all k nodes is O(
√
km) - namely, a factor of

√
k worse

than the ideal solution. The first sanity-check that any distributed online prediction algorithm must
pass is that it outperforms the naı̈ve no-communication solution.

In this paper, we present the distributed mini-batch (DMB) algorithm, a method of converting
any serial gradient-based online prediction algorithm into a parallel or distributed algorithm. This
method has two important properties:

• It can use any gradient-based update rule for serial online prediction as a black box, and
convert it into a parallel or distributed online prediction algorithm.

• If the loss function f (w,z) is smooth in w (see the precise definition in Equation (5)), then our
method attains an asymptotically optimal regret bound of O(

√
m). Moreover, the coefficient

of the dominant term
√
m is the same as in the serial bound, and independent of k and of the

network topology.

The idea of using mini-batches in stochastic and online learning is not new, and has been previously
explored in both the serial and parallel settings (see, e.g., Shalev-Shwartz et al., 2007; Gimpel et al.,
2010). However, to the best of our knowledge, our work is the first to use this idea to obtain such
strong results in a parallel and distributed learning setting (see Section 7 for a comparison to related
work).

Our results build on the fact that the optimal regret bound for serial stochastic gradient-based
prediction algorithms can be refined if the loss function is smooth. In particular, it can be shown
that the hidden coefficient in the O(

√
m) notation is proportional to the standard deviation of the

stochastic gradients evaluated at each predictor wi (Juditsky et al., 2011; Lan, 2009; Xiao, 2010).
We make the key observation that this coefficient can be effectively reduced by averaging a mini-
batch of stochastic gradients computed at the same predictor, and this can be done in parallel with
simple network communication. However, the non-negligible communication latencies prevent a
straightforward parallel implementation from obtaining the optimal serial regret bound.1 In order
to close the gap, we show that by letting the mini-batch size grow slowly with m, we can attain the
optimal O(

√
m) regret bound, where the dominant term of order

√
m is independent of the number

of nodes k and of the latencies introduced by the network.
The paper is organized as follows. In Section 2, we present a template for stochastic gradient-

based serial prediction algorithms, and state refined variance-based regret bounds for smooth loss
functions. In Section 3, we analyze the effect of using mini-batches in the serial setting, and show
that it does not significantly affect the regret bounds. In Section 4, we present the DMB algorithm,
and show that it achieves an asymptotically optimal serial regret bound for smooth loss functions.
In Section 5, we show that the DMB algorithm attains the optimal rate of convergence for stochastic
optimization, with an asymptotically linear speed-up. In Section 6, we complement our theoretical
results with an experimental study on a realistic web-scale online prediction problem. While sub-
stantiating the effectiveness of our approach, our empirical results also demonstrate some interesting

1. For example, if the network communication operates over a minimum-depth spanning tree and the diameter of the
network scales as log(k), then we can show that a straightforward implementation of the idea of parallel variance
reduction leads to an O

(
√

m log(k)
)

regret bound. See Section 4 for details.
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Algorithm 1: Template for a serial first-order stochastic online prediction algorithm.
for j = 1,2, . . . do

predict wj
receive input z j sampled i.i.d. from unknown distribution
suffer loss f (wj,z j)
define g j = ∇w f (wj,z j)
compute (wj+1,a j+1) = φ(a j,g j,α j)

end

properties of mini-batching that are not reflected in our theory. We conclude with a comparison of
our methods to previous work in Section 7, and a discussion of potential extensions and future re-
search in Section 8. The main topics presented in this paper are summarized in Dekel et al. (2011).
Dekel et al. (2011) also present robust variants of our approach, which are resilient to failures and
node heterogeneity in an asynchronous distributed environment.

2. Variance Bounds for Serial Algorithms

Before discussing distributed algorithms, we must fully understand the serial algorithms on which
they are based. We focus on gradient-based optimization algorithms that follow the template out-
lined in Algorithm 1. In this template, each prediction is made by an unspecified update rule:

(wj+1,a j+1) = φ(a j,g j,α j). (1)

The update rule φ takes three arguments: an auxiliary state vector a j that summarizes all of the
necessary information about the past, a gradient g j of the loss function f (·,z j) evaluated at wj, and
an iteration-dependent parameter α j such as a stepsize. The update rule outputs the next predic-
tor wj+1 ∈W and a new auxiliary state vector a j+1. Plugging in different update rules results in
different online prediction algorithms. For simplicity, we assume for now that the update rules are
deterministic functions of their inputs.

As concrete examples, we present two well-known update rules that fit the above template. The
first is the projected gradient descent update rule,

wj+1 = πW

(

wj−
1
α j
g j
)

, (2)

where πW denotes the Euclidean projection onto the setW . Here 1/α j is a decaying learning rate,
with α j typically set to be Θ(

√
j). This fits the template in Algorithm 1 by defining a j to simply

be wj, and defining φ to correspond to the update rule specified in Equation (2). We note that the
projected gradient method is a special case of the more general class of mirror descent algorithms
(e.g., Nemirovski et al., 2009; Lan, 2009), which all fit in the template of Equation (1).

Another family of update rules that fit in our setting is the dual averaging method (Nesterov,
2009; Xiao, 2010). A dual averaging update rule takes the form

wj+1 = argmin
w∈W

{〈

j

∑
i=1

gi,w

〉

+α j h(w)

}

, (3)
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where 〈·, ·〉 denotes the vector inner product, h :W →R is a strongly convex auxiliary function, and
α j is a monotonically increasing sequence of positive numbers, usually set to be Θ(

√
j). The dual

averaging update rule fits the template in Algorithm 1 by defining a j to be∑ j
i=1 gi. In the special case

where h(w) = (1/2)‖w‖22, the minimization problem in Equation (3) has the closed-form solution

wj+1 = πW

(

−
1
α j

j

∑
i=1

g j

)

. (4)

For stochastic online prediction problems with convex loss functions, both of these update rules
have expected regret bound of O(

√
m). In general, the coefficient of the dominant

√
m term is

proportional to an upper bound on the expected norm of the stochastic gradient (e.g., Zinkevich,
2003). Next we present refined bounds for smooth convex loss functions, which enable us to develop
optimal distributed algorithms.

2.1 Optimal Regret Bounds for Smooth Loss Functions

As stated in the introduction, we assume that the loss function f (w,z) is convex in w for each z ∈ Z
and thatW is a closed convex set. We use ‖ ·‖ to denote the Euclidean norm inRn. For convenience,
we use the notation F(w) = Ez[ f (w,z)] and assume w! = argminw∈W F(w) always exists. Our main
results require a couple of additional assumptions:

• Smoothness - we assume that f is L-smooth in its first argument, which means that for any
z ∈ Z, the function f (·,z) has L-Lipschitz continuous gradients. Formally,

∀z ∈ Z, ∀w,w′ ∈W, ‖∇w f (w,z)−∇w f (w′,z)‖ ≤ L‖w−w′‖ . (5)

• Bounded Gradient Variance - we assume that ∇w f (w,z) has a σ2-bounded variance for any
fixed w, when z is sampled from the underlying distribution. In other words, we assume that
there exists a constant σ≥ 0 such that

∀w ∈W, Ez

[

∥

∥∇w f (w,z)−∇F(w)]
∥

∥

2
]

≤ σ2 .

Using these assumptions, regret bounds that explicitly depend on the gradient variance can be
established (Juditsky et al., 2011; Lan, 2009; Xiao, 2010). In particular, for the projected stochastic
gradient method defined in Equation (2), we have the following result:

Theorem 1 Let f (w,z) be an L-smooth convex loss function in w for each z ∈ Z and assume that
the stochastic gradient ∇w f (w,z) has σ2-bounded variance for all w ∈W. In addition, assume
that W is convex and bounded, and let D=

√

maxu,v∈W ‖u− v‖2/2. Then using α j = L+(σ/D)
√
j

in Equation (2) gives

E[R(m)] ≤
(

F(w1)−F(w!)
)

+D2L+2Dσ
√
m.

In the above theorem, the assumption thatW is a bounded set does not play a critical role. Even
if the learning problem has no constraints on w, we could always confine the search to a bounded
set (say, a Euclidean ball of some radius) and Theorem 1 guarantees an O(

√
m) regret compared to

the optimum within that set.
Similarly, for the dual averaging method defined in Equation (3), we have:
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Theorem 2 Let f (w,z) be an L-smooth convex loss function in w for each z ∈ Z, assume that the
stochastic gradient ∇w f (w,z) has σ2-bounded variance for all w ∈ W, and let D =
√

h(w!)−minw∈W h(w). Then, by setting w1 = argminw∈W h(w) and α j = L+ (σ/D)
√
j in the

dual averaging method we have

E[R(m)] ≤
(

F(w1)−F(w!)
)

+D2L+2Dσ
√
m.

For both of the above theorems, if ∇F(w!) = 0 (which is certainly the case ifW =Rn), then the
expected regret bounds can be simplified to

E[R(m)] ≤ 2D2L+2Dσ
√
m . (6)

Proofs for these two theorems, as well as the above simplification, are given in Appendix A. Al-
though we focus on expected regret bounds here, our results can equally be stated as high-probability
bounds on the actual regret (see Appendix B for details).

In both Theorem 1 and Theorem 2, the parameters α j are functions of σ. It may be difficult to
obtain precise estimates of the gradient variance in many concrete applications. However, note that
any upper bound on the variance suffices for the theoretical results to hold, and identifying such a
bound is often easier than precisely estimating the actual variance. A loose bound on the variance
will increase the constants in our regret bounds, but will not change its qualitative O(

√
m) rate.

Euclidean gradient descent and dual averaging are not the only update rules that can be plugged
into Algorithm 1. The analysis in Appendix A (and Appendix B) actually applies to a much larger
class of update rules, which includes the family of mirror descent updates (Nemirovski et al., 2009;
Lan, 2009) and the family of (non-Euclidean) dual averaging updates (Nesterov, 2009; Xiao, 2010).
For each of these update rules, we get an expected regret bound that closely resembles the bound in
Equation (6).

Similar results can also be established for loss functions of the form f (w,z) +Ψ(w), where
Ψ(w) is a simple convex regularization term that is not necessarily smooth. For example, setting
Ψ(w) = λ‖w‖1 with λ > 0 promotes sparsity in the predictor w. To extend the dual averaging
method, we can use the following update rule in Xiao (2010):

wj+1 = argmin
w∈W

{〈

1
j

j

∑
i=1

gi, w

〉

+Ψ(w)+
α j

j
h(w)

}

.

Similar extensions to the mirror descent method can be found in, for example, Duchi and Singer
(2009). Using these composite forms of the algorithms, the same regret bounds as in Theorem 1
and Theorem 2 can be achieved even if Ψ(w) is nonsmooth. The analysis is almost identical to
Appendix A by using the general framework of Tseng (2008).

Asymptotically, the bounds we presented in this section are only controlled by the variance σ2
and the number of iterations m. Therefore, we can think of any of the bounds mentioned above as
an abstract function ψ(σ2,m), which we assume to be monotonically increasing in its arguments.

2.2 Analyzing the No-Communication Parallel Solution

Using the abstract notation ψ(σ2,m) for the expected regret bound simplifies our presentation sig-
nificantly. As an example, we can easily give an analysis of the no-communication parallel solution
described in the introduction.
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Algorithm 2: Template for a serial mini-batch algorithm.
for j = 1,2, . . . do

initialize ḡ j := 0
for s= 1, . . . ,b do

define i := ( j−1)b+ s
predict wj
receive input zi sampled i.i.d. from unknown distribution
suffer loss f (wj,zi)
gi := ∇w f (wj,zi)
ḡ j := ḡ j+(1/b)gi

end
set (wj+1,a j+1) = φ

(

a j, ḡ j,α j
)

end

In the naı̈ve no-communication solution, each of the k nodes in the parallel system applies the
same serial update rule to its own substream of the high-rate inputs, and no communication takes
place between them. If the total number of examples processed by the k nodes is m, then each node
processes at most -m/k. inputs. The examples received by each node are i.i.d. from the original
distribution, with the same variance bound σ2 for the stochastic gradients. Therefore, each node
suffers an expected regret of at most ψ(σ2,-m/k.) on its portion of the input stream, and the total
regret bound is obtain by simply summing over the k nodes, that is,

E[R(m)] ≤ kψ
(

σ2,
⌈m
k

⌉)

.

If ψ(σ2,m) = 2D2L+2Dσ
√
m, as in Equation (6), then the expected total regret is

E[R(m)] ≤ 2kD2L+2Dσk
√

⌈m
k

⌉

.

Comparing this bound to 2D2L+2Dσ
√
m in the ideal serial solution, we see that it is approximately√

k times worse in its leading term. This is the price one pays for the lack of communication in the
distributed system. In Section 4, we show how this

√
k factor can be avoided by our DMB approach.

3. Serial Online Prediction using Mini-Batches

The expected regret bounds presented in the previous section depend on the variance of the stochas-
tic gradients. The explicit dependency on the variance naturally suggests the idea of using averaged
gradients over mini-batches to reduce the variance. Before we present the distributed mini-batch
algorithm in the next section, we first analyze a serial mini-batch algorithm.

In the setting described in Algorithm 1, the update rule is applied after each input is received.
We deviate from this setting and apply the update only periodically. Letting b be a user-defined
batch size (a positive integer), and considering every b consecutive inputs as a batch. We define
the serial mini-batch algorithm as follows: Our prediction remains constant for the duration of
each batch, and is updated only when a batch ends. While processing the b inputs in batch j, the
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algorithm calculates and accumulates gradients and defines the average gradient

ḡ j =
1
b

b

∑
s=1

∇w f (wj,z( j−1)b+s) .

Hence, each batch of b inputs generates a single average gradient. Once a batch ends, the serial
mini-batch algorithm feeds ḡ j to the update rule φ as the jth gradient and obtains the new prediction
for the next batch and the new state. See Algorithm 2 for a formal definition of the serial mini-batch
algorithm. The appeal of the serial mini-batch setting is that the update rule is used less frequently,
which may have computational benefits.

Theorem 3 Let f (w,z) be an L-smooth convex loss function in w for each z ∈ Z and assume that
the stochastic gradient ∇w f (w,zi) has σ2-bounded variance for all w. If the update rule φ has the
serial regret bound ψ(σ2,m), then the expected regret of Algorithm 2 over m inputs is at most

bψ
(

σ2

b
,
⌈m
b

⌉

)

.

If ψ(σ2,m) = 2D2L+2Dσ
√
m, then the expected regret is bounded by

2bD2L+2Dσ
√
m+b.

Proof Assume without loss of generality that b divides m, and that the serial mini-batch algorithm
processes exactly m/b complete batches.2 Let Zb denote the set of all sequences of b elements from
Z, and assume that a sequence is sampled from Zb by sampling each element i.i.d. from Z. Let
f̄ :W ×Zb 0→ R be defined as

f̄ (w,(z1, . . . ,zb)) =
1
b

b

∑
s=1

f (w,zs) .

In other words, f̄ averages the loss function f across b inputs from Z, while keeping the prediction
constant. It is straightforward to show that Ez̄∈Zb f̄ (w, z̄) = Ez∈Z f (w,z) = F(w).

Using the linearity of the gradient operator, we have

∇w f̄ (w,(z1, . . . ,zb)) =
1
b

b

∑
s=1

∇w f (w,zs) .

Let z̄ j denote the sequence (z( j−1)b+1, . . . ,z jb), namely, the sequence of b inputs in batch j. The
vector ḡ j in Algorithm 2 is precisely the gradient of f̄ (·, z̄ j) evaluated at wj. Therefore the serial
mini-batch algorithm is equivalent to using the update rule φ with the loss function f̄ .

Next we check the properties of f̄ (w, z̄) against the two assumptions in Section 2.1. First, if f is
L-smooth then f̄ is L-smooth as well due to the triangle inequality. Then we analyze the variance of
the stochastic gradient. Using the properties of the Euclidean norm, we can write

∥

∥∇w f̄ (w, z̄)−∇F(w)
∥

∥

2
=

∥

∥

∥

∥

1
b

b

∑
s=1

(∇w f (w,zs)−∇F(w))
∥

∥

∥

∥

2

=
1
b2

b

∑
s=1

b

∑
s′=1

〈

∇w f (w,zs)−∇F(w),∇w f (w,zs′)−∇F(w)
〉

.

2. We can make this assumption since if b does not divide m then we can pad the input sequence with additional inputs
until m/b= -m/b., and the expected regret can only increase.
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Notice that zs and zs′ are independent whenever s 1= s′, and in such cases,

E

〈

∇w f (w,zs)−∇F(w),∇w f (w,zs′)−∇F(w)
〉

=
〈

E
[

∇w f (w,zs)−∇F(w)
]

, E
[

∇w f (w,zs′)−∇F(w)
]

〉

= 0.

Therefore, we have for every w ∈W ,

E
∥

∥∇w f̄ (w, z̄)−∇F(w)
∥

∥

2
=

1
b2

b

∑
s=1

E
∥

∥(∇w f (w,zs)−∇F(w))
∥

∥

2 ≤
σ2

b
. (7)

So we conclude that ∇w f̄ (w, z̄ j) has a (σ2/b)-bounded variance for each j and each w ∈W . If the
update rule φ has a regret bound ψ(σ2,m) for the loss function f over m inputs, then its regret for f̄
over m/b batches is bounded as

E

[m/b

∑
j=1

(

f̄ (wj, z̄ j)− f̄ (w!, z̄ j)
)

]

≤ ψ

(

σ2

b
,
m
b

)

.

By replacing f̄ above with its definition, and multiplying both sides of the above inequality by b,
we have

E

[m/b

∑
j=1

jb

∑
i=( j−1)b+1

(

f (wj,zi)− f (w!,zi)
)

]

≤ bψ
(

σ2

b
,
m
b

)

.

If ψ(σ2,m) = 2D2L+2Dσ
√
m, then simply plugging in the general bound bψ(σ2/b,-m/b.) and

using -m/b. ≤ m/b+ 1 gives the desired result. However, we note that the optimal algorithmic pa-
rameters, as specified in Theorem 1 and Theorem 2, must be changed to α j = L+(σ/

√
bD)
√
j to

reflect the reduced variance σ2/b in the mini-batch setting.

The bound in Theorem 3 is asymptotically equivalent to the 2D2L+ 2Dσ
√
m regret bound for

the basic serial algorithms presented in Section 2. In other words, performing the mini-batch update
in the serial setting does not significantly hurt the performance of the update rule. On the other
hand, it is also not surprising that using mini-batches in the serial setting does not improve the
regret bound. After all, it is still a serial algorithm, and the bounds we presented in Section 2.1 are
optimal. Nevertheless, our experiments demonstrate that in real-world scenarios, mini-batching can
in fact have a very substantial positive effect on the transient performance of the online prediction
algorithm, even in the serial setting (see Section 6 for details). Such positive effects are not captured
by our asymptotic, worst-case analysis.

4. Distributed Mini-Batch for Stochastic Online Prediction

In this section, we show that in a distributed setting, the mini-batch idea can be exploited to obtain
nearly optimal regret bounds. To make our setting as realistic as possible, we assume that any
communication over the network incurs a latency. More specifically, we view the network as an
undirected graph G over the set of nodes, where each edge represents a bi-directional network link.
If nodes u and v are not connected by a link, then any communication between them must be relayed
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through other nodes. The latency incurred between u and v is therefore proportional to the graph
distance between them, and the longest possible latency is thus proportional to the diameter of G .

In addition to latency, we assume that the network has limited bandwidth. However, we would
like to avoid the tedious discussion of data representation, compression schemes, error correcting,
packet sizes, etc. Therefore, we do not explicitly quantify the bandwidth of the network. Instead,
we require that the communication load at each node remains constant, and does not grow with the
number of nodes k or with the rate at which the incoming functions arrive.

Although we are free to use any communication model that respects the constraints of our net-
work, we assume only the availability of a distributed vector-sum operation. This is a standard3
synchronized network operation. Each vector-sum operation begins with each node holding a vec-
tor v j, and ends with each node holding the sum ∑k

j=1 v j. This operation transmits messages along a
rooted minimum-depth spanning-tree of G , which we denote by T : first the leaves of T send their
vectors to their parents; each parent sums the vectors received from his children and adds his own
vector; the parent then sends the result to his own parent, and so forth; ultimately the sum of all
vectors reaches the tree root; finally, the root broadcasts the overall sum down the tree to all of the
nodes.

An elegant property of the vector-sum operation is that it uses each up-link and each down-link
in T exactly once. This allows us to start vector-sum operations back-to-back. These vector-sum
operations will run concurrently without creating network congestion on any edge of T . Further-
more, we assume that the network operations are non-blocking, meaning that each node can continue
processing incoming inputs while the vector-sum operation takes place in the background. This is
a key property that allows us to efficiently deal with network latency. To formalize how latency
affects the performance of our algorithm, let µdenote the number of inputs that are processed by the
entire system during the period of time it takes to complete a vector-sum operation across the entire
network. Usually µ scales linearly with the diameter of the network, or (for appropriate network
architectures) logarithmically in the number of nodes k.

4.1 The DMB Algorithm

We are now ready to present a general technique for applying a deterministic update rule φ in a
distributed environment. This technique resembles the serial mini-batch technique described earlier,
and is therefore called the distributed mini-batch algorithm, or DMB for short.

Algorithm 3 describes a template of the DMB algorithm that runs in parallel on each node in the
network, and Figure 1 illustrates the overall algorithm work-flow. Again, let b be a batch size, which
we will specify later on, and for simplicity assume that k divides b and µ. The DMB algorithm
processes the input stream in batches j = 1,2, . . ., where each batch contains b+ µ consecutive
inputs. During each batch j, all of the nodes use a common predictor wj. While observing the first b
inputs in a batch, the nodes calculate and accumulate the stochastic gradients of the loss function f
at wj. Once the nodes have accumulated b gradients altogether, they start a distributed vector-sum
operation to calculate the sum of these b gradients. While the vector-sum operation completes in
the background, µ additional inputs arrive (roughly µ/k per node) and the system keeps processing
them using the same predictor wj. The gradients of these additional µ inputs are discarded (to this
end, they do not need to be computed). Although this may seem wasteful, we show that this waste
can be made negligible by choosing b appropriately.

3. For example, all-reduce with the sum operation is a standard operation in MPI.
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Algorithm 3: Distributed mini-batch (DMB) algorithm (running on each node).
for j = 1,2, . . . do

initialize ĝ j := 0
for s= 1, . . . ,b/k do

predict wj
receive input z sampled i.i.d. from unknown distribution
suffer loss f (wj,z)
compute g := ∇w f (wj,z)
ĝ j := ĝ j+g

end
call the distributed vector-sum to compute the sum of ĝ j across all nodes
receive µ/k additional inputs and continue predicting using wj
finish vector-sum and compute average gradient ḡ j by dividing the sum by b
set (wj+1,a j+1) = φ

(

a j, ḡ j,α j
)

end

1 2 . . . k

wj

w j+1

b

µ

Figure 1: Work flow of the DMB algorithm. Within each batch j= 1,2, . . ., each node accumulates
the stochastic gradients of the first b/k inputs. Then a vector-sum operation across the
network is used to compute the average across all nodes. While the vector-sum operation
completes in the background, a total of µ inputs are processed by the processors using the
same predictor wj, but their gradients are not collected. Once all of the nodes have the
overall average ḡ j, each node updates the predictor using the same deterministic serial
algorithm.
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Once the vector-sum operation completes, each node holds the sum of the b gradients collected
during batch j. Each node divides this sum by b and obtains the average gradient, which we denote
by ḡ j. Each node feeds this average gradient to the update rule φ, which returns a new synchronized
prediction wj+1. In summary, during batch j each node processes (b+µ)/k inputs using the same
predictor wj, but only the first b/k gradients are used to compute the next predictor. Nevertheless,
all b+µ inputs are counted in our regret calculation.

If the network operations are conducted over a spanning tree, then an obvious variants of the
DMB algorithm is to let the root apply the update rule to get the next predictor, and then broadcast
it to all other nodes. This saves repeated executions of the update rule at each node (but requires
interruption or modification of the standard vector-sum operations in the network communication
model). Moreover, this guarantees all the nodes having the same predictor even with update rules
that depends on some random bits.

Theorem 4 Let f (w,z) be an L-smooth convex loss function in w for each z ∈ Z and assume that
the stochastic gradient ∇w f (w,zi) has σ2-bounded variance for all w ∈W. If the update rule φ has
the serial regret bound ψ(σ2,m), then the expected regret of Algorithm 3 over m samples is at most

(b+µ)ψ
(

σ2

b
,

⌈

m
b+µ

⌉)

.

Specifically, if ψ(σ2,m) = 2D2L+ 2Dσ
√
m, then setting the batch size b = m1/3 gives the expected

regret bound

2Dσ
√
m+2Dm1/3 (LD+σ

√
µ)+2Dσm1/6+2Dσµm−1/6+2µD2L. (8)

In fact, if b= mρ for any ρ ∈ (0,1/2), the expected regret bound is 2Dσ
√
m+o(

√
m).

To appreciate the power of this result, we compare the specific bound in Equation (8) with
the ideal serial solution and the naı̈ve no-communication solution discussed in the introduction. It
is clear that our bound is asymptotically equivalent to the ideal serial bound ψ(σ2,m)—even the
constants in the dominant terms are identical. Our bound scales nicely with the network latency and
the cluster size k, because µ (which usually scales logarithmically with k) does not appear in the
dominant

√
m term. On the other hand, the naı̈ve no-communication solution has regret bounded

by kψ
(

σ2,m/k
)

= 2kD2L+2Dσ
√
km (see Section 2.2). If 12 k2 m, this bound is worse than the

bound in Theorem 4 by a factor of
√
k.

Finally, we note that choosing b as mρ for an appropriate ρ requires knowledge of m in advance.
However, this requirement can be relaxed by applying a standard doubling trick (Cesa-Bianchi and
Lugosi, 2006). This gives a single algorithm that does not take m as input, with asymptotically
similar regret. If we use a fixed b regardless of m, the dominant term of the regret bound becomes
2Dσ

√

log(k)m/b; see the following proof for details.

Proof Similar to the proof of Theorem 3, we assume without loss of generality that k divides b+µ,
we define the function f̄ :W ×Zb 0→ R as

f̄ (w,(z1, . . . ,zb)) =
1
b

b

∑
s=1

f (w,zs) ,
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and we use z̄ j to denote the first b inputs in batch j. By construction, the function f̄ is L-smooth and
its gradients have σ2/b-bounded variance. The average gradient ḡ j computed by the DMB algorithm
is the gradient of f̄ (·, z̄ j) evaluated at the point wj. Therefore,

E

[m/(b+µ)

∑
j=1

(

f̄ (wj, z̄ j)− f̄ (w!, z̄ j)
)

]

≤ ψ

(

σ2

b
,
m

b+µ

)

. (9)

This inequality only involve the additional µ examples in counting the number of batches as m/b+µ.
In order to count them in the total regret, we notice that

∀ j, E
[

f̄ (wj, z̄ j) |wj
]

= E

[

1
b+µ

j(b+µ)

∑
i=( j−1)(b+µ)+1

f (wj,zi)
∣

∣

∣

∣

wj

]

,

and a similar equality holds for f̄ (w!,zi). Substituting these equalities in the left-hand-side of
Equation (9) and multiplying both sides by b+µ yields

E

[m/(b+µ)

∑
j=1

j(b+µ)

∑
i=( j−1)(b+µ)+1

(

f (wj,zi)− f (w!,zi)
)

]

≤ (b+µ)ψ
(

σ2

b
,
m

b+µ

)

.

Again, if (b+µ) divides m, then the left-hand side above is exactly the expected regret of the DMB
algorithm over m examples. Otherwise, the expected regret can only be smaller.

For the concrete case of ψ(σ2,m) = 2D2L+2Dσ
√
m, plugging in the new values for σ2 and m

results in a bound of the form

(b+µ)ψ
(

σ2

b
,

⌈

m
b+µ

⌉)

≤ (b+µ)ψ
(

σ2

b
,
m

b+µ
+1
)

≤ 2(b+µ)D2L+2Dσ
√

m+
µ
b
m+

(b+µ)2

b
.

Using the inequality
√
x+ y+ z ≤

√
x+√y+

√
z, which holds for any nonnegative numbers x, y

and z, we bound the expression above by

2(b+µ)D2L+2Dσ
√
m+2Dσ

√

µm
b

+2Dσ
b+µ√
b
.

It is clear that with b=Cmρ for any ρ ∈ (0,1/2) and any constantC > 0, this bound can be written
as 2Dσ

√
m+o(

√
m). Letting b= m1/3 gives the smallest exponents in the o(

√
m) terms.

In the proofs of Theorem 3 and Theorem 4, decreasing the variance by a factor of b, as given
in Equation (7), relies on properties of the Euclidean norm. For serial gradient-type algorithms that
are specified with different norms (see the general framework in Appendix A), the variance does not
typically decrease as much. For example, in the dual averaging method specified in Equation (3), if
we use h(w) = 1/(2(p−1))‖w‖2p for some p ∈ (1,2], then the “variance” bounds for the stochastic
gradients must be expressed in the dual norm, that is, E‖∇w f (w,z)−∇F(w)‖2q ≤ σ2, where q =
p/(p−1) ∈ [2,∞). In this case, the variance bound for the averaged function becomes

E
∥

∥∇w f̄ (w, z̄)−∇F(w)
∥

∥

2
q ≤ C(n,q)

σ2

b
,
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where C(n,q) = min{q− 1,O(log(n))} is a space-dependent constant.4 Nevertheless, we can still
obtain a linear reduction in b even for such non-Euclidean norms. The net effect is that the regret
bound for the DMB algorithm becomes 2D

√

C(n,q)σ
√
m+o(

√
m).

4.2 Improving Performance on Short Input Streams

Theorem 4 presents an optimal way of choosing the batch size b, which results in an asymptotically
optimal regret bound. However, our asymptotic approach hides a potential shortcoming that occurs
when m is small. Say that we know, ahead of time, that the sequence length is m= 15,000. More-
over, say that the latency is µ= 100, and that σ= 1 and L= 1. In this case, Theorem 4 determines
that the optimal batch size is b ∼ 25. In other words, for every 25 inputs that participate in the
update, 100 inputs are discarded. This waste becomes negligible as b grows with m and does not
affect our asymptotic analysis. However, if m is known to be small, we can take steps to improve
the situation.

Assume for simplicity that b divides µ. Now, instead of running a single distributed mini-
batch algorithm, we run c= 1+µ/b independent interlaced instances of the distributed mini-batch
algorithm on each node. At any given moment, c− 1 instances are asleep and one instance is
active. Once the active instance collects b/k gradients on each node, it starts a vector-sum network
operation, awakens the next instance, and puts itself to sleep. Note that each instance awakens after
(c−1)b= µ inputs, which is just in time for its vector-sum operation to complete.

In the setting described above, c different vector-sum operations propagate concurrently through
the network. The distributed vector sum operation is typically designed such that each network
link is used at most once in each direction, so concurrent sum operations that begin at different
times should not compete for network resources. The batch size should indeed be set such that the
generated traffic does not exceed the network bandwidth limit, but the latency of each sum operation
should not be affected by the fact that multiple sum operations take place at once.

Simply interlacing c independent copies of our algorithm does not resolve the aforementioned
problem, since each prediction is still defined by 1/c of the observed inputs. Therefore, instead of
using the predictions prescribed by the individual online predictors, we use their average. Namely,
we take the most recent prediction generated by each instance, average these predictions, and use
this average in place of the original prediction.

The advantages of this modification are not apparent from our theoretical analysis. Each in-
stance of the algorithm handles m/c inputs and suffers a regret of at most

bψ
(

σ2

b
,1+

m
bc

)

,

and, using Jensen’s inequality, the overall regret using the average prediction is upper bounded by

bcψ
(

σ2

b
,1+

m
bc

)

.

The bound above is precisely the same as the bound in Theorem 4. Despite this fact, we conjecture
that this method will indeed improve empirical results when the batch size b is small compared to
the latency term µ.

4. For further details of algorithms using p-norm, see Xiao (2010, Section 7.2) and Shalev-Shwartz and Tewari (2011).
For the derivation ofC(n,q) see for instance Lemma B.2 in Cotter et al. (2011).
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5. Stochastic Optimization

As we discussed in the introduction, the stochastic optimization problem is closely related, but not
identical, to the stochastic online prediction problem. In both cases, there is a loss function f (w,z)
to be minimized. The difference is in the way success is measured. In online prediction, success is
measured by regret, which is the difference between the cumulative loss suffered by the prediction
algorithm and the cumulative loss of the best fixed predictor. The goal of stochastic optimization is
to find an approximate solution to the problem

minimize
w∈W

F(w)! Ez[ f (w,z)] ,

and success is measured by the difference between the expected loss of the final output of the
optimization algorithm and the expected loss of the true minimizer w!. As before, we assume that
the loss function f (w,z) is convex in w for any z ∈ Z, and thatW is a closed convex set.

We consider the same stochastic approximation type of algorithms presented in Algorithm 1,
and define the final output of the algorithm, after processing m i.i.d. samples, to be

w̄m =
1
m

m

∑
j=1

wj .

In this case, the appropriate measure of success is the optimality gap

G(m) = F(w̄m)−F(w!) .

Notice that the optimality gap G(m) is also a random variable, because w̄m depends on the random
samples z1, . . . ,zm. It can be shown (see, e.g., Xiao, 2010, Theorem 3) that for convex loss functions
and i.i.d. inputs, we always have

E[G(m)] ≤
1
m
E[R(m)] .

Therefore, a bound on the expected optimality gap can be readily obtained from a bound on the
expected regret of the same algorithm. In particular, if f is an L-smooth convex loss function and
∇w f (w,z) has σ2-bounded variance, and our algorithm has a regret bound of ψ(σ2,m), then it also
has an expected optimality gap of at most

ψ̄(σ2,m) =
1
m
ψ(σ2,m) .

For the specific regret bound ψ(σ2,m) = 2D2L+ 2Dσ
√
m, which holds for the serial algorithms

presented in Section 2, we have

E[G(m)] ≤ ψ̄(σ2,m) =
2D2L
m

+
2Dσ√
m

.

5.1 Stochastic Optimization using Distributed Mini-Batches

Our template of a DMB algorithm for stochastic optimization (see Algorithm 4) is very similar to
the one presented for the online prediction setting. The main difference is that we do not have to
process inputs while waiting for the vector-sum network operation to complete. Again let b be the
batch size, and the number of batches r = 4m/b5. For simplicity of discussion, we assume that b
divides m.
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Algorithm 4: Template of DMB algorithm for stochastic optimization.
r←

⌊m
b
⌋

for j = 1,2, . . . ,r do
reset ĝ j = 0
for s= 1, . . . ,b/k do

receive input zs sampled i.i.d. from unknown distribution
calculate gs = ∇w f (wj,zs)
calculate ĝ j← ĝ j+gi

end
start distributed vector sum to compute the sum of ĝ j across all nodes
finish distributed vector sum and compute average gradient ḡ j
set (wj+1,a j+1) = φ

(

a j, ḡ j, j
)

end
Output: 1r ∑

r
j=1wj

Theorem 5 Let f (w,z) be an L-smooth convex loss function in w for each z ∈ Z and assume that
the stochastic gradient ∇w f (w,z) has σ2-bounded variance for all w ∈W. If the update rule φ used
in a serial setting has an expected optimality gap bounded by ψ̄(σ2,m), then the expected optimality
gap of Algorithm 4 after processing m samples is at most

ψ̄

(

σ2

b
,
m
b

)

.

If ψ̄(σ2,m) = 2D2L
m + 2Dσ√

m , then the expected optimality gap is bounded by

2bD2L
m

+
2Dσ√
m

.

The proof of the theorem follows along the lines of Theorem 3, and is omitted.
We comment that the accelerated stochastic gradient methods of Lan (2009), Hu et al. (2009)

and Xiao (2010) can also fit in our template for the DMB algorithm, but with more sophisti-
cated updating rules. These accelerated methods have an expected optimality bound of ψ̄(σ2,m) =
4D2L/m2+ 4Dσ/√m, which translates into the following bound for the DMB algorithm:

ψ̄

(

σ2

b
,
m
b

)

=
4b2D2L
m2

+
4Dσ√
m

.

Most recently, Ghadimi and Lan (2010) developed accelerated stochastic gradient methods for
strongly convex functions that have the convergence rate ψ̄(σ2,m) = O(1)

(

L/m2+ σ2/νm
)

, where
ν is the strong convexity parameter of the loss function. The corresponding DMB algorithm has a
convergence rate

ψ̄

(

σ2

b
,
m
b

)

= O(1)
(

b2L
m2

+
σ2

νm

)

.

Apparently, this also fits in the DMB algorithm nicely.
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The significance of our result is that the dominating factor in the convergence rate is not affected
by the batch size. Therefore, depending on the value of m, we can use large batch sizes without
affecting the convergence rate in a significant way. Since we can run the workload associated with
a single batch in parallel, this theorem shows that the mini-batch technique is capable of turning
many serial optimization algorithms into parallel ones. To this end, it is important to analyze the
speed-up of the parallel algorithms in terms of the running time (wall-clock time).

5.2 Parallel Speed-Up

Recall that k is the number of parallel computing nodes and m is the total number of i.i.d. samples
to be processed. Let b(m) be the batch size that depends on m. We define a time-unit to be the
time it takes a single node to process one sample (including computing the gradient and updating
the predictor). For convenience, let δ be the latency of the vector-sum operation in the network
(measured in number of time-units).5 Then the parallel speed-up of the DMB algorithm is

S(m) =
m

m
b(m)

(

b(m)
k +δ

) =
k

1+ δ
b(m)k

,

where m/b(m) is the number of batches, and b(m)/k+ δ is the wall-clock time by k processors
to finish one batch in the DMB algorithm. If b(m) increases at a fast enough rate, then we have
S(m)→ k as m→ ∞. Therefore, we obtain an asymptotically linear speed-up, which is the ideal
result that one would hope for in parallelizing the optimization process (see Gustafson, 1988).

In the context of stochastic optimization, it is more appropriate to measure the speed-up with
respect to the same optimality gap, not the same amount of samples processed. Let ε be a given
target for the expected optimality gap. Letmsrl(ε) be the number of samples that the serial algorithm
needs to reach this target and let mDMB(ε) be the number of samples needed by the DMB algorithm.
Slightly overloading our notation, we define the parallel speed-up with respect to the expected
optimality gap ε as

S(ε) =
msrl(ε)

mDMB(ε)
b

( b
k +δ

)

. (10)

In the above definition, we intentionally leave the dependence of b on m unspecified. Indeed, once
we fix the function b(m), we can substitute it into the equation ψ̄(σ2/b,m/b) = ε to solve for the exact
form of mDMB(ε). As a result, b is also a function of ε.

Since both msrl(ε) and mDMB(ε) are upper bounds for the actual running times to reach ε-
optimality, their ratio S(ε) may not be a precise measure of the speed-up. However, it is difficult in
practice to measure the actual running times of the algorithms in terms of reaching ε-optimality. So
we only hope S(ε) gives a conceptual guide in comparing the actual performance of the algorithms.
The following result shows that if the batch size b is chosen to be of order mρ for any ρ ∈ (0,1/2),
then we still have asymptotic linear speed-up.

Theorem 6 Let f (w,z) be an L-smooth convex loss function in w for each z∈Z and assume that the
stochastic gradient ∇w f (w,z) has σ2-bounded variance for all w ∈W. Suppose the update rule φ
used in the serial setting has an expected optimality gap bounded by ψ̄(σ2,m) = 2D2L

m + 2Dσ√
m . If the

5. The relationship between δ and µ defined in the online setting (see Section 4) is roughly µ= kδ.
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batch size in the DMB algorithm is chosen as b(m) =Θ(mρ), where ρ ∈ (0,1/2), then we have

lim
ε→0

S(ε) = k.

Proof By solving the equation
2D2L
m

+
2Dσ√
m

= ε ,

we see that the following number of samples is sufficient for the serial algorithm to reach ε-
optimality:

msrl(ε) =
D2σ2

ε2

(

1+
√

1+
2Lε
σ2

)2

.

For the DMB algorithm, we use the batch size b(m) = (θσ/DL)mρ, with some θ > 0, to obtain the
equation

2b(m)D2L
m

+
2Dσ√
m

=
2Dσ
m1/2

(

1+
θ

m1/2−ρ

)

= ε. (11)

We use mDMB(ε) to denote the solution of the above equation. Apparently mDMB(ε) is a monotone
function of ε and limε→0mDMB(ε) = ∞. For convenience (with some abuse of notation), let b(ε) to
denote b(mDMB(ε)), which is also monotone in ε and satisfies limε→0 b(ε) = ∞. Moreover, for any
batch size b> 1, we have mDMB(ε)≥ msrl(ε). Therefore, from Equation (10) we get

limsup
ε→0

S(ε)≤ lim
ε→0

k
1+ δ

b(ε)k
= k.

Next we show liminfε→0 S(ε)≥ k. For any η> 0, let

mη(ε) =
4D2σ2(1+η)2

ε2
.

which is monotone decreasing in ε, and can be seen as the solution to the equation

2Dσ
m1/2

(1+η) = ε.

Comparing this equation with Equation (11), we see that, for any η> 0, there exists an ε′ such that
for all 0< ε≤ ε′, we have mDMB(ε)≤ mη(ε). Therefore,

liminf
ε→0

S(ε) ≥ lim
ε→0

msrl(ε)
mη(ε)

k
1+ δ

b(ε)k
= lim

ε→0

(

1+
√

1+ 2Lε
σ2

)2

4(1+η)2
k

1+ δ
b(ε)k

=
1

(1+η)2
k.

Since the above inequality holds for any η > 0, we can take η → 0 and conclude that
liminfε→0 S(ε)≥ k. This finishes the proof.

For accelerated stochastic gradient methods whose convergence rates have a similar dependence
on the gradient variance (Lan, 2009; Hu et al., 2009; Xiao, 2010; Ghadimi and Lan, 2010), the batch
size b has a even smaller effect on the convergence rate (see discussions after Theorem 5), which
implies a better parallel speed-up.
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6. Experiments

We conducted experiments with a large-scale online binary classification problem. First, we ob-
tained a log of one billion queries issued to the Internet search engine Bing. Each entry in the log
specifies a time stamp, a query text, and the id of the user who issued the query (using a temporary
browser cookie). A query is said to be highly monetizable if, in the past, users who issued this
query tended to then click on online advertisements. Given a predefined list of one million highly
monetizable queries, we observe the queries in the log one-by-one and attempt to predict whether
the next query will be highly monetizable or not. A clever search engine could use this prediction to
optimize the way it presents search results to the user. A prediction algorithm for this task must keep
up with the stream of queries received by the search engine, which calls for a distributed solution.

The predictions are made based on the recent query-history of the current user. For example,
the predictor may learn that users who recently issued the queries “island weather” and “sunscreen
reviews” (both not highly monetizable in our data) are likely to issue a subsequent query which is
highly monetizable (say, a query like “Hawaii vacation”). In the next section, we formally define
how each input, zt , is constructed.

First, let n denote the number of distinct queries that appear in the log and assume that we have
enumerated these queries, q1, . . . ,qn. Now define xt ∈ {0,1}n as follows

xt, j =

{

1 if query q j was issued by the current user during the last two hours,
0 otherwise.

Let yt be a binary variable, defined as

yt =

{

+1 if the current query is highly monetizable,
−1 otherwise.

In other words, yt is the binary label that we are trying to predict. Before observing xt or yt , our
algorithm chooses a vector wt ∈ Rn. Then xt is observed and the resulting binary prediction is the
sign of their inner product 〈wt ,xt〉. Next, the correct label yt is revealed and our binary prediction is
incorrect if yt〈wt ,xt〉 ≤ 0. We can re-state this prediction problem in an equivalent way by defining
zt = ytxt , and saying that an incorrect prediction occurs when 〈wt ,zt〉 ≤ 0.

We adopt the logistic loss function as a smooth convex proxy to the error indicator function.
Formally, define f as

f (w,z) = log2
(

1+ exp(−〈w,z〉)
)

.

Additionally, we introduced the convex regularization constraint ‖wt‖ ≤C, whereC is a predefined
regularization parameter.

We ran the synchronous version of our distributed algorithm using the Euclidean dual averaging
update rule (4) in a cluster simulation. The simulation allowed us to easily investigate the effects of
modifying the number of nodes in the cluster and the latencies in the network.

We wanted to specify a realistic latency in our simulation, which faithfully mimics the behavior
of a real network in a search engine datacenter. To this end, we assumed that the nodes are connected
via a standard 1Gbs Ethernet network. Moreover, we assumed that the nodes are arranged in a
precomputed logical binary-tree communication structure, and that all communication is done along
the edges in this tree. We conservatively estimated the round-trip latency between proximal nodes
in the tree to be 0.5ms. Therefore, the total time to complete each vector-sum network operation
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Figure 2: The effects of of the batch size when serial mini-batching on average loss. The mini-
batches algorithm was applied with different batch sizes. The x-axis presents the number
of instances observed, and the y-axis presents the average loss. Note that the case b = 1
is the standard serial dual-averaging algorithm.

is log2(k) ms, where k is the number of nodes in the cluster. We assumed that our search engine
receives 4 queries per ms (which adds up to ten billion queries a month). Overall, the number of
queries discarded between mini-batches is µ= 4log2(k).

In all of our experiments, we use the algorithmic parameter α j = L+ γ
√
j (see Theorem 2).

We set the smoothness parameter L to a constant, and the parameter γ to a constant divided by
√
b.

This is because L depends only on the loss function f , which does not change in DMB, while γ
is proportional to σ, the standard deviation of the gradient-averages. We chose the constants by
manually exploring the parameter space on a separate held-out set of 500 million queries.

We report all of our results in terms of the average loss suffered by the online algorithm. This
is simply defined as (1/t)∑ti=1 f (wi,zi). We cannot plot regret, as we do not know the offline risk
minimizer w!.

6.1 Serial Mini-Batching

As a warm-up, we investigated the effects of modifying the mini-batch size b in a standard serial
Euclidean dual averaging algorithm. This is equivalent to running the distributed simulation with a
cluster size of k= 1, with varying mini-batch size. We ran the experiment with b= 1,2,4, . . . ,1024.
Figure 2 shows the results for three representative mini-batch sizes. The experiments tell an in-
teresting story, which is more refined than our theoretical upper bounds. While the asymptotic
worst-case theory implies that batch-size should have no significant effect, we actually observe that
mini-batching accelerates the learning process on the first 108 inputs. On the other hand, after 108
inputs, a large mini-batch size begins to hurt us and the smaller mini-batch sizes gain the lead. This
behavior is not an artifact of our choice of the parameters γ and L, as we observed a similar behavior

184



OPTIMAL DISTRIBUTED ONLINE PREDICTION

105 106 107 108 1090.5

1

1.5

2

2.5
k=1024, µ=40, b=1024

 

 

no−comm
batch no−comm
serial
DMB

number of inputs

av
er
ag
e
lo
ss

105 106 107 108 1090.5

1

1.5

2

2.5
k=32, µ=20, b=1024

 

 

no−comm
batch no−comm
serial
DMB

number of inputs

av
er
ag
e
lo
ss

Figure 3: Comparing DBM with the serial algorithm and the no-communication distributed algo-
rithm. Results for a large cluster of k = 1024 machines are presented on the left. Results
for a small cluster of k = 32 machines are presented on the right.

for many different parameter setting, during the initial stage when we tuned the parameters on a
held-out set.

Similar transient behaviors also exist for multi-step stochastic gradient methods (see, e.g., Polyak,
1987, Section 4.3.2), where the multi-step interpolation of the gradients also gives the smoothing
effects as using averaged gradients. Typically such methods converge faster in the early iterations
when the iterates are far from the optimal solution and the relative value of the stochastic noise is
small, but become less effective asymptotically.

6.2 Evaluating DBM

Next, we compared the average loss of the DBM algorithm with the average loss of the serial
algorithm and the no-communication algorithm (where each cluster node works independently). We
tried two versions of the no-communication solution. The first version simply runs k independent
copies of the serial prediction algorithm. The second version runs k independent copies of the
serial mini-batch algorithm, with a mini-batch size of 128. We included the second version of the
no-communication algorithm after observing that mini-batching has significant advantages even in
the serial setting. We experimented with various cluster sizes and various mini-batch sizes. As
mentioned above, we set the latency of the DBM algorithm to µ= 4log2(k). Taking a cue from
our theoretical analysis, we set the batch size to b = m1/3 7 1024. We repeated the experiment for
various cluster sizes and the results were very consistent. Figure 3 presents the average loss of the
three algorithms for clusters of sizes k = 1024 and k = 32. Clearly, the simple no-communication
algorithm performs very poorly compared to the others. The no-communication algorithm that uses
mini-batch updates on each node does surprisingly well, but is still outperformed quite significantly
by the DMB solution.
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Figure 4: The effects of increased network latency. The loss of the DMB algorithm is reported with
different latencies as measured by µ. In all cases, the batch size is fixed at b= 1024.

6.3 The Effects of Latency

Network latency results in the DMB discarding gradients, and slows down the algorithm’s progress.
The theoretical analysis shows that this waste is negligible in the asymptotic worst-case sense. How-
ever, latency will obviously have some negative effect on any finite prefix of the input stream. We
examined what would happen if the single-link latency were much larger than our 0.5ms estimate
(e.g., if the network is very congested or if the cluster nodes are scattered across multiple datacen-
ters). Concretely, we set the cluster size to k = 1024 nodes, the batch size to b = 1024, and the
single-link latency to 0.5,1,2, . . . ,512 ms. That is, 0.5ms mimics a realistic 1Gbs Ethernet link,
while 512ms mimics a network whose latency between any two machines is 1024 times greater,
namely, each vector-sum operation takes a full second to complete. Note that µ is still computed as
before, namely, for latency 0.5 ·2p, µ= 2p4log2(k) = 2p ·40. Figure 4 shows how the average loss
curve reacts to four representative latencies. As expected, convergence rate degrades monotonically
with latency. When latency is set to be 8 times greater than our realistic estimate for 1Gbs Ethernet,
the effect is minor. When the latency is increased by a factor of 1024, the effect becomes more
noticeable, but still quite small.

6.4 Optimal Mini-Batch Size

For our final experiment, we set out to find the optimal batch size for our problem on a given cluster
size. Our theoretical analysis is too crude to provide a sufficient answer to this question. The
theory basically says that setting b = Θ(mρ) is asymptotically optimal for any ρ ∈ (0,1/2), and
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Figure 5: The effect of different mini-batch sizes (b) on the DBM algorithm. The DMB algorithm
was applied with different batch sizes b = 8, . . . ,4096. The loss is reported after 107
instances (left), 108 instances (middle) and 109 instances (right).

that b = Θ(m1/3) is a pretty good concrete choice. We have already seen that larger batch sizes
accelerate the initial learning phase, even in a serial setting. We set the cluster size to k = 32 and
set batch size to 8,16, . . . ,4096. Note that b = 32 is the case where each node processes a single
example before engaging in a vector-sum network operation. Figure 5 depicts the average loss after
107,108, and 109 inputs. As noted in the serial case, larger batch sizes (b = 512) are beneficial at
first (m= 107), while smaller batch sizes (b= 128) are better in the end (m= 109).

6.5 Discussion

We presented an empirical evaluation of the serial mini-batch algorithm and its distributed version,
the DMB algorithm, on a realistic web-scale online prediction problem. As expected, the DMB
algorithm outperforms the näive no-communication algorithm. An interesting and somewhat unex-
pected observation is the fact that the use of large batches improves performance even in the serial
setting. Moreover, the optimal batch size seems to generally decrease with time.

We also demonstrated the effect of network latency on the performance of the DMB algorithm.
Even for relatively large values of µ, the degradation in performance was modest. This is an encour-
aging indicator of the efficiency and robustness of the DMB algorithm, even when implemented in
a high-latency environment, such as a grid.

7. Related Work

In recent years there has been a growing interest in distributed online learning and distributed opti-
mization.

Langford et al. (2009) address the distributed online learning problem, with a similar motivation
to ours: trying to address the scalability problem of online learning algorithms which are inherently
sequential. The main observation Langford et al. (2009) make is that in many cases, computing the
gradient takes much longer than computing the update according to the online prediction algorithm.
Therefore, they present a pipeline computational model. Each worker alternates between computing
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the gradient and computing the update rule. The different workers are synchronized such that no
two workers perform an update simultaneously.

Similar to results presented in this paper, Langford et al. (2009) attempted to show that it is
possible to achieve a cumulative regret ofO(

√
m)with k parallel workers, compared to theO

(√
km
)

of the naı̈ve solution. However their work suffers from a few limitations. First, their proofs only hold
for unconstrained convex optimization where no projection is needed. Second, since they work in a
model where one node at a time updates a shared predictor, while the other nodes compute gradients,
the scalability of their proposed method is limited by the ratio between the time it takes to compute
a gradient to the time it takes to run the update rule of the serial online learning algorithm.

In another related work, Duchi et al. (2010) present a distributed dual averaging method for
optimization over networks. They assume the loss functions are Lipschitz continuous, but their gra-
dients may not be. Their method does not need synchronization to average gradients computed at
the same point. Instead, they employ a distributed consensus algorithm on all the gradients gen-
erated by different processors at different points. When applied to the stochastic online prediction
setting, even for the most favorable class of communication graphs, with constant spectral gaps
(e.g., expander graphs), their best regret bound is O

(√
km log(m)

)

. This bound is no better than one
would get by running k parallel machines without communication (see Section 2.2).

In another recent work, Zinkevich et al. (2010) study a method where each node in the network
runs the classic stochastic gradient method, using random subsets of the overall data set, and only
aggregate their solutions in the end (by averaging their final weight vectors). In terms of online
regret, it is obviously the same as running k machines independently without communication. So a
more suitable measure is the optimality gap (defined in Section 5) of the final averaged predictor.
Even with respect to this measure, their expected optimality gap does not show advantage over
running k machines independently. A similar approach was also considered by Nesterov and Vial
(2008) and an experimental study of such a method was reported in Harrington et al. (2003).

A key difference between our DMB framework and many related work is that DMB does not
consider distributed comuting as a constraint to overcome. Instead, our novel use of the variance-
based regret bounds can exploit parallel/distributed computing to obtain the asymptotic optimal
regret bound. Beyond the asymptotic optimality of our bounds, our work has other features that set
it apart from previous work. As far as we know, we are the first to propose a general principled
framework for distributing many gradient-based update rule, with a concrete regret analysis for the
large family of mirror descent and dual averaging update rules. Additionally, our work is the first to
explicitly include network latency in our regret analysis, and to theoretically guarantee that a large
latency can be overcome by setting parameters appropriately.

8. Conclusions and Further Research

The increase in serial computing power of modern computers is out-paced by the growth rate of
web-scale prediction problems and data sets. Therefore, it is necessary to adopt techniques that can
harness the power of parallel and distributed computers.

In this work we studied the problems of distributed stochastic online prediction and distributed
stochastic optimization. We presented a family of distributed online algorithms with asymptotically
optimal regret and optimality gap guarantees. Our algorithms use the distributed computing infras-
tructure to reduce the variance of stochastic gradients, which essentially reduces the noise in the
algorithm’s updates. Our analysis shows that asymptotically, a distributed computing system can
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perform as well as a hypothetical fast serial computer. This result is far from trivial, and much of
the prior art in the field did not show any provable gain by using distributed computers.

While the focus of this work is the theoretical analysis of a distributed online prediction algo-
rithm, we also presented experiments on a large-scale real-world problem. Our experiments showed
that indeed the DMB algorithm outperforms other simple solutions. They also suggested that im-
provements can be made by optimizing the batch size and adjusting the learning rate based on
empirical measures.

Our formal analysis hinges on the fact that the regret bounds of many stochastic online update
rules scale with the variance of the stochastic gradients when the loss function is smooth. It is
unclear if smoothness is a necessary condition, or if it can be replaced with a weaker assumption.
In principle, our results apply in a broader setting. For any serial update rule φ with a regret bound
of ψ(σ2,m) =Cσ

√
m+o(

√
m), the DMB algorithm and its variants have the optimal regret bound

of Cσ
√
m+ o(

√
m), provided that the bound ψ(σ2,m) applies equally to the function f and to the

function

f̄ (w,(z1, . . . ,zb)) =
1
b

b

∑
s=1

f (w,zs) .

Note that this result holds independently of the network size k and the network latency µ. Extending
our results to non-smooth functions is an interesting open problem. A more ambitious challenge is
to extend our results to the non-stochastic case, where inputs may be chosen by an adversary.

An important future direction is to develop distributed learning algorithms that perform robustly
and efficiently on heterogeneous clusters and in asynchronous distributed environments. This direc-
tion has been further explored in Dekel et al. (2011). For example, one can use the following simple
reformulation of the DMB algorithm in a master-workers setting: each worker process inputs at its
own pace and periodically sends the accumulated gradients to the master; the master applies the
update rule whenever the number of accumulated gradients reaches a certain threshold and broad-
casts the new predictor back to the workers. In a dynamic environment, where the network can be
partitioned and reconnected and where nodes can be added and removed, a new master (or masters)
can be chosen as needed by a standard leader election algorithm. We refer the reader to Dekel et al.
(2011) for more details.

A central property of our method is that all of the gradients in a batch must be taken at the
same prediction point. In an asynchronous distributed computing environment (see, e.g., Tsitsiklis
et al., 1986; Bertsekas and Tsitsiklis, 1989), this can be quite wasteful. In order to reduce the
waste generated by the need for global synchronization, we may need to allow different nodes to
accumulate gradients at different yet close points. Such a modification is likely to work since the
smoothness assumption precisely states that gradients of nearby points are similar. There have been
extensive studies on distributed optimization with inaccurate or delayed subgradient information,
but mostly without the smoothness assumption (e.g., Nedić et al., 2001; Nedić and Ozdaglar, 2009).
We believe that our main results under the smoothness assumption can be extended to asynchronous
and distributed environments as well.
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Appendix A. Smooth Stochastic Online Prediction in the Serial Setting

In this appendix, we prove expected regret bounds for stochastic dual averaging and stochastic mir-
ror descent applied to smooth loss functions. In the main body of the paper, we discussed only the
Euclidean special case of these algorithms, while here we present the algorithms and regret bounds
in their full generality. In particular, Theorem 1 is a special case of Theorem 9, and Theorem 2 is a
special case of Theorem 7.

Recall that we observe a stochastic sequence of inputs z1,z2, . . ., where each zi ∈ Z. Before
observing each zi we predict wi ∈W , and suffer a loss f (wi,zi). We assumeW is a closed convex
subset of a finite dimensional vector space V with endowed norm ‖ · ‖. We assume that f (w,z) is
convex and differentiable in w, and we use ∇w f (w,z) to denote the gradient of f with respect to its
first argument. ∇w f (w,z) is a vector in the dual space V ∗, with endowed norm ‖ ·‖∗.

We assume that f (·,z) is L-smooth for any realization of z. Namely, we assume that f (·,z) is
differentiable and that

∀z ∈ Z, ∀w,w′ ∈W, ‖∇w f (w,z)−∇w f (w′,z)‖∗ ≤ L‖w−w′‖ .

We define F(w) = Ez[ f (w,z)] and note that ∇wF(w) = Ez[∇w f (w,z)] (see Rockafellar and Wets,
1982). This implies that

∀w,w′ ∈W, ‖∇wF(w)−∇wF(w′)‖∗ ≤ L‖w−w′‖ .

In addition, we assume that there exists a constant σ≥ 0 such that

∀w ∈W, Ez[‖∇w f (w,z)−∇wEz[ f (w,z)]‖2∗]≤ σ2 .

We assume that w! = argminw∈W F(w) exists, and we abbreviate F! = F(w!).
Under the above assumptions, we are concerned with bounding the expected regret E[R(m)],

where regret is defined as

R(m) =
m

∑
i=1

( f (wi,zi)− f (w!,zi)) .

In order to present the algorithms in their full generality, we first recall the concepts of strongly
convex function and Bregman divergence.

A function h :W → R∪{+∞} is said to be µ-strongly convex with respect to ‖ ·‖ if

∀α ∈ [0,1], ∀u,v ∈W, h(αu+(1−α)v)≤ αh(u)+(1−α)h(v)−
µ
2
α(1−α)‖u− v‖2 .

If h is µ-strongly convex then for any u ∈ domh, and v ∈ domh that is sub-differentiable, then

∀s ∈ ∂h(v), h(u)≥ h(v)+ 〈s,u− v〉+
µ
2
‖u− v‖2 .
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(See, e.g., Goebel and Rockafellar, 2008.) If a function h is strictly convex and differentiable (on an
open set contained in domh), then we can defined the Bregman divergence generated by h as

dh(u,v) = h(u)−h(v)−〈∇h(v), u− v〉 .

We often drop the subscript h in dh when it is obvious from the context. Some key properties of the
Bregman divergence are:

• d(u,v)≥ 0, and the equality holds if and only if u= v.

• In general d(u,v) 1= d(v,u), and d may not satisfy the triangle inequality.

• The following three-point identity follows directly from the definition:

d(u,w) = d(u,v)+d(v,w)+ 〈∇h(v)−∇h(w),u− v〉 .

The following inequality is a direct consequence of the µ-strong convexity of h:

d(u,v)≥
µ
2
‖u− v‖2 . (12)

A.1 Stochastic Dual Averaging

The proof techniques for the stochastic dual averaging method are adapted from those for the accel-
erated algorithms presented in Tseng (2008) and Xiao (2010).

Let h :W → R be a 1-strongly convex function. Without loss of generality, we can assume that
minw∈W h(w) = 0. In the stochastic dual averaging method, we predict each wi by

wi+1 = argmin
w∈W

{〈

i

∑
j=1

g j,w

〉

+(L+βi+1)h(w)

}

, (13)

where g j denotes the stochastic gradient ∇w f (wj,z j), and (βi)i≥1 is a sequence of positive and
nondecreasing parameters (i.e., βi+1 ≥ βi). As a special case of the above, we initialize w1 to

w1 = argmin
w∈W

h(w) . (14)

We are now ready to state a bound on the expected regret of the dual averaging method, in the
smooth stochastic case.

Theorem 7 The expected regret of the stochastic dual averaging method is bounded as

∀m, E[R(m)]≤ (F(w1)−F(w!))+(L+βm)h(w!)+
σ2

2

m−1

∑
i=1

1
βi
.

The optimal choice of βi is exactly of order
√
i. More specifically, let βi = γ

√
i, where γ is a

positive parameter. Then Theorem 7 implies that

E[R(m)]≤ (F(w1)−F(w!))+Lh(w!)+

(

γh(w!)+
σ2

γ

)√
m.
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Choosing γ= σ/
√

h(w!) gives

E[R(m)]≤ (F(w1)−F(w!))+Lh(w!)+
(

2σ
√

h(w!)
)√

m.

If ∇F(w!) = 0 (this is certainly the case ifW is the whole space), then we have

F(w1)−F(w!)≤
L
2
‖w1−w!‖2 ≤ Lh(w!).

Then the expected regret bound can be simplified as

E[R(m)]≤ 2Lh(w!)+
(

2σ
√

h(w!)
)√

m.

To prove Theorem 7 we require the following fundamental lemma, which can be found, for
example, in Nesterov (2005), Tseng (2008) and Xiao (2010).

Lemma 8 Let W be a closed convex set, ϕ be a convex function on W, and h be µ-strongly convex
on W with respect to ‖ ·‖. If

w+ = argmin
w∈W

{

ϕ(w)+h(w)
}

,

then
∀w ∈W, ϕ(w)+h(w)≥ ϕ(w+)+h(w+)+

µ
2
‖w−w+‖2.

With Lemma 8, we are now ready to prove Theorem 7.
Proof First, we define the linear functions

"i(w) = F(wi)+ 〈∇F(wi),w−wi〉, ∀ i≥ 1,

and (using the notation gi = ∇ f (wi,zi))

"̂i(w) = F(wi)+ 〈gi,w−wi〉= "i(w)+ 〈qi,w−wi〉,

where
qi = gi−∇F(wi).

Therefore, the stochastic dual averaging method specified in Equation (13) is equivalent to

wi = argmin
w∈W

{

i−1

∑
j=1

"̂ j(w)+(L+βi)h(w)

}

.

Using the smoothness assumption, we have (e.g., Nesterov 2004, Lemma 1.2.3)

F(wi+1) ≤ "i(wi+1)+
L
2
‖wi+1−wi‖2

= "̂i(wi+1)+
L+βi
2
‖wi+1−wi‖2−〈qi,wi+1−wi〉−

βi
2
‖wi+1−wi‖2

≤ "̂i(wi+1)+
L+βi
2
‖wi+1−wi‖2+‖qi‖∗‖wi+1−wi‖−

βi
2
‖wi+1−wi‖2

= "̂i(wi+1)+
L+βi
2
‖wi+1−wi‖2−

(

1
√

2βi
‖qi‖∗ −

√

βi
2
‖wi+1−wi‖

)2

+
‖qi‖2∗
2βi

≤ "̂i(wi+1)+
L+βi
2
‖wi+1−wi‖2+

‖qi‖2∗
2βi

. (15)
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Next we use Lemma 8 with ϕ(w) = ∑i−1
j=1 "̂ j(w) and µ= (L+βi),

i−1

∑
j=1

"̂ j(wi+1)+(L+βi)h(wi+1)≥
i−1

∑
j=1

"̂ j(wi)+(L+βi)h(wi)+
L+βi
2
‖wi+1−wi‖2,

Combining the above inequality with Equation (15), we have

F(wi+1) ≤ "̂i(wi+1)+
i−1

∑
j=1

"̂ j(wi+1)+(L+βi)h(wi+1)−
i−1

∑
j=1

"̂ j(wi)− (L+βi)h(wi)+
‖qi‖2∗
2βi

≤
i

∑
j=1

"̂ j(wi+1)+(L+βi+1)h(wi+1)−
i−1

∑
j=1

"̂ j(wi)− (L+βi)h(wi)+
‖qi‖2∗
2βi

,

where in the last inequality, we used the assumptions βi+1 > βi > 0 and h(wi+1)≥ 0. Summing the
above inequality from i= 1 to i= m−1, we have

m

∑
i=2

F(wi) ≤
m−1

∑
i=1

"̂i(wm)+(L+βm)h(wm)+
m−1

∑
i=1

‖qi‖2∗
2βi

≤
m−1

∑
i=1

"̂i(w!)+(L+βm)h(w!)+
m−1

∑
i=1

‖qi‖2∗
2βi

≤
m−1

∑
i=1

"i(w!)+(L+βm)h(w!)+
m−1

∑
i=1

‖qi‖2∗
2βi

+
m−1

∑
i=1
〈qi,w!−wi〉

≤ (m−1)F(w!)+(L+βi)h(w!)+
m−1

∑
i=1

‖qi‖2∗
2βi

+
m−1

∑
i=1
〈qi,w!−wi〉.

Therefore,

m

∑
i=2

(

F(wi)−F(w!)
)

≤ (L+βm)h(w!)+
m−1

∑
i=1

‖qi‖2∗
2βi

+
m−1

∑
i=1
〈qi,w!−wi〉. (16)

Notice that each wi is a deterministic function of z1, . . . ,zi−1, so

Ezi
(

〈qi,w!−wi〉 |z1, . . . ,zi−1
)

= 0

by recalling the definition qi = ∇ f (wi,zi)−∇F(wi). Taking expectation of both sides of Equa-
tion (16) with respect to z1, . . . ,zm, and adding the term F(w1)−F(w!), we have

E

m

∑
i=1

(

F(wi)−F(w!)
)

≤ F(w1)−F(w!)+(L+βm)h(w!)+
m−1

∑
i=1

σ2

2βi
.

Theorem 7 is proved by further noticing

E f (wi,zi) = EF(wi), E f (w!,zi) = F(w!), ∀ i≥ 1,

which are due to the fact that wi is a deterministic function of z0, . . . ,zi−1.
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A.2 Stochastic Mirror Descent

Variance-based convergence rates for the stochastic Mirror Descent methods are due to Juditsky
et al. (2011), and were extended to an accelerated stochastic Mirror Descent method by Lan (2009).
For completeness, we adapt their proofs to the context of regret for online prediction problems.

Again let h :W →R be a differentiable 1-strongly convex function with minw∈W h(w) = 0. Also
let d be the Bregman divergence generated by h. In the stochastic mirror descent method, we use
the same initialization as in the dual averaging method (see Equation (14)) and then we set

wi+1 = argmin
w∈W

{

〈gi,w〉+(L+βi)d(w,wi)
}

, i≥ 1.

As in the dual averaging method, we assume that the sequence (βi)i≥1 to be positive and nonde-
creasing.

Theorem 9 Assume that the convex set W is closed and bounded. In addition assume d(u,v) is
bounded on W and let

D2 = max
u,v∈W

d(u,v).

Then the expected regret of the stochastic mirror descent method is bounded as

E[R(m)]≤ (F(w1)−F(w!))+(L+βm)D2+
σ2

2

m−1

∑
i=1

1
βi
.

Similar to the dual averaging case, using the sequence of parameters βi = (σ/D)
√
i gives the

expected regret bound

E[R(m)]≤ (F(w1)−F(w!))+LD2+(2σD)
√
m.

Again, if ∇F(w!) = 0, we have F(w1)− F(w!) ≤ (L/2)‖w1−w!‖2 ≤ Lh(w!) ≤ LD2, thus the
simplified bound

E[R(m)]≤ 2LD2+(2σD)
√
m.

We note that here we have stronger assumptions than in the dual averaging case. These as-
sumptions are certainly satisfied by using the standard Euclidean distance d(u,v) = (1/2)‖u− v‖22
on a compact convex set W . However, it excludes the case of using the KL-divergence d(u,v) =
∑n
i=1 ui log(ui/vi) on the simplex, because the KL-divergence is unbounded on the simplex. Nev-
ertheless, it is possible to remove such restrictions by considering other variants of the stochastic
mirror descent method. For example, if we use a constant βi that depends on the prior knowledge
of the number of total steps to be performed, then we can weaken the assumption and replace D in
the above bounds by

√

h(w!). More precisely, we have

Theorem 10 Suppose we know the total number of steps m to be performed by the stochastic mirror
descent method ahead of time. Then by using the initialization in Equation (14) and the constant
parameter

βi =
σ

√

2h(w!)

√
m,

we have the expected regret bound

E[R(m)]≤ (F(w1)−F(w!))+Lh(w!)+σ
√

2h(w!)
√
m.
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Theorem 10 is essentially the same as a result in Lan (2009), who also developed an accelerated
versions of the stochastic mirror descent method. To prove Theorem 9 and Theorem 10 we need the
following standard Lemma, which can be found in Chen and Teboulle (1993), Lan et al. (2011) and
Tseng (2008).

Lemma 11 Let W be a closed convex set, ϕ be a convex function on W, and h be a differentiable,
strongly convex function on W. Let d be the Bregman divergence generated by h. Given u ∈W, if

w+ = argmin
w∈W

{

ϕ(w)+d(w,u)
}

,

then
ϕ(w)+d(w,u)≥ ϕ(w+)+d(w+,u)+d(w,w+).

We are ready to prove Theorem 9 and Theorem 10.
Proof We start with the inequality in Equation (15). Using Equation (12) with µ= 1 gives

F(wi+1)≤ "̂i(wi+1)+(L+βi)d(wi+1,wi)+
‖qi‖2∗
2βi

. (17)

Now using Lemma 11 with ϕ(w) = "̂i(w) yields

"̂i(wi+1)+(L+βi)d(wi+1,wi)≤ "̂i(w!)+(L+βi)d(w!,wi)− (L+βi)d(w!,wi+1).

Combining with Equation (17) gives

F(wi+1) ≤ "̂i(w!)+(L+βi)d(w!,wi)− (L+βi)d(w!,wi+1)+
‖qi‖2∗
2βi

= "i(w!)+(L+βi)d(w!,wi)− (L+βi+1)d(w!,wi+1)+(βi+1−βi)d(w!,wi+1)

+
‖qi‖2∗
2βi

+ 〈qi,w!−wi〉

≤ F(w!)+(L+βi)d(w!,wi)− (L+βi+1)d(w!,wi+1)+(βi+1−βi)D2

+
‖qi‖2∗
2βi

+ 〈qi,w!−wi〉,

where in the last inequality, we used the definition of D2 and the assumption that βi+1 ≥ βi. Sum-
ming the above inequality from i= 1 to i= m−1, we have

m

∑
i=2

F(wi) ≤ (m−1)F(w!)+(L+β1)d(w!,w1)− (L+βm)d(w!,wm)+(βm−β1)D2

+
m−1

∑
i=1

‖qi‖2∗
2βi

+
m−1

∑
i=1
〈qi,w!−wi〉.

Notice that d(w!,wi)≥ 0 and d(w!,w1)≤ D2, so we have

m

∑
i=2

F(wi)≤ (m−1)F(w!)+(L+βm)D2+
m−1

∑
i=1

‖qi‖2∗
2βi

+
m−1

∑
i=1
〈qi,w!−wi〉.
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The rest of the proof for Theorem 9 is similar to that for the dual averaging method (see arguments
following Equation (16)).

Finally we prove Theorem 10. From the proof of Theorem 9 above, we see that if βi = βm is a
constant for all i= 1, . . . ,m, then we have

E

m

∑
i=2

(F(wi)−F(w!))≤ (L+βm)d(w!,w1)+
σ2

2

m−1

∑
i=1

1
βi
.

Notice that for the above result, we do not need to assume boundedness ofW , nor boundedness of
the Bregman divergence d(u,v). Since we use w1 = argminw∈W h(w) and assume h(w1) = 0 (with-
out loss of generality), it follows d(w!,w1)≤ h(w!). Plugging in βm = (σ/

√

2h(w!))
√
m gives the

desired result.

Appendix B. High-Probability Bounds

For simplicity, the theorems stated throughout the paper involved bounds on the expected regret,
E[R(m)]. A stronger type of result is a high-probability bound, where R(m) itself is bounded with
arbitrarily high probability 1− δ, and the bound having only logarithmic dependence on δ. Here,
we demonstrate how our theorems can be extended to such high-probability bounds.

First, we need to justify that the expected regret bounds for the online prediction rules discussed
in Appendix A have high-probability versions. For simplicity, we will focus on a high-probability
version of the regret bound for dual averaging (Theorem 7), but exactly the same technique will
work for stochastic mirror descent (Theorem 9 and Theorem 10). With these results in hand, we
will show how our main theorem for distributed learning using the DMB algorithm (Theorem 4)
can be extended to a high-probability version. Identical techniques will work for the other theorems
presented in the paper.

Before we begin, we will need to make a few additional mild assumptions. First, we assume
that there are positive constants B,G such that | f (w,z)|≤ B and ‖∇w f (w,z)‖ ≤G for all w ∈W and
z ∈ Z. Second, we assume that there is a positive constant σ̂ such that Varz( f (w,z)− f (w!,z))≤ σ̂2
for all w ∈W (note that σ̂2 ≤ 4B2 always holds). Third, thatW has a bounded diameter D, namely
‖w−w′‖ ≤ D for all w,w′ ∈W .

Under these assumptions, we can show the following high-probability version of Theorem 7.

Theorem 12 For any m and any δ ∈ (0,1], the regret of the stochastic dual averaging method is
bounded with probability at least 1−δ over the sampling of z1, . . . ,zm by

R(m)≤ (F(w1)−F(w!))+(L+βm)h(w!)+
σ2

2

m−1

∑
i=1

1
βi

+2log(2/δ)
(

DG+
2G2

β1

)

√

√

√

√1+36
G2σ2∑m

i=1
1
β2i
+D2σ2m

log(2/δ)

+4log(2/δ)B

√

1+
18mσ̂2
log(2/δ)

.
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Proof The proof of the theorem is identical to the one of Theorem 7, up to Equation (16):
m

∑
i=2

(

F(wi)−F(w!)
)

≤ (L+βm)h(w!)+
m−1

∑
i=1

‖qi‖2

2βi
+

m−1

∑
i=1
〈qi,w!−wi〉. (18)

In the proof of Theorem 7, we proceeded by taking expectations of both sides with respect to the
sequence z1, . . . ,zm. Here, we will do things a bit differently.

The main technical tool we use is a well-known Bernstein-type inequality for martingales (e.g.,
Cesa-Bianchi and Lugosi, 2006, Lemma A.8), an immediate corollary of which can be stated as fol-
lows: suppose x1, . . . ,xm is a martingale difference sequence with respect to the sequence z1, . . . ,zm,
such that |xi|≤ b, and let

v=
m

∑
i=1
Var(xi|z1, . . . ,zi−1).

Then for any δ ∈ (0,1), it holds with probability at least 1−δ that

m

∑
i=1

xi ≤ b log(1/δ)

√

1+
18v

log(1/δ)
. (19)

Recall the definition qi = ∇ f (wi,zi)−∇F(wi), and let σ2i = E[‖qi‖2]. Note that σ2i ≤ σ2. We
will first use this result for the sequence

xi =
‖qi‖2−σ2i

2βi
+ 〈qi,w!−wi〉.

It is easily seen that Ezi [xi|z1, . . . ,zi−1] = 0, so it is indeed a martingale difference sequence w.r.t.
z1, . . . ,zm. Moreover, |〈qi,w!−wi〉| ≤ D‖qi‖ ≤ 2DG, ‖qi‖2 ≤ 4G2. In terms of the variances, let
Varzi and Ezi be shorthand for the variance (resp. expectation) over zi conditioned over z1, . . . ,zi−1.
Then

Varzi(xi)≤ 2Varzi

(

‖qi‖2−σ2i
2βi

)

+2Varzi (〈qi,w
!−wi〉)

≤
1
2
Ezi

(

‖qi‖4

β2i

)

+2Ezi [(〈qi,w
!−wi〉)2]

≤ 2G2Ezi

(

‖qi‖2

β2i

)

+2‖w!−wi‖2Ezi [‖qi‖
2]

≤ 2G2
σ2i
β2i

+2D2σ2i ≤ 2G2
σ2

β2i
+2D2σ2.

Combining these observations with Equation (19), we get that with probability at least 1−δ,

m−1

∑
i=1

‖qi‖2−σ2

βi
+ 〈qi,w!−wi〉 ≤

(

2DG+
4G2

β1

)

log(1/δ)

√

√

√

√1+36
G2σ2∑m

i=1
1
β2i
+D2σ2m

log(1/δ)
. (20)

A similar type of bound can be derived for the sequence xi = ( f (wi,zi)− f (w!,zi))−
(F(wi)−F(w!)). It is easily verified to be a martingale difference sequence w.r.t. z1, . . . ,zm, since

E [( f (wi,zi)− f (w!,zi))− (F(wi)−F(w!)) |z1, . . . ,zi−1] = 0.
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Also,
|( f (wi,zi)− f (w!,zi))− (F(wi)−F(w!))|≤ 4B,

and

Varzi
((

f (wi,zi)− f (w!,zi)
)

−
(

F(wi)−F(w!)
))

= Varzi
(

f (wi,zi)− f (w!,zi)
)

≤ σ̂2 .

So again using Equation (19), we have that with probability at least 1−δ that

m

∑
i=1

( f (wi,zi)− f (w!,zi))− (F(wi)−F(w!))≤ 4B log(1/δ)

√

1+
18mσ̂2
log(1/δ)

. (21)

Finally, adding F(w1)−F(w!) to both sides of Equation (18), and combining Equation (20) and
Equation (21) with a union bound, the result follows.

Comparing the theorem to Theorem 7, and assuming that βi =Θ(
√
i), we see that the bound has

additionalO(
√
m) terms. However, the bound retains the important property of having the dominant

terms multiplied by the variances σ2, σ̂2. Both variances become smaller in the mini-batch setting,
where the update rules are applied over averages of b such functions and their gradients. As we did
earlier in the paper, let us think of this bound as an abstract function ψ(σ2, σ̂2,δ,m). Notice that
now, the regret bound also depends on the function variance σ̂2, and the confidence parameter δ.

Theorem 13 Let f is an L-smooth convex loss function. Assume that the stochastic gradient
∇w f (w,zi) is bounded by a constant and has σ2-bounded variance for all i and all w, and that
f (w,zi) is bounded by a constant and has σ̂2-bounded variance for all i and for all w. If the update
rule φ has a serial high-probability regret bound ψ(σ2, σ̂2,δ,m). then with probability at least 1−δ,
the total regret of Algorithm 3 over m examples is at most

(b+µ)ψ
(

σ2

b
,
σ̂2

b
,δ,1+

m
b+µ

)

+O
(

σ̂

√

(

1+
µ
b

)

log(1/δ)m
)

.

Comparing the obtained bound to the one in Theorem 4, we note that we pay an additional
O(
√
m) factor.

Proof The proof closely resembles the one of Theorem 4. We let z̄ j denote the first b inputs on
batch j, and define f̄ as the average loss on these inputs. Note that for any w, the variance of f̄ (w, z̄ j)
is at most σ̂2/b, and the variance of ∇w f̄ (w,z) is at most σ2/b. Therefore, with probability at least
1−δ, it holds that

m̄

∑
j=1

(

f̄ (wj, z̄ j)− f̄ (w!, z̄ j)
)

≤ ψ
(

σ2

b
,
σ̂2

b
,δ, m̄

)

. (22)

where m̄ is the number of inputs given to the update rule φ. Let Zj denote the set of all examples
received between the commencement of batch j and the commencement of batch j+ 1, including
the vector-sum phase in between (b+µ examples overall). In the proof of Theorem 4, we had that

E
[(

f̄ (wj, z̄ j)− f̄ (w!, z̄ j)
)

|wj
]

= E

[

1
b+µ ∑z∈Zj

( f (wj,zi)− f (w!,zi))
∣

∣

∣
wj

]

,
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and thus the expected value of the left-hand side of Equation (22) equals the total regret, divided by
b+µ. Here, we need to work a bit harder. To do so, note that the sequence of random variables

(

1
b ∑z∈z̄ j

(

f (wj,z)− f (w!,z)
)

)

−
(

1
b+µ ∑z∈Zj

(

f (wj,z)− f (w!,z)
)

)

,

indexed by j, is a martingale difference sequence with respect to Z1,Z2, . . .. Moreover, conditioned
on Z1, . . . ,Zj−1, the variance of each such random variable is at most 4σ̂2/b. To see why, note
that the first sum has conditional variance σ̂2/b, since the summands are independent and each has
variance σ̂2. Similarly, the second sum has conditional variance σ̂2/(b+µ) ≤ σ̂2/b. Applying the
Bernstein-type inequality for martingales discussed in the proof of Theorem 12, we get that with
probability at least 1−δ,

m̄

∑
j=1

1
b+µ ∑z∈Zj

(

f (wj,z)− f (w!,z)
)

≤
m̄

∑
j=1

1
b ∑z∈z̄ j

(

f (wj,z)− f (w!,z)
)

+O

(

σ̂

√

m̄ log(1/δ)
b

)

,

where the O-notation hides only a (linear) dependence on the absolute bound over | f (w,z)| for all
w,z, that we assume to hold.

Combining this and Equation (22) with a union bound, we get that with probability at least 1−δ,

m̄

∑
j=1
∑
z∈Zj

(

f (wj,z)− f (w!,z)
)

≤ (b+µ)ψ
(

σ2

b
,
σ̂2

b
,δ,

m
b+µ

)

+O

(

(b+µ)σ̂
√

m̄ log(1/δ)
b

)

.

If b+µ divides m, then m̄= m/(b+µ), and we get a bound of the form

(b+µ)ψ
(

σ2

b
,
σ̂2

b
,δ,

m
b+µ

)

+O
(

σ̂

√

(

1+
µ
b

)

log(1/δ)m
)

.

Otherwise, we repeat the ideas of Theorem 3 to get the regret bound.
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A. Nedić, D. P. Bertsekas, and V. S. Borkar. Distributed asynchronous incremental subgradient
methods. In D. Butnariu, Y. Censor, and S. Reich, editors, Inherently Parallel Algorithms in
Feasibility and Optimization and Their Applications, Studies in Computational Mathematics,
pages 381–407. Elsevier, 2001.

A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Optimization. Series
in Discrete Mathematics. Wiley-Interscience, 1983.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston,
2004.

Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming, 103:
127–152, 2005.

Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming,
120(1):221–259, August 2009.

Y. Nesterov and J.-Ph. Vial. Confidence level solutions for stochastic programming. Automatica,
44(6):1559–1568, 2008.

B. T. Polyak. Introduction to Optimization. Translations Series in Mathematics and Engineering.
Optimization Software, Inc., New York, 1987.

R. T. Rockafellar and R. J-B Wets. On the interchange of subdifferentiation and conditional expec-
tation for convex functionals. Stochastics: An International Journal of Probability and Stochastic
Processes, 7(3):173–182, 1982.

S. Shalev-Shwartz and A. Tewari. Stochastic methods for "1-regularized loss minimization. Journal
of Machine Learning Research, 12:1865–1892, 2011.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for
SVM. In Proceedings of the 24th International Conference on Machine Learning (ICML), pages
807–814, 2007.

P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. Submitted
to SIAM Journal on Optimization, 2008.

J. N. Tsitsiklis, D. P. Bertsekas, andM. Athans. Distributed asynchronous deterministic and stochas-
tic gradient optimization algorithms. IEEE Transactions on Automatic Control, 31(9):803–812,
1986.

R. J-B Wets. Stochastic programming. In G. Nemhauser and A. Rinnnooy Kan, editors, Handbook
for Operations Research and Management Sciences, volume 1, pages 573–629. Elsevier Science
Publishers, Amsterdam, The Netherlands, 1989.

L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Jour-
nal of Machine Learning Research, 11:2543–2596, 2010.

201



DEKEL, GILAD-BACHRACH, SHAMIR AND XIAO

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Pro-
ceedings of the 20th International Conference on Machine Learning (ICML), pages 928–936,
Washington DC, 2003.

M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent. In Ad-
vances in Neural Information Processing Systems (NIPS), pages 2595–2603, 2010.

202



Journal of Machine Learning Research 13 (2012) 203-225 Submitted 9/10; Revised 12/11; Published 1/12

Active Clustering of Biological Sequences∗

Konstantin Voevodski KVODSKI@GOOGLE.COM
Google†
76 Ninth Avenue, 10th Floor
New York, NY 10011, USA

Maria-Florina Balcan NINAMF@CC.GATECH.EDU
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
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Abstract
Given a point set S and an unknown metric d on S, we study the problem of efficiently partitioning
S into k clusters while querying few distances between the points. In our model we assume that
we have access to one versus all queries that given a point s ∈ S return the distances between s and
all other points. We show that given a natural assumption about the structure of the instance, we
can efficiently find an accurate clustering using only O(k) distance queries. Our algorithm uses an
active selection strategy to choose a small set of points that we call landmarks, and considers only
the distances between landmarks and other points to produce a clustering. We use our procedure to
cluster proteins by sequence similarity. This setting nicely fits our model because we can use a fast
sequence database search program to query a sequence against an entire data set. We conduct an
empirical study that shows that even though we query a small fraction of the distances between the
points, we produce clusterings that are close to a desired clustering given by manual classification.
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1. Introduction

Clustering from pairwise distance information is an important problem in the analysis and explo-
ration of data. It has many variants and formulations and it has been extensively studied in many
different communities, and many different clustering algorithms have been proposed.

Many application domains ranging from computer vision to biology have recently faced an ex-
plosion of data, presenting several challenges to traditional clustering techniques. In particular,
computing the distances between all pairs of points, as required by traditional clustering algorithms,
has become infeasible in many application domains. As a consequence it has become increasingly
important to develop effective clustering algorithms that can operate with limited distance informa-
tion.

In this work we initiate a study of clustering with limited distance information; in particular
we consider clustering with a small number of one versus all queries. We can imagine at least two
different ways to query distances between points. One way is to ask for distances between pairs of
points, and the other is to ask for distances between one point and all other points. Clearly, a one
versus all query can be implemented as n pairwise queries, where n is the size of the point set, but
we draw a distinction between the two because the former is often significantly faster in practice if
the query is implemented as a database search.

Our main motivating example for considering one versus all distance queries is sequence simi-
larity search in biology. A program such as BLAST (Altschul et al., 1990) (Basic Local Alignment
Search Tool) is optimized to search a single sequence against an entire database of sequences. On
the other hand, performing n pairwise sequence alignments takes several orders of magnitude more
time, even if the pairwise alignment is very fast. The disparity in runtime is due to the hashing
that BLAST uses to identify regions of similarity between the input sequence and sequences in the
database. The program maintains a hash table of all words in the database (substrings of a certain
length), linking each word to its locations. When a query is performed, BLAST considers each word
in the input sequence, and runs a local sequence alignment in each of its locations in the database.
Therefore the program only performs a limited number of local sequence alignments, rather than
aligning the input sequence to each sequence in the database. Of course, the downside is that we
never consider alignments between sequences that do not share a word. However, in this case an
alignment may not be relevant anyway, and we can assign a distance of infinity to the two sequences.
Even though the search performed by BLAST is heuristic, it has been shown that protein sequence
similarity identified by BLAST is meaningful (Brenner et al., 1998).

Motivated by such scenarios, in this paper we consider the problem of clustering a data set with
an unknown distance function, given only the capability to ask one versus all distance queries. We
design an efficient algorithm for clustering accurately with a small number of such queries. To
formally analyze the correctness of our algorithm we assume that the distance function is a metric,
and that our clustering problem satisfies a natural approximation stability property with respect to
the k-median objective function for clustering. In particular, our analysis assumes the (c,ε) approx-
imation stability property of Balcan et al. (2009). For an objective function Φ (such as k-median),
the (c,ε)-property assumes that any clustering that is a c-approximation of Φ is structurally close to
some “target” clustering CT (has error of at most ε with respect to CT ). Given this assumption, our
goal is to find a clustering that is structurally close to the target (has error of at most ε), which is
what we call an accurate clustering.
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Our first main contribution is designing an algorithm that given the (1+α,ε)-property for the k-
median objective finds an accurate clustering with probability at least 1−δ by using onlyO(k+ ln 1δ)
one versus all queries. Our analysis requires that the clusters of the target clustering have size at
least O(εn/α). In particular, we use the same assumption as Balcan et al. (2009), and we obtain
effectively the same performance guarantees as Balcan et al. but by only using a very small number
of one versus all queries. In addition to handling this more difficult scenario, we also provide a
much faster algorithm. The algorithm of Balcan et al. (2009) can be implemented in O(n3) time,
where n is the size of the point set, while the one proposed here runs in time O((k+ ln 1δ)n logn).

Our algorithm uses an active selection strategy to choose a small set of landmark points. In
each iteration our Landmark-Selection procedure chooses one of the farthest points from the ones
chosen already, where distance from a point s to a set X is given by minx∈Xd(s,x). This procedure is
motivated by the observation that if we select points that are far from all the points chosen already,
we can quickly cover all the dense regions of the data set. At the same time, our procedure uses some
randomness to avoid choosing outliers. After selecting a small set of landmarks, we use a robust
single-linkage clustering procedure that we call Expand-Landmarks, which constructs a clustering
linking only the landmarks that have smin points in an r-ball around them, for an appropriate choice
of smin and increasing estimates of r. After our initial work a similar robust single-linkage clustering
algorithm has been used in Chaudhuri and Dasgupta (2010), which is a generalization of a procedure
presented in Wishart (1969). Our algorithm uses only the distances between landmarks and other
points to compute a clustering. Therefore the number of one versus all distance queries required is
equivalent to the number of landmarks.

The runtime of our algorithm is O(|L|n logn), where L is the set of landmarks that have been
selected. Our adaptive selection procedure significantly reduces the time and query complexity
of the algorithm. We show that using our adaptive procedure it suffices to choose only O(k+
ln 1δ) landmarks to compute an accurate clustering with probability at least 1− δ. If we use a non-
adaptive selection strategy and simply choose landmarks uniformly at random, we must sample
a point from each ground truth cluster and therefore need at least O(k ln kδ) landmarks to find an
accurate clustering. More exactly, the non-adaptive selection strategy requires O( n∆ ln

k
δ) landmarks,

where ∆ is the size of the smallest ground truth cluster. Therefore if we simply choose landmarks
uniformly at random, performance can degrade significantly if some clusters are much smaller than
the average cluster size. Our theoretic assumption does require that the ground truth clusters are
large, butO(εn/α) can still be much smaller than the average cluster size, in which case our adaptive
selection procedure gives a more significant improvement in runtime and query complexity of the
algorithm.

We use our algorithm to cluster proteins by sequence similarity, and compare our results to gold
standard manual classifications given in the Pfam (Finn et al., 2010) and SCOP (Murzin et al., 1995)
databases. These classification databases are used ubiquitously in biology to observe evolutionary
relationships between proteins and to find close relatives of particular proteins. We find that for one
of these sources we obtain clusterings that usually closely match the given classification, and for the
other the performance of our algorithm is comparable to that of the best known algorithms using the
full distance matrix. Both of these classification databases have limited coverage, so a completely
automated method such as ours can be useful in clustering proteins that have yet to be classified.
Moreover, our method can cluster very large data sets because it is efficient and does not require the
full distance matrix as input, which may be infeasible to obtain for a very large data set.
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1.1 Related Work

A theoretical assumption that is related to the (c,ε)-property is ε-separability, which is used in
Ostrovsky et al. (2006). This property is also referred to as irreducibility in Badoiu et al. (2002) and
Kumar et al. (2005). A clustering instance is ε-separated if the cost of the optimal k-clustering is at
most ε2 times the cost of the optimal clustering using k− 1 clusters. The ε-separability and (c,ε)
properties are related: in the case when the clusters are large the Ostrovsky et al. (2006) condition
implies the Balcan et al. (2009) condition (see Balcan et al., 2009).

Ostrovsky et al. also present a sampling method for choosing initial centers, which when fol-
lowed by a single Lloyd-type descent step gives a constant factor approximation of the k-means
objective if the instance is ε-separated. However, their sampling method needs information about
the full distance matrix because the probability of picking two points as the first two cluster centers
is proportional to their squared distance. A very similar (independently proposed) strategy is used
by Arthur and Vassilvitskii (2007) to obtain an O(logk)-approximation of the k-means objective on
arbitrary instances. Their work was further extended by Ailon et al. (2009) to give a constant factor
approximation using O(k logk) centers. The latter two algorithms can be implemented with k and
O(k logk) one versus all distance queries, respectively.

Awasthi et al. (2010) have since improved the approximation guarantee of Ostrovsky et al.
(2006) and some of the results of Balcan et al. (2009). In particular, they show a way to arbitrarily
closely approximate the k-median and k-means objective when the Balcan et al. (2009) condition
is satisfied and all the target clusters are large. In their analysis they use a property called weak
deletion-stability, which is implied by the Ostrovsky et al. (2006) condition and the Balcan et al.
(2009) condition when the target clusters are large. However, in order to find a c-approximation
(and given our assumption a clustering that is ε-close to the target) the runtime of their algorithm is
nO(1/(c−1)2)kO(1/(c−1)). On the other hand, the runtime of our algorithm is completely independent
of c, so it remains efficient even when the (c,ε)-property holds only for some very small constant c.

Approximate clustering using sampling has been studied extensively in recent years (see Mishra
et al., 2001; Ben-David, 2007; Czumaj and Sohler, 2007). The methods proposed in these papers
yield constant factor approximations to the k-median objective using at least O(k) one versus all
distance queries. However, as the constant factor of these approximations is at least 2, the proposed
sampling methods do not necessarily yield clusterings close to the target clustering CT if the (c,ε)-
property holds only for some small constant c< 2, which is the interesting case in our setting.

Clustering using coresets is another approach that can be effective in the limited information
setting. A coreset is a small representative sample D of the original point set P, which has the
property that computational problems on P can be reduced to problems onD. In particular, Feldman
and Langberg (2011) give ways to construct coresets such that a (1+α)-approximation to the k-
median problem on D gives a (1+α)-approximation on the full data set. Therefore by using these
coresets we can find a (1+α)-approximation to the k-median problem using a number of one-
versus-all distance queries that is equal to the size of the coreset. However, the size of the coreset
of Feldman and Langberg (2011) is O(k log(1/α)/α3), so this approach may require significantly
more queries to find an accurate clustering in our model if the (c,ε)-property holds only for some
very small constant c.

Our landmark selection strategy is related to the farthest first traversal used by Dasgupta (2002).
In each iteration this traversal selects the point that is farthest from the ones chosen so far, where
as in our algorithm the distance from a point s to a set X is given by minx∈Xd(s,x). This traversal
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was originally used by Gonzalez (1985) to give a 2-approximation to the k-center problem. The
same procedure is also used in the FastMap algorithm in Faloutsos and Lin (1995) as a heuristic
to find a pair of distant objects. Farthest first traversal is used in Dasgupta (2002) to produce a
hierarchical clustering where for each k the induced k-clustering is a constant factor approximation
of the optimal k-center clustering. Our selection strategy is somewhat different from this traversal
because in each iteration we uniformly at random choose one of the farthest points from the ones
selected so far. In addition, the theoretical guarantees we provide are quite different from those of
Gonzales and Dasgupta.

To our knowledge, our work is the first to provide theoretical guarantees for active clustering
(clustering by adaptively using only some of the distances between the objects) under a natural
condition on the input data. Following the initial publication of this work, Eriksson et al. (2011) have
provided another active clustering procedure with theoretical guarantees for hierarchical clustering
under a different condition on the input data.

2. Preliminaries

Given a metric space M = (X ,d) with point set X , an unknown distance function d satisfying the
triangle inequality, and a set of points S⊆ X with cardinality n, we would like to find a k-clustering
C that partitions the points in S into k setsC1, . . . ,Ck by using one versus all distance queries.

In our analysis we assume that S satisfies the (c,ε)-property of Balcan et al. (2009) for the k-
median objective function. The k-median objective is to minimizeΦ(C) =∑k

i=1∑x∈Ci d(x,ci), where
ci is the median of cluster Ci, which is the point y ∈Ci that minimizes ∑x∈Ci d(x,y). Let OPTΦ =
minCΦ(C), where the minimum is over all k-clusterings of S, and denote by C∗ = {C∗

1 , . . . ,C∗
k} a

clustering achieving this value.
To formalize the (c,ε)-property we need to define a notion of distance between two k-clusterings

C = {C1, . . . ,Ck} and C′ = {C′
1, . . . ,C′

k}. As in Balcan et al. (2009), we define the distance between
C and C′ as the fraction of points on which they disagree under the optimal matching of clusters in
C to clusters inC′:

dist(C,C′) =min
f∈Fk

1
n

k

∑
i=1

|Ci−C′
f (i)|,

where Fk is the set of bijections f :{1, . . . ,k}→ {1, . . . ,k}. Two clusterings C and C′ are ε-close if
dist(C,C′)< ε.

We assume that there exists some unknown relevant “target” clusteringCT and given a proposed
clusteringC we define the error ofC with respect toCT as dist(C,CT ). Our goal is to find a clustering
of low error.

The (c,ε)-property is defined as follows.

Definition 1 We say that the instance (S,d) satisfies the (c,ε)-property for the k-median objective
function with respect to the target clustering CT if any clustering of S that approximates OPTΦ
within a factor of c is ε-close to CT , that is, Φ(C)≤ c ·OPTΦ ⇒ dist(C,CT )< ε.

In the analysis of the next section we denote by c∗i the center point of C∗
i , and use OPT to refer

to the value of C∗ using the k-median objective, that is, OPT = Φ(C∗). We define the weight of
point x to be the contribution of x to the k-median objective in C∗: w(x) = mini d(x,c∗i ). Similarly,
we use w2(x) to denote x’s distance to the second-closest cluster center among {c∗1,c∗2, . . . ,c∗k}. In
addition, let w be the average weight of the points: w= 1

n ∑x∈S w(x) = OPT
n .
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3. Clustering With Limited Distance Information

Algorithm 1 Landmark-Clustering(S,α,ε,δ,k)
b= (1+17/α)εn;
q= 2b;
iter= 4k+16ln 1δ ;
smin = b+1;
n′ = n−b;
L = Landmark-Selection(q, iter,S);
C′ = Expand-Landmarks (k,smin,n′,L,S);
Choose some working landmark li from each clusterC′

i ;
for each x ∈ S do
Insert x into the clusterC′′

j for j = argminid(x, li);
end for
return C′′;

In this section we present a new algorithm that accurately clusters a set of points assuming
that the clustering instance satisfies the (c,ε)-property for c = 1+α, and the clusters in the target
clustering CT are not too small. The algorithm presented here is much faster than the one given
by Balcan et al., and does not require all pairwise distances as input. Instead, we only require
O(k+ ln 1δ) one versus all distance queries to achieve the same performance guarantee as in Balcan
et al. (2009) with probability at least 1−δ.

Our clustering method is described in Algorithm 1. We start by using the Landmark-Selection
procedure to adaptively select a small set of landmarks. This procedure repeatedly chooses uni-
formly at random one of the q farthest points from the ones selected so far (for an appropriate q),
where the distance from a point s to a set X is given by minx∈Xd(s,x). We use dmin(s) to refer to the
minimum distance between s and any point selected so far. Each time we select a new landmark l,
we use a one versus all distance query to get the distances between l and all other points in the data
set, and update dmin(s) for each point s ∈ S. To select a new landmark in each iteration, we choose
a random number i ∈ {n− q+ 1, . . . ,n} and use a linear time selection algorithm to select the ith
farthest point. The complete description of this procedure is given in Algorithm 2. We note that our
algorithm uses only the distances between landmarks and other points to produce a clustering.

Expand-Landmarks then expands a ball Bl around each landmark l ∈ L. We use the variable r
to denote the radius of all the balls: for each landmark l ∈ L, Bl = {s ∈ S | d(s, l) ≤ r}. For each
ball there are at most n relevant values of r, each adding at least one more point to it, which results
in at most |L|n values of r to try in total. We call a landmark l working if Bl contains at least smin
points. The algorithm maintains a graph GB = (VB,EB), where vl ∈VB represents the ball Bl around
working landmark l, and two vertices are connected by an (undirected) edge if the corresponding
balls overlap on any point: (vl1 ,vl2) ∈ EB iff Bl1 ∩Bl2 += /0. We emphasize that this graph considers
only the balls that have at least smin points in them. In addition, we maintain the set of points in
these balls Clustered = {s ∈ S | ∃l:s ∈ Bl and vl ∈ VB}, and a list of the connected components of
GB, which we refer to as Components(GB) = {Comp1, ...,Compm}.

In each iteration we expand one of the balls by a point, and update GB,Components(GB), and
Clustered. IfGB has exactly k components, and |Clustered|≥ n′, we terminate and report a clustering
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Algorithm 2 Landmark-Selection(q, iter,S)
Choose l ∈ S uniformly at random;
L= {l};
for each d(l,s) ∈ QUERY-ONE-VS-ALL(l,S) do
dmin(s) = d(l,s);

end for
for i = 1 to iter−1 do
Let s1, ...,sn be an ordering of points in S such that dmin(s j)≤ dmin(s j+1) for j ∈ {1, . . . ,n−1};
Choose l ∈ {sn−q+1, . . . ,sn} uniformly at random;
L= L∪{l};
for each d(l,s) ∈ QUERY-ONE-VS-ALL(l,S) do
if d(l,s)< dmin(s) then
dmin(s) = d(l,s);

end if
end for

end for
return L;

Bl1Bl1

l1l1

Bl2Bl2

l2l2

ss

ll
BlBl

Figure 1: Balls around landmarks are displayed, with the next point to be added to a ball labeled as
s∗.

that has a cluster Ci for each component Compi, where each Ci contains points in balls in Compi.
If this condition is never satisfied, we report no-cluster. A sketch of this algorithm is given in
Algorithm 3. In our description Expand-Ball() is an abstraction for expanding one of the balls by a
single point, which is performed by finding the next closest landmark-point pair (l∗,s∗), and adding
s∗ to Bl∗ (see Figure 1). In Section 4 we give a full description of an efficient implementation of
Expand-Landmarks.

The last step of our algorithm takes the clustering C′ returned by Expand-Landmarks and im-
proves it. We compute a set L′ that contains exactly one working landmark from each clusterC′

i ∈C′

(any working landmark is sufficient), and assign each point x ∈ S to the cluster corresponding to the
closest landmark in L′.

We now present our main theoretical guarantee for Algorithm 1.
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Algorithm 3 Expand-Landmarks(k,smin,n′,L,S)
1: r = 0;
2: while ((l∗,s∗) = Expand-Ball()) != null do
3: r = d(l∗,s∗);
4: update GB, Components(GB), and Clustered;
5: if |Components(GB)|= k and |Clustered|≥ n′ then
6: return C = {C1, ...,Ck} whereCi = {s ∈ S | ∃l:s ∈ Bl and vl ∈ Compi};
7: end if
8: end while
9: return no-cluster;

Theorem 2 Given a metric space M = (X ,d), where d is unknown, and a set of points S ⊆ X, if
the instance (S,d) satisfies the (1+α,ε)-property for the k-median objective function and if each
cluster in the target clustering CT has size at least (4+51/α)εn, then Landmark-Clustering outputs
a clustering that is ε-close to CT with probability at least 1−δ in time O((k+ ln 1δ)|S| log |S|) using
O(k+ ln 1δ) one versus all distance queries.

Before we prove the theorem, we will introduce some notation and use an analysis similar to
the one in Balcan et al. (2009) to argue about the structure of the clustering instance that follows
from our assumptions. Let ε∗ = dist(CT ,C∗). By our assumption that the k-median clustering of S
satisfies the (1+α,ε)-property we have ε∗ < ε. Because each cluster in the target clustering has at
least (4+51/α)εn points, and the optimal k-median clustering C∗ differs from the target clustering
by ε∗n≤ εn points, each cluster inC∗ must have at least (3+51/α)εn points.

Let us define the critical distance dcrit = αw
17ε . We call a point x good if both w(x) < dcrit and

w2(x)−w(x)≥ 17dcrit, else x is called bad. In other words, the good points are those points that are
close to their own cluster center and far from any other cluster center. In addition, we will break up
the good points into good sets Xi, where Xi is the set of the good points in the optimal cluster C∗

i .
So each set Xi is the “core” of the optimal clusterC∗

i .
Note that the distance between two points x,y∈Xi satisfies d(x,y)≤ d(x,c∗i )+d(c∗i ,y) =w(x)+

w(y)< 2dcrit. In addition, the distance between any two points in different good sets is greater than
16dcrit. To see this, consider a pair of points x ∈ Xi and y ∈ Xj +=i. The distance from x to y’s cluster
center c∗j is at least 17dcrit. By the triangle inequality, d(x,y)≥ d(x,c∗j)−d(y,c∗j)> 17dcrit−dcrit =
16dcrit.

If the k-median instance (M,S) satisfies the (1+α,ε)-property with respect to CT , and each
cluster in CT has size at least 2εn, then

1. less than (ε− ε∗)n points x ∈ S on whichCT andC∗ agree have w2(x)−w(x)< αw
ε .

2. at most 17εn/α points x ∈ S have w(x)≥ αw
17ε .

The first part is proved by Balcan et al. (2009). The intuition is that if too many points on which
CT and C∗ agree are close enough to the second-closest center among {c∗1,c∗2, . . . ,c∗k}, then we can
move them to the clusters corresponding to those centers, producing a clustering that is structurally
far fromCT , but whose objective value is close to OPT, violating the (1+α,ε)-property. The second
part follows from the fact that ∑x∈S w(x) = OPT = wn.
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Then using these facts and the definition of ε∗ it follows that at most ε∗n+(ε−ε∗)n+17εn/α=
εn+17εn/α= (1+17/α)εn= b points are bad. Hence each |Xi|= |C∗

i \B|≥ (2+34/α)εn= 2b.
In the remainder of this section we prove that given this structure of the clustering instance,

Landmark-Clustering finds an accurate clustering. We first show that almost surely the set of land-
marks returned by Landmark-Selection has the property that each of the cluster cores has a landmark
near it, which we refer to as the landmark spread property. We then argue that given a set of such
landmarks, Expand-Landmarks finds a partitionC′ that clusters most of the points in each core cor-
rectly. We conclude with the proof of the theorem, which argues that the clustering returned by the
last step of our procedure is a further improved clustering that is very close toC∗ andCT .

The Landmark-Clustering algorithm first uses Landmark-Selection(q, iter,S) to choose a set of
landmarks. We say that the landmark spread property holds if there is a landmark closer than 2dcrit
to some point in each good set. The following lemma proves that for q = 2b after selecting only
iter=O(k+ ln 1δ) points the chosen landmarks will have this property with probability at least 1−δ.

Lemma 3 Given a set of landmarks L = Landmark-Selection (2b,4k+ 16ln 1δ ,S), the landmark
spread property is satisfied with probability at least 1−δ.

Proof Because there are at most b bad points and in each iteration we uniformly at random choose
one of 2b points, the probability that a good point is added to L is at least 1/2 in each iteration.
Using a Chernoff bound, we show in Lemma 4 that the probability that fewer than k good points
have been added to L after t > 2k iterations is less than e−t(1− 2k

t )
2/4. For t = 4k+16ln 1δ

e−t(1−
2k
t )
2/4 < e−(4k+16ln 1δ )0.5

2/4 < e−16ln
1
δ /16 = δ.

Therefore after t = 4k+16ln 1δ iterations this probability is smaller than δ.
We argue that once we select k good points using our procedure, one of them must be closer

than 2dcrit to some point in each good set. As in Algorithm 2, we use dmin(s) to denote the minimum
distance from point s to any landmark that has been selected so far: dmin(s) =minl∈L′ d(l,s), where
L′ is the set of landmarks that have been selected so far.

There are two possibilities regarding the first k good points added to L: we select them from
distinct good sets, or at least two points are selected from the same good set. If the former is true,
the landmark spread property trivially holds. If the latter is true, consider the first time that a second
point is chosen from the same good set Xi. Let us call these two points x and y (they may be the
same point), and assume that y is chosen after x. The distance between x and y must be less than
2dcrit because they are in the same good set. Therefore when y is chosen, dmin(y)≤ d(x,y)< 2dcrit.
Moreover, y is chosen from {sn−2b+1, ...,sn}, where dmin(s j) ≤ dmin(s j+1). Therefore when y is
chosen, at least n−2b+1 points s ∈ S (including y) satisfy dmin(s)≤ dmin(y)< 2dcrit. Because each
good set satisfies |Xi|≥ 2b, it follows that there must be a landmark closer than 2dcrit to some point
in each good set.

Lemma 4 The probability that fewer than k good points have been chosen as landmarks after t > 2k
iterations of Landmark-Selection is less than e−t(1−

2k
t )
2/4.
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Proof Let Xi be an indicator random variable defined as follows: Xi = 1 if the point chosen in
iteration i is a good point, and 0 otherwise. Let X = ∑ti=1Xi, and µ be the expectation of X . In
other words, X is the number of good points chosen after t iterations of the algorithm, and µ is its
expected value.

Because in each round we uniformly at random choose one of 2b points and there are at most
b bad points in total, E[Xi] ≥ 1/2 and hence µ≥ t/2. By the Chernoff bound, for any δ > 0,
Pr[X < (1−δ)µ]< e−µδ2/2.

If we set δ= 1− 2k
t , we have (1−δ)µ= (1− (1− 2k

t ))µ≥ (1− (1− 2k
t ))t/2= k. Assuming that

t ≥ 2k, it follows that Pr[X < k]≤ Pr[X < (1−δ)µ]< e−µδ2/2 = e−µ(1−
2k
t )
2/2 ≤ e−t/2(1−

2k
t )
2/2.

The algorithm then uses the Expand-Landmarks procedure to find a k-clustering C′. The fol-
lowing lemma states thatC′ is an accurate clustering, and has an additional property that is relevant
for the last part of the algorithm.

Lemma 5 Given a set of landmarks L that satisfy the landmark spread property, Expand-Landmarks
with parameters smin = b+ 1, and n′ = n− b returns a k-clustering C′ = {C′

1,C′
2, . . .C′

k} in which
each cluster contains points from a single distinct good set Xi. If we let σ be a bijection mapping
each good set Xi to the cluster C′

σ(i) containing points from Xi, the distance between c∗i and any
working landmark l in C′

σ(i) satisfies d(c
∗
i , l)< 5dcrit.

Proof Lemma 6 argues that because the good sets Xi are well-separated, for r < 4dcrit no ball of
radius r can overlap (intersect) more than one Xi, and two balls that overlap different Xi cannot share
any points. Lemma 7 argues that because there is a landmark near each good set, there is a value
of r∗ < 4dcrit such that each Xi is contained in some ball of radius r∗. Moreover, because we only
consider balls that have more than b points in them, and the number of bad points is at most b, each
ball in GB must overlap some good set. We can use these facts to argue for the correctness of the
algorithm. We refer to the clustering computed in line 6 of Expand-Landmarks as the clustering
induced by GB, in which each cluster contains points in balls that are in the same component in GB.

First we observe that for r = r∗, GB has exactly k components and each good set Xi is contained
within a distinct component of the induced clustering. Each ball in GB overlaps with some Xi, and
because r∗ < 4dcrit, we know that each ball in GB overlaps with exactly one Xi. We also know that
balls that overlap different Xi cannot share any points and are thus not connected in GB. Therefore
balls that overlap different Xi will be in different components in GB. Moreover, each Xi is contained
in some ball of radius r∗. For each good set Xi let us designate by Bi a ball that contains all the points
in Xi (Figure 2), which is in GB because the size of each good set satisfies |Xi|> b. Any ball in GB
that overlaps Xi will be connected to Bi, and will thus be in the same component as Bi. Therefore
for r = r∗, GB has exactly k components, one for each good set Xi, with the corresponding cluster
containing all the points in Xi.

There are at least n− b points that are in some Xi, therefore for r = r∗ the number of clustered
points is at least n− b. Hence for r = r∗ the condition in line 5 of Expand-Landmarks will be
satisfied and in line 6 the algorithm will return a k-clustering in which each cluster contains points
from a single distinct good set Xi.

Now let us suppose that we start with r = 0. Consider the first value of r = r′ for which the
condition in line 5 is satisfied. At this point GB has exactly k components and the number of points
that are not clustered is at most b. It must be the case that r′ ≤ r∗ < 4dcrit because we know that
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Figure 2: Balls Bi and Bj of radius r∗ are shown, which contain good sets Xi and Xj, respectively.
The radius of the balls is small in comparison to the distance between the good sets.

the condition is satisfied for r = r∗, and we are considering all relevant values of r in ascending
order. As before, each ball in GB must overlap some good set Xi. Again using Lemma 6 we argue
that because r < 4dcrit, no ball can overlap more than one Xi and two balls that overlap different Xi
cannot share any points. It follows that each cluster induced by GB contains points from a single Xi
(so we cannot merge the good sets). Moreover, because the size of each good set satisfies |Xi|> b,
and there are at most b points that are not clustered, each induced cluster must contain points from
a distinct Xi (so we cannot split the good sets). Thus we will return a k-clustering in which each
cluster contains points from a single distinct good set Xi.

To prove the second part of the statement, let σ be a bijection matching each good set Xi to
the cluster C′

σ(i) containing points from Xi. Clearly, for any working landmark l in C′
σ(i) it must be

the case that Bl overlaps Xi. Let s∗ denote any point on which Bl and Xi overlap. By the triangle
inequality, the distance between c∗i and l satisfies d(c∗i , l) ≤ d(c∗i ,s∗)+ d(s∗, l) < dcrit+ r < 5dcrit.
Therefore the distance between c∗i and any working landmark l ∈C′

σ(i) satisfies d(c
∗
i , l)< 5dcrit.

Lemma 6 A ball of radius r< 4dcrit cannot contain points from more than one good set Xi, and two
balls of radius r < 4dcrit that overlap (intersect) different Xi cannot share any points.

Proof To prove the first part, consider a ball Bl of radius r < 4dcrit around landmark l. In other
words, Bl = {s ∈ S | d(s, l) ≤ r}. If Bl overlaps more than one good set, then it must have at
least two points from different good sets x ∈ Xi and y ∈ Xj. By the triangle inequality it follows
that d(x,y) ≤ d(x, l) + d(l,y) ≤ 2r < 8dcrit. However, we know that d(x,y) > 16dcrit, giving a
contradiction.

To prove the second part, consider two balls Bl1 and Bl2 of radius r < 4dcrit around landmarks
l1 and l2. In other words, Bl1 = {s ∈ S | d(s, l1) ≤ r}, and Bl2 = {s ∈ S | d(s, l2) ≤ r}. Assume that
they overlap with different good sets Xi and Xj: Bl1 ∩Xi += /0 and Bl2 ∩Xj += /0. For the purpose of
contradiction, let’s assume that Bl1 and Bl2 share at least one point: Bl1∩Bl2 += /0, and use s∗ to refer to
this point. By the triangle inequality, it follows that the distance between any point x∈Bl1 and y∈Bl2
satisfies d(x,y)≤ d(x,s∗)+d(s∗,y)≤ [d(x, l1)+d(l1,s∗)]+ [d(s∗, l2)+d(l2,y)]≤ 4r < 16dcrit.
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Because Bl1 overlaps with Xi and Bl2 overlaps with Xj, it follows that there is a pair of points
x ∈ Xi and y ∈ Xj such that d(x,y)< 16dcrit, a contradiction. Therefore if Bl1 and Bl2 overlap differ-
ent good sets, Bl1 ∩Bl2 = /0.

Lemma 7 Given a set of landmarks L that satisfy the landmark spread property, there is some value
of r∗ < 4dcrit such that each Xi is contained in some ball Bl around landmark l ∈ L of radius r∗.

Proof For each good set Xi choose a point si ∈ Xi and a landmark li ∈ L that satisfy d(si, li)< 2dcrit.
The distance between li and each point x ∈ Xi satisfies d(li,x)≤ d(li,si)+d(si,x)< 2dcrit+2dcrit =
4dcrit. Consider r∗ =maxlimaxx∈Xid(li,x). Clearly, each Xi is contained in a ball Bli of radius r∗ and
r∗ < 4dcrit.

Lemma 8 Suppose the distance between c∗i and any working landmark l in C′
σ(i) satisfies d(c

∗
i , l)<

5dcrit. Then given a point x ∈ C∗
i that satisfies w2(x)−w(x) ≥ 17dcrit, for any working landmark

l1 ∈C′
σ(i) and any working landmark l2 ∈C

′
σ( j +=i) it must be the case that d(x, l1)< d(x, l2).

Proof We will show that d(x, l1) < w(x)+ 5dcrit, and d(x, l2) > w(x)+ 12dcrit. This implies that
d(x, l1)< d(x, l2).

To prove the former, by the triangle inequality d(x, l1)≤ d(x,c∗i )+d(c∗i , l1) =w(x)+d(c∗i , l1)<
w(x)+5dcrit.

To prove the latter, by the triangle inequality d(x, l2) ≥ d(x,c∗j)− d(l2,c∗j). Because d(x,c∗j) ≥
w2(x) and d(l2,c∗j)< 5dcrit, we have

d(x, l2)> w2(x)−5dcrit. (1)

Moreover, because w2(x)−w(x)≥ 17dcrit, we have

w2(x)≥ 17dcrit+w(x). (2)

Combining Equations 1 and 2 it follows that d(x, l2)> 17dcrit+w(x)−5dcrit = w(x)+12dcrit.

Proof [Theorem 2] After using Landmark-Selection to choose O(k+ ln 1δ) points, with probability
at least 1− δ there is a landmark closer than 2dcrit to some point in each good set. Given a set of
landmarks with this property, each cluster in the clustering C′ = {C′

1,C′
2, . . .C′

k} output by Expand-
Landmarks contains points from a single distinct good set Xi. This clustering can exclude up to b
points, all of which may be good. Nonetheless, this means thatC′ may disagree withC∗ on only the
bad points and at most b good points. The number of points that C′ and C∗ disagree on is therefore
at most 2b=O(εn/α). Thus,C′ is at least O(ε/α)-close toC∗, and at least O(ε/α+ε)-close toCT .

Moreover, C′ has an additional property that allows us to find a clustering that is ε-close to CT .
If we use σ to denote a bijection mapping each good set Xi to the clusterC′

σ(i) containing points from
Xi, any working landmark l ∈C′

σ(i) is closer than 5dcrit to c
∗
i . We can use this observation to find all

points that satisfy one of the properties of the good points: points x such that w2(x)−w(x)≥ 17dcrit.
Let us call these points the detectable points. To clarify, the detectable points are those points that
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are much closer to their own cluster center than to any other cluster center inC∗, and the good points
are a subset of the detectable points that are also very close to their own cluster center.

To find the detectable points using C′, we choose some working landmark li from each C′
i . For

each point x ∈ S, we then insert x into the cluster C′′
j for j = argminid(x, li). Lemma 8 argues

that each detectable point in C∗
i is closer to every working landmark in C′

σ(i) than to any working
landmark in C′

σ( j +=i). It follows that C
′′ and C∗ agree on all the detectable points. Because there

are fewer than (ε− ε∗)n points on which CT and C∗ agree that are not detectable, it follows that
dist(C′′,CT )< (ε− ε∗)+dist(CT ,C∗) = (ε− ε∗)+ ε∗ = ε.

Therefore using O(k+ ln 1δ) landmarks we compute an accurate clustering with probability at
least 1−δ. The runtime of Landmark-Selection isO(|L|n) if we use a linear time selection algorithm
to select the next point in each iteration, where |L| is the number of landmarks. Using a min-heap to
store all landmark-point pairs and a disjoint-set data structure to keep track of the connected compo-
nents of GB, Expand-Landmarks can be implemented in O(|L|n logn) time. A detailed description
of this implementation is given in Section 4. The last part of our procedure takes O(kn) time, so
the overall runtime of our algorithm is O(|L|n logn). Therefore to compute an accurate clustering
with probability at least 1− δ the runtime of our algorithm is O((k+ ln 1δ)n logn). Moreover, we
only consider the distances between the landmarks and other points, so we only use O(k+ ln 1δ) one
versus all distance queries.

4. Implementation of Expand-Landmarks

In order to efficiently expand balls around landmarks, we build a min-heap H of landmark-point
pairs (l,s), where the key of each pair is the distance between l and s. In each iteration we find
(l∗,s∗) = H.deleteMin(), and then add s∗ to items(l∗), which stores the points in Bl∗ . We store points
that have been clustered (points in balls of size at least smin) in the set Clustered.

Our implementation assigns each clustered point s to a “representative” landmark, denoted by
lm(s). The representative landmark of s is the landmark l of the first large ball Bl that contains
s. To efficiently update the components of GB, we maintain a disjoint-set data structure U that
contains sets corresponding to the connected components ofGB, where each ball Bl is represented by
landmark l. In other words, U contains a set {l1, l2, l3} iff Bl1 ,Bl2 ,Bl3 form a connected component
in GB.

For each large ball Bl our algorithm will consider all points s ∈ Bl and perform
Update-Components(l,s), which works as follows. If s does not have a representative landmark
we assign it to l, otherwise s must already be in Blm(s), and we assign Bl to the same component as
Blm(s). If none of the points in Bl are assigned to other landmarks, it will be in its own component.
A detailed description of the algorithm is given in Algorithm 4.

During the execution of the algorithm the connected components of GB must correspond to the
sets ofU (where each ball Bl is represented by landmark l). Lemma 9 argues that if Bl1 and Bl2 are
directly connected in GB, l1 and l2 must be in the same set inU . It follows that whenever Bl1 and Bl2
are in the same connected component in GB, l1 and l2 will be in the same set inU . Moreover, if Bl1
and Bl2 are not in the same component in GB, then l1 and l2 cannot be in the same set inU because
both start in distinct sets (line 22), and it is not possible for a set containing l1 to be merged with a
set containing l2.
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Algorithm 4 Expand-Landmarks(k,smin,n′,L,S)
1: A = ();
2: for each s ∈ S do
3: lm(s) = null;
4: for each l ∈ L do
5: A.add((l,s),d(l,s));
6: end for
7: end for
8: H = build-heap(A);
9: for each l ∈ L do
10: items(l) = ();
11: end for
12: Set Clustered = ();
13: U = ();
14: while H.hasNext() do
15: (l∗,s∗) = H.deleteMin();
16: items(l∗).add(s∗);
17: if items(l∗).size() > smin then
18: Update-Components(l∗,s∗);
19: Clustered.add(s∗);
20: end if
21: if items(l∗).size() == smin then
22: U .MakeSet(l∗);
23: for each s ∈ items(l∗) do
24: Update-Components(l∗,s);
25: Clustered.add(s);
26: end for
27: end if
28: if Clustered.size() ≥ n′ andU .size() == k then
29: return Format-Clustering();
30: end if
31: end while
32: return no-cluster;

Algorithm 5 Update-Components(l,s)
1: if lm(s) == null then
2: lm(s) = l;
3: else
4: c1 =U .find(l);
5: c2 =U .find(lm(s));
6: U .union(c1,c2);
7: end if
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Algorithm 6 Format-Clustering()
1: C = ();
2: for each Set L′ inU do
3: Set Cluster = ();
4: for each l ∈ L′ do
5: for each s ∈ items(l) do
6: Cluster.add(s);
7: end for
8: end for
9: C.add(Cluster);
10: end for
11: return C;

Lemma 9 If balls Bl1 and Bl2 are directly connected in GB, then landmarks l1 and l2 must be in the
same set in U.

Proof If Bl1 and Bl2 are directly connected in GB, then Bl1 and Bl2 must overlap on some point s.
Without loss of generality, suppose s is added to Bl1 before it is added to Bl2 . When s is added to
Bl1 , lm(s) = l1 if s does not yet have a representative landmark (lines 1-2 of Update-Components),
or lm(s) = l′ and both l1 and l′ are put in the same set (lines 4-6 of Update-Components). When s is
added to Bl2 , if lm(s) = l1, then l1 and l2 will be put in the same set inU . If lm(s) = l′, l′ and l2 will
be put in the same set inU , which also contains l1.

It takes O(|L|n) time to build H (linear in the size of the heap). Each deleteMin() operation
takes O(log(|L|n)) (logarithmic in the size of the heap), which is equivalent to O(log(n)) because
|L|≤ n. If U is implemented by a union-find algorithm, Update-Components takes amortized time
ofO(α(|L|), where α denotes the inverse Ackermann function. Moreover, Update-Components may
be called at most once for each iteration of the while loop in Expand-Landmarks (for a pair (l∗,s∗)
it is either called on line 18 if Bl∗ is large enough, or it is called on line 24 when Bl∗ grows large
enough). All other operations also take time proportional to the number of landmark-point pairs.
So the runtime of this algorithm is O(|L|n) + iter ·O(logn+α(|L|)), where iter is the number of
iterations of the while loop. As the number of iterations is bounded by |L|n, and α(|L|) is effectively
constant, this gives a worst-case running time of O(|L|n logn).

5. Empirical Study

We use our Landmark Clustering algorithm to cluster proteins using sequence similarity. As men-
tioned in the Introduction, one versus all distance queries are particularly relevant in this setting
because of sequence database search programs such as BLAST (Altschul et al., 1990) (Basic Lo-
cal Alignment Search Tool). BLAST aligns a queried sequence to sequences in the database, and
produces a “bit score” for each alignment, which is a measure of its quality (we invert the bit score
to make it a distance). However, BLAST does not consider alignments with some of the sequences
in the database, in which case we assign distances of infinity to the corresponding sequences. We
observe that if we define distances in this manner they almost form a metric in practice: when we
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draw triplets of sequences at random and check the distances between them the triangle inequality
is almost always satisfied. Moreover, BLAST is very successful at detecting sequence homology
in large sequence databases, therefore it is plausible that k-median clustering using these distances
is approximately stable with respect to a relevant target clustering CT , which groups together se-
quences with shared evolutionary ancestry.

We perform experiments on data sets obtained from two classification databases: Pfam (Finn
et al., 2010), version 24.0, October 2009; and SCOP (Murzin et al., 1995), version 1.75, June 2009.
Both of these sources classify proteins by their evolutionary relatedness, therefore we can use their
classifications as a ground truth to evaluate the clusterings produced by our algorithm and other
methods.

Pfam classifies proteins using hidden Markov models (HMMs) that represent multiple sequence
alignments. There are two levels in the Pfam classification hierarchy: family and clan. In our
clustering experiments we compare with a classification at the family level because the relationships
at the clan level are less likely to be discerned with sequence alignment. In each experiment we
randomly select several large families (of size between 1000 and 10000) from Pfam-A (the manually
curated part of the classification), retrieve the sequences of the proteins in these families, and use
our Landmark-Clustering algorithm to cluster the data set.

SCOP groups proteins on the basis of their 3D structures, so it only classifies proteins whose
structure is known. Thus the data sets from SCOP are much smaller in size. The SCOP classification
is also hierarchical: proteins are grouped by class, fold, superfamily, and family. We consider the
classification at the superfamily level because this seems most appropriate given that we are only
using sequence information. As with the Pfam data, in each experiment we create a data set by
randomly choosing several superfamilies (of size between 20 and 200), retrieve the sequences of
the corresponding proteins, and use our Landmark-Clustering algorithm to cluster the data set.

Once we cluster a particular data set, we compare the clustering to the manual classification
using the distance measure from the theoretical part of our work. To find the fraction of misclassified
points under the optimal matching of clusters in C to clusters in C′ we solve a minimum weight
bipartite matching problem where the cost of matching Ci to C′

f (i) is |Ci−C′
f (i)|/n. In addition,

we compare clusterings to manual classifications using the F-measure, which is used in another
study that clusters protein sequences (Paccanaro et al., 2006). The F-measure is a similarity score
between 0 and 1, where 1 indicates an exact match between the two clusterings (see Appendix A).
This measure has also been used in other studies (see Cheng et al., 2006), and is related to our notion
of clustering distance (see Lemma 10 in Appendix A). Surprisingly, the F-measure is not symmetric;
in our experiments we compute the similarity of a clustering C to the manual classification CM as
F(CM,C).

5.1 Choice of Parameters

To run Landmark-Clustering, we set k using the number of clusters in the ground truth clustering.
For each Pfam data set we use 5k landmarks/queries, and for each SCOP data set we use 10k
landmarks/queries. In addition, our algorithm uses three parameters (q,smin,n′) whose value is set
in the proof based on α and ε, assuming that the clustering instance satisfies the (1+α,ε)-property.
In practice we must choose some value for each parameter. In our experiments we set q as a function
of the average size of the ground truth clusters (ave-size), smin as a function of the size of the smallest
ground truth cluster (min-size), and n′ as a function of the number of points in the data set. For the
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Pfam data sets we set q = ave-size, smin = 0.25 · min-size, and n′ = 0.7n. Because the selection
of landmarks is randomized, for each data set we compute several clusterings, compare each to the
ground truth, and report the median quality.

Landmark-Clustering is most sensitive to the smin parameter, and will not report a clustering if
smin is too small or too large. We recommend trying several values of this parameter, in increasing
or decreasing order, until one gets a clustering and none of the clusters are too large. If the user
gets a clustering where one of the clusters is very large, this likely means that several ground truth
clusters have been merged. This may happen because smin is too small causing balls of outliers to
connect different cluster cores, or smin is too large causing balls intersecting different cluster cores
to overlap.

In our SCOP experiments we have to use the above-mentioned heuristic to set the smin parameter.
We start with smin = min-size, and decrement it until we get exactly k clusters and none of the
clusters are too large (larger than twice the size of the largest ground truth cluster). For the SCOP
data sets we set q = ave-size, and n′ = 0.5n. As before, for each data set we compute several
clusterings, compare each to the ground truth, and report the median quality.

Our algorithm is less sensitive to the n′ parameter. However, if the user sets n′ too large some
ground truth clusters may be merged, so we recommend using a smaller value (0.5n ≤ n′ ≤ 0.7n)
because all of the points are still clustered during the last step. Again, for some values of n′ the
algorithm may not output a clustering, or output a clustering where some of the clusters are too
large.

It is important to not choose an extreme value for the q parameter. The value of q must be large
enough to avoid repeatedly choosing outliers (if q = 1 we are likely to choose an outlier in each
iteration), but small enough to quickly find a landmark near each cluster core. If we set q = n, the
algorithm selects landmarks uniformly at random, and we may need significantly more landmarks
to choose one from each cluster core by chance.

In our experiments we compare the algorithm that uses the adaptive selection strategy with the
alternative that chooses landmarks uniformly at random. The alternative algorithm uses exactly
the same number of landmarks, and other parameters stay the same as well. When the data has
the structure that follows from our assumptions, the non-adaptive selection strategy may require
significantly more landmarks to cover all cluster cores (especially if the sizes of the ground truth
clusters are not well-balanced). Therefore when the data has the right structure and we cannot afford
to use many landmarks, we expect to find more accurate clusterings with the adaptive selection
strategy.

5.2 Results

Figure 3 shows the results of our experiments on the Pfam data sets. As discussed earlier, to test
our adaptive landmark selection strategy we compare our algorithm, which is labeled Landmark-
Clustering-Adaptive, with the same algorithm that chooses landmarks uniformly at random, which
we refer to as Landmark-Clustering-Random. We can see that for a lot of the data sets Landmark-
Clustering-Adaptive finds a clustering that is quite close to the ground truth. The alternative algo-
rithm does not perform as well, and for data set 3 fails to find a clustering altogether.

The Pfam data sets are very large, so as a benchmark for comparison we can only consider
algorithms that use a comparable amount of distance information (because we do not have the full
distance matrix). A natural choice is the following algorithm: uniformly at random choose a set of
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Figure 3: Comparing the performance of Landmark-Clustering-Adaptive, Landmark-Clustering-
Random, and k-means in the embedded space on 10 data sets from Pfam. Data sets 1-10
are created by randomly choosing 8 families from Pfam of size s, 1000 ≤ s ≤ 10000.
(a) Comparison using the distance measure from the theoretical part of our work. (b)
Comparison using the F-measure.

landmarks L, |L|= d; embed each point in a d-dimensional space using distances to L; use k-means
clustering in this space (with distances given by the Euclidean norm). This embedding scheme is a
Lipschitz embedding with singleton subsets (see Tang and Crovella, 2003), which gives distances
with low distortion for points near each other in a metric space.

Notice that this procedure uses exactly d one versus all distance queries, so we can set d equal
to the number of queries used by our algorithm. We expect this algorithm to work well, and if
we look at Figure 3 we can see that it finds reasonable clusterings. Still, the clusterings reported
by this algorithm do not closely match the Pfam classification, showing that our results are indeed
significant.

Figure 4 shows the results of our experiments on the SCOP data sets. For these data sets we find
less accurate clusterings, which is likely because the SCOP classification is based on biochemical
and structural evidence in addition to sequence evidence. By contrast, the Pfam classification is
based entirely on sequence information. Still, because the SCOP data sets are much smaller, we
can compare our algorithm with methods that require distances between all the points. In particular,
Paccanaro et al. (2006) show that spectral clustering using sequence similarity data works well
when applied to the proteins in SCOP. Thus we use the exact method described by Paccanaro et al.
(2006) as a benchmark for comparison on the SCOP data sets. Moreover, other than clustering
randomly generated data sets from SCOP, we also consider the two main examples from Paccanaro
et al., which are labeled A and B in the figure. From Figure 4 we can see that the performance of
Landmark-Clustering is comparable to that of the spectral method, which is very good considering
that the spectral clustering algorithm significantly outperforms other clustering algorithms on this
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Figure 4: Comparing the performance of Landmark-Clustering and spectral clustering on 10 data
sets from SCOP. Data sets A and B are the two main examples from Paccanaro et al.
(2006), the other data sets (1-8) are created by randomly choosing 8 superfamilies from
SCOP of size s, 20 ≤ s ≤ 200. (a) Comparison using the distance measure from the
theoretical part of our work. (b) Comparison using the F-measure.

data (Paccanaro et al., 2006). Moreover, the spectral clustering algorithm requires the full distance
matrix as input, and takes much longer to run.

For the SCOP data sets we do not see any significant difference in performance when we com-
pare the adaptive and non-adaptive landmark selection strategies. This is likely because we are
using a lot of landmarks (10 times the number of clusters), and selecting landmarks uniformly at
random is sufficient to cover the dense groups of points. Unfortunately for these data the algorithm
has little success if we use fewer than 10k landmarks (it usually cannot find a clustering altogether),
so we cannot test how the two selection strategies perform when we use fewer landmarks.

5.3 Testing the (c,ε)-property

To see whether approximation stability of the k-median objective function is a reasonable assump-
tion for our data, we look at whether our data sets resemble the structure that is implied by our
assumption. We do this by measuring the separation of the ground truth clusters in our data sets.
For each data set in our study, we sample some points from each ground truth cluster. We then look
at whether the sampled points are more similar to points in the same cluster than to points in other
clusters. More specifically, for each point we record the median within-cluster similarity, and the
maximum between-cluster similarity. If our data sets indeed have well-separated cluster cores, as
implied by our assumption, then for a lot of the points the median within-cluster similarity should
be significantly larger than the maximum between-cluster similarity. We can see that this is indeed
the case for the Pfam data sets. However, this is not typically the case for the SCOP data sets, where
most points have little similarity to the majority of the points in their ground truth cluster. These
observations explain our results on the two sets of data: we are able to accurately cluster the Pfam
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data sets, and our algorithm is much less accurate on the SCOP data sets. The complete results of
these experiments can be found at http://xialab.bu.edu/resources/ac.

Testing whether the (c,ε)-property holds for the k-median objective is an NP-complete prob-
lem (Schalekamp et al., 2010). Moreover, in our experiments when we set the parameters of the
algorithm we don’t preserve the relationships between them as in Algorithm 1. In particular, in our
experiments when we set n′ to n− smin+1 as in Algorithm 1, the algorithm usually fails to report a
clustering no matter what value of smin we try. This means that these data sets in fact do not satisfy
our exact theoretic assumptions. Still, when we only slightly break the dependence between the
parameters, we are able to find accurate clusterings for the Pfam data sets. For the SCOP data sets
we have to further break the dependence between the parameters, and use an additional heuristic to
estimate smin, which is not surprising because these data do not have the structure that the algorithm
exploits.

6. Conclusion and Open Questions

In this work we presented a new algorithm for clustering large data sets with limited distance infor-
mation. As opposed to previous settings, our goal was not to approximate some objective function
like the k-median objective, but to find clusterings close to the ground truth. We proved that our
algorithm yields accurate clusterings with only a small number of one versus all distance queries,
given a natural assumption about the structure of the clustering instance. This assumption has been
previously analyzed by Balcan et al. (2009), but in the full distance information setting. By contrast,
our algorithm uses only a small number of queries, it is much faster, and it has effectively the same
formal performance guarantees as the one introduced by Balcan et al. (2009).

To demonstrate the practical use of our algorithm, we clustered protein sequences using a se-
quence database search program as the one versus all query. We compared our results to gold
standard manual classifications of protein evolutionary relatedness given in Pfam (Finn et al., 2010)
and SCOP (Murzin et al., 1995). We find that our clusterings are quite accurate when we compare
with the classification given in Pfam. For SCOP our clusterings are as accurate as state of the art
methods, which take longer to run and require the full distance matrix as input.

Our main theoretical guarantee assumes large target clusters. It would be interesting to design
a provably correct algorithm for the case of small clusters as well. It would also be interesting to
study other objective functions for clustering under similar approximation stability assumptions.
In particular, Voevodski et al. (2011) study the implications of the (c,ε)-property for the min-sum
objective function. However, the algorithm presented there is not as efficient and is less accurate in
clustering protein sequences.
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Appendix A.

In this section we give the definition of F-measure, which is another way to compare two clusterings.
We also show a relationship between our measure of distance and the F-measure.

A.1 F-measure

The F-measure compares two clusterings C and C′ by matching each cluster in C to a cluster in C′

using a harmonic mean of Precision and Recall, and then computing a “per-point” average. If we
match Ci to C′

j, Precision is defined as P(Ci,C′
j) =

|Ci∩C′
j|

|Ci| . Recall is defined as R(Ci,C′
j) =

|Ci∩C′
j|

|Cj|
.

For Ci and C′
j the harmonic mean of Precision and Recall is then equivalent to

2·|Ci∩C′
j|

|Ci|+|C′
j|
, which we

denote by pr(Ci,C′
j) to simplify notation. The F-measure is then defined as

F(C,C′) =
1
n ∑Ci∈C

|Ci|max
C′
j∈C′

pr(Ci,C′
j).

Note that this quantity is between 0 and 1, where 1 corresponds to an exact match between the two
clusterings.

Lemma 10 Given two clusterings C and C′, if dist(C,C′) = d then F(C,C′)≥ 1−3d/2.

Proof Denote by σ the optimal matching of clusters in C to clusters in C′, which achieves a mis-
classification of dn points. We show that just considering pr(Ci,C′

σ(i)) for each Ci ∈C achieves an
F-measure of at least 1−3d/2:

F(C,C′)≥
1
n ∑Ci∈C

|Ci|pr(Ci,C′
σ(i))≥ 1−3d/2.

To see this, for a match of Ci to C′
σ(i) we denote by m

1
i the number of points that are in Ci

but not in C′
σ(i), and by m

2
i the number of points that are in C′

σ(i) but not in Ci: m
1
i = |Ci−C′

σ(i)|,
m2i = |C′

σ(i)−Ci|. Because the total number of misclassified points is dn it follows that

∑
Ci∈C

m1i = ∑
Ci∈C

m2i = dn.

By definition, |Ci∩C′
σ(i)|= |Ci|−m1i . Moreover, |C′

σ(i)|= |C′
σ(i)∩Ci|+m

2
i ≤ |Ci|+m2i . It follows

that

pr(Ci,C′
σ(i)) =

2(|Ci|−m1i )
|Ci|+ |C′

σ(i)|
≥
2(|Ci|−m1i )
2|Ci|+m2i

=
2|Ci|+m2i
2|Ci|+m2i

−
m2i +2m1i
2|Ci|+m2i

≥ 1−
m2i +2m1i
2|Ci|

.

We can now see that

1
n ∑Ci∈C

|Ci|pr(Ci,C′
σ(i))≥

1
n ∑Ci∈C

|Ci|(1−
m2i +2m1i
2|Ci|

) =
1
n ∑Ci∈C

|Ci|−
1
2n ∑Ci∈C

m2i +2m1i = 1−
3dn
2n

.
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Abstract
In recent years there has been a lot of interest in designing principled classification algorithms
over multiple cues, based on the intuitive notion that using more features should lead to better
performance. In the domain of kernel methods, a principled way to use multiple features is the
Multi Kernel Learning (MKL) approach.

Here we present a MKL optimization algorithm based on stochastic gradient descent that has
a guaranteed convergence rate. We directly solve the MKL problem in the primal formulation. By
having a p-norm formulation of MKL, we introduce a parameter that controls the level of sparsity
of the solution, while leading to an easier optimization problem. We prove theoretically and exper-
imentally that 1) our algorithm has a faster convergence rate as the number of kernels grows; 2) the
training complexity is linear in the number of training examples; 3) very few iterations are sufficient
to reach good solutions. Experiments on standard benchmark databases support our claims.
Keywords: multiple kernel learning, learning kernels, online optimization, stochastic subgradient
descent, convergence bounds, large scale

1. Introduction

In recent years there has been a lot of interest in designing principled classification algorithms
over multiple cues, based on the intuitive notion that using more features should lead to better
performance. Moreover, besides the purpose of decreasing the generalization error, practitioners
are often interested in more flexible algorithms which can perform feature selection while training.
This is for instance the case when a lot of features are available but among them noisy ones are
hidden. Selecting the features also improves the interpretability of the decision function.

This has been translated into various algorithms, that dates back to the ’90s (Wolpert, 1992),
based on a two-layers structure. There a classifier is trained for each cue and then their outputs

∗. A preliminary version of this paper appeared in Orabona et al. (2010).
†. Work done mainly while at Idiap Research Institute.

c©2012 Francesco Orabona, Luo Jie and Barbara Caputo.



ORABONA, JIE AND CAPUTO

are combined by another classifier. This approach has been re-invented many times, with different
flavors (Nilsback and Caputo, 2004; Sanderson and Paliwal, 2004; Jie et al., 2010a; Gehler and
Nowozin, 2009b; Jin et al., 2010). In general, the two layers approaches use Cross-Validation (CV)
methods to create the training set for the second layer (Wolpert, 1992; Gehler and Nowozin, 2009b).
If the second layer is a linear classifier, these methods are equivalent to a linear combination of the
single classifiers.

Focusing on the domain of the Support Vector Machines (SVM) (Cristianini and Shawe-Taylor,
2000), the use of multiple cues corresponds to the use of multiple kernels. Hence, instead of com-
bining kernel classifiers, the focus of research has moved on how to build an optimal new kernel as
a weighted combination of kernels.

A recent approach in this field is to use a two-stage procedure, in which the first stage finds
the optimal weights to combine the kernels, using an improved definition of the kernel alignment
(Cristianini et al., 2002) as a proxy of the generalization error, and a standard SVM as second
stage (Cortes et al., 2010). This approach builds on the previous works on the maximization of the
kernel alignment to combine kernels (Lanckriet et al., 2004). However in this approach, even if
theoretically principled, the global optimality is not guaranteed, because the optimization process
split in two phases.

A different approach with a joint optimization process is Multi Kernel Learning (MKL) (Lanck-
riet et al., 2004; Bach et al., 2004; Sonnenburg et al., 2006; Zien and Ong, 2007; Rakotomamonjy
et al., 2008; Varma and Babu, 2009; Kloft et al., 2009). In MKL one solves a joint optimization
problem while also learning the optimal weights for combining the kernels. MKL methods are
theoretically founded, because they are based on the minimization of an upper bound of the gen-
eralization error (Kakade et al., 2009; Cortes et al., 2010), like in standard SVM. In most of these
approaches the objective function is designed to impose sparsity on the weights of the combina-
tion using an l1-norm constraint (Bach et al., 2004; Sonnenburg et al., 2006; Zien and Ong, 2007;
Rakotomamonjy et al., 2008; Varma and Babu, 2009). However solving it is far more complex
than training a single SVM classifier. In fact, the l1 norm is not smooth, so it slows down the opti-
mization process. The original MKL problem by Lanckriet et al. (2004) was cast as a semidefinite
programming (SDP). SDP are known to have poor scalability, hence much of the subsequent re-
search focused on devising more efficient optimization procedures. The first step towards practical
MKL algorithms was to restrict the weights coefficients to be non-negative. In this way, it was
possible to recast the problem as a much more efficient semi-infinite linear programming (SILP)
(Sonnenburg et al., 2005; Rubinstein, 2005). This has allowed to solve the MKL problem with al-
ternating optimization approaches (Sonnenburg et al., 2006; Rakotomamonjy et al., 2008; Xu et al.,
2008; Nath et al., 2009), first optimizing over the kernel combination weights, with the current
SVM solution fixed, then finding the SVM solution, given the current weights. One advantage of
the alternating optimization approach is that it is possible to use existing efficient SVM solvers,
such as Joachims (1999) and Chang and Lin (2001), for the SVM optimization step. On the other
hand, for these algorithms, it is usually not possible to prove a bound on the maximum number of
iterations needed, even if they are known to converge. In fact, to the best of our knowledge, none of
the existing MKL algorithms provides theoretical guarantees on the convergence rate. For the same
reason it is not possible to know the asymptotic computational complexity of these algorithms, and
often these dependencies are estimated numerically for the specific implementation at hand. For
example, multiclass MKL SILP algorithm (Sonnenburg et al., 2006; Zien and Ong, 2007) seems
to depend polynomially on the number of training examples and number of classes with an expo-
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nent of ∼ 2.4 and ∼ 1.7 respectively. For the other algorithms these dependencies are not clear.
Another disadvantage is that they need to solve the inner SVM problem till optimality. In fact, to
guarantee convergence, the solution needs to be of a high enough precision so that the kernel weight
gradient computation is accurate. On the other hand the learning process is usually stopped early,
before reaching the optimal solution, based on the common assumption that it is enough to have
an approximate solution of the optimization function. Considering the fact that the current MKL
algorithms are solved based on their dual representation, this might mean being stopped far from
the optimal solution (Hush et al., 2006), with unknown effects on the convergence.

An important point is that, very often, these approaches fail to improve much over the naive
baseline of just summing all the kernels (Kloft et al., 2009). Recently, researchers start to realize
that when the optimal Bayes classifier is not sparse, brutally imposing sparsity will hurt the gen-
eralization performance. Motivated by this, the lp-norm constraint has been proposed (Kloft et al.,
2009; Orabona et al., 2010; Vishwanathan et al., 2010), instead of l1-norm constrain, to be able to
tune the level of sparsity of the solution and to obtain an easier problem too. In particular Vish-
wanathan et al. (2010) derived the dual of a variation of the lp MKL problem for p > 1, suited to
be optimized with the popular Sequential Minimal Optimization algorithm (Platt, 1999). However
even for their algorithm it is not clear how the convergence rate depends on p and how to generalize
the algorithm to generic loss functions, such as the structured losses (Tsochantaridis et al., 2004).
This limitation on the use of particular loss functions is common to all the recent MKL optimization
algorithms. An alternative way to be able to tune the sparsity of the MKL solution, inspired by the
elastic-net regularization, has been proposed by Tomioka and Suzuki (2010).

The main contribution of this paper is a new optimization algorithm to solve efficiently the lp-
MKL problem, with a guaranteed convergence rate to the optimal solution. We minimize it with a
two-stage algorithm. The first one is an online initialization procedure that determines quickly the
region of the space where the optimal solution lives. The second stage refines the solution found
by the first stage, using a stochastic gradient descent algorithm. Bounds on the convergence rate
are proved for the overall process. Notably different from the other methods, our algorithm solves
the optimization problem directly in the primal formulation, in both stages. This allows us to use
any convex loss function, as the multiclass loss proposed by Crammer and Singer (2002) or general
structured losses (Tsochantaridis et al., 2004), without any change to the core of the algorithm.
Using recent approaches in optimization theory, the algorithm takes advantage of the abundance of
information to reduce the training time (Shalev-Shwartz and Srebro, 2008). In fact, we show that
the presence of a large number of kernels helps the optimization process instead of hindering it,
obtaining, theoretically and practically, a faster convergence rate with more kernels. Our algorithm
has a training time that depends linearly on the number of training examples, with a convergence
rate sub-linear in the number of features/kernels used, when a sparse solution is favored. At the
same time, it achieves state-of-the-art performance on standard benchmark databases. We call this
algorithm OBSCURE, Online-Batch Strongly Convex mUlti keRnel lEarning.

The rest of the paper presents the theory and the experimental results supporting our claims.
Section 2 revises the basic definitions of Multi Kernel Learning and generalizes it to the lp-norm
formulation. Section 3 presents the OBSCURE algorithm and Section 4 shows our theoretical
guarantees, while Section 5 reports experiments on categorization tasks. We conclude the paper
with discussions and future works.
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2. p-norm Multi Kernel Learning

In this section we first introduce formally the MKL framework and its notation, then its p-norm
generalization.

2.1 Definitions

In the following we define some notations and we also introduce some concepts of convex analysis.
For a more thorough introduction see, for example, Boyd and Vandenberghe (2004).

2.1.1 NOTATION

We indicate matrices and vectors with bold letters. We also introduce two notations that will help
us to synthesize the following formulas. We indicate by [wj]F1 :=

[

w1,w2, · · · ,wF
]

, and with a
bar, for example, w̄, the vector formed by the concatenation of the F vectors wj, hence w̄ =
[w1,w2, · · · ,wF ] = [wj]F1 .

We consider closed convex functions f : S→ R, where in the following S will always denote
a proper subset of X, an Euclidean vector space.1 We will indicate the inner product between two
vectors of X, w and w′, as w ·w′. Given a convex function f : S→R, its Fenchel conjugate f ∗ :X→
R is defined as f ∗(u) = supv∈S(v ·u− f (v)). A generic norm of a vector w ∈ X is indicated by ‖w‖,
and its dual ‖ ·‖∗ is the norm defined as ‖y‖∗ = sup{x ·y : ‖x‖ ≤ 1}. A vector x is a subgradient of a
function f at v, if ∀u∈ S, f (u)− f (v)≥ (u−v) ·x. The differential set of f at v, indicated with ∂ f (v),
is the set of all the subgradients of f at v. If f is convex and differentiable at v then ∂ f (v) consists of
a single vector which is the gradient of f at v and is denoted by ∇ f (v). A function f : S→R is said
to be λ-strongly convex with respect to a convex and differentiable function h iff for any u,v ∈ S
and any subgradient ∂ f (u), f (v)≥ f (u)+∂ f (u) · (v−u)+λ(h(v)−h(u)− (v−u) ·∇h(v)), where
the terms in parenthesis form the Bregman divergence between v and u of h.

2.1.2 BINARY AND MULTI-CLASS CLASSIFIERS

Let {xi,yi}Ni=1, with N ∈N, xi ∈X and yi ∈Y, be the training set. Consider a function φ(x) :X→H

that maps the samples into a high, possibly infinite, dimensional space. In the binary case Y =
{−1,1}, and we use the standard setting to learn with kernels,2 in which the prediction on a sample
x is a function of the scalar product between an hyperplane w and the transformed sample φ(x). With
multiple kernels, we will have F corresponding functions φ j(·), i= 1, · · · ,F , and F corresponding
kernels K j(x,x′) defined as φ j(x) ·φ j(x′).

For multiclass and structured classification Y = {1, . . . ,M}, and we follow the common ap-
proach to use joint feature maps φ(x,y) : X×Y→ H (Tsochantaridis et al., 2004). Again, we will
have F functions φ j(·, ·), i = 1, · · · ,F , and F kernels K j((x,y),(x′,y′)) as φ j(x,y) · φ j(x′,y′). This
definition includes the case of training M different hyperplanes, one for each class. Indeed φ j(x,y)
can be defined as

φ j(x,y) = [0, · · · ,0,φ′ j(x)
︸ ︷︷ ︸

y

,0, · · · ,0],

1. We allow the functions to assume infinite values, as a way to restrict their domains to proper subsets of X. However
in the following the convex functions of interest will always be evaluated on vectors that belong to their domains.

2. For simplicity we will not use the bias here, but it can be easily added modifying the kernel definition.
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where φ′ j(·) is a transformation that depends only on the data. Similarly w will be composed by
M blocks, [w1, · · · ,wM]. Hence, by construction, w ·φ j(x,r) = wr ·φ′ j(x). According to the defined
notation, φ̄(x,y) = [φ1(x,y), · · · ,φF(x,y)]. These definitions allow us to have a general notation for
the binary and multiclass setting.

2.1.3 LOSS FUNCTION

In the following we consider convex Lipschitz loss functions. The most commonly used loss in
binary classification is the hinge loss (Cristianini and Shawe-Taylor, 2000).

!HL (w,x,y) = |1− yw̄ · φ̄(x)|+,

where |t|+ is defined as max(t,0). We also consider the following multi-class loss function (Cram-
mer and Singer, 2002; Tsochantaridis et al., 2004), that will be used to specialize our results.

!MC (w,x,y) =max
y′ -=y

|1− w̄ · (φ̄(x,y)− φ̄(x,y′))|+ . (1)

This loss function is convex and it upper bounds the multi-class misclassification loss.

2.1.4 NORMS AND DUAL NORMS

For w ∈ Rd and p≥ 1, we denote by ‖w‖p the p-norm of w, that is, ‖w‖p = (∑d
i=1 |wi|p)1/p.

The dual norm of ‖ ·‖p is ‖ ·‖q, where p and q satisfy 1/p+1/q= 1. In the following p and q
will always satisfy this relation.

2.1.5 GROUP NORM

It is possible to define a (2, p) group norm ‖w̄‖22,p on w̄ as

‖w̄‖2,p :=
∥
∥
[

‖w1‖2,‖w2‖2, · · · ,‖wF‖2
]∥
∥
p ,

that is the p-norm of the vector of F elements, formed by 2-norms of the vectors wj. The dual norm
of ‖ ·‖2,p is ‖ ·‖2,q (Kakade et al., 2009). These kind of norms have been used as block regularization
in the LASSO literature (Yuan and Lin, 2006).

2.2 Multi Kernel Learning

The MKL optimization problem was first proposed by Bach et al. (2004) and extended to multiclass
by Zien and Ong (2007). It can be written as

min
wj

λ
2

(
F

∑
j=1

‖wj‖2

)2

+
1
N

N

∑
i=1

ξi

s.t. w̄ · (φ̄(xi,yi)− φ̄(xi,y))≥ 1−ξi,∀i,y -= yi . (2)
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An equivalent formulation can be derived from the first one through a variational argument (Bach
et al., 2004)

min
wj,α j≥0

λ
2

(
F

∑
j=1

‖wj‖2
α j

)2

+
1
N

N

∑
i=1

ξi

s.t. w̄ · (φ̄(xi,yi)− φ̄(xi,y))≥ 1−ξi, ∀i,y -= yi
‖α‖21 ≤ 1 . (3)

This formulation has been used by Bach et al. (2004) and Sonnenburg et al. (2006), while
the formulation proposed by Rakotomamonjy et al. (2008) is slightly different, although it can be
proved to be equivalent. The reason to introduce this variational formulation is to use an alternating
optimization strategy to efficiently solve the constrained minimization problem. However in the
following we will show that it is possible to efficiently minimize directly the formulation in (2), or
at least one variation of it.

We first rewrite (2) with group norms. Using the notation defined above, we have

min
w̄

λ
2
‖w̄‖22,1+

1
N

N

∑
i=1

!MC (w̄,xi,yi) , (4)

where w̄ = [w1,w2, · · · ,wF ]. The (2,1) group norm is used to induce sparsity in the domain of
the kernels. This means that the solution of the optimization problem will select a subset of the
F kernels. However, even if sparsity can be desirable for specific applications, it could lead to a
decrease in performance. Moreover the problem in (4) is not strongly convex (Kakade et al., 2009),
so its optimization algorithm is rather complex and its rate of convergence is usually slow (Bach
et al., 2004; Sonnenburg et al., 2006).

We generalize the optimization problem (4), using a generic group norm and a generic convex
loss function

min
w̄

λ
2
‖w̄‖22,p+

1
N

N

∑
i=1

!(w̄,xi,yi) , (5)

where 1< p≤ 2. We also define f (w̄) := λ
2‖w̄‖

2
2,p+

1
N ∑

N
i=1 !(w̄,xi,yi) and w̄∗ equals to the optimal

solution of (5), that is w̄∗ = argminw̄ f (w̄). The additional parameter p allow us to decide the level
of sparsity of the solution. Moreover this formulation has the advantage of being λ/q-strongly
convex (Kakade et al., 2009), where λ is the regularization parameter in (5). Strong convexity is a
key property to design fast batch and online algorithms: the more a problem is strongly convex the
easier it is to optimize it (Shalev-Shwartz and Singer, 2007; Kakade et al., 2009). Many optimization
problems are strongly convex, as the SVM objective function. When p tends to 1, the solution gets
close to the sparse solution obtained by solving (2), but the strong convexity vanishes. Setting p
equal to 2 corresponds to using the unweighted sum of the kernels. In the following we will show
how to take advantage of the strong convexity to design a fast algorithm to solve (5), and how to have
a good convergence rate even when the strong convexity is close to zero. Note that this formulation
is similar to the one proposed by Kloft et al. (2009). Indeed, as for (2) and (3), using Lemma 26
in Micchelli and Pontil (2005) it is possible to prove that they are equivalent through a variational
argument.

We have chosen to weight the regularization term by λ and divide the loss term by N, instead
of the more common formulation with only the loss term weighted by a parameter C. This choice
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simplifies the math of our algorithm. However the two formulations are equivalent when setting
λ= 1

CN , hence a big value ofC corresponds to a small value of λ.

3. The OBSCURE Algorithm

Our basic optimization tool is the framework developed in Shalev-Shwartz and Singer (2007);
Shalev-Shwartz et al. (2007). It is a general framework to design and analyze stochastic sub-
gradient descent algorithms for any strongly convex function. At each step the algorithm takes
a random sample of the training set and calculates a sub-gradient of the objective function eval-
uated on the sample. Then it performs a sub-gradient descent step with decreasing learning rate,
followed by a projection inside the space where the solution lives. The algorithm Pegasos, based
on this framework, is among the state-of-art solvers for linear SVM (Shalev-Shwartz et al., 2007;
Shalev-Shwartz and Srebro, 2008).

Given that the (2, p) group norm is strongly convex, we could use this framework to design
an efficient MKL algorithm. It would inherit all the properties of Pegasos (Shalev-Shwartz et al.,
2007; Shalev-Shwartz and Srebro, 2008). In particular a Pegasos-like algorithm used to minimize
(5) would have a convergence rate, and hence a training time, proportional to q

λ . Although in
general this convergence rate can be quite good, it becomes slow when λ is small and/or p is close
to 1. Moreover it is common knowledge that in many real-world problems (e.g., visual learning
tasks) the best setting for λ is very small, or equivalently C is very big (the order of 102− 103).
Notice that this is a general problem. The same problem also exists in the other SVM optimization
algorithms such as SMO and similar approaches, as their training time also depends on the value of
the parameterC (Hush et al., 2006).

Do et al. (2009) proposed a variation of the Pegasos algorithm called proximal projected sub-
gradient descent. This formulation has a better convergence rate for small values of λ, while retain-
ing the fast convergence rate for big values of λ. A drawback is that the algorithm needs to know
in advance an upper bound on the norm of the optimal solution. Do et al. (2009) solve this problem
with an algorithm that estimates this bound while training, but it gives a speed-up only when the
norm of the optimal solution w̄∗ is small. This is not the case in most of the MKL problems for
categorization tasks.

Our OBSCURE algorithm takes the best of the two solutions. We first extend the framework
of Do et al. (2009) to the generic non-Euclidean norms, to use it with the (2, p) group norm. Then
we solve the problem of the upper bound of the norm of the optimal solution using a new online
algorithm. This is designed to take advantage of the characteristics of the MKL task and to quickly
converge to a solution close to the optimal one. Hence OBSCURE is composed of two steps: the
first step is a fast online algorithm (Algorithm 1), used to quickly estimate the region of the space
where the optimal solution lives. The second step (Algorithm 2) starts from the approximate solution
found by the first stage, and exploiting the information on the estimated region, it uses a stochastic
proximal projected sub-gradient descent algorithm. We also found that, even if we cannot guarantee
this theoretically, empirically in many cases the solution found by the first stage is extremely close
to the optimal one. We will show this in the experiments of Section 5.6.

3.1 Efficient Implementation

The training time of OBSCURE is proportional to the number of steps required to converge to the
optimal solution, that will be bounded in Theorem 3, multiplied by the complexity of each step. This
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Algorithm 1 OBSCURE stage 1 (online)
1: Input: q,η
2: Initialize: θ̄1 = 0, w̄1 = 0
3: for t = 1,2, . . . ,T do
4: Sample (xt ,yt) at random
5: z̄t = ∂!(w̄t ,xt ,yt)
6: θ̄t+1 = θ̄t −ηz̄t

7: wj
t+1 =

1
q

(

‖θ jt+1‖2
‖θ̄t+1‖2,q

)q−2
θ jt+1, ∀ j = 1, · · · ,F

8: end for
9: return θ̄T+1, w̄T+1
10: return R=

√

‖w̄T+1‖22,p+
2
λN ∑

N
i=1 !(w̄T+1,xi,yi)

Algorithm 2 OBSCURE stage 2 (stochastic optimization)
1: Input: q, θ̄1, w̄1, R, λ
2: Initialize: s0 = 0
3: for t = 1,2, . . . ,T do
4: Sample (xt ,yt) at random
5: z̄t = ∂!(w̄t ,xt ,yt)
6: dt = λt+ st−1

7: st = st−1+0.5

(√

d2t +q
( λq ‖θ̄t‖2,q+‖z̄t‖2,q)2

R2 −dt

)

8: ηt =
q

λt+st
9: θ̄t+ 1

2
= (1− ληt

q )θ̄t −ηt z̄t

10: θ̄t+1 =min

(

1, qR
‖θ̄t+ 12

‖2,q

)

θ̄t+ 1
2

11: wj
t+1 =

1
q

(

‖θ jt+1‖2
‖θ̄t+1‖2,q

)q−2
θ jt+1, ∀ j = 1, · · · ,F

12: end for

in turn is dominated by the calculation of the gradient of the loss (line 5 in Algorithms 1 and 2).
This complexity, for example, for the multiclass hinge loss !MC is O(NFM), given that the number
of support vectors is proportional to N. Note that this complexity is common to any other similar
algorithm, and it can be reduced using methods like kernel caching (Chang and Lin, 2001).

Following (Shalev-Shwartz et al., 2007, Section 4), it is possible to use Mercer kernels without
introducing explicitly the dual formulation of the optimization problem. In both algorithms, θ̄t+1
can be written as a weighted linear summation of φ̄(xt , ·). For example, when using the multi-
class loss function !MC, we have that θ̄t+1 = −∑t ηt z̄t = ∑t ηt(φ̄(xt ,yt)− φ̄(xt , ŷt)). Therefore, the
algorithm can easily store ηt , yt , ŷt , and xt instead of storing θ̄t . Observing line 7 in Algorithm 1
and line 11 in the Algorithm 2, we have that at each round, wj

t+1 is proportional to θ
j
t+1, that is

wj
t+1 = α j

t θ
j
t+1. Hence w̄t+1 can also be represented using α

j
t ηt , yt , ŷt and xt . In prediction the

dot product between w̄t and φ̄(xt , ·) can be expressed as a sum of terms w̄ j
t · φ j(xt , ·), that can be

calculated using the definition of the kernel.

234



MULTI KERNEL LEARNING WITH ONLINE-BATCH OPTIMIZATION

Algorithm 3 Proximal projected sub-gradient descent
1: Input: R, σ, w1 ∈ S
2: Initialize: s0 = 0
3: for t = 1,2, . . . ,T do
4: Receive gt
5: zt = ∂gt(wt)

6: st = st−1+
√

(ασt+st−1)2+
αLt
R2

−ασt−st−1
2

7: ηt = 1
σt+ st

α

8: wt+1 = ∇h∗(∇h(wt)−ηt zt)
9: end for

Another important speed-up can be obtained considering the nature of the updates of the second
stage. If the optimal solution has a loss equal to zero or close to it, when the algorithm is close to
convergence most of the updates will consist just of a scaling. Hence it is possible to cumulate the
scalings in a variable, to perform the scaling of the coefficients just before an additive update must
be performed, and to take it into account for each prediction. Moreover, when using the multiclass
loss (1), each update touches only two classes at a time, so to minimize the number of scalings we
can keep a vector of scaling coefficients, one for each class, instead of a single number. For more
details on the implementation, we refer the reader to the MATLAB implementation of OBSCURE
in DOGMA (Orabona, 2009).

4. Analysis

We now show the theorems that give a theoretical guarantee on the convergence rate of OBSCURE
to the optimal solution of (5). The following lemma contains useful properties to prove the perfor-
mance guarantees of Algorithm 1 and 2.

Lemma 1 Let B ∈ R+, define S = {w̄ : ‖w̄‖2,p ≤ B}. Let h(w̄) : S→ R defined as q
2‖w̄‖

2
2,p, define

also Proj(w̄,B) =min
(

1, B
‖w̄‖2,p

)

w̄, then

1. ∇h(w̄) = q
[
(

‖wj‖2
‖w̄‖2,p

)p−2
wj
]F

1
, ∀w̄ ∈ S

2. ∇h∗(θ̄) = Proj

(

1
q

[
(

‖θ j‖2
‖θ̄‖2,q

)q−2
θ j
]F

1
,B

)

3. ‖w̄‖2,p = 1
q‖∇h(w̄)‖2,q, ∀w̄ ∈ S

Proof All the proofs of these relations use the equality 1/p+ 1/q = 1. The first one can be ob-
tained differentiating h. The second relation is obtained using Lemma 2 in Shalev-Shwartz and
Singer (2007), through lengthy but straightforward calculations. The last one is obtained from the
first one.

We now introduce Algorithm 3, that forms the basis for Algorithm 2, and a lemma that bounds
its performance, that is a generalization of Theorem 1 in Do et al. (2009) to general norms, using

235



ORABONA, JIE AND CAPUTO

the framework in Shalev-Shwartz and Singer (2007). Hence it can be seen as a particular case of the
mirror descent algorithm (Beck and Teboulle, 2003), with an adaptive tuning of the learning rate.

Lemma 2 Let h(·) = α
2 ‖ · ‖

2 be a 1-strongly convex function w.r.t. a norm ‖ · ‖ over S. Assume
that for all t, gt(·) is a σ-strongly convex function w.r.t. h(·), and ‖zt‖∗ ≤ Lt . Let R ∈ R+ such
that ‖w−w′‖ ≤ 2R for any w,w′ ∈ S. Then for any u ∈ S, and for any sequence of non-negative
ξ1, . . . ,ξT , Algorithm 3 achieves the following bound for all T ≥ 1,

T

∑
t=1

(gt(wt)−gt(u))≤
T

∑
t=1

[

4ξtR2+
L2t

σt+ ∑ti=1 ξi
α

]

.

Proof Define g′t(w) = gt(w)+ st
2 ‖w−wt‖2, where w,wt ∈ S, and the value of st will be specified

later. Using the assumptions of this Lemma, we have that g′t is (σ+
st
α )-strongly convex w.r.t. to h.

Moreover we have that ∂g′t(wt) = ∂gt(wt), because the gradient of the proximal regularization term
is zero when evaluated at wt (Do et al., 2009). Hence we can apply Theorem 1 from Shalev-Shwartz
and Singer (2007) to have

T

∑
t=1

gt(wt)−
T

∑
t=1

(

gt(u)+
st
2
‖u−wt‖2

)

=
T

∑
t=1

g′t(wt)−
T

∑
t=1

g′t(u)≤
1
2

T

∑
t=1

L2t
σt+ ∑ti=1 si

α

.

Using the hypothesis of this Lemma we obtain

T

∑
t=1

gt(wt)−
T

∑
t=1

gt(u)≤
1
2

T

∑
t=1

(

st‖u−wt‖2+
αL2t

ασt+∑ti=1 si

)

≤
1
2

T

∑
t=1

(

4stR2+
αL2t

ασt+∑ti=1 si

)

.

Using the definition of st in the algorithm and Lemma 3.1 in Bartlett et al. (2008), we have

T

∑
t=1

gt(wt)−
T

∑
t=1

gt(u)≤ min
ξ1,...,ξT≥0

T

∑
t=1

(

4ξtR2+
αL2t

ασt+∑ti=1 ξi

)

.

Hence these settings of st give us a bound that is only 2 times worse than the optimal one.

With this Lemma we can now design stochastic sub-gradient algorithms. In particular, setting
‖ ·‖2,p as the norm, h(w̄) = q

2‖w̄‖
2
2,p, and gt(w̄) =

λ
qh(w̄)+ !(w̄,xt ,yt), we obtain Algorithm 2 that

solves the p-norm MKL problem in (5). The updates are done on the dual variables θ̄t , in lines
9-10, and transformed into w̄t in line 11, through a simple scaling. We can now prove the following
bound on the convergence rate for Algorithm 2.

Theorem 3 Suppose that ‖∂!(w̄,xt ,yt)‖2,q ≤ L and ‖w̄∗‖2,p ≤ R, where w̄∗ is the optimal solution
of (5), that is w̄∗ = argmin

w̄
f (w̄). Let 1< p≤ 2, and c= λR+L, then in expectation over the choices

of the random samples we have that, after T iterations of the 2nd stage of the OBSCURE algorithm,
the difference between f (w̄T ) and f (w̄∗), is less than

c
√
q
√

1+ logT min
(
c√q

√
1+ logT
λT

,
4R√
T

)

.
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Proof Let h(w̄) : S→ R defined as q
2‖w̄‖

2
2,p, where S = {w̄ : ‖w̄‖2,p ≤ R}. Define also gt(w̄) =

λ
2‖w̄‖

2
2,p+ !(w̄,xt ,yt) = λ

qh(w̄)+ !(w̄,xt ,yt). Using Lemma 1 in Shalev-Shwartz and Singer (2007),
we can see that these two functions satisfy the hypothesis of Lemma 1, with α = q, σ = λ

q . It is
easy to verify that w̄t+1 is equal to ∇h∗(∇h(w̄t)−ηt zt). In fact, taking into account Properties 1-3
in Lemma 1 with with B= R, lines 9-11 in Algorithm 2 are equivalent to

w̄t+1 = ∇h∗(θt −ηt zt)
θ̄t+1 = ∇h(w̄t+1) .

We also have that

‖∂gt(w̄)‖2,q ≤
λ
q
‖∇h(w̄t)‖2,q+‖z̄t‖2,q = λ‖w̄t‖2,p+‖z̄t‖2,q ≤ c,

where the equality is due to Property 3 in Lemma 1. So we have

T

∑
t=1

(gt(w̄t)−gt(w̄∗))≤ min
ξ1,··· ,ξT

T

∑
t=1

[

4ξtR2+
qc2

λt+∑ti=1 ξi

]

.

Reasoning as in Shalev-Shwartz et al. (2007), we divide by T , take the expectation on both sides.
So we obtain that

E[ f (w̄T )− f (w̄∗)]≤ min
ξ1,··· ,ξT

1
T

T

∑
t=1

[

4ξtR2+
qc2

λt+∑ti=1 ξi

]

.

Setting ξi = ξ, i= 1, . . . ,T , the last term in the last equation can be upper bounded by

AT =min
ξ

[

4ξR2+
1
T

T

∑
t=1

qc2

t(λ+ξ)

]

.

This term is smaller than any specific setting of ξ, in particular if we set ξ to 0, we have that
AT ≤ qc2(1+logT )

λT . On the other hand setting optimally the expression over ξ and over-approximating
we have that AT ≤ 4cR√q

√
1+logT√
T . Taking the minimum of these two quantities we obtain the stated

bound.

The most important thing to note is that the converge rate is independent from the number of
samples, as in Pegasos (Shalev-Shwartz et al., 2007), and the relevant quantities on which it depends
are λ and q. Given that for most of the losses, each iteration has a linear complexity in the number
of samples, as stated in Section 3.1, the training time will be linearly proportional to the number of
samples.

The parameter R is basically an upper bound on the norm of the optimal solution. In the next
Section we show how to have a good estimate of R in an efficient way. The theorem first shows that
a good estimate of R can speed-up the convergence of the algorithm. In particular if the first term is
dominant, the convergence rate is O( q logTλT ). If the second term is predominant, the convergence rate
is O(R

√
q logT√
T ), so it becomes independent from λ. The algorithm will always optimally interpolate

between these two different rates of convergence. Note that R can also be set to the trivial upper
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bound of ∞. This would result in a standard Pegasos-like optimization. In fact, st would be equal
to 0 in Algorithm 2, so the learning rate would be 1

λt and the convergence rate would be O(
q logT
λT ).

We will see in Section 5.3 that a tight estimate of R can improve dramatically the convergence rate.
Another important point is that Algorithm 2 can start from any vector, while this is not possible in
the Pegasos algorithm, where at the very first iteration the starting vector is multiplied by 0 (Shalev-
Shwartz et al., 2007).

As said before, the rate of convergence depends on p, through q. A p close to 1 will result in a
sparse solution, with a rate of at most O(R

√
q logT√
T ). However in the experiment section we show that

the best performance is not always given by the most sparse solution.
This theorem and the pseudocode in Algorithm 2 allows us to design fast and efficient MKL

algorithms for a wide range of convex losses. If we consider the multiclass loss !MC with normalized
kernels, that is, ‖φ j(xt ,yt)‖2 ≤ 1,∀ j= 1, · · · ,F, t = 1, · · · ,N, we have that L≤

√
2F

1
q . Instead, if we

use the hinge loss !HL for binary classification, we have that L≤ F
1
q . Hence, in both cases, if p< 2,

the convergence rate has a sublinear dependency on the number of kernels, F , and if the problem
is linearly separable it can have a faster convergence rate using more kernels. We will explain this
formally in the next section.

4.1 Initialization Through an Online Algorithm

In Theorem 3 we saw that if we have a good estimate of R, the convergence rate of the algorithm can
be much faster. Moreover starting from a good solution could speed-up the algorithm even more.

We propose to initialize Algorithm 2 with Algorithm 1. It is the online version of problem (5)
and it is derived using a recent result in Orabona and Crammer (2010). It is similar to the 2p-norm
matrix Perceptron of Cavallanti et al. (2008), but it overcomes the disadvantage of being used with
the same kernel on each feature.

We can run it just for few iterations and then evaluate its norm and its loss. In Algorithm 1 R is
then defined as

R :=

√

‖w̄T+1‖22,p+
2
λN

N

∑
i=1

!(w̄T+1,xi,yi)≥

√

‖w̄∗‖22,p+
2
λN

N

∑
i=1

!(w̄∗,xi,yi)≥ ‖w̄∗‖2,p,

where we remind that w̄∗ is solution that minimizes (5), as defined in Section 2.2. So at any moment
we can stop the algorithm and obtain an upper bound on ‖w̄∗‖2,p. However if the problem is linearly
separable we can prove that Algorithm 1 will converge in a finite number of updates. In fact, as in
Cavallanti et al. (2008), for Algorithm 1 it is possible to prove a relative mistake bound. See also Jie
et al. (2010b) and Jin et al. (2010) for similar algorithms for online MKL, with a different update
rules and different mistake bounds.

Theorem 4 Let (x1,y1), . . . ,(xT ,yT ) be a sequence of examples where xt ∈ X, y ∈ Y. Suppose that
the loss function ! has the following properties

• ‖∂!(w̄,x,y)‖2,q ≤ L, ∀ w̄ ∈ X, xt ∈ X, yt ∈ Y;

• !(ū,x,y)≥ 1+ ū ·∂!(w̄,x,y), ∀ ū ∈ X, w̄ ∈ X : !(w̄,x,y)> 0, x ∈ X, y ∈ Y;

• w̄ ·∂!(w̄,x,y)≥−1, ∀ w̄ ∈ X, x ∈ X, y ∈ Y.
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Denote by U the set of rounds in which there is an update, and by U its cardinality. Then, for any
ū, the number of updates U of Algorithm 1 satisfies

U ≤ q(2/η+L2)‖ū‖22,p+ ∑
t∈U

!(ū,xt ,yt)+‖ū‖2,p
√

q(2/η+L2)
√

∑
t∈U

!(ū,xt ,yt) .

In particular, if the problem (5) is linearly separable by a hyperplane v̄, then the Algorithm 1 will
converge to a solution in a finite number of steps less than q(2/η+ L2)‖v̄‖22,p. In this case the
returned value of R will be less than (2+ηL2)‖v̄‖2,p.

Proof The bound on the number of updates can be easily derived using a recent result in Orabona
and Crammer (2010), that we report in Appendix for completeness. Let h(w̄) : X → R defined as
q
2‖w̄‖

2
2,p. Notice that, differently from the proof of Theorem 3, here the domain of the function h is

the entire Euclidean space X. Using Property 2 in Lemma 1 with B= ∞, we have that line 7 in the
algorithm’s pseudo-code implies that w̄t = ∇h∗(θ̄t). Using Lemma 5 in the Appendix, we have that

U ≤ ∑
t∈U

!(ū,xt ,yt)+
√
q‖ū‖2,p

√

∑
t∈U

(

‖z̄t‖22,q−
2w̄t · z̄t
η

)

≤ ∑
t∈U

!(ū,xt ,yt)+
√
q‖ū‖2,p

√

U
(

L2+
2
η

)

.

Solving forU and overapproximating we obtain the stated bound.
For the second part of the Theorem, using (Kakade et al., 2009, Corollary 19), we know that

h∗(w̄) is 1-smooth w.r.t. ‖ ·‖2,q. Hence, we obtain

‖θ̄T+1‖22,q ≤ ‖θ̄T‖22,q−2qηw̄T · z̄T +qη2‖z̄T‖22,q ≤ η2q∑
t∈U

(

‖z̄t‖22,q−
2w̄t · z̄t
η

)

≤ η2qU
(
2
η
+L2

)

.

So we can write
‖θ̄T+1‖2,q ≤ η

√

qU(2/η+L2),

and using the bound ofU and the hypothesis of linear separability, we have

‖θ̄T+1‖2,q ≤η
√

q2‖ū‖22,p(2/η+L2)2 = q‖ū‖2,p
(

2+ηL2
)

.

Using the relation ‖w̄t‖2,p = 1
q‖θ̄t‖2,q, that holds for Property 2 in Lemma 1 with B = ∞, we have

the stated bound on R.

From the theorem it is clear the role of η: a bigger value will speed up the convergence, but it will
decrease the quality of the estimate of R. So η governs the trade-off between speed and precision of
the first stage.

The multiclass loss !MC and the hinge loss !HL satisfy the conditions of the Theorem, and, as
noted for Theorem 1 when p is close to 1, the dependency on the number of kernels in this theorem
is strongly sublinear.

239



ORABONA, JIE AND CAPUTO

Note also that the separability assumption is far from being unrealistic in our setting. In fact the
opposite is true: in the greater majority of the cases the problem will be linearly separable. This is
due to the fact that in MKL to have separability it is sufficient that only one of the kernel induces
a feature space where the problem is separable. So, for example, it is enough to have no repeated
samples with different labels and at least one kernel that always produces kernel matrices with full
rank, for example, the Gaussian kernel.

Moreover, under the separability assumption, if we increase the number of kernels, we have that
‖ū‖22,p cannot increase, and in most of the cases it will decrease. In this case we expect Algorithm 1
to converge to a solution which has null loss on each training sample, in a finite number of steps
that is almost independent on F and in some cases even decreasing while increasing F . The same
consideration holds for the value of R returned by the algorithm, that can decrease when we increase
the number of kernels. A smaller value of R will mean a faster convergence of the second stage. We
will confirm this statement experimentally in Section 5.

5. Experiments

In this section, we study the behavior of OBSCURE in terms of classification accuracy, compu-
tational efficiency and scalability. We implemented our algorithm in MATLAB, in the DOGMA
library (Orabona, 2009). We focus on the multiclass loss !MC, being it much harder to be optimized
than the binary hinge loss !HL, especially in the MKL setting. Although our MATLAB implemen-
tation is not optimized for speed, it is already possible to observe the advantage of the low runtime
complexity. This is particularly evident when training on data sets containing large numbers of cat-
egories and lots of training samples. Except in the synthetic experiment where we set p= 1.0001, in
all the other experiments the parameter p is chosen from the set {1.01,1.05,1.10,1.25,1.50,1.75,2}.
The regularization parameter λ is set through CV, as 1

CN , whereC ∈ {0.1,1,10,100,1000}.
We compare our algorithm with the binary SILP algorithm (Sonnenburg et al., 2006), the

multi class MKL (MC-MKL) algorithm (Zien and Ong, 2007) and the p-norm MKL algorithm
(Kloft et al., 2009), all of them implemented in the SHOGUN-0.9.2 toolbox.3 For p-norm MKL,
it is possible to convert from our p setting to the equivalent setting in Kloft et al. (2009) using
pp-norm = pOBSCURE/(2− pOBSCURE). In our experiments, we will compare between OBSCURE and
p-norm MKL using the equivalent p parameter. We also compare with the SimpleMKL algo-
rithm4 (Rakotomamonjy et al., 2008). To train with the unweighted sum of the kernels with an
SVM, we use LIBSVM (Chang and Lin, 2001). The cost parameter is selected from the range
C ∈ {0.1,1,10,100,1000} for all the baseline methods. For all the binary classification algorithms,
we use the 1-vs-All strategy for their multiple class extensions.

In the following we start by briefly introducing the data sets used in our experiments. Then we
present a toy problem on a synthetic data which shows that it is more appropriate to use a multiclass
loss instead of dividing the multiclass classification problem into several binary subproblems. We

3. Available at http://www.shogun-toolbox.org, implemented in C++.
4. Available at http://asi.insa-rouen.fr/enseignants/˜arakotom/code/mklindex.html, implemented in
MATLAB. SimpleMKL is more efficient than SILP when uses the same SVM solver (Rakotomamonjy et al., 2008).
However, in practice, no efficient SimpleMKL implementation is available. SILP runs much faster compared to Sim-
pleMKL, especially when the size of the problem grows. Moreover, the performance of SimpleMKL and SILP are
the same because both algorithm solve an equivalent optimization problem (Rakotomamonjy et al., 2008). Therefore,
we only use SILP algorithm as our l1-norm MKL baseline in experiments whose size of training samples are large
than 1000.
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then study the convergence rate of OBSCURE and compare it with the original Pegasos algorithm
(Shalev-Shwartz et al., 2007; Shalev-Shwartz and Srebro, 2008) as well as the p-norm MKL (Kloft
et al., 2009) (Section 5.3). Following that, we study the behaviors of OBSCURE w.r.t different
value of p and different number of input kernels (Sections 5.5 and 5.6). Finally we show that
OBSCURE achieves state-of-art performance on a challenging image classification task with 102
different classes, and we show its scalability.

5.1 Data Sets

We first briefly introduce the data sets used in this section, and we describe how their kernel matrices
are generated.

5.1.1 THE OXFORD FLOWER DATA SET (NILSBACK AND ZISSERMAN, 2006)

contains 17 different categories of flowers. Each class has 80 images with three predefined splits
(train, validation and test). The authors also provide 7 precomputed distance matrices.5 These
distance matrices are transformed into kernel using exp(−γ−1d), where γ is the average pairwise
distance and d is the distance between two examples. It results in 7 different kernels.

5.1.2 THE PENDIGITS DATA SET (GÖNEN AND ALPAYDIN, 2010)

is on pen-based digit recognition (multiclass classification with 10 classes) and contains four differ-
ent feature representations.6 The data set is split into independent training and test sets with 7494
samples for training and 3498 samples for testing. We have generated 4 kernel matrices, one matrix
for each feature, using an RBF kernel, exp(−γ−1‖xi− x j‖2). For each feature, γ is equal to the
average of the squared pairwise distances between the examples.

5.1.3 THE KTH-IDOL2 DATA SET (PRONOBIS ET AL., 2010)

contains 24 image sequences acquired using a perspective camera mounted on two mobile robot
platforms. These sequences were captured with the two robots moving in an indoor laboratory
environment consisting of five different rooms under various weather and illumination conditions
(sunny, cloudy, and night) and across a time span of six months. For experiments, we used the same
setup described in Pronobis et al. (2010); Jie et al. (2010a). We considered the 12 sequences acquired
by robot Dumbo, and divided them into training and test sets, where each training sequence has a
corresponding one in the test sets captured under roughly similar conditions. In total, we considered
twelve different permutations of training and test sets. The images were described using three visual
descriptors and a geometric feature from the Laser Scan sensor, as in Jie et al. (2010a), which forms
4 kernels in total.

5.1.4 THE CALTECH-101 DATA SET (FEI-FEI ET AL., 2004)

is a standard benchmark data set for object categorization. In our experiments, we used the pre-
computed features and kernels of Gehler and Nowozin (2009b) which the authors made available
on their website,7 with the same training and test split. This allows us to compare against them

5. Available at www.robots.ox.ac.uk/˜vgg/research/flowers/.
6. Available at http://mkl.ucsd.edu/dataset/pendigits.
7. Available at www.vision.ee.ethz.ch/˜pgehler/projects/iccv09/.
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directly. Following that, we report results using all 102 classes of the Caltech-101 data set using
five splits. There are five different image descriptors, namely, PHOG Shape Descriptors (PHOG)
(Bosch et al., 2007), Appearance Descriptors (App) (Lowe, 2004), Region Covariance (RECOV)
(Tuzel et al., 2007), Local Binary Patterns (LBP) (Ojala et al., 2002) and V1S+ (Pinto et al., 2008).
All of them but the V1S+ features were computed in a spatial pyramid as proposed by Lazebnik
et al. (2006), using several different setup of parameters. This generates several kernels (PHOG, 8
kernels; App, 16 kernels; RECOV, 3 kernels; LBP 3 kernels; V1S+, 1 kernels). We also compute a
subwindow kernel, as proposed by Gehler and Nowozin (2009a). In addition to the 32 kernels, the
products of the pyramid levels for each feature results in other 7 kernels, for a total of 39 different
kernels For brevity, we omit the details of the features and kernels and refer to Gehler and Nowozin
(2009a,b).

5.1.5 THE MNIST DATA SET (LECUN ET AL., 1998)

is a handwritten digits data set. It has a training set of 60,000 gray-scale 28x28 pixel digit images
for training and 10,000 images for testing. We cut the original digit image into four square blocks
(14× 14) and obtained an input vector from each block. We used three kernels on each block: a
linear kernel, a polynomial kernel and a RBF kernel, resulting in 12 kernels.

5.2 Multiclass Synthetic Data

Multiclass problems are often decomposed into several binary sub-problems using methods like
1-vs-All, however solving the multiclass learning problem jointly using a multiclass loss can yield
much sparser solutions. Intuitively, when a l1-norm is used to impose sparsity in the domain of ker-
nels, different subsets of kernels can be selected for the different binary classification sub-problems.
Therefore, the combined multiclass classifier might not obtain the desired properties of sparsity.
Moreover, the confidence outputs of the binary classifiers may not lie in the same range, so it is not
clear if the winner-takes-all hypothesis is the correct approach for combing them.

To prove our points, we have generated a 3-classes classification problem consisting of 300
samples, with 100 samples for each class. There are in total 4 different features, the kernel matrices
corresponding to them are shown in Figure 1 (top). These features are generated in a way that Ker-
nels 1–3 are useful only for distinguishing one class (class 3, class 1 and class 2, respectively) from
the other two, while Kernel 4 can separate all the 3 classes. The corresponding kernel combination
weights obtained by the SILP algorithm using the 1-vs-All extension and our multiclass OBSCURE
are shown in Figure 1 (bottom). It can be observed that each of the binary SILP classifiers pick two
kernels. OBSCURE selects only the 4th kernel, achieving a much sparser solution.

5.3 Comparison with 1
t Learning Rate

We have compared OBSCURE with a simple one-stage version that uses a 1t learning rate. This can
be obtained setting st = 0, ∀t, in Algorithm 2. It can be considered as a straightforward extension
of the original Pegasos algorithm (Shalev-Shwartz et al., 2007; Shalev-Shwartz and Srebro, 2008)
to the MKL problem of (5), so we denote it Pegasos-MKL.

We first compare the running time performance between OBSCURE and Pegasos-MKL on the
Oxford flowers data set. Their generalization performance on the testing data (Figure 2(Top, left)) as
well as the value of the objective function (Figure 2(Top, right)) are shown in Figure 2. In the same
Figure, we also present the results obtained using SILP, SimpleMKL, p-norm MKL and MC-MKL.
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Figure 1: (top) Kernel matrices of the 3-classes synthetic experiments correspond to 4 different
features. Sample 1–100, 101–200 and 201–300 are from class 1, 2 and 3 respectively.
(bottom) Corresponding kernel combination weights, normalized to have sum equal to 1,
obtained by SILP (binary) and by OBSCURE (last figure).

We see that OBSCURE converges much faster compared to Pegasos-MKL. This proves that, as
stated in Theorem 3, OBSCURE has a better convergence rate than Pegasos-MKL, as well as faster
running time than SILP and SimpleMKL. Note that all the feature combination methods achieve
similar results on this data set.

Similar results are shown in Figure 2(Bottom, left) and (Bottom, right) on the Pendigits data sets.

5.4 Comparison with p-norm MKL and Other Baselines

We compare OBSCURE with p-norm MKL (Kloft et al., 2009). Figure 3 reports the results ob-
tained by both algorithms for varying values of p on the Pendigits data set. We can see that all the
algorithms (OBSCURE, SILP and p-norm MKL) are order of magnitudes faster than MC-MKL.
OBSCURE and p-norm MKL achieve similar performance, but OBSCURE achieve optimal perfor-
mance in a training time much faster (101 and 102). The performance of SILP and p-norm MKL
are quite close, and their classification rate seems to be more stable on this data set. The difference
between OBSCURE and p-norm MKL may be due to the different types of multi class extension
they use.

5.5 Experiments with Different Values of p

This experiment aims at showing the behavior of OBSCURE for varying value of p. We consider
p ∈ (1,2], and train OBSCURE on the KTH-IDOL2 and Caltech-101. The results for the two data
sets are shown in Figure 4 (top).

For the IDOL2 data set (Figure 4 (top, left)), the best performance is achieved when p is large,
which corresponds to give all the kernels similar weights in the decision. On the contrary, a sparse
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Figure 2: Comparison of running time performance (Left) and objective function value (Right) on
the Oxford flowers data set (Top) and Pendigits data set (Bottom).

solution achieves lower accuracy. It indicates that all the kernels carry discriminative information,
and excluding some of them can decrease the performance.

For the Caltech-101 data set (Figure 4 (top, right)), following Gehler and Nowozin (2009b), we
consider four PHOG (Bosch et al., 2007) kernels computed at different spatial pyramid level. It
can be observed that by adjusting p it is possible to improve the performance—sparser solutions
(i.e., when p tends to 1) achieve higher accuracy compared to non-sparse solutions (when p tends
to 2). However, the optimal p here is 1.10. In other words the optimal performance is achieved for
a setting of p different from 1 or 2, fully justifying the presence of this parameter.

Furthermore, Figure 4 (bottom) shows the running time of OBSCURE using the same four
kernels, with varying values of p. The dashed lines in the figure correspond to the results obtained
by the first online stage of the OBSCURE algorithm. It can be observed that the online stage of
OBSCURE converges faster when p is large, and this is consistent with Theorem 4. The online step
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Figure 3: (Best viewed in color.) Comparison of OBSCURE and p-norm MKL with varying value
of p on Pendigits.

of OBSCURE converges in a training time orders of magnitudes faster (101 to 103) compared to
the full training stage, and in certain cases (p≤ 1.10) it can also achieve a performance close to the
optimal solution.

5.6 Experiments on Different Number of Kernels

Figure 5 (left) reports the behavior of OBSCURE for different numbers of input kernels. It shows
that the algorithm achieves a given accuracy in less iterations when more kernels are given. The
dashed line in the figure again corresponds to the results obtained by the first online stage of the
OBSCURE algorithm. Figure 5 (right) shows the number of iterations to converge of the online step,
proving that the convergence rate improves when there are more kernels, as stated in Theorem 4.

5.7 Multiclass Image Classification

In this experiment, we use the Caltech-101 data set with all the 39 kernels, and the results are
shown in Figure 6. The best results for OBSCURE were obtained when p is at the smallest value
(1.01). This is probably because among these 39 kernels many were redundant or not discriminative
enough. For example, the worst single kernel achieves only an accuracy of 13.5%± 0.6 when
trained using 30 images per category, while the best single kernel achieves 69.4%± 0.4. Thus,
sparser solutions are to be favored. The results support our claim in Section 5.2 that multiclass loss
function is more suitable for this type of problem, as all the methods that use the multiclass loss
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Figure 4: Behaviors of the OBSCURE algorithm w.r.t. p: (top, left) the effect of different values of
p on the IDOL2 data set and (top, right) on the Caltech-101 data set using 4 PHOG (Bosch
et al., 2007) kernels; (bottom) running time for different values of p on Caltech-101 data
set.

outperform SILP and p-norm MKL (p=1.02) using 1-vs-All strategy. MC-MKL is computationally
infeasible for 30 sample per category. Its significant gap from OBSCURE seems to indicate that
it stops before converging to the optimal solution. Figure 6 (left) reports the training time for
different algorithms. Again, OBSCURE reaches optimal solution much faster than the other three
baseline algorithms which are implemented in C++. Figure 6 (right) reports the results obtained
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Figure 5: Behaviors of the OBSCURE algorithm w.r.t. the number of kernels: (left) the effect of
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Figure 6: Performance comparison on Caltech-101 using different MKL methods.

using different combination methods for varying size of training samples. It is also interesting
to note the performance of the solution generated by the online step of OBSCURE, denoted by
“OBSCURE Online”, that is very close to the performance of the full training stage, as already
noted above.

5.8 Scalability

In this section, we report the experiments on the MNIST data set using varying sizes of training
samples. Figure 7 shows the generalization performance on the test set achieved by OBSCURE
over time, for various training size. We see that OBSCURE quickly produces solutions with good
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Figure 7: The generalization performance ofMNIST data set over different size of training samples.

performance. The performance of the SVM trained using the unweighted sum of the kernels and
the best kernel are also plotted. Notice that in the figure we only show the results of up to 20,000
training samples for the sake of comparison, otherwise we could not cache all the 12 kernels in
memory. However, by computing the kernel “on the fly” we are able to solve the MKL problem
using the full 60,000 examples: OBSCURE obtains 1.95% error rate after 10 epochs, which is
0.45% lower compared to the results obtained by OBSCURE with 20,000 training samples after
500 epochs.

6. Conclusions and Discussion

This paper presents OBSCURE, a novel and efficient algorithm for solving p-norm MKL. It uses
a hybrid two-stages online-batch approach, optimizing the objective function directly in the primal
with a stochastic sub-gradient descent method. Our minimization method allows us to prove conver-
gence rate bounds, proving that the number of iterations required to converge is independent of the
number of training samples, and, when a sparse solution is induced, is sub-linear in the number of
kernels. Moreover we show that OBSCURE has a faster convergence rate as the number of kernels
grows.

Our approach is general, so it can be used with any kind of convex losses, from binary losses to
structure output prediction (Tsochantaridis et al., 2004), and even to regression losses.

Experiments show that OBSCURE achieves state-of-art performance on the hard problem of
multiclass MKL, with smaller running times than other MKL algorithms. Furthermore, the solution
found by the online stage is often very close to the optimal one, while being computed several orders
of magnitude faster.
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Appendix A.

The following algorithm and Lemma can in found in Orabona and Crammer (2010), stated for the
binary case. Here we state them for generic convex losses and report them here for completeness.

Algorithm 4 Prediction algorithm
1: Input: A series of strongly convex functions h1, . . . ,hT .
2: Initialize: θ1 = 0
3: for t = 1,2, . . . ,T do
4: Receive xt
5: Set wt = ∇h∗t (θt)
6: zt = ∂!t(wt)
7: θt+1 = θt −ηt zt
8: end for

Lemma 5 Let ht , t = 1, . . . ,T be βt -strongly convex functions with respect to the norms ‖ ·‖h1 , . . . ,‖ ·
‖hT over a set S and let ‖ · ‖h∗i be the respective dual norms. Let h0(0) = 0, and x1, . . . ,xT be an
arbitrary sequence of vectors in Rd. Assume that algorithm in Algorithm 4 is run on this sequence
with the functions hi. If hT (λu)≤ λ2hT (u), and ! satisfies

!(u,xt ,yt)≥ 1+u/∂!t(wt), ∀u ∈ S,wt : !t(wt)> 0,

then for any u ∈ S, and any λ> 0 we have

T

∑
t=1

ηt ≤ L+λhT (u)+
1
λ

(

D+
T

∑
t=1

(
η2t
2βt

‖zt‖2h∗t −ηtw/
t zt
)
)

,

where L = ∑t∈M ∪U ηt!t(u), and D = ∑T
t=1(h∗t (θt)− h∗t−1(θt)). In particular, choosing the optimal

λ, we obtain

T

∑
t=1

ηt ≤ L+
√

2hT (u)

√

2D+
T

∑
t=1

(
η2t
βt

‖zt‖2h∗t −2ηtw
/
t zt
)

.
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Abstract
We discover a strong relation between two known learning models: stream-based active learning
and perfect selective classification (an extreme case of ‘classification with a reject option’). For
these models, restricted to the realizable case, we show a reduction of active learning to selective
classification that preserves fast rates. Applying this reduction to recent results for selective clas-
sification, we derive exponential target-independent label complexity speedup for actively learning
general (non-homogeneous) linear classifiers when the data distribution is an arbitrary high dimen-
sional mixture of Gaussians. Finally, we study the relation between the proposed technique and
existing label complexity measures, including teaching dimension and disagreement coefficient.
Keywords: classification with a reject option, perfect classification, selective classification, ac-
tive learning, selective sampling, disagreement coefficient, teaching dimension, exploration vs.
exploitation

1. Introduction and Related Work

Active learning is an intriguing learning model that provides the learning algorithm with some con-
trol over the learning process, potentially leading to significantly faster learning. In recent years it
has been gaining considerable recognition as a vital technique for efficiently implementing inductive
learning in many industrial applications where abundance of unlabeled data exists, and/or in cases
where labeling costs are high. In this paper we expose a strong relation between active learning
and selective classification, another known alternative learning model (Chow, 1970; El-Yaniv and
Wiener, 2010).

Focusing on binary classification in realizable settings we consider standard stream-based active
learning, which is also referred to as online selective sampling (Atlas et al., 1990; Cohn et al., 1994).
In this model the learner is given an error objective ε and then sequentially receives unlabeled
examples. At each step, after observing an unlabeled example x, the learner decides whether or
not to request the label of x. The learner should terminate the learning process and output a binary
classifier whose true error is guaranteed to be at most ε with high probability. The penalty incurred
by the learner is the number of label requests made and this number is called the label complexity.
A label complexity bound of O(d log(d/ε)) for actively learning ε-good classifier from a concept
class with VC-dimension d, provides an exponential speedup in terms of 1/ε relative to standard
(passive) supervised learning where the sample complexity is typically O(d/ε).

The study of (stream-based, realizable) active learning is paved with very interesting theoretical
results. Initially, only a few cases were known where active learning provides significant advan-
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tage over passive learning. Perhaps the most favorable result was an exponential label complexity
speedup for learning homogeneous linear classifiers where the (linearly separable) data is uniformly
distributed over the unit sphere. This result was manifested by various authors using various anal-
ysis techniques, for a number of strategies that can all be viewed in hindsight as approximations or
variations of the “CAL algorithm” of Cohn et al. (1994). Among these studies, the earlier theoreti-
cal results (Seung et al., 1992; Freund et al., 1993, 1997; Fine et al., 2002; Gilad-Bachrach, 2007)
considered Bayesian settings and studied the speedup obtained by the Query by Committee (QBC)
algorithm. The more recent results provided PAC style analyses (Dasgupta et al., 2009; Hanneke,
2007a, 2009).

Lack of positive results for other non-toy problems, as well as various additional negative re-
sults that were discovered, led some researchers to believe that active learning is not necessarily
advantageous in general. Among the striking negative results is Dasgupta’s negative example for
actively learning general (non-homogeneous) linear classifiers (even in two dimensions) under the
uniform distribution over the sphere (Dasgupta, 2005).

A number of recent innovative papers proposed alternative models for active learning. Balcan
et al. (2008) introduced a subtle modification of the traditional label complexity definition, which
opened up avenues for new positive results. According to their new definition of “non-verifiable”
label complexity, the active learner is not required to know when to stop the learning process with a
guaranteed ε-good classifier. Their main result, under this definition, is that active learning is asymp-
totically better than passive learning in the sense that only o(1/ε) labels are required for actively
learning an ε-good classifier from a concept class that has a finite VC-dimension. Another result
they accomplished is an exponential label complexity speedup for (non-verifiable) active learning
of non-homogeneous linear classifiers under the uniform distribution over the the unit sphere.

Based on Hanneke’s characterization of active learning in terms of the “disagreement coeffi-
cient” (Hanneke, 2007a), Friedman (2009) recently extended the Balcan et al. results and proved
that a target-dependent exponential speedup can be asymptotically achieved for a wide range of
“smooth” learning problems (in particular, the hypothesis class, the instance space and the dis-
tribution should all be expressible by smooth functions). He proved that under such smoothness
conditions, for any target hypothesis h∗, Hanneke’s disagreement coefficient is bounded above in
terms of a constant c(h∗) that depends on the unknown target hypothesis h∗ (and is independent of
δ and ε). The resulting label complexity is O(c(h∗)d polylog(d/ε)) (Hanneke, 2011b). This is a
very general result but the target-dependent constant involved in this bound is only guaranteed to
be finite.

With this impressive progress in the case of target-dependent bounds for active learning, the
current state of affairs in the target-independent bounds for active learning arena leaves much to be
desired. To date the most advanced result in this model, which was already essentially established
by Seung et al. and Freund et al. more than fifteen years ago (Seung et al., 1992; Freund et al., 1993,
1997), is still a target-independent exponential speed up bound for homogeneous linear classifiers
under the uniform distribution over the sphere.

The other learning model we contemplate that will be shown to have strong ties to active learn-
ing, is selective classification, which is mainly known in the literature as ‘classification with a reject
option.’ This old-timer model, that was already introduced more than fifty years ago (Chow, 1957,
1970), extends standard supervised learning by allowing the classifier to opt out from predictions in
cases where it is not confident. The incentive is to increase classification reliability over instances
that are not rejected by the classifier. Thus, using selective classification one can potentially achieve
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a lower error rate using the same labeling “budget.” The main quantities that characterize a selective
classifier are its (true) error and coverage rate (or its complement, the rejection rate).

There is already substantial volume of research publications on selective classification, that kept
emerging through the years. The main theme in many of these publications is the implementation of
certain reject mechanisms for specific learning algorithms like support vector machines and neural
networks. Among the few theoretical studies on selective classification, there are various excess risk
bounds for ERM learning (Herbei and Wegkamp, 2006; Bartlett and Wegkamp, 2008; Wegkamp,
2007), and certain coverage/risk guarantees for selective ensemble methods (Freund et al., 2004).
In a recent work (El-Yaniv and Wiener, 2010) the trade-off between error and coverage was exam-
ined and in particular, a new extreme case of selective learning was introduced. In this extreme
case, termed here “perfect selective classification,” the classifier is given m labeled examples and is
required to instantly output a classifier whose true error is perfectly zero with certainty. This is of
course potentially doable only if the classifier rejects a sufficient portion of the instance space. A
non-trivial result for perfect selective classification is a high probability lower bound on the clas-
sifier coverage (or equivalently, an upper bound on its rejection rate). Such bounds have recently
been presented in El-Yaniv and Wiener (2010).

In Section 3 we present a reduction of active learning to perfect selective classification that
preserves “fast rates.” This reduction enables the luxury of analyzing dynamic active learning
problems as static problems. Relying on a recent result on perfect selective classification from
El-Yaniv and Wiener (2010), in Section 4 we then apply our reduction and conclude that general
(non-homogeneous) linear classifiers are actively learnable at exponential (in 1/ε) label complexity
rate when the data distribution is an arbitrary unknown finite mixture of high dimensional Gaus-
sians. While we obtain exponential label complexity speedup in 1/ε, we incur exponential slow-
down in d2, where d is the problem dimension. Nevertheless, in Section 5 we prove a lower bound
of Ω((logm)(d−1)/2(1+ o(1)) on the label complexity, when considering the class of unrestricted
linear classifiers under a Gaussian distribution. Thus, an exponential slowdown in d is unavoidable
in such settings.

Finally, in Section 6 we relate the proposed technique to other complexity measures for active
learning. Proving and using a relation to the teaching dimension (Goldman and Kearns, 1995) we
show, by relying on a known bound for the teaching dimension, that perfect selective classification
with meaningful coverage can be achieved for the case of axis-aligned rectangles under a prod-
uct distribution. We then focus on Hanneke’s disagreement coefficient and show that the coverage
of perfect selective classification can be bounded below using the disagreement coefficient. Con-
versely, we show that the disagreement coefficient can be bounded above using any coverage bound
for perfect selective classification. Consequently, the results here imply that the disagreement co-
efficient can be sufficiently bounded to ensure fast active learning for the case of linear classifiers
under a mixture of Gaussians.

2. Active Learning and Perfect Selective Classification

In binary classification the goal is to learn an accurate binary classifier, h : X → {±1}, from a
finite labeled training sample. Here X is some instance space and the standard assumption is that
the training sample, Sm = {(xi,yi)}mi=1, containing m labeled examples, is drawn i.i.d. from some
unknown distribution P(X ,Y ) defined over X × {±1}. The classifier h is chosen from some hy-
pothesis class H . In this paper we focus on the realizable setting whereby labels are defined by
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some unknown target hypothesis h∗ ∈ H . Thus, the underlying distribution reduces to P(X). The
performance of a classifier h is quantified by its true zero-one error, R(h) ! Pr{h(X) '= h∗(X)}. A
positive result for a classification problem (H ,P) is a learning algorithm that given an error target ε
and a confidence parameter δ can output, based on Sm, an hypothesis h whose error R(h)≤ ε, with
probability of at least 1−δ. A bound B(ε,δ) on the size m of labeled training sample sufficient for
achieving this is called the sample complexity of the learning algorithm. A classical result is that
any consistent learning algorithm has sample complexity of O( 1ε (d log(

1
ε )+ log(

1
δ))), where d is

the VC-dimension of H (see, e.g., Anthony and Bartlett, 1999).

2.1 Active Learning

We consider the following standard active learning model. In this model the learner sequentially
observes unlabeled instances, x1,x2, . . ., that are sampled i.i.d. from P(X). After receiving each
xi, the learning algorithm decides whether or not to request its label h∗(xi), where h∗ ∈ H is an
unknown target hypothesis. Before the start of the game the algorithm is provided with some desired
error rate ε and confidence level δ. We say that the learning algorithm actively learned the problem
instance (H ,P) if at some point it can terminate this process, after observing m instances and
requesting k labels, and output an hypothesis h ∈ H whose error R(h) ≤ ε, with probability of
at least 1−δ. The quality of the algorithm is quantified by the number k of requested labels, which
is called the label complexity. A positive result for a learning problem (H ,P) is a learning algorithm
that can actively learn this problem for any given ε and δ, and for every h∗, with label complexity
bounded above by L(ε,δ,h∗). If there is a label complexity bound that is O(polylog(1/ε)) we say
that the problem is actively learnable at exponential rate.

2.2 Selective Classification

Following the formulation in El-Yaniv and Wiener (2010) the goal in selective classification is to
learn a pair of functions (h,g) from a labeled training sample Sm (as defined above for passive
learning). The pair (h,g), which is called a selective classifier, consists of a binary classifier h ∈H ,
and a selection function, g : X → {0,1}, which qualifies the classifier h as follows. For any sample
x ∈ X , the output of the selective classifier is (h,g)(x) ! h(x) iff g(x) = 1, and (h,g)(x) ! abstain
iff g(x) = 0. Thus, the function g is a filter that determines a sub-domain of X over which the
selective classifier will abstain from classifications. A selective classifier is thus characterized by
its coverage, Φ(h,g) ! EP{g(x)}, which is the P-weighted volume of the sub-domain of X that is
not filtered out, and its error, R(h,g) = E{I(h(X) '= h∗(X)) ·g(X)}/Φ(h,g), which is the zero-one
loss restricted to the covered sub-domain. Note that this is a “smooth” generalization of passive
learning and, in particular, R(h,g) reduces to R(h) (standard classification) if g(x) ≡ 1. We expect
to see a trade-off between R(h,g) and Φ(h,g) in the sense that smaller error should be obtained by
compromising the coverage. A major issue in selective classification is how to optimally control
this trade-off. In this paper we are concerned with an extreme case of this trade-off whereby (h,g)
is required to achieve a perfect score of zero error with certainty. This extreme learning objective
is termed perfect learning in El-Yaniv and Wiener (2010). Thus, for a perfect selective classifier
(h,g) we always have R(h,g) = 0, and its quality is determined by its guaranteed coverage. A
positive result for (perfect) selective classification problem (H ,P) is a learning algorithm that uses
a labeled training sample Sm (as in passive learning) to output a perfect selective classifier (h,g)
for which Φ(h,g) ≥ BΦ(H ,δ,m) with probability of at least 1− δ, for any given δ. The bound
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BΦ = BΦ(H ,δ,m) is called a coverage bound (or coverage rate) and its complement, 1−BΦ, is
called a rejection bound (or rate). A coverage rate BΦ = 1−O( polylog(m)m ) (and the corresponding
1−BΦ rejection rate) are qualified as fast.

2.3 The CAL Algorithm and the Consistent Selective Strategy (CSS)

The major players in active learning and in perfect selective classification are the CAL algorithm
and the consistent selective strategy (CSS), respectively. To define them we need the following
definitions.

Definition 1 (Version space, Mitchell, 1977) Given an hypothesis class H and a training sample
Sm, the version space VSH ,Sm is the set of all hypotheses in H that classify Sm correctly.

Definition 2 (Disagreement set, Hanneke, 2007a; El-Yaniv and Wiener, 2010) Let G ⊂H . The
disagreement set w.r.t. G is defined as

DIS(G)! {x ∈ X : ∃h1,h2 ∈ G s.t. h1(x) '= h2(x)} .

The agreement set w.r.t. G is AGR(G)! X \DIS(G).

The main strategy for active learning in the realizable setting (Cohn et al., 1994) is to request
labels only for instances belonging to the disagreement set and output any (consistent) hypothesis
belonging to the version space. This strategy is often called the CAL algorithm. A related strategy
for perfect selective classification was proposed in El-Yaniv and Wiener (2010) and termed consis-
tent selective strategy (CSS). Given a training set Sm, CSS takes the classifier h to be any hypothesis
in VSH ,Sm (i.e., a consistent learner), and takes a selection function g that equals one for all points
in the agreement set with respect to VSH ,Sm , and zero otherwise.

3. From Coverage Bound to Label Complexity Bound

In this section we present a reduction from stream-based active learning to perfect selective clas-
sification. Particularly, we show that if there exists for H a perfect selective classifier with a fast
rejection rate of O(polylog(m)/m), then the CAL algorithm will actively learn H with exponential
label complexity rate of O(polylog(1/ε)).

Lemma 3 Let Sm = {(x1,y1), . . . ,(xm,ym)} be a sequence of m labeled samples drawn i.i.d. from
an unknown distribution P(X) and let Si = {(x1,y1), . . . ,(xi,yi)} be the i-prefix of Sm. Then, with
probability of at least 1− δ over random choices of Sm, the following bound holds simultaneously
for all i= 1, . . . ,m−1,

Pr
{

xi+1 ∈ DIS(VSH ,Si)|Si
}

≤ 1−BΦ
(

H ,
δ

log2(m)
,2-log2(i).

)

,

where BΦ(H ,δ,m) is a coverage bound for perfect selective classification with respect to hypothesis
class H , confidence δ and sample size m .
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Proof For j = 1, . . . ,m, abbreviate DIS j ! DIS(VSH ,S j) and AGRj ! AGR(VSH ,S j). By definition,
DIS j = X \AGRj. By the definitions of a coverage bound and agreement/disagreement sets, with
probability of at least 1−δ over random choices of S j

BΦ(H ,δ, j)≤ Pr{x ∈ AGRj|S j}= Pr{x '∈ DIS j|S j}= 1−Pr{x ∈ DIS j|S j}.

Applying the union bound we conclude that the following inequality holds simultaneously with high
probability for t = 0, . . . ,-log2(m).−1,

Pr{x2t+1 ∈ DIS2t |S2t}≤ 1−BΦ
(

H ,
δ

log2(m)
,2t
)

. (1)

For all j≤ i, S j ⊆ Si, so DISi ⊆DIS j. Therefore, since the samples in Sm are all drawn i.i.d., for any
j ≤ i,

Pr{xi+1 ∈ DISi|Si}≤ Pr
{

xi+1 ∈ DIS j|S j
}

= Pr
{

x j+1 ∈ DIS j|S j
}

.

The proof is complete by setting j = 2-log2(i). ≤ i, and applying inequality (1).

Lemma 4 (Bernstein’s inequality Hoeffding, 1963) Let X1, . . . ,Xn be independent zero-mean ran-
dom variables. Suppose that |Xi|≤M almost surely, for all i. Then, for all positive t,

Pr

{

n

∑
i=1

Xi > t

}

≤ exp



−
t2/2

∑E
{

X2j
}

+Mt/3



 .

Lemma 5 Let Zi, i= 1, . . . ,m, be independent Bernoulli random variables with success probabili-
ties pi. Then, for any 0< δ< 1, with probability of at least 1−δ,

m

∑
i=1

(Zi−E{Zi})≤
√

2ln
1
δ∑ pi+

2
3
ln
1
δ
.

Proof DefineWi ! Zi−E{Zi}= Zi− pi. Clearly,

E{Wi}= 0, |Wi|≤ 1, E{W 2
i }= pi(1− pi).

Applying Bernstein’s inequality (Lemma 4) on theWi,

Pr

{

n

∑
i=1
Wi > t

}

≤ exp



−
t2/2

∑E
[

W 2
j

]

+ t/3



= exp
(

−
t2/2

∑ pi(1− pi)+ t/3

)

≤ exp
(

−
t2/2

∑ pi+ t/3

)

.

Equating the right-hand side to δ and solving for t, we have

t2/2
∑ pi+ t/3

= ln
1
δ

⇐⇒ t2− t ·
2
3
ln
1
δ
−2ln

1
δ∑ pi = 0,
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and the positive solution of this quadratic equation is

t =
1
3
ln
1
δ
+

√

1
9
ln2
1
δ
+2ln

1
δ∑ pi <

2
3
ln
1
δ
+

√

2ln
1
δ∑ pi.

Lemma 6 Let Z1,Z2, . . . ,Zm be a high order Markov sequence of dependent binary random vari-
ables defined in the same probability space. Let X1,X2, . . . ,Xm be a sequence of independent random
variables such that,

Pr{Zi = 1|Zi−1, . . . ,Z1,Xi−1, . . . ,X1}= Pr{Zi = 1|Xi−1, . . . ,X1} .

Define P1 ! Pr{Z1 = 1}, and for i= 2, . . . ,m,

Pi ! Pr{Zi = 1|Xi−1, . . . ,X1} .

Let b1,b2 . . .bm be given constants independent of X1,X2, . . . ,Xm.1 Assume that Pi ≤ bi simultane-
ously for all i with probability of at least 1− δ/2, δ ∈ (0,1). Then, with probability of at least
1−δ,

m

∑
i=1

Zi ≤
m

∑
i=1

bi+
√

2ln
2
δ∑bi+

2
3
ln
2
δ
.

We proceed with a direct proof of Lemma 6. An alternative proof of this lemma, using super-
martingales, appears in Appendix B.
Proof For i= 1, . . . ,m, letWi be binary random variables satisfying

Pr{Wi = 1|Zi = 1,Xi−1, . . . ,X1}!
bi+ I(Pi ≤ bi) · (Pi−bi)

Pi
,

Pr{Wi = 1|Zi = 0,Xi−1, . . . ,X1}!max
{

bi−Pi
1−Pi

,0
}

,

Pr{Wi = 1|Wi−1, . . . ,W1,Xi−1, . . . ,X1}= Pr{Wi = 1|Xi−1, . . . ,X1}.

We notice that

Pr{Wi = 1|Xi−1, . . . ,X1} = Pr{Wi = 1,Zi = 1|Xi−1, . . . ,X1}
+ Pr{Wi = 1,Zi = 0|Xi−1, . . . ,X1}
= Pr{Wi = 1|Zi = 1,Xi−1, . . . ,X1}Pr{Zi = 1|Xi−1, . . . ,X1}
+ Pr{Wi = 1|Zi = 0,Xi−1, . . . ,X1}Pr{Zi = 0|Xi−1, . . . ,X1}

=

{

Pi+ bi−Pi
1−Pi (1−Pi) = bi, Pi ≤ bi;

bi
Pi ·Pi+0= bi, else.

Hence the distribution of eachWi is independent of Xi−1, . . . ,X1, and theWi are independent Bernoulli
random variables with success probabilities bi. By construction if Pi ≤ bi then

Pr{Wi = 1|Zi = 1}=
∫
X
Pr{Wi = 1|Zi = 1,Xi−1, . . . ,X1}= 1.

1. Precisely we require that each of the bi were selected before Xi are chosen
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By assumption Pi≤ bi for all i simultaneously with probability of at least 1−δ/2. Therefore, Zi≤Wi
simultaneously with probability of at least 1− δ/2. We now apply Lemma 5 on theWi. The proof
is then completed using the union bound.

Theorem 7 Let Sm be a sequence of m unlabeled samples drawn i.i.d. from an unknown distribution
P. Then with probability of at least 1−δ over choices of Sm, the number of label requests k by the
CAL algorithm is bounded by

k ≤Ψ(H ,δ,m)+
√

2ln
2
δ
Ψ(H ,δ,m)+

2
3
ln
2
δ
,

where
Ψ(H ,δ,m)!

m

∑
i=1

(

1−BΦ
(

H ,
δ

2log2(m)
,2-log2(i).

))

and BΦ(H ,δ,m) is a coverage bound for perfect selective classification with respect to hypothesis
class H , confidence δ and sample size m .

Proof According to CAL, the label of sample xi will be requested iff xi ∈ DIS(VSH ,Si−1). For
i= 1, . . . ,m, let Zi be binary random variables such that Zi ! 1 iff CAL requests a label for sample
xi. Applying Lemma 3 we get that for all i= 2, . . . ,m, with probability of at least 1−δ/2

Pr{Zi = 1|Si−1} = Pr
{

xi ∈ DIS(VSH ,Si−1)|Si−1
}

≤ 1−BΦ
(

H ,
δ

2log2(m)
,2-log2(i−1).

)

.

For i= 1, BΦ(H ,δ,1) = 0 and the above inequality trivially holds. An application of Lemma 6 on
the variables Zi completes the proof.

Theorem 7 states an upper bound on the label complexity expressed in terms of m, the size of
the sample provided to CAL. This upper bound is very convenient for directly analyzing the active
learning speedup relative to supervised learning. A standard label complexity upper bound, which
depends on 1/ε, can be extracted using the following simple observation.

Lemma 8 (Hanneke, 2009; Anthony and Bartlett, 1999) Let Sm be a sequence of m unlabeled
samples drawn i.i.d. from an unknown distribution P. Let H be a hypothesis class whose finite VC
dimension is d, and let ε and δ be given. If

m≥
4
ε

(

d ln
12
ε
+ ln

2
δ

)

,

then, with probability of at least 1−δ, CAL will output a classifier whose true error is at most ε.

Proof Hanneke (2009) observed that since CAL requests a label whenever there is a disagreement
in the version space, it is guaranteed that after processing m examples, CAL will output a clas-
sifier that is consistent with all the m examples introduced to it. Therefore, CAL is a consistent
learner. A classical result (Anthony and Bartlett, 1999, Theorem 4.8) is that any consistent learner
will achieve, with probability of at least 1− δ, a true error not exceeding ε after observing at most
4
ε

(

d ln 12ε + ln 2δ
)

labeled examples.
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Theorem 9 LetH be a hypothesis class whose finite VC dimension is d. If the rejection rate of CSS

(see definition in Section 2.3) is O
(

polylog(mδ )
m

)

, then (H ,P) is actively learnable with exponential

label complexity speedup.

Proof Plugging this rejection rate into Ψ (defined in Theorem 7) we have,

Ψ(H ,δ,m)!
m

∑
i=1

(

1−BΦ(H ,
δ

log2(m)
,2-log2(i).)

)

=
m

∑
i=1

O





polylog
(

i log(m)
δ

)

i



 .

Applying Lemma 41 we get

Ψ(H ,δ,m) = O
(

polylog
(

m log(m)
δ

))

.

By Theorem 7, k = O
(

polylog
(m
δ

))

, and an application of Lemma 8 concludes the proof.

4. Label Complexity Bounding Technique and Its Applications

In this section we present a novel technique for deriving target-independent label complexity bounds
for active learning. The technique combines the reduction of Theorem 7 and a general data-
dependent coverage bound for selective classification from El-Yaniv and Wiener (2010). For some
learning problems it is a straightforward technical exercise, involving VC-dimension calculations,
to arrive with exponential label complexity bounds. We show a few applications of this technique
resulting in both reproductions of known label complexity exponential rates as well as a new one.
The following definitions (El-Yaniv and Wiener, 2010) are required for introducing the technique.

Definition 10 (Version space compression set) For any hypothesis class H , let Sm be a labeled
sample of m points inducing a version space VSH ,Sm. The version space compression set, S

′ ⊆ Sm,
is a smallest subset of Sm satisfying VSH ,Sm =VSH ,S′ . The (unique) number n̂= n̂(H ,Sm) = |S′| is
called the version space compression set size.

Remark 11 Our ”version space compression set” is precisely Hanneke’s ”minimum specifying
set” (Hanneke, 2007b) for f on U with respect to V , where,

f = h∗, U = Sm, V =H [Sm] (see Definition 23).

Definition 12 (Characterizing hypothesis) For any subset of hypotheses G ⊆H , the characteriz-
ing hypothesis of G , denoted fG (x), is a binary hypothesis over X (not restricted to H ) obtaining
positive values over the agreement set AGR(G) (Definition 2), and zero otherwise.

Definition 13 (Order-n characterizing set) For each n, let Σn be the set of all possible labeled
samples of size n (all n-subsets, each with all 2n possible labelings). The order-n characterizing set
ofH , denoted Fn, is the set of all characterizing hypotheses fG (x), where G ⊆H is a version space
induced by some member of Σn.

263



EL-YANIV AND WIENER

Definition 14 (Characterizing set complexity) Let Fn be the order-n characterizing set ofH . The
order-n characterizing set complexity of H , denoted γ(H ,n), is the VC-dimension of Fn.

The following theorem, credited to (El-Yaniv and Wiener, 2010, Theorem 21), is a powerful
data-dependent coverage bound for perfect selective learning, expressed in terms of the version
space compression set size and the characterizing set complexity.

Theorem 15 (Data-dependent coverage guarantee) For any m, let a1,a2, . . . ,am ∈ R be given,
such that ai ≥ 0 and ∑m

i=1 ai ≤ 1. Let (h,g) be perfect selective classifier (CSS, see Section 2.3).
Then, R(h,g) = 0, and for any 0≤ δ≤ 1, with probability of at least 1−δ,

Φ(h,g)≥ 1−
2
m

[

γ(H , n̂) ln+
(

2em
γ(H , n̂)

)

+ ln
2
an̂δ

]

,

where n̂ is the size of the version space compression set and γ(H , n̂) is the order-n̂ characterizing
set complexity of H .

Given an hypothesis class H , our recipe to deriving active learning label complexity bounds
for H is: (i) calculate both n̂ and γ(H , n̂); (ii) apply Theorem 15, obtaining a bound BΦ for the
coverage; (iii) plug BΦ in Theorem 7 to get a label complexity bound expressed as a summation;
(iv) Apply Lemma 41 to obtain a label complexity bound in a closed form.

4.1 Examples

In the following example we derive a label complexity bound for the concept class of thresholds
(linear separators in R). Although this is a toy example (for which an exponential rate is well
known) it does exemplify the technique, and in many other cases the application of the technique
is not much harder. Let H be the class of thresholds. We first show that the corresponding version
space compression set size n̂ ≤ 2. Assume w.l.o.g. that h∗(x) ! I(x > w) for some w ∈ (0,1). Let
x− ! max{xi ∈ Sm|yi = −1} and x+ ! min(xi ∈ Sm|yi = +1). At least one of x− or x+ exist. Let
S′m = {(x−,−1),(x+,+1)}. Then VSH ,Sm =VSH ,S′m , and n̂= |S′m|≤ 2. Now, γ(H ,2) = 2, because
the order-2 characterizing set ofH is the class of intervals in R whose VC-dimension is 2. Plugging
these numbers in Theorem 15, and using the assignment a1 = a2 = 1/2,

BΦ (H ,δ,m) = 1−
2
m

[

2ln(em)+ ln
4
δ

]

= 1−O
(

ln(m/δ)
m

)

.

Next we plug BΦ in Theorem 7 obtaining a raw label complexity

Ψ(H ,δ,m) =
m

∑
i=1

(

1−BΦ
(

H ,
δ

2log2(m)
,2-log2(i).

))

=
m

∑
i=1

O
(

ln(log2 (m) · i/δ)
i

)

.

Finally, by applying Lemma 41, with a= 1 and b= log2m/δ, we conclude that

Ψ(H ,δ,m) = O
(

ln2
(m
δ

))

.

Thus,H is actively learnable with exponential speedup, and this result applies to any distribution. In
Table 1 we summarize the n̂ and γ(H , n̂) values we calculated for four other hypothesis classes. The
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Hypothesis class Distribution n̂ γ(H , n̂)

Linear separators in R any 2 2
Intervals in R any (target-dependent)2 4 4
Linear separators in R2 any distribution on the unit 4 4

circle (target-dependent)2

Linear separators in Rd mixture of Gaussians O
(

(logm)d−1/δ
)

O
(

n̂d/2+1
)

Balanced axis-aligned product distribution O(log(dm/δ)) O(dn̂ log n̂)
rectangles in Rd

Table 1: The n̂ and γ of various hypothesis spaces achieving exponential rates.

last two cases are fully analyzed in Sections 4.2 and 6.1, respectively. For the other classes, where γ
and n̂ are constants, it is clear (Theorem 15) that exponential rates are obtained. We emphasize that
the bounds for these two classes are target-dependent as they require that Sm include at least one
sample from each class.

4.2 Linear Separators in Rd Under Mixture of Gaussians

In this section we state and prove our main example, an exponential label complexity bound for
linear classifiers in Rd .

Theorem 16 Let H be the class of all linear binary classifiers in Rd, and let the underlying distri-
bution be any mixture of a fixed number of Gaussians in Rd. Then, with probability of at least 1−δ
over choices of Sm, the number of label requests k by CAL is bounded by

k = O

(

(logm)d2+1

δ(d+3)/2

)

.

Therefore by Lemma 8 we get k = O(poly(1/δ) · polylog(1/ε)) .

Proof The following is a coverage bound for linear classifiers in d dimensions that holds in our
setting with probability of at least 1−δ (El-Yaniv and Wiener, 2010, Corollary 33),3

Φ(h,g)≥ 1−O

(

(logm)d2

m
·

1
δ(d+3)/2

)

. (2)

2. Target-dependent with at least one sample in each class.
3. This bound uses the fact that for linear classifiers in d dimensions n̂=O

(

(logm)d−1/δ
)

(El-Yaniv and Wiener, 2010,
Lemma 32), and that γ(H , n̂) = O

(

n̂d/2+1
)

(El-Yaniv and Wiener, 2010, Lemma 27).
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Plugging this bound in Theorem 7 we obtain,

Ψ(H ,δ,m) =
m

∑
i=1

(

1−BΦ
(

H ,
δ

2log2(m)
,2-log2(i).

))

=
m

∑
i=1

O

(

(log i)d2

i
·
(

log2(m)
δ

)
d+3
2
)

= O

(

(

log2(m)
δ

)
d+3
2

·
m

∑
i=1

(log(i))d2

i

)

.

Finally, an application of Lemma 41 with a= d2 and b= 1 completes the proof.

5. Lower Bound on Label Complexity

In the previous section we have derived an upper bound on the label complexity of CAL for various
classifiers and distributions. In the case of linear classifiers in Rd we have shown an exponential
speed up in terms of 1/ε but also an exponential slow down in terms of the dimension d. In passive
learning there is a linear dependency in the dimension while in our case (active learning using
CAL) there is an exponential one. Is it an artifact of our bounding technique or a fundamental
phenomenon?

To answer this question we derive an asymptotic lower bound on the label complexity. We show
that the exponential dependency in d is unavoidable (at least asymptotically) for every bounding
technique when considering linear classifier even under a single Gaussian (isotropic) distribution.
The argument is obtained by the observation that CAL has to request a label to any point on the
convex hull of a sample Sm. The bound is obtained using known results from probabilistic geometry,
which bound the first two moments of the number of vertices of a random polytope under the
Gaussian distribution.

Definition 17 (Gaussian polytope) Let X1, ...,Xm be i.i.d. random points in Rd with common stan-
dard normal distribution (with zero mean and covariance matrix 1

2 Id). A Gaussian polytope Pm is
the convex hull of these random points.

Denote by fk(Pm) the number of k-faces in the Gaussian polytope Pm. Note that f0(Pm) is the number
of vertices in Pm. The following two Theorems asymptotically bound the average and variance of
fk(Pm).

Theorem 18 (Hug et al., 2004, Theorem 1.1) Let X1, ...,Xm be i.i.d. random points in Rd with
common standard normal distribution. Then

E fk(Pm) = c(k,d) (logm)
d−1
2 · (1+o(1))

as m→ ∞, where c(k,d) is a constant depending only on k and d.
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Theorem 19 (Hug and Reitzner, 2005, Theorem 1.1) Let X1, ...,Xm be i.i.d. random points in Rd

with common standard normal distribution. Then there exists a positive constant cd, depending only
on the dimension, such that

Var( fk(Pm))≤ cd (logm)
d−1
2

for all k ∈ {0, . . . ,d−1}.

We can now use Chebyshev’s inequality to lower bound the number of vertices in Pm ( f0(Pm)) with
high probability.

Theorem 20 Let X1, ...,Xm be i.i.d. random points inRd with common standard normal distribution
and δ> 0 be given. Then with probability of at least 1−δ,

f0(Pm)≥
(

cd (logm)
d−1
2 −

c̃d√
δ
(logm)

d−1
4

)

· (1+o(1))

as m→ ∞, where cd and c̃d are constants depending only on d.

Proof Using Chebyshev’s inequality (in the second inequality), as well as Theorem 19 we get

Pr( f0(Pm)> E f0(Pm)− t) = 1−Pr( f0(Pm)≤ E f0(Pm)− t)
≥ 1−Pr(| f0(Pm)−E f0(Pm)|≥ t)

≥ 1−
Var( f0(Pm))

t2
≥ 1−

cd
t2

(logm)
d−1
2 .

Equating the RHS to 1−δ and solving for t we get

t =

√

cd
(logm)

d−1
2

δ
.

Applying Theorem 18 completes the proof.

Theorem 21 (Lower bound) Let H be the class of linear binary classifiers in Rd, and let the
underlying distribution be standard normal distribution in Rd. Then there exists a target hypothesis
such that, with probability of at least 1− δ over choices of Sm, the number of label requests k by
CAL is bounded by

k ≥
cd
2
(logm)

d−1
2 · (1+o(1)).

as m→ ∞, where cd is a constant depending only on d.

Proof Let us look at the Gaussian polytope Pm induced by the random sample Sm. As long as all
labels requested by CAL have the same value (the case of minuscule minority class) we note that
every vertex of Pm falls in the region of disagreement with respect to any subset of Sm that do not
include that specific vertex. Therefore, CAL will request label at least for each vertex of Pm. For
sufficiently large m, in particular,

logm≥
(

2c̃d
cd
√
δ

)
4

d−1

,

we conclude the proof by applying Theorem 20.
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6. Relation to Existing Label Complexity Measures

A number of complexity measures to quantify the speedup in active learning have been proposed.
In this section we show interesting relations between our techniques and two well known measures,
namely the teaching dimension (Goldman and Kearns, 1995) and the disagreement coefficient (Han-
neke, 2009).

Considering first the teaching dimension, we prove in Lemma 26 that the version space compres-
sion set size is bounded above, with high probability, by the extended teaching dimension growth
function (introduced by Hanneke, 2007b). Consequently, it follows that perfect selective classifi-
cation with meaningful coverage can be achieved for the case of axis-aligned rectangles under a
product distribution.

We then focus on Hanneke’s disagreement coefficient and show in Theorem 34 that the coverage
of CSS can be bounded below using the disagreement coefficient. Conversely, in Corollary 39 we
show that the disagreement coefficient can be bounded above using any coverage bound for CSS.
Consequently, the results here imply that the disagreement coefficient, θ(ε) grows slowly with 1/ε
for the case of linear classifiers under a mixture of Gaussians.

6.1 Teaching Dimension

The teaching dimension is a label complexity measure proposed by Goldman and Kearns (1995).
The dimension of the hypothesis class H is the minimum number of examples required to present
to any consistent learner in order to uniquely identify any hypothesis in the class.

We now define the following variation of the extended teaching dimension (Hegedüs, 1995)
due to Hanneke. Throughout we use the notation h1(S) = h2(S) to denote the fact that the two
hypotheses agree on the classification of all instances in S.

Definition 22 (Extended Teaching Dimension, Hegedüs, 1995; Hanneke, 2007b) LetV ⊆H , m≥
0, U ∈ Xm,

∀ f ∈H , XTD( f ,V,U) = inf{t |∃R⊆U : |{h ∈V : h(R) = f (R)}|≤ 1∧ |R|≤ t} .

Definition 23 (Hanneke, 2007b) For V ⊆H , V [Sm] denotes any subset of V such that

∀h ∈V, |
{

h′ ∈V [Sm] : h′(Sm) = h(Sm)
}

|= 1.

Claim 24 Let Sm be a sample of size m,H an hypothesis class, and n̂= n(H ,Sm), the version space
compression set size. Then,

XTD(h∗,H [Sm],Sm) = n̂.

Proof Let Sn̂ ⊆ Sm be a version space compression set. Assume, by contradiction, that there exist
two hypotheses h1,h2 ∈ H [Sm], each of which agrees on the given classifications of all examples
in Sn̂. Therefore, h1,h2 ∈ VSH ,Sn̂ , and by the definition of version space compression set, we get
h1,h2 ∈VSH ,Sm . Hence,

|
{

h ∈H [Sm] : h(Sm) = h∗(Sm)
}

|≥ 2,

which contradicts definition 23. Therefore,

|
{

h ∈H [Sm] : h(Sn̂) = h∗(Sn̂)
}

|≤ 1,
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and
XTD(h∗,H [Sm],Sm)≤ |Sn̂|= n̂.

Let R⊂ Sm be any subset of size |R|< n̂. Consequently,VSH ,Sm ⊂VSH ,R, and there exist hypothesis,
h′ ∈ VSH ,R, that agrees with all labeled examples in R, but disagrees with at least one example in
Sm. Thus,

h′(Sm) '= h∗(Sm),

and according to definition 23, there exist hypotheses h1,h2 ∈ H [Sm] such that h1(Sm) = h′(Sm) '=
h∗(Sm) = h2(Sm). But h1(R) = h2(R) = h∗(R), so

|{h ∈V [Sm] : h(R) = h∗(R)}|≥ 2.

It follows that XTD(h∗,H [Sm],Sm)≥ n̂.

Definition 25 (XTD Growth Function, Hanneke, 2007b) For m≥ 0, V ⊆H , δ ∈ [0,1],

XTD(V,P,m,δ) = inf
{

t|∀h ∈H ,Pr{XTD(h,V [Sm],Sm)> t}≤ δ
}

.

Lemma 26 Let H be an hypothesis class, P an unknown distribution, and δ > 0. Then, with
probability of at least 1−δ,

n̂≤ XTD(H ,P,m,δ).

Proof According to Definition 25, with probability of at least 1−δ,

XTD(h∗,H [Sm],Sm)≤ XTD(H ,P,m,δ).

Applying Claim 24 completes the proof.

Lemma 27 (Balanced Axis-Aligned Rectangles, Hanneke, 2007b, Lemma 4) If P is a product
distribution on Rd with continuous CDF, and H is the set of axis-aligned rectangles such that
∀h ∈H , PrX∼P{h(X) = +1}≥ λ, then,

XTD(H ,P,m,δ)≤ O
(

d2

λ
log

dm
δ

)

.

Lemma 28 Blumer et al., 1989, Lemma 3.2.3 Let F be a binary hypothesis class of finite VC
dimension d ≥ 1. For all k ≥ 1, define the k-fold union,

Fk∪ !
{

∪ki=1 fi : fi ∈ F ,1≤ i≤ k
}

.

Then, for all k ≥ 1,
VC(Fk∪)≤ 2dk log2 (3k).

Lemma 29 (order-n characterizing set complexity) LetH be the class of axis-aligned rectangles
in Rd. Then,

γ(H ,n)≤ O(dn logn) .
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Proof Let Sn = S−k ∪ S+n−k be a sample of size n composed of k negative examples, {x1,x2, . . .xk},
and n− k positive ones. Let H be the class of axis-aligned rectangles. We define,

∀1≤ i≤ k, Ri ! S+n−k∪{(xi,−1)} .

Notice that VSH ,Ri includes all axis aligned rectangles that classify all samples in S
+ as positive,

and xi as negative. Therefore, the agreement region of VSH ,Ri is composed of two components as
depicted in Figure 1. The first component is the smallest rectangle that bounds the positive samples,
and the second is an unbounded convex polytope defined by up to d hyperplanes intersecting at xi.
Let AGRi be the agreement region of VSH ,Ri and AGR the agreement region of VSH ,Sn . Clearly,
Ri ⊆ Sn, so VSH ,Sn ⊆VSH ,Ri , and AGRi ⊆ AGR, and it follows that

k⋃
i=1

AGRi ⊆ AGR.

Assume, by contradiction, that x ∈ AGR but x '∈
⋃k
i=1AGRi. Therefore, for any 1≤ i≤ k, there exist

two hypotheses h(i)1 ,h(i)2 ∈ VSH ,Ri , such that, h
(i)
1 (x) '= h(i)2 (x). Assume, without loss of generality,

that h(i)1 (x) = 1. We define

h1 !
k∧
i=1

h(i)1 and h2 !
k∧
i=1

h(i)2 ,

meaning that h1 classifies a sample as positive if and only if all hypotheses h
(i)
1 classify it as positive.

Noting that the intersection of axis-aligned rectangles is itself an axis-aligned rectangle, we know
that h1,h2 ∈H . Moreover, for any xi we have, h

(i)
1 (xi) = h(i)2 (xi) =−1, so also h1(xi) = h2(xi) =−1,

and h1,h2 ∈VSH ,Sn . But h1(x) '= h2(x). Contradiction. Therefore,

AGR=
k⋃
i=1

AGRi.

It is well known that the VC dimension of a hyper-rectangle in Rd is 2d. The VC dimension of
AGRi is bounded by the VC dimension of the union of two hyper-rectangles in Rd . Furthermore,
the VC dimension of AGR is bounded by the VC dimension of the union of all AGRi. Applying
Lemma 28 twice we get,

VCdim{AGR}≤ 42dk log2(3k)≤ 42dn log2(3n).

If k= 0 then the entire sample is positive and the region of agreement is an hyper-rectangle. There-
fore, VCdim{AGR}= 2d. If k= n then the entire sample is negative and the region of agreement is
the points of the samples themselves. Hence, VCdim{AGR}= n. Overall we get that in all cases,

VCdim{AGR}≤ 42dn log2(3n) = O(dn logn) .
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Figure 1: Agreement region of VSH ,Ri .

Corollary 30 (Balanced Axis-Aligned Rectangles) Under the same conditions of Lemma 27, the
class of balanced axis-aligned rectangles in Rd can be perfectly selectively learned with fast cover-
age rate.

Proof Applying Lemmas 26 and 27 we get that with probability of at least 1−δ,

n̂≤ O
(

d2

λ
log

dm
δ

)

.

Any balanced axis-aligned rectangle belongs to the class of all axis-aligned rectangles. Therefore,
the coverage of CSS for the class of balanced axis-aligned rectangles is bounded bellow by the
coverage of the class of axis-aligned rectangles. Applying Lemma 29, and assuming m ≥ d, we
obtain,

γ(H , n̂) ≤ O
(

d
d2

λ
log

dm
δ
log
(

d2

λ
log

dm
δ

))

≤ O
(

d3

λ
log2

dm
λδ

)

.

Applying Theorem 15 completes the proof.

6.2 Disagreement Coefficient

In this section we show interesting relations between the disagreement coefficient and coverage
bounds in perfect selective classification. We begin by defining, for an hypothesis h ∈H , the set of
all hypotheses that are r-close to h.

Definition 31 (Hanneke, 2011b, p.337) For any hypothesis h ∈H , distribution P over X , and r >
0, define the set B(h,r) of all hypotheses that reside in a ball of radius r around h,

B(h,r)!
{

h′ ∈H : Pr
X∼P

{

h′(X) '= h(X)
}

≤ r
}

.

Theorem 32 (Vapnik and Chervonenkis, 1971; Anthony and Bartlett, 1999, p.53) Let H be a
hypothesis class with VC-dimension d. For any probability distribution P on X ×{±1}, with prob-
ability of at least 1−δ over the choice of Sm, any hypothesis h ∈H consistent with Sm satisfies

R(h)≤ η(d,m,δ)!
2
m

[

d ln
2em
d

+ ln
2
δ

]

.
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For any G⊆H and distribution P we denote by ∆G the volume of the disagreement region of G,

∆G! Pr{DIS(G)} .

Definition 33 (Disagreement coefficient, Hanneke, 2009) Let ε≥ 0. The disagreement coefficient
of the hypothesis class H with respect to the target distribution P is

θ(ε)! θh∗(ε) = sup
r>ε

∆B(h∗,r)
r

.

The following theorem formulates an intimate relation between active learning (disagreement coef-
ficient) and selective classification.

Theorem 34 LetH be an hypothesis class with VC-dimension d, P an unknown distribution, ε≥ 0,
and θ(ε), the corresponding disagreement coefficient. Let (h,g) be a perfect selective classifier
(CSS, see Section 2.3). Then, R(h,g) = 0, and for any 0≤ δ≤ 1, with probability of at least 1−δ,

Φ(h,g)≥ 1−θ(ε) ·max{η(d,m,δ),ε} .

Proof Clearly, R(h,g) = 0, and it remains to prove the coverage bound. By Theorem 32, with
probability of at least 1−δ,

∀h ∈VSH ,Sm R(h)≤ η(d,m,δ)≤max{η(d,m,δ),ε} .

Therefore,
VSH ,Sm ⊆ B(h∗,max{η(d,m,δ),ε}) ,

∆VSH ,Sm ≤ ∆B(h∗,max{η(d,m,δ),ε}) .

By Definition 33, for any r′ > ε,
∆B(h∗,r′)≤ θ(ε)r′.

Thus, the proof is complete by recalling that

Φ(h,g) = 1−∆VSH ,Sm .

Theorem 34 tells us that whenever our learning problem (specified by the pair (H ,P)) has a
disagreement coefficient that grows slowly with respect to 1/ε , it can be (perfectly) selectively
learned with a “fast” coverage bound. Consequently, through Theorem 9 we also know that in each
case where there exists a disagreement coefficient that grows slowly with respect to 1/ε, active
learning with a fast rate can also be deduced directly through a reduction from perfect selective
classification. It follows that as far as fast rates in active learning are concerned, whatever can be
accomplished by bounding the disagreement coefficient, can be accomplished also using perfect
selective classification. This result is summarized in the following corollary.

Corollary 35 Let H be an hypothesis class with VC-dimension d, P an unknown distribution, and
θ(ε), the corresponding disagreement coefficient. If θ(ε) = O(polylog(1/ε)), there exists a cov-
erage bound such that an application of Theorem 7 ensures that (H ,P) is actively learnable with
exponential label complexity speedup.
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Proof The proof is established by straightforward applications of Theorems 34 with ε= 1/m and 9.

The following result, due to Hanneke (2011a), implies a coverage upper bound for CSS.

Lemma 36 (Hanneke, 2011a, Proof of Lemma 47) Let H be an hypothesis class, P an unknown
distribution, and r ∈ (0,1). Then,

EP∆Dm ≥ (1− r)m∆B(h∗,r) ,

where
Dm !VSH ,Sm ∩B(h

∗,r) . (3)

Theorem 37 (Coverage upper bound) Let H be an hypothesis class, P an unknown distribution,
and δ ∈ (0,1). Then, for any r ∈ (0,1), 1> α> δ,

BΦ(H ,δ,m)≤ 1−
(1− r)m−α
1−α

∆B(h∗,r) ,

where BΦ(H ,δ,m) is any coverage bound.

Proof Recalling the definition of Dm (3), clearly Dm ⊆VSH ,Sm and Dm ⊆ B(h∗,r). These inclusions
imply (respectively), by the definition of disagreement set,

∆Dm ≤ ∆VSH ,Sm , and ∆Dm ≤ ∆B(h∗,r). (4)

Using Markov’s inequality (in inequality (5) of the following derivation) and applying (4) (in equal-
ity (6)), we thus have,

Pr
{

∆VSH ,Sm ≤
(1− r)m−α
1−α

∆B(h∗,r)
}

≤ Pr
{

∆Dm ≤
(1− r)m−α
1−α

∆B(h∗,r)
}

= Pr
{

∆B(h∗,r)−∆Dm ≥
1− (1− r)m

1−α
∆B(h∗,r)

}

≤ Pr
{

|∆B(h∗,r)−∆Dm|≥
1− (1− r)m

1−α
∆B(h∗,r)

}

≤ (1−α) ·
E{|∆B(h∗,r)−∆Dm|}
(1− (1− r)m)∆B(h∗,r)

(5)

= (1−α) ·
∆B(h∗,r)−E∆Dm

(1− (1− r)m)∆B(h∗,r)
. (6)

Applying Lemma 36 we therefore obtain,

≤ (1−α) ·
∆B(h∗,r)− (1− r)m∆B(h∗,r)

(1− (1− r)m)∆B(h∗,r)
= 1−α< 1−δ.

Observing that for any coverage bound,

Pr
{

∆VSH ,Sm ≤ 1−BΦ(H ,δ,m)
}

≥ 1−δ,

completes the proof.
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Corollary 38 Let H be an hypothesis class, P an unknown distribution, and δ ∈ (0,1/8). Then for
any m≥ 2,

BΦ(H ,δ,m)≤ 1−
1
7
∆B
(

h∗,
1
m

)

,

where BΦ(H ,δ,m) is any coverage bound.

Proof The proof is established by a straightforward application of Theorem 37 with α = 1/8 and
r = 1/m.

With Corollary 38 we can bound the disagreement coefficient for settings whose coverage bound
is known.

Corollary 39 Let H be an hypothesis class, P an unknown distribution, and BΦ(H ,δ,m) a cover-
age bound. Then the disagreement coefficient is bounded by,

θ(ε)≤max

{

sup
r∈(ε,1/2)

7 ·
1−BΦ(H ,1/9,-1/r.)

r
,2

}

.

Proof Applying Corollary 38 we get that for any r ∈ (0,1/2),

∆B(h∗,r)
r

≤
∆B(h∗,1/-1/r.)

r
≤ 7 ·

1−BΦ(H ,1/9,-1/r.)
r

.

Therefore,

θ(ε) = sup
r>ε

∆B(h∗,r)
r

≤max

{

sup
r∈(ε,1/2)

7 ·
1−BΦ(H ,1/9,-1/r.)

r
,2

}

.

Corollary 40 Let H be the class of all linear binary classifiers in Rd, and let the underlying distri-
bution be any mixture of a fixed number of Gaussians in Rd. Then

θ(ε)≤ O
(

polylog
(

1
ε

))

.

Proof Applying Corollary 39 together with inequality 2 we get that

θ(ε) ≤ max

{

sup
r∈(ε,1/2)

7 ·
1−BΦ(H ,1/9,-1/r.)

r
,2

}

≤ max

{

sup
r∈(ε,1/2)

7
r
·O

(

(log-1/r.)d2

-1/r.
·9

d+3
2

)

,2

}

≤ O

(

(

log
1
ε

)d2
)

.
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7. Concluding Remarks

For quite a few years, since its inception, the theory of target-independent bounds for noise-free ac-
tive learning managed to handle relatively simple settings, mostly revolving around homogeneous
linear classifiers under the uniform distribution over the sphere. It is likely that this distributional
uniformity assumption was often adapted to simplify analyses. However, it was shown by Dasgupta
(2005) that under this distribution, exponential speed up cannot be achieved when considering gen-
eral (non homogeneous) linear classifiers.

The reason for this behavior is related to the two tasks that a good active learner should success-
fully accomplish: exploration and exploitation. Intuitively (and oversimplifying things) exploration
is the task of obtaining at least one sample in each class, and exploitation is the process of refin-
ing the decision boundary by requesting labels of points around the boundary. Dasgupta showed
that exploration cannot be achieved fast enough under the uniform distribution on the sphere. The
source of this difficulty is the fact that under this distribution all training points reside on their con-
vex hull. In general, the speed of exploration (using linear classifiers) depends on the size (number
of vertices) of the convex hull of the training set. When using homogeneous linear classifiers, explo-
ration is trivially achieved (under the uniform distribution) and exploitation can achieve exponential
speedup.

So why in the non-verifiable model (Balcan et al., 2008) it is possible to achieve exponential
speedup even when using non homogeneous linear classifiers under the uniform distribution? The
answer is that in the non-verifiable model, label complexity attributed to exploration is encapsulated
in a target-dependent “constant.” Specifically, in Balcan et al. (2008) this constant is explicitly de-
fined to be the probability mass of the minority class. Indeed, in certain noise free settings using
linear classifiers, where the minority class is large enough, exploration is a non issue. In general,
however, exploration is a major bottleneck in practical active learning (Baram et al., 2004; Begleiter
et al., 2008). The present results show how exponential speedup can be achieved, including explo-
ration, when using different (and perhaps more natural) distributions.

With these good news, a somewhat pessimistic picture arises from the lower bound we obtained
for the exponential dependency on the dimension d. This negative result is not restricted to stream-
based active learning and readily applies also to the pool-based model. While the bound is only
asymptotic, we conjecture that it also holds for finite samples. Moreover, we believe that within the
stream- or pool-based settings a similar statement should hold true for any active learning method
(and not necessarily CAL-based querying strategies). This result indicates that when performing
noise free active learning of linear classifiers, aggressive feature selection is beneficial for explo-
ration speedup. We note, however, that it remains open whether a slowdown exponent of d (rather
than d2) is achievable.

We have exposed interesting relations of the present technique to well known complexity mea-
sures for active learning, namely, the teaching dimension and the disagreement coefficient. These
developments were facilitated by observations made by Hanneke on the teaching dimension and the
disagreement coefficient. These relations gave rise to further observations on active learning, which
are discussed in Section 6 and include exponential speedup for balanced axis-aligned rectangles.
Finally, we note that the intimate relation between selective classification and the disagreement co-
efficient was recently exposed in another result for selective classification where the disagreement
coefficient emerged as a dominating factor in a coverage bound for agnostic selective classification
(El-Yaniv and Wiener, 2011).
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Appendix A.

Lemma 41 For any m≥ 3, a≥ 1, b≥ 1 we get

m

∑
i=1

(

lna (bi)
i

)

<
4
a
lna+1(b(m+1)).

Proof Setting f (x)! lna (bx)
x , we have

d f
dx

= (a− lnbx) ·
lna−1(bx)

x2
.

Therefore, f is monotonically increasing when x < ea/b, monotonically decreasing function when
x≥ ea/b and its attains its maximum at x= ea/b. Consequently, for i< ea/b−1, or i≥ ea/b+1,

f (i)≤
∫ i+1

x=i−1
f (x)dx.

For ea/b−1≤ i< ea/b+1,

f (i)≤ f (ea/b) = b
(a
e

)a
≤ aa. (7)

Therefore, if m< ea−1 we have,

m

∑
i=1

f (i) = lna (b)+
m

∑
i=2

f (i)< 2 ·
∫ m+1

x=1
f (x)dx≤

2
a+1

lna+1(b(m+1)).

Otherwise, m ≥ ea/b, in which case we overcome the change of slope by adding twice the (upper
bound on the) maximal value (7),

m

∑
i=1

f (i) <
2

a+1
lna+1(b(m+1))+2aa =

2
a+1

lna+1(b(m+1))+
2
a
aa+1

≤
2

a+1
lna+1(b(m+1))+

2
a
lna+1 bm≤

4
a
lna+1(b(m+1)).
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Appendix B. Alternative Proof of Lemma 6 Using Super Martingales

DefineWk ! ∑k
i=1(Zi−bi). We assume that with probability of at least 1−δ/2,

Pr{Zi|Z1, . . . ,Zi−1} ≤ bi, simultaneously for all i. Since Zi is a binary random variable it is easy to
see that (w.h.p.),

EZi{Wi|Z1, . . . ,Zi−1}= Pr{Zi|Z1, . . . ,Zi−1}−bi+Wi−1 ≤Wi−1,

and the sequenceWm
1 !W1, . . . ,Wm is a super-martingale with high probability. We apply the fol-

lowing theorem by McDiarmid that refers to martingales (but can be shown to apply to super-
martingales, by following its original proof).

Theorem 42 (McDiarmid, 1998, Theorem 3.12) LetY1, . . . ,Yn be a martingale difference sequence
with −ak ≤ Yk ≤ 1−ak for each k; let A= 1

n ∑ak. Then, for any ε> 0,

Pr
{

∑Yk ≥ Anε
}

≤ exp(−[(1+ ε) ln(1+ ε)− ε]An)≤ exp
(

−
Anε2

2(1+ ε/3)

)

.

In our case, Yk =Wk−Wk−1 = Zk−bk ≤ 1−bk and we apply the (revised) theorem with ak ! bk
and An! ∑bk ! B. We thus obtain, for any 0< ε< 1,

Pr
{

∑Zk ≥ B+Bε
}

≤ exp
(

−
Bε2

2(1+ ε/3)

)

.

Equating the right-hand side to δ/2, we obtain

ε =

(

2
3
ln
2
δ
±
√

4
9
ln2
2
δ
+8B ln

2
δ

)

/2B

≤

(

1
3
ln
2
δ
+

√

1
9
ln2
2
δ
+

√

2B ln
2
δ

)

/B

=

(

2
3
ln
2
δ
+

√

2B ln
2
δ

)

/B.

Applying the union bound completes the proof.

References

M. Anthony and P.L. Bartlett. Neural Network Learning; Theoretical Foundations. Cambridge
University Press, 1999.

L. Atlas, D. Cohn, R. Ladner, A.M. El-Sharkawi, and R.J. Marks. Training connectionist networks
with queries and selective sampling. In Neural Information Processing Systems (NIPS), pages
566–573, 1990.

M.F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In 21st
Annual Conference on Learning Theory (COLT), pages 45–56, 2008.

277



EL-YANIV AND WIENER

Y. Baram, R. El-Yaniv, and K. Luz. Online choice of active learning algorithms. Journal of Machine
Learning Research, 5:255–291, 2004.

P.L. Bartlett and M.H. Wegkamp. Classification with a reject option using a hinge loss. Journal of
Machine Learning Research, 9:1823–1840, 2008.

R. Begleiter, R. El-Yaniv, and D. Pechyony. Repairing self-confident active-transductive learners
using systematic exploration. Pattern Recognition Letters, 29(9):1245–1251, 2008.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. Journal of the ACM, 36, 1989.

C.K. Chow. An optimum character recognition system using decision function. IEEE Transactions
on Computers, 6(4):247–254, 1957.

C.K. Chow. On optimum recognition error and reject trade-off. IEEE Transactions on Information
Theory, 16:41–36, 1970.

D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning.Machine Learning,
15(2):201–221, 1994.

S. Dasgupta. Coarse sample complexity bounds for active learning. In Advances in Neural Infor-
mation Processing Systems 18, pages 235–242, 2005.

S. Dasgupta, A. Tauman Kalai, and C. Monteleoni. Analysis of perceptron-based active learning.
Journal of Machine Learning Research, 10:281–299, 2009.

R. El-Yaniv and Y. Wiener. On the foundations of noise-free selective classification. Journal of
Machine Learning Research, 11:1605–1641, 2010.

R. El-Yaniv and Y. Wiener. Agnostic selective classification. In Neural Information Processing
Systems (NIPS), 2011.

S. Fine, R. Gilad-Bachrach, and E. Shamir. Query by committee, linear separation and random
walks. Theoretical Computer Science, 284(1):25–51, 2002.

Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Information, prediction, and Query by Committee.
In Advances in Neural Information Processing Systems (NIPS) 5, pages 483–490, 1993.

Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee
algorithm. Machine Learning, 28:133–168, 1997.

Y. Freund, Y. Mansour, and R.E. Schapire. Generalization bounds for averaged classifiers. Annals
of Statistics, 32(4):1698–1722, 2004.

E. Friedman. Active learning for smooth problems. In Proceedings of the 22nd Annual Conference
on Learning Theory (COLT), 2009.

R. Gilad-Bachrach. To PAC and Beyond. PhD thesis, the Hebrew University of Jerusalem, 2007.

S. Goldman and M. Kearns. On the complexity of teaching. JCSS: Journal of Computer and System
Sciences, 50, 1995.

278



ACTIVE LEARNING VIA PERFECT SELECTIVE CLASSIFICATION

S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML ’07: Proceedings
of the 24th international conference on Machine learning, pages 353–360, 2007a.

S. Hanneke. Teaching dimension and the complexity of active learning. In Proceedings of the
20th Annual Conference on Learning Theory (COLT), volume 4539 of Lecture Notes in Artificial
Intelligence, pages 66–81, 2007b.

S. Hanneke. Theoretical Foundations of Active Learning. PhD thesis, Carnegie Mellon University,
2009.

S. Hanneke. Activized learning: Transforming passive to active with improved label complexity.
CoRR, abs/1108.1766, 2011a. URL http://arxiv.org/abs/1108.1766. informal publication.

S. Hanneke. Rates of convergence in active learning. Annals of Statistics, 37(1):333–361, 2011b.
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Abstract

Grid search and manual search are the most widely used strategies for hyper-parameter optimiza-
tion. This paper shows empirically and theoretically that randomly chosen trials are more efficient
for hyper-parameter optimization than trials on a grid. Empirical evidence comes from a compar-
ison with a large previous study that used grid search and manual search to configure neural net-
works and deep belief networks. Compared with neural networks configured by a pure grid search,
we find that random search over the same domain is able to find models that are as good or better
within a small fraction of the computation time. Granting random search the same computational
budget, random search finds better models by effectively searching a larger, less promising con-
figuration space. Compared with deep belief networks configured by a thoughtful combination of
manual search and grid search, purely random search over the same 32-dimensional configuration
space found statistically equal performance on four of seven data sets, and superior performance
on one of seven. A Gaussian process analysis of the function from hyper-parameters to validation
set performance reveals that for most data sets only a few of the hyper-parameters really matter,
but that different hyper-parameters are important on different data sets. This phenomenon makes
grid search a poor choice for configuring algorithms for new data sets. Our analysis casts some
light on why recent “High Throughput” methods achieve surprising success—they appear to search
through a large number of hyper-parameters because most hyper-parameters do not matter much.
We anticipate that growing interest in large hierarchical models will place an increasing burden on
techniques for hyper-parameter optimization; this work shows that random search is a natural base-
line against which to judge progress in the development of adaptive (sequential) hyper-parameter
optimization algorithms.

Keywords: global optimization, model selection, neural networks, deep learning, response surface
modeling

1. Introduction

The ultimate objective of a typical learning algorithm A is to find a function f that minimizes some
expected loss L(x; f ) over i.i.d. samples x from a natural (grand truth) distribution Gx. A learning
algorithm A is a functional that maps a data set X (train) (a finite set of samples from Gx) to a function
f . Very often a learning algorithm produces f through the optimization of a training criterion with
respect to a set of parameters θ. However, the learning algorithm itself often has bells and whistles
called hyper-parameters λ, and the actual learning algorithm is the one obtained after choosing
λ, which can be denoted Aλ, and f = Aλ(X

(train)) for a training set X (train). For example, with a

c©2012 James Bergstra and Yoshua Bengio.
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Gaussian kernel SVM, one has to select a regularization penalty C for the training criterion (which
controls the margin) and the bandwidth σ of the Gaussian kernel, that is, λ= (C,σ).

What we really need in practice is a way to choose λ so as to minimize generalization error
Ex∼Gx [L(x;Aλ(X

(train)))]. Note that the computation performed by A itself often involves an inner
optimization problem, which is usually iterative and approximate. The problem of identifying a
good value for hyper-parameters λ is called the problem of hyper-parameter optimization. This
paper takes a look at algorithms for this difficult outer-loop optimization problem, which is of great
practical importance in empirical machine learning work:

λ(∗) = argmin
λ∈Λ

Ex∼Gx [L
(

x;Aλ(X
(train))

)

]. (1)

In general, we do not have efficient algorithms for performing the optimization implied by Equa-
tion 1. Furthermore, we cannot even evaluate the expectation over the unknown natural distribution
Gx, the value we wish to optimize. Nevertheless, we must carry out this optimization as best we
can. With regards to the expectation over Gx, we will employ the widely used technique of cross-
validation to estimate it. Cross-validation is the technique of replacing the expectation with a mean
over a validation set X (valid) whose elements are drawn i.i.d x ∼ Gx. Cross-validation is unbiased
as long as X (valid) is independent of any data used by Aλ (see Bishop, 1995, pp. 32-33). We see in
Equations 2-4 the hyper-parameter optimization problem as it is addressed in practice:

λ(∗) ≈ argmin
λ∈Λ

mean
x∈X (valid)

L
(

x;Aλ(X
(train))

)

. (2)

≡ argmin
λ∈Λ

Ψ(λ) (3)

≈ argmin
λ∈{λ(1)...λ(S)}

Ψ(λ)≡ λ̂ (4)

Equation 3 expresses the hyper-parameter optimization problem in terms of a hyper-parameter
response function, Ψ. Hyper-parameter optimization is the minimization of Ψ(λ) over λ ∈ Λ. This
function is sometimes called the response surface in the experiment design literature. Different data
sets, tasks, and learning algorithm families give rise to different sets Λ and functions Ψ. Knowing
in general very little about the response surface Ψ or the search space Λ, the dominant strategy for
finding a good λ is to choose some number (S) of trial points {λ(1)...λ(S)}, to evaluateΨ(λ) for each
one, and return the λ(i) that worked the best as λ̂. This strategy is made explicit by Equation 4.

The critical step in hyper-parameter optimization is to choose the set of trials {λ(1)...λ(S)}.
The most widely used strategy is a combination of grid search and manual search (e.g., LeCun
et al., 1998b; Larochelle et al., 2007; Hinton, 2010), as well as machine learning software packages
such as libsvm (Chang and Lin, 2001) and scikits.learn.1 If Λ is a set indexed by K configuration
variables (e.g., for neural networks it would be the learning rate, the number of hidden units, the
strength of weight regularization, etc.), then grid search requires that we choose a set of values for
each variable (L(1)...L(K)). In grid search the set of trials is formed by assembling every possible
combination of values, so the number of trials in a grid search is S = ∏K

k=1 |L(k)| elements. This
product over K sets makes grid search suffer from the curse of dimensionality because the number
of joint values grows exponentially with the number of hyper-parameters (Bellman, 1961). Manual

1. scikits.learn: Machine Learning in Python can be found at http://scikit-learn.sourceforge.net.
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search is used to identify regions in Λ that are promising and to develop the intuition necessary to
choose the sets L(k). A major drawback of manual search is the difficulty in reproducing results.
This is important both for the progress of scientific research in machine learning as well as for ease
of application of learning algorithms by non-expert users. On the other hand, grid search alone does
very poorly in practice (as discussed here). We propose random search as a substitute and baseline
that is both reasonably efficient (roughly equivalent to or better than combinining manual search
and grid search, in our experiments) and keeping the advantages of implementation simplicity and
reproducibility of pure grid search. Random search is actually more practical than grid search
because it can be applied even when using a cluster of computers that can fail, and allows the
experimenter to change the “resolution” on the fly: adding new trials to the set or ignoring failed
trials are both feasible because the trials are i.i.d., which is not the case for a grid search. Of course,
random search can probably be improved by automating what manual search does, i.e., a sequential
optimization, but this is left to future work.

There are several reasons why manual search and grid search prevail as the state of the art despite
decades of research into global optimization (e.g., Nelder and Mead, 1965; Kirkpatrick et al., 1983;
Powell, 1994; Weise, 2009) and the publishing of several hyper-parameter optimization algorithms
(e.g., Nareyek, 2003; Czogiel et al., 2005; Hutter, 2009):

• Manual optimization gives researchers some degree of insight into Ψ;

• There is no technical overhead or barrier to manual optimization;

• Grid search is simple to implement and parallelization is trivial;

• Grid search (with access to a compute cluster) typically finds a better λ̂ than purely manual
sequential optimization (in the same amount of time);

• Grid search is reliable in low dimensional spaces (e.g., 1-d, 2-d).

We will come back to the use of global optimization algorithms for hyper-parameter selection
in our discussion of future work (Section 6). In this paper, we focus on random search, that is, inde-
pendent draws from a uniform density from the same configuration space as would be spanned by a
regular grid, as an alternative strategy for producing a trial set {λ(1)...λ(S)}. We show that random
search has all the practical advantages of grid search (conceptual simplicity, ease of implementation,
trivial parallelism) and trades a small reduction in efficiency in low-dimensional spaces for a large
improvement in efficiency in high-dimensional search spaces.

In this work we show that random search is more efficient than grid search in high-dimensional
spaces because functionsΨ of interest have a low effective dimensionality; essentially, Ψ of interest
are more sensitive to changes in some dimensions than others (Caflisch et al., 1997). In particular, if
a function f of two variables could be approximated by another function of one variable ( f (x1,x2)≈
g(x1)), we could say that f has a low effective dimension. Figure 1 illustrates how point grids
and uniformly random point sets differ in how they cope with low effective dimensionality, as in
the above example with f . A grid of points gives even coverage in the original 2-d space, but
projections onto either the x1 or x2 subspace produces an inefficient coverage of the subspace. In
contrast, random points are slightly less evenly distributed in the original space, but far more evenly
distributed in the subspaces.

If the researcher could know ahead of time which subspaces would be important, then he or she
could design an appropriate grid. However, we show the failings of this strategy in Section 2. For a
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Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.
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2. Random vs. Grid for Optimizing Neural Networks

In this section we take a second look at several of the experiments of Larochelle et al. (2007) us-
ing random search, to compare with the grid searches done in that work. We begin with a look
at hyper-parameter optimization in neural networks, and then move on to hyper-parameter opti-
mization in Deep Belief Networks (DBNs). To characterize the efficiency of random search, we
present two techniques in preliminary sections: Section 2.1 explains how we estimate the general-
ization performance of the best model from a set of candidates, taking into account our uncertainty
in which model is actually best; Section 2.2 explains the random experiment efficiency curve that
we use to characterize the performance of random search experiments. With these preliminaries
out of the way, Section 2.3 describes the data sets from Larochelle et al. (2007) that we use in our
work. Section 2.4 presents our results optimizing neural networks, and Section 5 presents our results
optimizing DBNs.

2.1 Estimating Generalization

Because of finite data sets, test error is not monotone in validation error, and depending on the set
of particular hyper-parameter values λ evaluated, the test error of the best-validation error configu-
ration may vary. When reporting performance of learning algorithms, it can be useful to take into
account the uncertainty due to the choice of hyper-parameters values. This section describes our
procedure for estimating test set accuracy, which takes into account any uncertainty in the choice
of which trial is actually the best-performing one. To explain this procedure, we must distinguish
between estimates of performance Ψ(valid) = Ψ and Ψ(test) based on the validation and test sets
respectively:

Ψ(valid)(λ) =meanx∈X (valid) L
(

x;Aλ(X
(train))

)

,

Ψ(test)(λ) =meanx∈X (test) L
(

x;Aλ(X
(train))

)

.

Likewise, we must define the estimated varianceV about these means on the validation and test sets,
for example, for the zero-one loss (Bernoulli variance):

V
(valid)(λ) =

Ψ(valid)(λ)
(

1−Ψ(valid)(λ)
)

|X (valid)|−1
, and

V
(test)(λ) =

Ψ(test)(λ)
(

1−Ψ(test)(λ)
)

|X (test)|−1
.

With other loss functions the estimator of variance will generally be different.
The standard practice for evaluating a model found by cross-validation is to report Ψ(test)(λ(s))

for the λ(s) that minimizes Ψ(valid)(λ(s)). However, when different trials have nearly optimal val-
idation means, then it is not clear which test score to report, and a slightly different choice of λ
could have yielded a different test error. To resolve the difficulty of choosing a winner, we report a
weighted average of all the test set scores, in which each one is weighted by the probability that its
particular λ(s) is in fact the best. In this view, the uncertainty arising from X (valid) being a finite sam-
ple of Gx makes the test-set score of the best model among λ(1), ...,λ(S) a random variable, z. This
score z is modeled by a Gaussian mixture model whose S components have means µs =Ψ(test)(λ(s)),
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variances σ2s = V(test)(λ(s)), and weights ws defined by

ws = P
(

Z(s) < Z(s
′), ∀s′ *= s

)

, where

Z(i) ∼N
(

Ψ(valid)(λ(i)),V(valid)(λ(i))
)

.

To summarize, the performance z of the best model in an experiment of S trials has mean µz and
standard error σ2z ,

µz =
S

∑
s=1

wsµs, and (5)

σ2z =
S

∑
s=1

ws
(

µ2s +σ2s
)

−µ2z . (6)

It is simple and practical to estimate weights ws by simulation. The procedure for doing so is to
repeatedly draw hypothetical validation scores Z(s) from Normal distributions whose means are the
Ψ(valid)(λ(s)) and whose variances are the squared standard errors V(valid)(λ(s)), and to count how
often each trial generates a winning score. Since the test scores of the best validation scores are
typically relatively close, ws need not be estimated very precisely and a few tens of hypothetical
draws suffice.

In expectation, this technique for estimating generalization gives a higher estimate than the
traditional technique of reporting the test set error of the best model in validation. The difference is
related to the varianceΨ(valid) and the density of validation set scoresΨ(λ(i)) near the best value. To
the extent thatΨ(valid) casts doubt on which model was best, this technique averages the performance
of the best model together with the performance of models which were not the best. The next section
(Random Experiment Efficieny Curve) illustrates this phenomenon and discusses it in more detail.

2.2 Random Experiment Efficiency Curve

Figure 2 illustrates the results of a random experiment: an experiment of 256 trials training neural
networks to classify the rectangles data set. Since the trials of a random experiment are indepen-
dently identically distributed (i.i.d.), a random search experiment involving S i.i.d. trials can also
be interpreted as N independent experiments of s trials, as long as sN ≤ S. This interpretation al-
lows us to estimate statistics such as the minimum, maximum, median, and quantiles of any random
experiment of size s, where s is a divisor of S.

There are two general trends in random experiment efficiency curves, such as the one in Figure 2:
a sharp upward slope of the lower extremes as experiments grow, and a gentle downward slope of
the upper extremes. The sharp upward slope occurs because when we take the maximum over
larger subsets of the S trials, trials with poor performance are rarely the best within their subset. It
is natural that larger experiments find trials with better scores. The shape of this curve indicates
the frequency of good models under random search, and quantifies the relative volumes (in search
space) of the various levels of performance.

The gentle downward slope occurs because as we take the maximum over larger subsets of trials
(in Equation 6), we are less sure about which trial is actually the best. Large experiments average
together good validation trials with unusually high test scores with other good validation trials with
unusually low test scores to arrive at a more accurate estimate of generalization. For example,
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Figure 2: A random experiment efficiency curve. The trials of a random experiment are i.i.d, so
an experiment of many trials (here, 256 trials optimizing a neural network to classify the
rectangles basic data set, Section 2.3) can be interpreted as several independent smaller
experiments. For example, at horizontal axis position 8, we consider our 256 trials to
be 32 experiments of 8 trials each. The vertical axis shows the test accuracy of the best
trial(s) from experiments of a given size, as determined by Equation 5. When there are
sufficiently many experiments of a given size (i.e., 10), the distribution of performance
is illustrated by a box plot whose boxed section spans the lower and upper quartiles and
includes a line at the median. The whiskers above and below each boxed section show
the position of the most extreme data point within 1.5 times the inter-quartile range of the
nearest quartile. Data points beyond the whiskers are plotted with ’+’ symbols. When
there are not enough experiments to support a box plot, as occurs here for experiments of
32 trials or more, the best generalization score of each experiment is shown by a scatter
plot. The two thin black lines across the top of the figure mark the upper and lower
boundaries of a 95% confidence interval on the generalization of the best trial overall
(Equation 6).

consider what Figure 2 would look like if the experiment had included lucky trial whose validation
score were around 77% as usual, but whose test score were 80%. In the bar plot for trials of size
1, we would see the top performer scoring 80%. In larger experiments, we would average that 80%
performance together with other test set performances because 77% is not clearly the best validation
score; this averaging would make the upper envelope of the efficiency curve slope downward from
80% to a point very close to the current test set estimate of 76%.

Figure 2 characterizes the range of performance that is to be expected from experiments of vari-
ous sizes, which is valuable information to anyone trying to reproduce these results. For example, if
we try to repeat the experiment and our first four random trials fail to find a score better than 70%,
then the problem is likely not in hyper-parameter selection.
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Figure 3: From top to bottom, samples from themnist rotated,mnist background random,mnist
background images, mnist rotated background images data sets. In all data sets the
task is to identify the digit (0 - 9) and ignore the various distracting factors of variation.

2.3 Data Sets

Following the work of Larochelle et al. (2007) and Vincent et al. (2008), we use a variety of classi-
fication data sets that include many factors of variation.2

Themnist basic data set is a subset of the well-knownMNIST handwritten digit data set (LeCun
et al., 1998a). This data set has 28x28 pixel grey-scale images of digits, each belonging to one of ten
classes. We chose a different train/test/validation splitting in order to have faster experiments and see
learning performance differences more clearly. We shuffled the original splits randomly, and used
10 000 training examples, 2000 validation examples, and 50 000 testing examples. These images
are presented as white (1.0-valued) foreground digits against a black (0.0-valued) background.

The mnist background images data set is a variation on mnist basic in which the white fore-
ground digit has been composited on top of a 28x28 natural image patch. Technically this was done
by taking the maximum of the original MNIST image and the patch. Natural image patches with
very low pixel variance were rejected. As with mnist basic there are 10 classes, 10 000 training
examples, 2000 validation examples, and 50 000 test examples.

The mnist background random data set is a similar variation on mnist basic in which the
white foreground digit has been composited on top of random uniform (0,1) pixel values. As with
mnist basic there are 10 classes, 10 000 training examples, 2000 validation examples, and 50 000
test examples.

Themnist rotated data set is a variation onmnist basic in which the images have been rotated
by an amount chosen randomly between 0 and 2π radians. This data set included 10000 training
examples, 2000 validation examples, 50 000 test examples.

2. Data sets can be found at http://www.iro.umontreal.ca/˜lisa/twiki/bin/view.cgi/Public/
DeepVsShallowComparisonICML2007.
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Figure 4: Top: Samples from the rectangles data set. Middle: Samples from the rectangles images
data set. Bottom: Samples from the convex data set. In rectangles data sets, the image is
formed by overlaying a small rectangle on a background. The task is to label the small
rectangle as being either tall or wide. In convex, the task is to identify whether the set of
white pixels is convex (images 1 and 4) or not convex (images 2 and 3).

The mnist rotated background images data set is a variation on mnist rotated in which the
images have been rotated by an amount chosen randomly between 0 and 2π radians, and then sub-
sequently composited onto natural image patch backgrounds. This data set included 10000 training
examples, 2000 validation examples, 50 000 test examples.

The rectangles data set (Figure 4, top) is a simple synthetic data set of outlines of rectangles.
The images are 28x28, the outlines are white (1-valued) and the backgrounds are black (0-valued).
The height and width of the rectangles were sampled uniformly, but when their difference was
smaller than 3 pixels the samples were rejected. The top left corner of the rectangles was also
sampled uniformly, with the constraint that the whole rectangle fits in the image. Each image is
labelled as one of two classes: tall or wide. This task was easier than the MNIST digit classification,
so we only used 1000 training examples, and 200 validation examples, but we still used 50 000
testing examples.

The rectangles images data set (Figure 4, middle) is a variation on rectangles in which the
foreground rectangles were filled with one natural image patch, and composited on top of a different
background natural image patch. The process for sampling rectangle shapes was similar to the one
used for rectangles, except a) the area covered by the rectangles was constrained to be between
25% and 75% of the total image, b) the length and width of the rectangles were forced to be of at
least 10 pixels, and c) their difference was forced to be of at least 5 pixels. This task was harder
than rectangles, so we used 10000 training examples, 2000 validation examples, and 50 000 testing
examples.

The convex data set (Figure 4, bottom) is a binary image classification task. Each 28x28 image
consists entirely of 1-valued and 0-valued pixels. If the 1-valued pixels form a convex region in
image space, then the image is labelled as being convex, otherwise it is labelled as non-convex. The
convex sets consist of a single convex region with pixels of value 1.0. Candidate convex images
were constructed by taking the intersection of a number of half-planes whose location and orienta-
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tion were chosen uniformly at random. The number of intersecting half-planes was also sampled
randomly according to a geometric distribution with parameter 0.195. A candidate convex image
was rejected if there were less than 19 pixels in the convex region. Candidate non-convex images
were constructed by taking the union of a random number of convex sets generated as above, but
with the number of half-planes sampled from a geometric distribution with parameter 0.07 and with
a minimum number of 10 pixels. The number of convex sets was sampled uniformly from 2 to
4. The candidate non-convex images were then tested by checking a convexity condition for every
pair of pixels in the non-convex set. Those sets that failed the convexity test were added to the data
set. The parameters for generating the convex and non-convex sets were balanced to ensure that the
conditional overall pixel mean is the same for both classes.

2.4 Case Study: Neural Networks

In Larochelle et al. (2007), the hyper-parameters of the neural network were optimized by search
over a grid of trials. We describe the hyper-parameter configuration space of our neural network
learning algorithm in terms of the distribution that we will use to randomly sample from that con-
figuration space. The first hyper-parameter in our configuration is the type of data preprocessing:
with equal probability, one of (a) none, (b) normalize (center each feature dimension and divide by
its standard deviation), or (c) PCA (after removing dimension-wise means, examples are projected
onto principle components of the data whose norms have been divided by their eigenvalues). Part
of PCA preprocessing is choosing how many components to keep. We choose a fraction of variance
to keep with a uniform distribution between 0.5 and 1.0. There have been several suggestions for
how the random weights of a neural network should be initialized (we will look at unsupervised
learning pretraining algorithms later in Section 5). We experimented with two distributions and two
scaling heuristics. The possible distributions were (a) uniform on (−1,1), and (b) unit normal. The
two scaling heuristics were (a) a hyper-parameter multiplier between 0.1 and 10.0 divided by the
square root of the number of inputs (LeCun et al., 1998b), and (b) the square root of 6 divided by
the square root of the number of inputs plus hidden units (Bengio and Glorot, 2010). The weights
themselves were chosen using one of three random seeds to the Mersenne Twister pseudo-random
number generator. In the case of the first heuristic, we chose a multiplier uniformly from the range
(0.2,2.0). The number of hidden units was drawn geometrically3 from 18 to 1024. We selected
either a sigmoidal or tanh nonlinearity with equal probability. The output weights from hidden units
to prediction units were initialized to zero. The cost function was the mean error over minibatches
of either 20 or 100 (with equal probability) examples at a time: in expectation these give the same
gradient directions, but with more or less variance. The optimization algorithm was stochastic gra-
dient descent with [initial] learning rate ε0 drawn geometrically from 0.001 to 10.0. We offered the
possibility of an annealed learning rate via a time point t0 drawn geometrically from 300 to 30000.
The effective learning rate εt after t minibatch iterations was

εt =
t0ε0

max(t, t0)
. (7)

We permitted a minimum of 100 and a maximum of 1000 iterations over the training data, stopping
if ever, at iteration t, the best validation performance was observed before iteration t/2. With 50%

3. We will use the phrase drawn geometrically from A to B for 0< A< B to mean drawing uniformly in the log domain
between log(A) and log(B), exponentiating to get a number between A and B, and then rounding to the nearest integer.
The phrase drawn exponentially means the same thing but without rounding.
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probability, an !2 regularization penalty was applied, whose strength was drawn exponentially from
3.1× 10−7 to 3.1× 10−5. This sampling process covers roughly the same domain with the same
density as the grid used in Larochelle et al. (2007), except for the optional preprocessing steps. The
grid optimization of Larochelle et al. (2007) did not consider normalizing or keeping only leading
PCA dimensions of the inputs; we compare to random sampling with and without these restrictions.4

We formed experiments for each data set by drawing S = 256 trials from this distribution. The
results of these experiments are illustrated in Figures 5 and 6. Random sampling of trials is surpris-
ingly effective in these settings. Figure 5 shows that even among the fraction of jobs (71/256) that
used no preprocessing, the random search with 8 trials is better than the grid search employed in
Larochelle et al. (2007).

Typically, the extent of a grid search is determined by a computational budget. Figure 6 shows
what is possible if we use random search in a larger space that requires more trials to explore. The
larger search space includes the possibility of normalizing the input or applying PCA preprocessing.
In the larger space, 32 trials were necessary to consistently outperform grid search rather than 8,
indicating that there are many harmful ways to preprocess the data. However, when we allowed
larger experiments of 64 trials or more, random search found superior results to those found more
quickly within the more restricted search. This tradeoff between exploration and exploitation is
central to the design of an effective random search.

The efficiency curves in Figures 5 and 6 reveal that different data sets give rise to functions Ψ
with different shapes. The mnist basic results converge very rapidly toward what appears to be a
global maximum. The fact that experiments of just 4 or 8 trials often have the same maximum as
much larger experiments indicates that the region of Λ that gives rise to the best performance is
approximately a quarter or an eighth respectively of the entire configuration space. Assuming that
the random search has not missed a tiny region of significantly better performance, we can say that
random search has solved this problem in 4 or 8 guesses. It is hard to imagine any optimization
algorithm doing much better on a non-trivial 7-dimensional function. In contrast themnist rotated
background images and convex curves show that even with 16 or 32 random trials, there is consid-
erable variation in the generalization of the reportedly best model. This indicates that theΨ function
in these cases is more peaked, with small regions of good performance.

3. The Low Effective Dimension of Ψ

Section 2 showed that random sampling is more efficient than grid sampling for optimizing func-
tions Ψ corresponding to several neural network families and classification tasks. In this section
we show that indeed Ψ has a low effective dimension, which explains why randomly sampled trials
found better values. One simple way to characterize the shape of a high-dimensional function is
to look at how much it varies in each dimension. Gaussian process regression gives us the statis-
tical machinery to look at Ψ and measure its effective dimensionality (Neal, 1998; Rasmussen and
Williams, 2006).

We estimated the sensitivity of Ψ to each hyper-parameter by fitting a Gaussian process (GP)
with squared exponential kernels to predict Ψ(λ) from λ. The squared exponential kernel (or
Gaussian kernel) measures similarity between two real-valued hyper-parameter values a and b by
exp(−

(a−b
l
)2
). The positive-valued l governs the sensitivity of the GP to change in this hyper-

4. Source code for the simulations is available at https://github.com/jaberg/hyperopt.
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Figure 5: Neural network performance without preprocessing. Random experiment efficiency
curves of a single-layer neural network for eight of the data sets used in Larochelle et al.
(2007), looking only at trials with no preprocessing (7 hyper-parameters to optimize).
The vertical axis is test-set accuracy of the best model by cross-validation, the horizontal
axis is the experiment size (the number of models compared in cross-validation). The
dashed blue line represents grid search accuracy for neural network models based on a
selection by grids averaging 100 trials (Larochelle et al., 2007). Random searches of 8
trials match or outperform grid searches of (on average) 100 trials.

parameter. The kernels defined for each hyper-parameter were combined by multiplication (joint
Gaussian kernel). We fit a GP to samples of Ψ by finding the length scale (l) for each hyper-
parameter that maximized the marginal likelihood. To ensure relevance could be compared between
hyper-parameters, we shifted and scaled each one to the unit interval. For hyper-parameters that
were drawn geometrically or exponentially (e.g., learning rate, number of hidden units), kernel
calculations were based on the logarithm of the effective value.
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Figure 6: Neural network performance when standard preprocessing algorithms are considered (9
hyper-parameters). Dashed blue line represents grid search accuracy using (on average)
100 trials (Larochelle et al., 2007), in which no preprocessing was done. Often the extent
of a search is determined by a computational budget, and with random search 64 trials are
enough to find better models in a larger less promising space. Exploring just four PCA
variance levels by grid search would have required 5 times as many (average 500) trials
per data set.

Figure 7 shows the relevance of each component of Λ in modelling Ψ(λ). Finding the length
scales that maximize marginal likelihood is not a convex problem and many local minima exist. To
get a sense of what length scales were supported by the data, we fit each set of samples from Ψ
50 times, resampling different subsets of 80% of the observations every time, and reinitializing the
length scale estimates randomly between 0.1 and 2. Figure 7 reveals two important properties of Ψ
for neural networks that suggest why grid search performs so poorly relative to random experiments:

1. a small fraction of hyper-parameters matter for any one data set, but
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Figure 7: Automatic Relevance Determination (ARD) applied to hyper-parameters of neural net-
work experiments (with raw preprocessing). For each data set, a small number of hyper-
parameters dominate performance, but the relative importance of each hyper-parameter
varies from each data set to the next. Section 2.4 describes the seven hyper-parameters in
each panel. Boxplots are obtained by randomizing the subset of data used to fit the length
scales, and randomizing the length scale initialization. (Best viewed in color.)
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2. different hyper-parameters matter on different data sets.

Even in this simple 7-d problem, Ψ has a much lower effective dimension of between 1 and 4,
depending on the data set. It would be impossible to cover just these few dimensions with a reli-
able grid however, because different data sets call for grids on different dimensions. The learning
rate is always important, but sometimes the learning rate annealing rate was important (rectangles
images), sometimes the !2-penalty was important (convex, mnist rotated), sometimes the number
of hidden units was important (rectangles), and so on. While random search optimized these Ψ
functions with 8 to 16 trials, a grid with, say, four values in each of these axes would already require
256 trials, and yet provide no guarantee that Ψ for a new data set would be well optimized.

Figure 7 also allows us to establish a correlation between effective dimensionality and ease of
optimization. The data sets for which the effective dimensionality was lowest (1 or 2) were mnist
basic, mnist background images, mnist background random, and rectangles images. Looking
back at the corresponding efficiency curves (Figure 5) we find that these are also the data sets
whose curves plateau most sharply, indicating that these functions are the easiest to optimize. They
are often optimized reasonably well by just 2 random trials. Looking to Figure 7 at the data sets with
largest effective dimensionality (3 or 4), we identify convex, mnist rotated, rectangles. Looking
at their efficiency curves in Figure 5 reveals that they consistently required at least 8 random trials.
This correlation offers another piece of evidence that the effective dimensionality of Ψ is playing a
strong role in determining the difficulty of hyper-parameter optimization.

4. Grid Search and Sets with Low Effective Dimensionality

It is an interesting mathematical challenge to choose a set of trials for sampling functions of un-
known, but low effective dimensionality. We would like it to be true that no matter which dimen-
sions turn out to be important, our trials sample the important dimensions evenly. Sets of points with
this property are well studied in the literature of Quasi-Random methods for numerical integration,
where they are known as low-discrepancy sets because they try to match (minimize discrepancy
with) the uniform distribution. Although there are several formal definitions of low discrepancy,
they all capture the intuition that the points should be roughly equidistant from one another, in order
that there be no “clumps” or “holes” in the point set.

Several procedures for constructing low-discrepancy point sets in multiple dimensions also try
to ensure as much as possible that subspace projections remain low-discrepancy sets in the subspace.
For example, the Sobol (Antonov and Saleev, 1979), Halton (Halton, 1960), and Niederreiter (Brat-
ley et al., 1992) sequences, as well as latin hypercube sampling (McKay et al., 1979) are all more
or less deterministic schemes for getting point sets that are more representative of random uniform
draws than actual random uniform draws. In Quasi Monte-Carlo integration, such point sets are
shown to asymptotically minimize the variance of finite integrals faster than true random uniform
samples, but in this section, we will look at these point sets in the setting of relatively small sample
sizes, to see if they can be used for more efficient search than random draws.

Rather than repeat the very computationally expensive experiments conducted in Section 2,
we used an artificial simulation to compare the efficiency of grids, random draws, and the four
low-discrepancy point sets mentioned in the previous paragraph. The artificial search problem was
to find a uniformly randomly placed multi-dimensional target interval, which occupies 1% of the
volume of the unit hyper-cube. We looked at four variants of the search problem, in which the target
was
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1. a cube in a 3-dimensional space,

2. a hyper-rectangle in a 3-dimensional space,

3. a hyper-cube in a 5-dimensional space,

4. a hyper-rectangle in a 5-dimensional space.

The shape of the target rectangle in variants (2) and (4) was determined by sampling side lengths
uniformly from the unit interval, and then scaling the rectangle to have a volume of 1%. This
process gave the rectangles a shape that was often wide or tall - much longer along some axes than
others. The position of the target was drawn uniformly among the positions totally inside the unit
hyper-cube. In the case of tall or wide targets (2) and (4), the indicator function [of the target] had
a lower effective dimension than the dimensionality of the overall space because the dimensions in
which the target is elongated can be almost ignored.

The simulation experiment began with the generation of 100 random search problems. Then for
each experiment design method (random, Sobol, latin hypercube, grid) we created experiments of
1, 2, 3, and so on up to 512 trials.5 The Sobol, Niederreiter, and Halton sequences yielded similar
results, so we used the Sobol sequence to represent the performance of these low-discepancy set
construction methods. There are many possible grid experiments of any size in multiple dimensions
(at least for non-prime experiment sizes). We did not test every possible grid, instead we tested
every grid with a monotonic resolution. For example, for experiments of size 16 in 5 dimensions
we tried the five grids with resolutions (1, 1, 1, 1, 16), (1, 1, 1, 2, 8), (1, 1, 2, 2, 4), (1, 1, 1, 4,
4), (1, 2, 2, 2, 2); for experiments of some prime size P in 3 dimensions we tried one grid with
resolution (1, 1, P). Since the target intervals were generated in such a way that rectangles identical
up to a permutation of side lengths have equal probability, grids with monotonic resolution are
representative of all grids. The score of an experiment design method for each experiment size was
the fraction of the 100 targets that it found.

To characterize the performance of random search, we used the analytic form of the expectation.
The expected probability of finding the target is 1.0 minus the probability of missing the target
with every single one of T trials in the experiment. If the volume of the target relative to the unit
hypercube is (v/V = 0.01) and there are T trials, then this probability of finding the target is

1− (1−
v
V
)T = 1−0.99T .

Figure 8 illustrates the efficiency of each kind of point set at finding the multidimensional in-
tervals. There were some grids that were best at finding cubes and hyper-cubes in 3-d and 5-d, but
most grids were the worst performers. No grid was competitive with the other methods at finding
the rectangular-shaped intervals, which had low effective dimension (cases 2 and 4; Figure 8, right
panels). Latin hypercubes, commonly used to initialize experiments in Bayesian optimization, were
no more efficient than the expected performance of random search. Interestingly, the Sobol se-
quence was consistently best by a few percentage points. The low-discrepancy property that makes
the Sobol useful in integration helps here, where it has the effect of minimizing the size of holes
where the target might pass undetected. The advantage of the Sobol sequence is most pronounced in
experiments of 100-300 trials, where there are sufficiently many trials for the structure in the Sobol

5. Samples from the Sobol sequence were provided by the GNU Scientific Library (M. Galassi et al., 2009).
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Figure 8: The efficiency in simulation of low-discrepancy sequences relative to grid and pseudo-
random experiments. The simulation tested how reliably various experiment design meth-
ods locate a multidimensional interval occupying 1% of a unit hyper-cube. There is one
grey dot in each sub-plot for every grid of every experiment size that has at least two ticks
in each dimension. The black dots indicate near-perfect grids whose finest and coarsest
dimensional resolutions differ by either 0 or 1. Hyper-parameter search is most typi-
cally like the bottom-right scenario. Grid search experiments are inefficient for finding
axis-aligned elongated regions in high dimensions (i.e., bottom-right). Pseudo-random
samples are as efficient as latin hypercube samples, and slightly less efficient than the
Sobol sequence.

depart significantly from i.i.d points, but not sufficiently many trials for random search to succeed
with high probability.

A thought experiment gives some intuition for why grid search fails in the case of rectangles.
Long thin rectangles tend to intersect with several points if they intersect with any, reducing the
effective sample size of the search. If the rectangles had been rotated away from the axes used to
build the grid, then depending on the angle the efficiency of grid could approach the efficiency of
random or low-discrepancy trials. More generally, if the target manifold were not systematically
aligned with subsets of trial points, then grid search would be as efficient as the random and quasi-
random searches.
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5. Random Search vs. Sequential Manual Optimization

To see how random search compares with a careful combination of grid search and hand-tuning
in the context of a model with many hyper-parameters, we performed experiments with the Deep
Belief Network (DBN) model (Hinton et al., 2006). A DBN is a multi-layer graphical model with
directed and undirected components. It is parameterized similarly to a multilayer neural network for
classification, and it has been argued that pretraining a multilayer neural network by unsupervised
learning as a DBN acts both to regularize the neural network toward better generalization, and to
ease the optimization associated with finetuning the neural network for a classification task (Erhan
et al., 2010).

A DBN classifier has many more hyper-parameters than a neural network. Firstly, there is the
number of units and the parameters of random initialization for each layer. Secondly, there are
hyper-parameters governing the unsupervised pretraining algorithm for each layer. Finally, there
are hyper-parameters governing the global finetuning of the whole model for classification. For the
details of how DBN models are trained (stacking restricted Boltzmann machines trained by con-
trastive divergence), the reader is referred to Larochelle et al. (2007), Hinton et al. (2006) or Bengio
(2009). We evaluated random search by training 1-layer, 2-layer and 3-layer DBNs, sampling from
the following distribution:

• We chose 1, 2, or 3 layers with equal probability.

• For each layer, we chose:

– a number of hidden units (log-uniformly between 128 and 4000),
– a weight initialization heuristic that followed from a distribution (uniform or normal),
a multiplier (uniformly between 0.2 and 2), a decision to divide by the fan-out (true or
false),

– a number of iterations of contrastive divergence to perform for pretraining (log-uniformly
from 1 to 10000),

– whether to treat the real-valued examples used for unsupervised pretraining as Bernoulli
means (from which to draw binary-valued training samples) or as a samples themselves
(even though they are not binary),

– an initial learning rate for contrastive divergence (log-uniformly between 0.0001 and
1.0),

– a time point at which to start annealing the contrastive divergence learning rate as in
Equation 7 (log-uniformly from 10 to 10 000).

• There was also the choice of how to preprocess the data. Either we used the raw pixels or
we removed some of the variance using a ZCA transform (in which examples are projected
onto principle components, and then multiplied by the transpose of the principle components
to place them back in the inputs space).

• If using ZCA preprocessing, we kept an amount of variance drawn uniformly from 0.5 to 1.0.

• We chose to seed our random number generator with one of 2, 3, or 4.

• We chose a learning rate for finetuning of the final classifier log-uniformly from 0.001 to 10.
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• We chose an anneal start time for finetuning log-uniformly from 100 to 10000.

• We chose !2 regularization of the weight matrices at each layer during finetuning to be either
0 (with probability 0.5), or log-uniformly from 10−7 to 10−4.

This hyper-parameter space includes 8 global hyper-parameters and 8 hyper-parameters for each
layer, for a total of 32 hyper-parameters for 3-layer models.

A grid search is not practical for the 32-dimensional search problem of DBN model selection,
because even just 2 possible values for each of 32 hyper-parameters would yield more trials than
we could conduct (232 > 109 trials and each can take hours). For many of the hyper-parameters,
especially real valued ones, we would really like to try more than two values. The approach taken
in Larochelle et al. (2007) was a combination of manual search, multi-resolution grid search and
coordinate descent. The algorithm (including manual steps) is somewhat elaborate, but sensible,
and we believe that it is representative of how model search is typically done in several research
groups, if not the community at large. Larochelle et al. (2007) describe it as follows:

“The hyper-parameter search procedure we used alternates between fixing a neural net-
work architecture and searching for good optimization hyper-parameters similarly to
coordinate descent. More time would usually be spent on finding good optimization
parameters, given some empirical evidence that we found indicating that the choice of
the optimization hyper-parameters (mostly the learning rates) has much more influence
on the obtained performance than the size of the network. We used the same procedure
to find the hyper-parameters for DBN-1, which are the same as those of DBN-3 except
the second hidden layer and third hidden layer sizes. We also allowed ourselves to
test for much larger first-hidden layer sizes, in order to make the comparison between
DBN-1 and DBN-3 fairer.
“We usually started by testing a relatively small architecture (between 500 and 700
units in the first and second hidden layer, and between 1000 and 2000 hidden units
in the last layer). Given the results obtained on the validation set (compared to those
of NNet for instance) after selecting appropriate optimization parameters, we would
then consider growing the number of units in all layers simultaneously. The biggest
networks we eventually tested had up to 3000, 4000 and 6000 hidden units in the first,
second and third hidden layers respectively.
“As for the optimization hyper-parameters, we would proceed by first trying a few com-
binations of values for the stochastic gradient descent learning rate of the supervised
and unsupervised phases (usually between 0.1 and 0.0001). We then refine the choice of
tested values for these hyper-parameters. The first trials would simply give us a trend on
the validation set error for these parameters (is a change in the hyper-parameter making
things worse of better) and we would then consider that information in selecting ap-
propriate additional trials. One could choose to use learning rate adaptation techniques
(e.g., slowly decreasing the learning rate or using momentum) but we did not find these
techniques to be crucial.

There was large variation in the number of trials used in Larochelle et al. (2007) to optimize the
DBN-3. One data set (mnist background images) benefited from 102 trials, while another (mnist
background random) only 13 because a good result was found more quickly. The average number
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Figure 9: Deep Belief Network (DBN) performance according to random search. Here random
search is used to explore up to 32 hyper-parameters. Results obtained by grid-assisted
manual search using an average of 41 trials are marked in finely-dashed green (1-layer
DBN) and coarsely-dashed red (3-layer DBN). Random experiments of 128 random trials
found an inferior best model for three data sets, a competitive model in four, and superior
model in one (convex). (Best viewed in color.)

of trials across data sets for the DBN-3 model was 41. In considering the number of trials per data
set, it is important to bear in mind that the experiments on different data sets were not performed
independently. Rather, later experiments benefited from the experience the authors had drawn from
earlier ones. Although grid search was part of the optimization loop, the manual intervention turns
the overall optimization process into something with more resemblance to an adaptive sequential
algorithm.

Random search versions of the DBN experiments from Larochelle et al. (2007) are shown in
Figure 9. In this more challenging optimization problem random search is still effective, but not
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superior as it was as in the case of neural network optimization. Comparing to the 3-layer DBN
results in Larochelle et al. (2007), random search found a better model than the manual search in
one data set (convex), an equally good model in four (mnist basic, mnist rotated, rectangles, and
rectangles images), and an inferior model in three (mnist background images,mnist background
random, mnist rotated background images). Comparing to the 1-layer DBN results, random
search of the 1-layer, 2-layer and 3-layer configuration space found at least a good a model in all
cases. In comparing these scores, the reader should bear in mind that the scores in the original
experiments were not computed using the same score-averaging technique that we described in
Section 2.1, and our averaging technique is slightly biased toward underestimation. In the DBN
efficiency curves we see that even experiments with larger numbers of trials (64 and larger) feature
significant variability. This indicates that the regions of the search space with the best performance
are small, and randomly chosen i.i.d. trials do not reliably find them.

6. Future Work

Our result on the multidimensional interval task, together with the GPR characterization of the shape
of Ψ, together with the computational constraint that hyper-parameter searches only draw on a few
hundred trials, all suggest that pseudo-random or quasi-random trials are optimal for non-adaptive
hyper-parameter search. There is still work to be done for each model family, to establish how it
should be parametrized for i.i.d. random search to be as reliable as possible, but the most promising
and interesting direction for future work is certainly in adaptive algorithms.

There is a large body of literature on global optimization, a great deal of which bears on the ap-
plication of hyper-parameter optimization. General numeric methods such as simplex optimization
(Nelder and Mead, 1965), constrained optimization by linear approximation (Powell, 1994; Weise,
2009), finite difference stochastic approximation and simultaneous prediction stochastic approxi-
mation (Kleinman et al., 1999) could be useful, as well as methods for search in discrete spaces
such as simulated annealing (Kirkpatrick et al., 1983) and evolutionary algorithms (Rechenberg,
1973; Hansen et al., 2003). Drew and de Mello (2006) have already proposed an optimization al-
gorithm that identifies effective dimensions, for more efficient search. They present an algorithm
that distinguishes between important and unimportant dimensions: a low-discrepancy point set is
used to choose points in the important dimensions, and unimportant dimensions are “padded” with
thinner coverage and cheaper samples. Their algorithm’s success hinges on the rapid and successful
identification of important dimensions. Sequential model-based optimization methods and partic-
ularly Bayesian optimization methods are perhaps more promising because they offer principled
approaches to weighting the importance of each dimension (Hutter, 2009; Hutter et al., 2011; Srini-
vasan and Ramakrishnan, 2011).

With so many sophisticated algorithms to draw on, it may seem strange that grid search is still
widely used, and, with straight faces, we now suggest using random search instead. We believe the
reason for this state of affairs is a technical one. Manual optimization followed by grid search is
easy to implement: grid search requires very little code infrastructure beyond access to a cluster
of computers. Random search is just as simple to carry out, uses the same tools, and fits in the
same workflow. Adaptive search algorithms on the other hand require more code complexity. They
require client-server architectures in which a master process keeps track of the trials that have com-
pleted, the trials that are in progress, the trials that were started but failed to complete. Some kind
of shared database and inter-process communication mechanisms are required. Trials in an adaptive
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experiment cannot be queued up all at once; the master process must be involved somehow in the
scheduling and timing of jobs on the cluster. These technical hurdles are not easy to jump with the
standard tools of the trade such as MATLAB or Python; significant software engineering is required.
Until that engineering is done and adopted by a community of researchers, progress on the study of
sophisticated hyper-parameter optimization algorithms will be slow.

7. Conclusion

Grid search experiments are common in the literature of empirical machine learning, where they are
used to optimize the hyper-parameters of learning algorithms. It is also common to perform multi-
stage, multi-resolution grid experiments that are more or less automated, because a grid experiment
with a fine-enough resolution for optimization would be prohibitively expensive. We have shown
that random experiments are more efficient than grid experiments for hyper-parameter optimization
in the case of several learning algorithms on several data sets. Our analysis of the hyper-parameter
response surface (Ψ) suggests that random experiments are more efficient because not all hyper-
parameters are equally important to tune. Grid search experiments allocate too many trials to the
exploration of dimensions that do not matter and suffer from poor coverage in dimensions that are
important. Compared with the grid search experiments of Larochelle et al. (2007), random search
found better models in most cases and required less computational time.

Random experiments are also easier to carry out than grid experiments for practical reasons
related to the statistical independence of every trial.

• The experiment can be stopped any time and the trials form a complete experiment.

• If extra computers become available, new trials can be added to an experiment without having
to adjust the grid and commit to a much larger experiment.

• Every trial can be carried out asynchronously.

• If the computer carrying out a trial fails for any reason, its trial can be either abandoned or
restarted without jeopardizing the experiment.

Random search is not incompatible with a controlled experiment. To investigate the effect
of one hyper-parameter of interest X, we recommend random search (instead of grid search) for
optimizing over other hyper-parameters. Choose one set of random values for these remaining
hyper-parameters and use that same set for each value of X.

Random experiments with large numbers of trials also bring attention to the question of how
to measure test error of an experiment when many trials have some claim to being best. When
using a relatively small validation set, the uncertainty involved in selecting the best model by cross-
validation can be larger than the uncertainty in measuring the test set performance of any one model.
It is important to take both of these sources of uncertainty into account when reporting the uncer-
tainty around the best model found by a model search algorithm. This technique is useful to all
experiments (including both random and grid) in which multiple models achieve approximately the
best validation set performance.

Low-discrepancy sequences developed for QMC integration are also good alternatives to grid-
based experiments. In low dimensions (e.g., 1-5) our simulated results suggest that they can hold
some advantage over pseudo-random experiments in terms of search efficiency. However, the trials
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of a low-discrepancy experiment are not i.i.d. which makes it inappropriate to analyze performance
with the random efficiency curve. It is also more difficult in practice to conduct a quasi-random
experiment because like a grid experiment, the omission of a single point can be more severe.
Finally, when there are many hyper-parameter dimensions relative to the computational budget for
the experiment, a low-discrepancy trial set is not expected to behave very differently from a pseudo-
random one.

Finally, the hyper-parameter optimization strategies considered here are non-adaptive: they do
not vary the course of the experiment by considering any results that are already available. Random
search was not generally as good as the sequential combination of manual and grid search from
an expert (Larochelle et al., 2007) in the case of the 32-dimensional search problem of DBN op-
timization, because the efficiency of sequential optimization overcame the inefficiency of the grid
search employed at each step of the procedure. Future work should consider sequential, adaptive
search/optimization algorithms in settings where many hyper-parameters of an expensive function
must be optimized jointly and the effective dimensionality is high. We hope that future work in that
direction will consider random search of the form studied here as a baseline for performance, rather
than grid search.
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Abstract

We consider the task of estimating, from observed data, a probabilistic model that is parameterized
by a finite number of parameters. In particular, we are considering the situation where the model
probability density function is unnormalized. That is, the model is only specified up to the partition
function. The partition function normalizes a model so that it integrates to one for any choice of
the parameters. However, it is often impossible to obtain it in closed form. Gibbs distributions,
Markov and multi-layer networks are examples of models where analytical normalization is often
impossible. Maximum likelihood estimation can then not be used without resorting to numerical
approximations which are often computationally expensive. We propose here a new objective func-
tion for the estimation of both normalized and unnormalized models. The basic idea is to perform
nonlinear logistic regression to discriminate between the observed data and some artificially gener-
ated noise. With this approach, the normalizing partition function can be estimated like any other
parameter. We prove that the new estimation method leads to a consistent (convergent) estimator
of the parameters. For large noise sample sizes, the new estimator is furthermore shown to be-
have like the maximum likelihood estimator. In the estimation of unnormalized models, there is a
trade-off between statistical and computational performance. We show that the new method strikes
a competitive trade-off in comparison to other estimation methods for unnormalized models. As an
application to real data, we estimate novel two-layer models of natural image statistics with spline
nonlinearities.

Keywords: unnormalized models, partition function, computation, estimation, natural image
statistics

1. Introduction

This paper is about parametric density estimation, where the general setup is as follows. A sample
X = (x1, . . . ,xTd

) of a random vector x ∈ Rn is observed which follows an unknown probabil-
ity density function (pdf) pd. The data-pdf pd is modeled by a parameterized family of functions
{pm(.;θ)}θ where θ is a vector of parameters. It is commonly assumed that pd belongs to this
family. In other words, pd(.) = pm(.;θ!) for some parameter θ!. The parametric density estimation
problem is then about finding θ! from the observed sampleX . Any estimate θ̂ must yield a properly
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normalized pdf pm(.; θ̂) which satisfies
∫

pm(u; θ̂)du = 1, pm(.; θ̂) ≥ 0. (1)

These are two constraints in the estimation.
If the model pm(.;θ) is such that the constraints hold for all θ, and not only θ̂, we say that the

model is normalized. The maximum likelihood principle can then be used to estimate θ. If the model
is specified such that the positivity constraint but not the normalization constraint is satisfied for all
parameters, we say that the model is unnormalized. By assumption there is, however, at least one
value of the parameters for which an unnormalized model integrates to one, namely θ!. In order
to highlight that a model, parameterized by some α, is unnormalized, we denote it by p0

m(.;α).
Unnormalized models are easy to specify by taking, for example, the exponential transform of a
suitable function.

The partition function Z(α),

Z(α) =
∫

p0
m(u;α)du, (2)

can be used to convert an unnormalized model p0
m(.;α) into a normalized one: p0

m(.;α)/Z(α) inte-
grates to one for every value of α. Examples of distributions which are often specified by means of
an unnormalized model and the partition function are Gibbs distributions, Markov networks or mul-
tilayer networks. The function α #→ Z(α) is, however, defined via an integral. Unless p0

m(.;α) has
some particularly convenient form, the integral cannot be computed analytically so that the function
Z(α) is not available in closed form. For low-dimensional problems, numerical integration can be
used to approximate the function Z(α) to a very high accuracy but for high-dimensional problems
this is computationally expensive. Our paper deals with density estimation in this case, that is, with
density estimation when the computation of the partition function is analytically intractable and
computationally expensive.

Several solutions for the estimation of unnormalized models which cannot be normalized in
closed form have been suggested so far. Geyer (1994) proposed to approximate the calculation of
the partition function by means of importance sampling and then to maximize the approximate log-
likelihood (Monte Carlo maximum likelihood). Approximation of the gradient of the log-likelihood
led to another estimation method (contrastive divergence by Hinton, 2002). Estimation of the pa-
rameter α directly from an unnormalized model p0

m(.;α) has been proposed by Hyvärinen (2005).
This approach, called score matching, avoids the problematic integration to obtain the partition
function altogether. All these methods need to balance the accuracy of the estimate and the time to
compute the estimate.

In this paper,1 we propose a new estimation method for unnormalized models. The idea is to
consider Z, or c = ln1/Z, not any more as a function of α but as an additional parameter of the
model. That is, we extend the unnormalized model p0

m(.;α) to include a normalizing parameter c
and estimate

lnpm(.;θ) = lnp0
m(.;α)+ c,

with parameter vector θ = (α, c). The estimate θ̂ = (α̂, ĉ) is then such that the unnormalized model
p0

m(.;α̂) matches the shape of pd, while ĉ provides the proper scaling so that Equation (1) holds.

1. Preliminary versions were presented at AISTATS (Gutmann and Hyvärinen, 2010) and ICANN (Gutmann and
Hyvärinen, 2009).
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Unlike in the approach based on the partition function, we aim not at normalizing p0
m(.;α) for all

α but only for α̂. This avoids the problematic integration in the definition of the partition function
α #→ Z(α). Such a separate estimation of shape and scale is, however, not possible for maximum
likelihood estimation (MLE). The reason is that the likelihood can be made arbitrarily large by
setting the normalizing parameter c to larger and larger numbers. The new estimation method
which we propose here is based on the maximization of a well defined objective function. There
are no constraints in the optimization so that powerful optimization techniques can be employed.
The intuition behind the new objective function is to learn to classify between the observed data
and some artificially generated noise. We approach thus the density estimation problem, which is
an unsupervised learning problem, via supervised learning. The new method relies on noise which
the data is contrasted to, so that we will refer to it as “noise-contrastive estimation”.

The paper is organized in four main sections. In Section 2, we present noise-contrastive estima-
tion and prove fundamental statistical properties such as consistency. In Section 3, we validate and
illustrate the derived properties on artificial data. We use artificial data also in Section 4 in order to
compare the new method to the aforementioned estimation methods with respect to their statistical
and computational efficiency. In Section 5, we apply noise-contrastive estimation to real data. We
estimate two-layer models of natural images and also learn the nonlinearities from the data. This
section is fairly independent from the other ones. The reader who wants to focus on natural image
statistics may not need to go first through the previous sections. On the other hand, the reader whose
interest is in estimation theory only can skip this section without missing pieces of the theory al-
though the section provides, using real data, a further illustration of the workings of unnormalized
models and the new estimation method. Section 6 concludes the paper.

2. Noise-Contrastive Estimation

This section presents the theory of noise-contrastive estimation. In Section 2.1, we motivate noise-
contrastive estimation and relate it to supervised learning. The definition of noise-contrastive es-
timation is given in Section 2.2. In Section 2.3, we prove that the estimator is consistent for both
normalized and unnormalized models, and derive its asymptotic distribution. In Section 2.4, we dis-
cuss practical aspects of the estimator and show that, in some limiting case, the estimator performs
as well as MLE.

2.1 Density Estimation by Comparison

Density estimation is much about characterizing properties of the observed data X . A convenient
way to describe properties is to describe them relative to the properties of some reference data Y .
Let us assume that the reference (noise) data Y is an i.i.d. sample (y1, . . .yTn

) of a random variable
y ∈ Rn with pdf pn. A relative description of the dataX is then given by the ratio pd/pn of the two
density functions. If the reference distribution pn is known, one can, of course, obtain pd from the
ratio pd/pn. In other words, if one knows the differences betweenX and Y , and also the properties
of Y , one can deduce from the differences the properties of X .

Comparison between two data sets can be performed via classification: In order to discriminate
between two data sets, the classifier needs to compare their properties. In the following, we show
that training a classifier based on logistic regression provides a relative description ofX in the form
of an estimate of the ratio pd/pn.

309



GUTMANN AND HYVÄRINEN

Denote by U = (u1, . . . ,uTd+Tn
) the union of the two sets X and Y , and assign to each data

point ut a binary class label Ct: Ct = 1 if ut ∈ X and Ct = 0 if ut ∈ Y . In logistic regression,
the posterior probabilities of the classes given the data are estimated. As the pdf pd of the data
x is unknown, we model the class-conditional probability p(.|C = 1) with pm(.;θ).2 The class-
conditional probability densities are thus

p(u|C = 1;θ) = pm(u;θ), p(u|C = 0) = pn(u).

The prior probabilities are P (C = 1) = Td/(Td +Tn) and P (C = 0) = Tn/(Td +Tn). The posterior
probabilities for the classes are therefore

P (C = 1|u;θ) =
pm(u;θ)

pm(u;θ)+νpn(u)
, P (C = 0|u;θ) =

νpn(u)

pm(u;θ)+νpn(u)
, (3)

where ν is the ratio P (C = 0)/P (C = 1) = Tn/Td. In the following, we denote P (C = 1|u;θ) by
h(u;θ). Introducing the log-ratio G(.;θ) between pm(.;θ) and pn,

G(u;θ) = lnpm(u;θ)− lnpn(u), (4)

h(u;θ) can be written as
h(u;θ) = rν (G(u;θ)) , (5)

where
rν(u) =

1

1+ν exp(−u)
(6)

is the logistic function parameterized by ν.
The class labels Ct are assumed Bernoulli distributed and independent. The conditional log-

likelihood is given by

"(θ) =
Td+Tn
∑

t=1

Ct lnP (Ct = 1|ut;θ)+(1−Ct) lnP (Ct = 0|ut;θ)

=
Td
∑

t=1

ln [h(xt;θ)]+
Tn
∑

t=1

ln [1−h(yt;θ)] . (7)

Optimizing "(θ) with respect to θ leads to an estimate G(.; θ̂) of the log-ratio ln(pd/pn). That is,
an approximate description ofX relative to Y can be obtained by optimization of Equation (7). The
sign-flipped objective function, −"(θ), is also known as the cross-entropy error function (Bishop,
1995).

Thus, density estimation, which is an unsupervised learning problem, can be performed by
logistic regression, that is, supervised learning. While this connection has been discussed earlier
by Hastie et al. (2009, Chapter 14.2.4, pp. 495–497), in the next sections, we will prove that even
unnormalized models can be estimated with the same principle.

2. Classically, pm(.;θ) would, in the context of this section, be a normalized pdf. In our paper, however, θ may include
a parameter for the normalization of the model.
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2.2 Definition of the Estimator

Given an unnormalized statistical model p0
m(.;α), we include for normalization an additional pa-

rameter c into the model. That is, we define the model as

lnpm(.;θ) = lnp0
m(.;α)+ c,

where θ = (α, c). The parameter c scales the unnormalized model p0
m(.;α) so that Equation (1) can

be fulfilled. After learning, ĉ provides an estimate for ln1/Z(α̂). If the initial model is normalized
in the first place, no such inclusion of a normalizing parameter c is needed.

In line with the notation so far, we denote by X = (x1, . . . ,xTd
) the observed data set that

consists of Td independent observations of x ∈ Rn. We denote by Y = (y1, . . . ,yTn
) an artificially

generated data set that consists of Tn = νTd independent observations of noise y ∈ Rn with known
distribution pn. The estimator is defined to be the argument θ̂T which maximizes

JT (θ) =
1

Td







Td
∑

t=1

ln [h(xt;θ)]+
Tn
∑

t=1

ln [1−h(yt;θ)]







, (8)

where the nonlinearity h(.;θ) was defined in Equation (5). The objective function JT is, up to the
division by Td, the log-likelihood in Equation (7). It can also be written as

JT (θ) =
1

Td

Td
∑

t=1

ln [h(xt;θ)]+ν
1

Tn

Tn
∑

t=1

ln [1−h(yt;θ)] . (9)

Note that h(.;θ) ∈ (0 1), where zero is obtained in the limit of G(.;θ) → −∞ and one in the limit
of G(.;θ) → ∞. Zero is an upper bound for JT , which is reached if, for all t, h(xt;θ) and h(yt;θ)
tend to one and zero, respectively. Therefore, the optimal parameter θ̂T is such that G(ut; θ̂T ) is as
large as possible for ut ∈ X and as small as possible for ut ∈ Y . Intuitively, this means that logistic
regression has learned to discriminate between the two sets as well as possible.

2.3 Properties of the Estimator

We characterize here the behavior of the estimator θ̂T for large sample sizes Td and fixed ratio ν.
Since ν is kept fixed, Tn = νTd will also increase as Td increases. The weak law of large numbers
shows that as Td increases the objective function JT (θ) converges in probability to J ,

J(θ) = E{ln [h(x;θ)]}+ν E{ln [1−h(y;θ)]} . (10)

Let us denote by J̃ the objective J seen as a function of fm(.) = lnpm(.;θ),

J̃(fm) = E{ln [rν (fm(x)− lnpn(x))]}+ν E{ln [1− rν (fm(y)− lnpn(y))]} . (11)

We start the characterization of the estimator θ̂T by describing the optimization landscape for fm.
The following theorem shows that the data-pdf pd can be found by maximization of J̃ , that is by
learning a nonparametric classifier under the ideal situation of an infinite amount of data.

Theorem 1 (Nonparametric estimation) J̃ attains a maximum at fm = lnpd. There are no other
extrema if the noise density pn is chosen such that it is nonzero whenever pd is nonzero.
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The proof is given in Appendix A.2. A fundamental point in the theorem is that the maximization
is performed without any normalization constraint for fm. This is in stark contrast to MLE, where
exp(fm) must integrate to one. With our objective function, no such constraints are necessary. The
maximizing pdf is found to have unit integral automatically.

The positivity condition for pn in the theorem tells us that the data-pdf pd cannot be inferred at
regions in the data space where there are no contrastive noise samples. For example, the estimation
of a pdf pd which is nonzero only on the positive real line by means of a noise distribution pn that
has its support on the negative real line is impossible. The positivity condition can be easily fulfilled
by taking, for example, a Gaussian as contrastive noise distribution.

In practice, the amount of data is limited and a finite number of parameters θ ∈ Rm specify
pm(.;θ). This has two consequences for any estimation method that is based on optimization: First,
it restricts the space where the data-pdf pd is searched for. Second, it may introduce local maxima
into the optimization landscape. For the characterization of the estimator in this situation, it is
normally assumed that pd follows the model, so that there is a θ! with pd(.) = pm(.;θ!). In the
following, we make this assumption.

Our second theorem shows that θ̂T , the value of θ which (globally) maximizes JT , converges
to θ!. The correct estimate of pd is thus obtained as the sample size Td increases. For unnormalized
models, the conclusion of the theorem is that maximization of JT leads to the correct estimates for
both the parameter α in the unnormalized pdf p0

m(.;α) and the normalizing parameter c.

Theorem 2 (Consistency) If conditions (a) to (c) are fulfilled then θ̂T converges in probability to
θ!, θ̂T

P→ θ!.

(a) pn is nonzero whenever pd is nonzero

(b) supθ |JT (θ)−J(θ)| P→ 0

(c) The matrix Iν =
∫

g(u)g(u)T Pν(u)pd(u)du has full rank, where

g(u) = ∇θ lnpm(u;θ)|θ! , Pν(u) =
νpn(u)

pd(u)+νpn(u)
.

The proof is given in Appendix A.3. Condition (a) is inherited from Theorem 1. Conditions (b)
and (c) have their counterparts in MLE (see for example Wasserman, 2004, Theorem 9.13): We
need in (b) uniform convergence in probability of JT to J ; in MLE, uniform convergence of the
log-likelihood to the Kullback-Leibler divergence is required likewise. Condition (c) assures that
for large sample sizes, the objective function JT becomes peaked enough around the true value θ!.
This imposes a constraint on the model pm(.;θ) via the vector g. A similar constraint is required in
MLE.

The next theorem describes the distribution of the estimation error (θ̂T − θ!) for large sample
sizes. The proof is given in Appendix A.4.

Theorem 3 (Asymptotic normality)
√

Td(θ̂T − θ!) is asymptotically normal with mean zero and
covariance matrix Σ,

Σ = I−1
ν −

(

1+
1

ν

)

I−1
ν E(Pνg)E(Pνg)T I−1

ν ,

where E(Pνg) =
∫

Pν(u)g(u)pd(u)du.
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From the distribution of
√

Td(θ̂T − θ!), we can easily evaluate the asymptotic mean squared error
(MSE) of the estimator.

Corollary 4 For large sample sizes Td, the mean squared error E
(

||θ̂T −θ!||2
)

equals tr(Σ)/Td.

Proof Using that for any vector v, ||v||2 = tr(vvT ), the corollary follows directly from the defini-
tion of the MSE and Theorem 3.

2.4 Choosing the Noise

Theorem 3 shows that the noise distribution pn and the ratio ν = Tn/Td have an influence on the
accuracy of the estimate θ̂T . A natural question to ask is what, from a statistical standpoint, the best
choice of pn and ν is. Our result on consistency (Theorem 2) also includes a technical constraint
for pn but this one is so mild that many distributions will satisfy it.

Theorem 2 shows that, for a given samples size Td, Pν tends to one as the size Tn of the
contrastive noise sample is made larger and larger. This implies that for large ν, the covariance
matrix Σ does not depend on the choice of the noise distribution pn. We have thus the following
corollary.

Corollary 5 For ν → ∞, Σ is independent of the choice of pn and equals

Σ = I−1 −I−1 E(g)E(g)T I−1,

where E(g) =
∫

g(u)pd(u)du and I =
∫

g(u)g(u)T pd(u)du.

The asymptotic distribution of the estimation error becomes thus independent from pn. Hence, as
the size of the contrastive-noise sample Y increases, the choice of the contrastive-noise distribution
becomes less and less important. Moreover, for normalized models, we have the result that the
estimation error has the same distribution as the estimation error in MLE.

Corollary 6 For normalized models, noise-contrastive estimation is, in the limit of ν → ∞, asymp-
totically Fisher-efficient for all choices of pn.

Proof For normalized models, no normalizing parameter c is needed. In Corollary 5, the function
g is then the score function as in MLE, and the matrix I is the Fisher information matrix. Since the
expectation E(g) is zero, the covariance matrixΣ is the inverse of the Fisher information matrix.

The corollaries above give one answer to the question on how to choose the noise distribution pn and
the ratio ν: If ν is made large enough, the actual choice of pn is not of great importance. Note that
this answer considers only estimation accuracy and ignores the computational load associated with
the processing of noise. In Section 4, we will analyze the trade-off between estimation accuracy and
computation time.

For any given ν, one could try to find the noise distribution which minimizes the MSE E ||θ̂T −
θ!||2. However, this minimization turns out to be quite difficult. Intuitively, one could think that a
good candidate for the noise distribution pn is a distribution which is close to the data distribution
pd. If pn is too different from pd, the classification problem might be too easy and would not require
the system to learn much about the structure of the data. This intuition is partly justified by the
following theoretical result:
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Corollary 7 If pn = pd then Σ =
(

1+ 1
ν

)(

I−1 −I−1 E(g)E(g)T I−1
)

.

Proof The corollary follows from Theorem 3 and the fact that Pν equals ν/(1+ν) for pn = pd.

For normalized models, we see that for ν = 1, Σ is two times the inverse of the Fisher information
matrix, and that for ν = 10, the ratio is already down to 1.1. For a noise distribution that is close to
the data distribution, we have thus even for moderate values of ν some guarantee that the MSE is
reasonably close to the theoretical optimum.

To get estimates with a small estimation error, the foregoing discussion suggests the following

1. Choose noise for which an analytical expression for lnpn is available.

2. Choose noise that can be sampled easily.

3. Choose noise that is in some aspect, for example with respect to its covariance structure,
similar to the data.

4. Make the noise sample size as large as computationally possible.

Some examples for suitable noise distributions are Gaussian distributions, Gaussian mixture dis-
tributions, or ICA distributions. Uniform distributions are also suitable as long as their support
includes the support of the data distribution so that condition (a) in Theorem 2 holds.

3. Simulations to Validate and Illustrate the Theory

In this section,3 we validate and illustrate the theoretical properties of noise-contrastive estimation.
In Section 3.1, we focus on the consistency of the estimator. In Section 3.2, we validate our theoret-
ical results on the distribution of the estimation error, and investigate its dependency on the ratio ν
between noise and data sample size. In Section 3.3, we study how the performance of the estimator
scales with the dimension of the data.

3.1 Consistency

For the illustration of consistency, we estimate here the parameters of a zero mean multivariate
Gaussian. Its log-pdf is

lnpd(x) = −
1

2
xT Λ!x + c!, c! =

(

−
1

2
ln |detΛ!|−

n

2
ln(2π)

)

, (12)

where c! does not depend on x and normalizes pd to integrate to one. The precision matrixΛ! is the
inverse of the covariance matrix. It is thus a symmetric matrix. The dimension of x is here n = 5.

As we are mostly interested in the estimation of unnormalized models, we consider here the
hypothetical situation where we want to estimate the model

lnp0
m(x;α) = −

1

2
xT Λx

without knowing how to normalize it in closed form. This unnormalized model is a pairwise Markov
network with quadratic node and edge potentials (see for example Koller and Friedman, 2009, Chap-
ter 7). The parameter vectorα ∈R15 contains the coefficients of the lower-triangular part ofΛ as the

3. Matlab code for this and the other sections can be downloaded from the homepage of the first author.
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matrix is symmetric. For noise-contrastive estimation, we add an additional normalizing parameter
c to the model. The model that we estimate is thus

lnpm(x;θ) = lnp0
m(x;α)+ c.

The model has 16 parameters given by θ = (α, c). They are estimated by maximization of the
objective function JT (θ) in Equation (8). We used a standard normal distribution for pn. The
optimization was performed with the nonlinear conjugate gradient algorithm of Rasmussen (2006).

3.1.1 RESULTS

The presented results are an average over 500 estimation problems where the true precision matrix
Λ! was drawn at random with the condition number being controlled to be smaller than ten. The
sampling of Λ! was performed by randomly sampling its eigenvalues and eigenvectors: We drew
the eigenvalues from an uniform distribution on the interval [0.1 0.9]. The orthonormal matrix
E with the eigenvectors was created by orthogonally projecting a matrix M with elements drawn
independently from a standard Gaussian onto the set of orthonormal matrices: E = (MMT )−1/2M.

Figure 1(a) and (b) show the mean squared error (MSE) for α, which contains the elements of
the precision matrix Λ, and the normalizing parameter c, respectively. The MSE as a function of
the data sample size Td decays linearly on a log-log scale. This illustrates our result of consistency
of the estimator, stated as Theorem 2, as convergence in quadratic mean implies convergence in
probability. The plots also show that taking more noise samples Tn than data samples Td leads
to more and more accurate estimates. The performance for noise-contrastive estimation with ν =
Tn/Td equal to one is shown in blue with circles as markers. For that value of ν, there is a clear
difference compared to MLE (black triangles in Figure 1(a)). However, the accuracy of the estimate
improves strongly for ν = 5 (green squares) or ν = 10 (red diamonds) where the performance is
rather close to the performance of MLE.

Another way to visualize the results is by showing the Kullback-Leibler divergences between
the 500 true and estimated distributions. Figure 2 shows boxplots of the divergences for ν = 1
(blue) and ν = 10 (red). The results for MLE are shown in black. In line with the visualization
in Figure 1, the estimated distribution becomes closer to the true distribution as the sample size
increases. Moreover, the divergences become clearly smaller as ν is increased from one to ten.

For unnormalized models, there is a subtlety in the computation of the divergence. With a
validation set of size Tv, a sample version DKL of the Kullback-Leibler divergence is given by the
difference

DKL =
1

Tv

Tv
∑

t=1

lnpd(xt)−
(

1

Tv

Tv
∑

t=1

lnp0
m(xt;α̂)+ ln1/Z(α̂)

)

.

The first term is the rescaled log-likelihood (average, sign-inverted log-loss) for the true distribution.
The term in parentheses is the rescaled log-likelihood L of the estimated model. In the estimation
of unnormalized models, we do not assume to know the mapping α → Z(α) so that L cannot be
computed. With noise-contrastive estimation, we can obtain an estimate L̂,

L̂ =
1

Tv

Tv
∑

t=1

lnp0
m(xt;α̂)+ ĉ, (13)

by using ĉ in lieu of ln1/Z(α̂), see Section 2.2. Figure 2(a) shows that the estimated DKL is
sometimes negative which means that L̂ is sometimes larger than the rescaled log-likelihood of
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(b) Normalizing parameter

Figure 1: Validation of the theory of noise-contrastive estimation: Estimation errors for a 5 dimen-
sional Gaussian distribution. Figures (a) and (b) show the mean squared error for the
precision matrix Λ and the normalizing parameter c, respectively. The performance of
noise-contrastive estimation (NCE) approaches the performance of maximum likelihood
estimation (MLE, black triangles) as the ratio ν = Tn/Td increases: the case of ν = 1 is
shown with blue circles, ν = 5 with green squares, and ν = 10 with red diamonds. The
thicker curves are the median of the performance for 500 random precision matrices with
condition number smaller than ten. The finer curves show the 0.9 and 0.1 quantiles of the
logarithm of the squared estimation error.

the true distribution. This happens because ĉ can be an over or underestimate of ln1/Z(α̂). This
result follows from Figure 2(b) where we have computed DKL with the analytical expression for
ln1/Z(α̂), which is available for the Gaussian model considered here, see Equation (12).

3.2 Distribution of the Estimation Error

We validate and illustrate further properties of our estimator using the ICA model (see for example
Hyvärinen et al., 2001b)

x = As. (14)

In this subsection, n = 4, that is x ∈ R4, andA = (a1, . . . ,a4) is a 4×4mixing matrix. The sources
in the vector s ∈ R4 are identically distributed and independent from each other so that the data
log-pdf lnpd is

lnpd(x) =
n
∑

i=1

f(b!
i x)+ c!. (15)

The i-th row of the matrixB! = A−1 is denoted by b!
i . We consider here Laplacian sources of unit

variance and zero mean. The nonlinearity f and the constant c!, which normalizes pd to integrate
to one, are in this case given by

f(u) = −
√

2|u|, c! = ln |detB!|−
n

2
ln2. (16)
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Figure 2: Validation of the theory of noise-contrastive estimation: Distributions of the Kullback-
Leibler divergences between the true and estimated 5 dimensional Gaussians. For each
sample size, from left to right, the results for maximum likelihood estimation (MLE) are
shown in black, the results for noise-contrastive estimation (NCE) with ν = 10 in red, and
the results for ν = 1 in blue. The size Tv of the validation set was 100000. For MLE, the
results shown in Figures (a) and (b) are the same. For NCE, the divergences in Figure (a)
were computed using the estimate ĉ of ln1/Z(α̂). In Figure (b), the analytical expression
for ln1/Z(α̂) was used.

As in Section 3.1, we apply noise-contrastive estimation to the hypothetical situation where we
want to estimate the unnormalized model

lnp0
m(x;α) =

n
∑

i=1

f(bix) (17)

without knowing how to normalize it in closed form. The parameter vector α ∈ R16 contains the
elements of the row vectors bi. For noise-contrastive estimation, we add an additional normalizing
parameter c and estimate the model

lnpm(x;θ) = lnp0
m(x;α)+ c,

with θ = (α, c). As for the Gaussian case, we estimate θ by maximizing JT (θ) in Equation (8)
with the nonlinear conjugate gradient algorithm of Rasmussen (2006). For the noise distribution pn,
we used a Gaussian distribution with covariance matrix given by the sample covariance of the data.

3.2.1 RESULTS

In Figures 3 and 4, we illustrate Theorem 2 on consistency and Theorem 3 on the asymptotic dis-
tribution of the estimator, as well as its corollaries. The results are averages over 500 random
estimation problems. The mixing matrices A were drawn at random by drawing their elements in-
dependently from a standard Gaussian and only accepting matrices which had a condition number
smaller than ten.

317



GUTMANN AND HYVÄRINEN

Figure 3(a) and (b) show the mean squared error (MSE) for α, corresponding to the mixing ma-
trix, and the normalizing parameter c, respectively. As illustrated for the Gaussian case in Figure 1,
this figure visualizes the consistency of noise-contrastive estimation. Furthermore, we see again
that making ν = Tn/Td larger leads to a reduction of the error. The reduction gets, however, smaller
as ν increases. On average, changing ν from one (red curve with asterisks as markers) to ten (light
blue squares) reduces the MSE for the mixing matrix by 53%; relative to ν = 10, ν = 100 (magenta
diamonds) leads to a reduction of 18%. For c, the relative decrease in the MSE is 60% and 17%,
respectively.

In Figure 4(a), we test the theoretical prediction of Corollary 4 that, for large samples sizes Td,
the MSE decays like trΣ/Td. The covariance matrix Σ can be numerically evaluated according to
its definition in Theorem 3.4 This allows for a prediction of the MSE that can be compared to the
MSE obtained in the simulations. The figure shows that the MSE from the simulations (labelled
“sim” in the figure) matches the prediction (“pred”) for large Td. Furthermore, we see again that
for large ν, the performance of noise-contrastive estimation is close to the performance of MLE.
In other words, the trace of Σ is close to the trace of the Fisher information matrix. Note that for
clarity, we only show the curves for ν ∈ {0.1,1,100}. The curve for ν = 10 was, as in Figure 3(a)
and (b), very close to the curve for ν = 100.

In Figure 4(b), we investigate how the value of trΣ (the asymptotic variance) depends on the
ratio ν. Note that the covariance matrix Σ includes terms related to the parameter c. The Fisher
information matrix includes, in contrast to Σ, only terms related to the mixing matrix. For better
comparison with MLE, we show thus in the figure the trace of Σ both with the contribution of the
normalizing parameter c (blue squares) and without (red circles). For the latter case, the reduced
trace of Σ, which we will denote by trΣB , approaches the trace of the Fisher information matrix.
Corollary 6 stated that noise-contrastive estimation is asymptotically Fisher-efficient for large values
of ν if the normalizing constant is not estimated. Here, we see that this result also approximately
holds for our unnormalized model where the normalizing constant needs to be estimated.

Figure 4(c) gives further details to which extent the estimation becomes more difficult if the
model is unnormalized. We computed numerically the asymptotic variance trΣ̃ if the model is
correctly normalized, and compared it to the asymptotic variance trΣB for the unnormalized model.
The figure shows the distribution of the ratio trΣB/trΣ̃ for different values of ν. Interestingly, the
ratio is almost equal to one for all tested values of ν. Hence, additional estimation of the normalizing
constant does not really seem to have had a negative effect on the accuracy of the estimates for the
mixing matrix.

In Corollary 7, we have considered the hypothetical case where the noise distribution pn is the
same as the data distribution pd. In Figure 4(d), we plot for that situation the asymptotic variance as
a function of ν (green curve). For reference, we plot again the curve for Gaussian contrastive noise
(red circles, same as in Figure 4(b)). In both cases, we only show the asymptotic variance trΣB

for the parameters that correspond to the mixing matrix. The asymptotic variance for pn = pd is,
for a given value of ν, always smaller than the asymptotic variance for the case where the noise is
Gaussian. However, by choosing ν large enough for the case of Gaussian noise, it is possible to
get estimates which are as accurate as those obtained in the hypothetical situation where pn = pd.
Moreover, for larger ν, the performance is the same for both cases: both converge to the performance
of MLE.

4. See Appendix B.1 for the calculations in the special case of orthogonal mixing matrices.
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Figure 3: Validation of the theory of noise-contrastive estimation: Estimation errors for an ICA
model with four sources. Figures (a) and (b) show the mean squared error for the mix-
ing matrix B and the normalizing parameter c, respectively. The performance of noise-
contrastive estimation (NCE) approaches the performance of maximum likelihood esti-
mation (MLE, black triangles) as the ratio ν = Tn/Td increases: the case of ν = 0.01
is shown with blue circles, ν = 0.1 with green crosses, ν = 1 with red asterisks, ν = 10
with light blue squares, and ν = 100 with magenta diamonds. The thicker curves are
the median of the performance for 500 random precision matrices with condition number
smaller than ten. The finer curves show the 0.9 and 0.1 quantiles of the logarithm of the
squared estimation error. To increase readability of the plots, the quantiles for ν = 0.1
and ν = 10 are not shown.

3.3 Scaling Properties

We use the ICA model from the previous subsection to study the behavior of noise-contrastive
estimation as the dimension n of the data increases. As before, we estimate the parameters by
maximizing JT (θ) in Equation (8) with the nonlinear conjugate gradient algorithm of Rasmussen
(2006). Again, we use a Gaussian with the same covariance structure as the data as noise distribution
pn.

The randomly chosen n × n mixing matrices A are restricted to be orthogonal. Orthogonality
is only used to set up the estimation problem; in the estimation, the orthogonality property is not
used. A reason for this restriction is that drawing mixing matrices at random as in the previous
subsection leads more and more often to badly conditioned matrices as the dimension increases.
Another reason is that the estimation error for orthogonal mixing matrices depends only on the
dimension n and not on the particular mixing matrix chosen, see Appendix B.1 for a proof. Hence,
this restriction allows us to isolate the effect of dimension n on the estimation accuracy.
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(c) Normalized vs unnormalized model
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Figure 4: Validation of the theory of noise-contrastive estimation: Estimation error for large sample
sizes. Figure (a) shows that Corollary 4 correctly predicts the MSE for large samples sizes
Td. Figure (b) shows the asymptotic variance trΣ as a function of ν. Figure (c) shows
a boxplot of the ratio between the asymptotic variance when the model is unnormalized
and the asymptotic variance when the model is normalized. Figure (d) compares noise-
contrastive estimation with Gaussian noise to the hypothetical case where pn equals the
data distribution pd. As in Figure 3, the curves in all figures but in Figure (c) are the
median of the results for 500 random mixing matrices. The boxplot in Figure (c) shows
the distribution for all the 500 matrices.

3.3.1 RESULTS

Figure 5(a) shows the asymptotic variance trΣB related to the mixing matrix as a function of the
dimension n. Noise-contrastive estimation (NCE) with ν = Tn/Td =1 is shown in red with asterisks
as markers, maximum likelihood estimation (MLE) in black using triangles as markers. The markers
show the theoretical prediction based on Corollary 4; the boxplots the simulation results for ten
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(b) Relative estimation error and amount of noise per dimen-
sion

Figure 5: Investigating how noise-contrastive estimation (NCE) scales with the dimension of the
data. Figure (a) shows the logarithm of the asymptotic variance for NCE (ν = Tn/Td = 1,
in red) and MLE (in black). The boxplots show simulation results; the asterisks and
triangles theoretical predictions for NCE and MLE, respectively. The same figure shows
the ratio of the two asymptotic variances (blue circles, right scale). Figure (b) plots the
ratio of the mean squared errors of the two estimators as a function of ν per dimension n.
The value of ν needs to be increased as the dimensions increases; a linear increase leads
to acceptable results.

random mixing matrices with Td = 80000. The simulation results match the predictions well, which
validates the theory of noise-contrastive estimation in large dimensions.

Since the number of parameters increases with larger n, it is natural that trΣB increases with
n. However, for noise-contrastive estimation, the increase is larger than for MLE. This is more
clearly visible by considering the blue curve in Figure 5(a) (circles as markers, scale on the right
axis). The curve shows the ratio between the asymptotic variance for noise-contrastive estimation
and for MLE. By definition of the asymptotic variance, this ratio is equal to the ratio of the two
estimation errors obtained with the two different methods. The ratio does not depend on the number
of parameters and the sample size Td. It is hence a suitable performance indicator to investigate
how noise-contrastive estimation scales with the dimension n of the data. The plot shows that for
fixed ν, the performance deteriorates as the dimension increases. In order to counteract this decline
in performance, the parameter ν needs to be increased as the dimension increases.

Figure 5(b) shows the ratio of the squared errors as a function of ν/nwhere we varied n from ten
to eighty dimensions as in Figure 5(a). Importantly, both theoretical results, where we numerically
calculated the asymptotic variances, and simulation results show that for a reasonable performance
in comparison to MLE, ν does not need to be increased exponentially as the dimension n increases;
a linear increase with, for instance, ν ∈ [n/2 n] suffices to lead to estimation errors of about 2-4
times of those that are obtained by estimating normalized models with MLE.
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4. Investigating the Trade-Off between Statistical and Computational Performance

We have seen that for large ratios ν of noise sample size Tn to data sample size Td, the estimation
error for noise-contrastive estimation behaves like the error in MLE. For large ν, however, the com-
putational load becomes also heavier because more noise samples need to be processed. There is
thus a trade-off between statistical and computational performance. Such a trade-off exists also in
other estimation methods for unnormalized models. In this section, we investigate the trade-off in
noise-contrastive estimation, and compare it to the trade-off in Monte Carlo maximum likelihood
estimation (Geyer, 1994), contrastive divergence (Hinton, 2002) and persistent contrastive diver-
gence5 (Younes, 1989; Tieleman, 2008), as well as score matching (Hyvärinen, 2005).

In Section 4.1, we comment on the data which we use in the comparison. In Section 4.2, we
review the different estimation methods with focus on the trade-off between statistical and computa-
tional performance. In Section 4.3, we point out the limitations of our comparison before presenting
the simulation results in Section 4.4.

4.1 Data Used in the Comparison

For the comparison, we use artificial data which follows the ICA model in Equation (14) with the
data log-pdf lnpd being given by Equation (15). We set the dimension n to ten and use Td = 8000
observations to estimate the parameters. In a first comparison, we assume Laplacian sources in the
ICA model. The log-pdf lnpd is then specified with Equation (16). Note that this log-pdf has a
sharp peak around zero where it is not continuously differentiable. In a second comparison, we
use sources that follow the smoother logistic density. The nonlinearity f and the log normalizing
constant c∗ in Equation (15) are in that case

f(u) = −2lncosh
(

π

2
√

3
u
)

, c∗ = ln |detB!|+n ln
(

π

4
√

3

)

,

respectively. We are thus making the comparison for a relatively nonsmooth and smooth den-
sity. Both comparisons are based on 100 randomly chosen mixing matrices with condition number
smaller than 10.

4.2 Estimation Methods Used in the Comparison

We introduce here briefly the different methods and comment on our implementation and choices
of parameters.

4.2.1 NOISE-CONTRASTIVE ESTIMATION

To estimate the parameters, we maximize JT in Equation (8). We use here a Gaussian noise density
pn with a covariance matrix equal to the sample covariance of the data. As before, JT is maximized
using the nonlinear conjugate gradient method of Rasmussen (2006). To map out the trade-off
between statistical and computational performance, we measured the estimation error and the time
needed to optimize JT for ν ∈ {1,2,5,10,20,50,100,200,400,1000}.

5. Persistent contrastive divergence is also known under the name stochastic MLE.
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4.2.2 MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION

For normalized models, an estimate for the parameters α can be obtained by choosing them such
that the probability of the observed data is maximized. This is done by maximization of

JMLE(α) =
1

Td

Td
∑

t=1

lnp0
m(xt;α)− lnZ(α). (18)

If no analytical expression for the partition function Z(α) is available, importance sampling can be
used to numerically approximate Z(α) via its definition in Equation (2), that is

Z(α) ≈
1

Tn

Tn
∑

t=1

p0
m(nt;α)

pIS(nt)
.

The nt are independent observations of “noise” with distribution pIS. Note that more sophisticated
ways exist to numerically calculate the value of Z at a givenα (see for example Robert and Casella,
2004, in particular Chapter 3 and Chapter 4). The simple approach above leads to the objective
function JIS(α) known as Monte Carlo maximum likelihood (Geyer, 1994),

JIS(α) =
1

Td

Td
∑

t=1

lnp0
m(xt;α)− ln

(

1

Tn

Tn
∑

t=1

p0
m(nt;α)

pIS(nt)

)

.

We maximized JIS(α) with the nonlinear conjugate gradient algorithm of Rasmussen (2006).
Like in noise-contrastive estimation, there is a trade-off between statistical performance and

running time: The larger Tn gets the better the approximation of the log-likelihood. Hence, the
estimates become more accurate but the optimization of JIS takes also more time. To map out the
trade-off curve, we used the same values of Tn = νTd as in noise-contrastive estimation, and also
the same noise distribution, that is pIS = pn.

4.2.3 CONTRASTIVE DIVERGENCE

If JMLE is maximized with a steepest ascent algorithm, the update rule for α is

αk+1 = αk +µk∇αJMLE(α)|αk
, (19)

where µk is the step-size. For the calculation of ∇αJMLE, the gradient of the log partition function
lnZ(α) is needed, see Equation (18). Above, importance sampling was used to evaluate lnZ(α)
and its gradient ∇α lnZ(α). The gradient of the log partition function can, however, also be ex-
pressed as

∇α lnZ(α) =
∇αZ(α)

Z(α)
=
∫

p0
m(n;α)

Z(α)
∇α lnp0

m(n;α)dn. (20)

If we had data nt at hand which follows the normalized model density p0
m(.;α)/Z(α), the last

equation could be evaluated by taking the sample average. The parameter vector α could then
be learned based on Equation (19). In general, sampling from the model density is, however, only
possible by means of Markov chain Monte Carlo methods. In contrastive divergence (Hinton, 2002),
to compute αk+1, Markov chains are started at the data points xt and stopped after a few Monte
Carlo steps before they actually reach the stationary distribution p0

m(.;αk)/Z(αk). The data points
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nt that are created in that way follow thus only approximately p0
m(.;αk)/Z(αk). For every update

of α the Markov chains are restarted from the xt. Note that this update rule for α is not directly
optimizing a known objective function.

In our implementation, we used Hamiltonian Monte Carlo (see for example Neal, 2010) with a
rejection ratio of 10% for the sampling (like in Teh et al., 2004; Ranzato and Hinton, 2010). There
are then four tuning parameters for contrastive divergence: The number of Monte Carlo steps, the
number of “leapfrog” steps in Hamiltonian Monte Carlo, the choice of the step sizes µk, as well as
the number of data points xt and noise points nt used in each update step of α. The choice of the
tuning parameters will affect the estimation error and the computation time. For our comparison
here, we used contrastive divergence with one and three Monte Carlo steps (denoted by CD1 and
CD3 in the figures below), together with either three or twenty leapfrog steps. Ranzato and Hinton
(2010) used CD1 with twenty leapfrog steps (below denoted by CD1 20), while Teh et al. (2004)
used CD1 30 to estimate unnormalized models from natural image data. For the µk, we considered
constant step sizes, as well as linearly and exponentially decaying step sizes.6 For each update step,
we chose an equal number of data and noise points. We considered the case of using all data in each
update step, and the case of using minibatches of only 100 randomly chosen data points.

We selected the step size µk and the number of data points used in each update by means of
preliminary simulations on five data sets. We limited ourselves to contrastive divergence with one
Monte Carlo and three leapfrog steps (CD1 3). For both Laplacian and logistic sources, using mini-
batches with an exponential decaying step size gave the best results. The results are reported below
in Section 4.4. The use of minibatches led to faster estimation results without affecting their accu-
racy. Exponentially decaying step sizes are advocated by the theory of stochastic approximation; in
some cases, however, linear decay was found to be more appropriate (Tieleman, 2008, Section 4.5).
For Laplacian sources, the initial step size µ0 was 0.005; for logistic sources, it was µ0 = 0.01.
Note that in this selection of the tuning parameters, we used the true parameters to compute the
estimation error. Clearly, this cannot be done in real applications since the true parameter values are
not known. The choice of the tuning parameters must then solely be based on experience, as well
as trial and error.

4.2.4 PERSISTENT CONTRASTIVE DIVERGENCE

As contrastive divergence, persistent contrastive divergence (Younes, 1989; Tieleman, 2008) uses
the update rule in Equation (19) together with an approximative evaluation of the integral in Equa-
tion (20) to learn the parameters α. The integral is also computed based on Markov chain Monte
Carlo sampling. Unlike contrastive divergence, however, the Markov chains are not restarted at
the data points xt. For the computation of αk+1, the Markov chains are initialized with the
samples nt that were obtained in the previous iteration by running Markov chains converging to
p0

m(.;αk−1)/Z(αk−1). As in contrastive divergence, the Markov chains are only run for a short
time and stopped before having actually converged.

Since persistent contrastive divergence differs from contrastive divergence only by the initial-
ization of the Markov chains, it has the same tuning parameters. As in contrastive divergence, we
used preliminary simulations to select suitable parameters: again, exponentially decaying step sizes
µk together with minibatches of size 100 gave the best performance. The preliminary simulations
yielded also the same initial step sizes µ0 as in contrastive divergence. It turned out, however,

6. Linear decay: µk = µ0(1 − k/maxIteration), exponential decay: µk = µ0C/(C + k) with C = 5000.
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that the number of leapfrog steps in persistent contrastive divergence needs to be larger than in
contrastive divergence: using, for example, only three leapfrog steps as in contrastive divergence
resulted in a poor performance in terms of estimation accuracy. For the results reported below in
Section 4.4, we used 20 and 40 leapfrog steps, together with one and three Monte Carlo steps.

4.2.5 SCORE MATCHING

In score matching (Hyvärinen, 2005), the parameter vector α is estimated by minimization of the
cost function JSM,

JSM(α) =
1

Td

Td
∑

t=1

n
∑

i=1

1

2
Ψ2

i (xt;α)+Ψ′
i(xt;α).

The termΨi(x;α) is the derivative of the unnormalized model with respect to x(i), the i-th element
of the vector x,

Ψi(x;α) =
∂ lnp0

m(x;α)

∂x(i)
.

The term Ψ′
i(x;α) denotes the derivative of Ψi(x;α) with respect to x(i). The presence of this

derivative may make the objective function and its gradient algebraically rather complicated if a
sophisticated model is estimated. For the ICA model with Laplacian sources, Ψi(x;α) equals

Ψi(x;α) =
n
∑

j=1

−
√

2sign(bjx)Bji (21)

which is not smooth enough to be used in score matching. Using the smooth approximation
sign(u) ≈ tanh(10u) is a way to obtain a smooth enough Ψi(x;α) and Ψ′

i(x;α). The optimiza-
tion of JSM is done by the nonlinear conjugate gradient algorithm of Rasmussen (2006). Note that,
unlike the estimation methods considered above, score matching does not have a tuning parameter
which controls the trade-off between statistical and computational performance. Moreover, score
matching does not rely on sampling.

4.3 Limitations of the Comparison

For all considered methods but contrastive and persistent contrastive divergence, the algorithm
which is used to optimize the given objectives can be rather freely chosen. This choice will influence
the trade-off between statistical and computational performance. Here, we use the optimization al-
gorithm by Rasmussen (2006). Our results below show thus the trade-off of the different estimation
methods in combination with this particular optimization algorithm. With this optimization algo-
rithm, we used for each update all data. The algorithm is not suitable for stochastic optimization
with minibatches (see for example Schraudolph and Graepel, 2002). Optimization based on mini-
batches may well lead not only for (persistent) contrastive divergence to gains in speed but also for
the other estimation methods, including noise-contrastive estimation.

It is well known that a Gaussian as noise (proposal) distribution is not the optimal choice for
importance sampling if the data has heavy tails (see for example Wasserman, 2004, Chapter 24).
Gaussian noise is not the optimal choice for noise-contrastive estimation either. The presented
results should thus not be considered as a general comparison of the two estimation methods per
se. Importantly, however, the chosen setup allows one to assess how noise-contrastive estimation
behaves when the data has heavier tails than the noise, which is often the case in practice.
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Finally, the reader may want to keep in mind that for other kinds of data, in particular also in
very high dimensions, differences may occur.

4.4 Results

We first compare noise-contrastive estimation with the methods for which we use the same opti-
mization algorithm, that is Monte Carlo maximum likelihood estimation and score matching. Then,
we compare it with contrastive and persistent contrastive divergence.

4.4.1 COMPARISON WITH MONTE CARLO MLE AND SCORE MATCHING

Figure 6 shows the comparison of noise-contrastive estimation (NCE, red squares), Monte Carlo
maximum likelihood (IS, blue circles) and score matching (SM, black triangles). The left panels
show the simulation results in form of “result points” where the x-coordinate represents the time
till the algorithm converged and the y-coordinate the estimation error at convergence. Convergence
in the employed nonlinear conjugate gradient algorithm by Rasmussen (2006) means that the line
search procedure failed twice in a row to meet the strong Wolfe-Powell conditions (see for example
Sun and Yuan, 2006, Chapter 2.5.2). For score matching, 100 result points corresponding to 100
different random mixing matrices are shown in each figure. For noise-contrastive estimation and
Monte Carlo maximum likelihood, we used ten different values of ν so that for these methods,
each figure shows 1000 result points. The panels on the right present the simulation result in a
more schematic way. For noise-contrastive estimation and Monte Carlo maximum likelihood, the
different ellipses represent the outcomes for different values of ν. Each ellipse contains 90% of
the result points. We can see that increasing ν reduces the estimation error but it also increases the
running time. For score matching, there is no such trade-off.

Figure 6(a) shows that for Laplacian sources, noise-contrastive estimation outperforms the other
methods in terms of the trade-off between statistical and computational performance. The large
estimation error of score matching is likely to be due to the smooth approximation of the sign
function in Equation (21). The figure also shows that noise-contrastive estimation handles noise that
has lighter tails than the data more gracefully than Monte Carlo maximum likelihood estimation.
The reason is that the nonlinearity h(u;θ) in the objective function in Equation (8) is bounded even
if data and noise distribution do not match well (see also Pihlaja et al., 2010).

For logistic sources, shown in Figure 6(b), noise-contrastive estimation and Monte Carlo max-
imum likelihood perform equally. Score matching reaches its level of accuracy about 20 times
faster than the other methods. Noise-contrastive estimation and Monte Carlo maximum likelihood
can, however, have a higher estimation accuracy than score matching if ν is large enough. Score
matching can thus be considered to have a built-in trade-off between estimation performance and
computation time: Computations are fast but the speed comes at the cost of not being able to reach
an estimation accuracy as high as, for instance, noise-contrastive estimation.

4.4.2 COMPARISON WITH CONTRASTIVE AND PERSISTENT CONTRASTIVE DIVERGENCE

Since contrastive and persistent contrastive divergence do not have an objective function and given
the randomness that is introduced by the minibatches, it is difficult to choose a reliable stopping
criterion. Hence, we did not impose any stopping criterion but the maximal number of iterations.
The two algorithms had always converged before this maximal number of iterations was reached in
the sense that the estimation error did not visibly decrease any more.
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We base our comparison on the estimation error as a function of the running time of the algo-
rithm. This makes the comparison independent from the stopping criterion that is used in noise-
contrastive estimation. For noise-contrastive estimation, the parameter ν controls the trade-off be-
tween computational and statistical performance; for contrastive and persistent contrastive diver-
gence, it is the number of leapfrog steps and the number of Markov steps taken in each update. We
compiled a trade-off curve for each of the one hundred estimation problems by taking at any time
point the minimum estimation error over the various estimation errors that are obtained for different
values of the trade-off parameters.7 Figure 7 shows an example for noise-contrastive estimation
and contrastive divergence. The distribution of the trade-off curves is shown in Figure 8. For large
running times, the distribution of the estimation error is for all estimation methods similar to the
one for maximum likelihood estimation. For shorter running times, noise-contrastive estimation is
seen to have for Laplacian sources a better trade-off than the other methods. For logistic sources,
however, the situation is reversed.

4.4.3 SUMMARY

The foregoing simulation results and discussion suggest that all estimation methods trade, in one
form or the other, estimation accuracy against computation speed. In terms of this trade-off, noise-
contrastive estimation is particularly well suited for the estimation of data distributions with heavy
tails. In case of thin tails, noise-contrastive estimation performs similarly to Monte Carlo maximum
likelihood, and contrastive or persistent contrastive divergence has a better trade-off. If the data
distribution is particularly smooth and the model algebraically not too complicated, score matching
may, depending on the required estimation accuracy, be the best option.

5. Simulations with Natural Images

In this section, we estimate with our new estimation method models of natural images. In the
theory of noise-contrastive estimation, we have assumed that all variables can be observed. Noise-
contrastive estimation can thus not be used for models with latent variables which cannot be inte-
grated out analytically. Such models occur for example in the work by Olshausen and Field (1996),
Hyvärinen et al. (2001a), Karklin and Lewicki (2005), Lücke and Sahani (2008) and Osindero and
Hinton (2008). We are here considering models which avoid latent variables. Recent models which
are related to the models that we are considering here can be found in the work by Osindero et al.
(2006), Köster and Hyvärinen (2010) and Ranzato and Hinton (2010). For a comprehensive intro-
duction to natural image statistics, see for example the textbook by Hyvärinen et al. (2009).

The presented models will consist of two processing layers, like in a multilayer neural network.
The output of the network for a given input image gives the value of the model-pdf at that image.
Because of the two processing layers, we call the models “two-layer models”.

We start with giving some preliminaries in Section 5.1. In Section 5.2, we present the settings
of noise-contrastive estimation. In Section 5.3, we properly define the two-layer model and estimate
a version with more than 50000 parameters. In Section 5.4, we present an extension of the model
where the learned output nonlinearity of the network belongs to the flexible family of splines. The
different models are compared in Section 5.5.

7. A comparison of CD and PCD for different settings can be found in Appendix C.1.
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(a) Sources following a Laplacian density
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(b) Sources following a logistic density

Figure 6: Trade-off between statistical and computational performance for noise-contrastive es-
timation (NCE, red squares), Monte Carlo maximum likelihood (IS, blue circles) and
score matching (SM, black triangles). Each point represents the result of one simula-
tion. Performing local linear kernel smoothing regression on the result points yields
the thick curves. For noise-contrastive estimation and Monte Carlo maximum like-
lihood, the ten ellipses represent the outcomes for the ten different values of ν ∈
{1,2,5,10,20,50,100,200,400,1000}. The ellipses were obtained by fitting a Gaussian
to the distribution of the result points, each one contains 90% of the results points for
a given ν. The asterisks mark their center. For an ICA model with Laplacian sources,
NCE has the best trade-off between statistical and computational performance. For lo-
gistic sources, NCE and IS perform equally well. For medium estimation accuracy, score
matching outperforms the other two estimation methods.

5.1 Data, Preprocessing and Modeling Goal

Our basic data are a random sample of 25px× 25px image patches that we extracted from a subset
of van Hateren’s image database (van Hateren and van der Schaaf, 1998). The images in the subset
showed wildlife scenes only. The sample size Td is 160000.
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Figure 7: Example of a trade-off curve for noise-contrastive estimation and contrastive divergence.
(a) The different curves in blue show the estimation error which is obtained for the various
values of ν. The thicker curve in black shows the trade-off curve. It is is obtained by
taking at any time point the minimum estimation error. (b) The trade-off curve, shown in
black, is similarly obtained by taking the minimum over the estimation errors which are
obtained with different settings of contrastive divergence.

As preprocessing, we removed from each image patch its average value (local mean, DC com-
ponent), whitened the data and reduced the dimension from d = 25 · 25 = 625 to n = 160. This
retains 93% of the variance of the image patches. After dimension reduction, we additionally cen-
tered each data point and rescaled it to unit variance. In order to avoid division by small numbers,
we avoided taking small variance patches. This gave our data X = (x1, . . . ,xTd

). Because of the
centering and rescaling, each data point xt satisfies

n
∑

k=1

xt(k) = 0,
1

n−1

n
∑

k=1

xt(k)2 = 1. (22)

This means that each data point lies on the surface of a n−1 dimensional sphere S.
This kind of preprocessing is a form of luminance and contrast gain control which aim at can-

celing out the effects of the lighting conditions (see for example Hyvärinen et al., 2009, Chapter 9,
where also the statistical effects of such a preprocessing are analyzed). Centering and rescaling to
unit variance has also been used in image quality assessment in order to access the structural com-
ponent of an image, which is related to the reflectance of the depicted objects (Wang et al., 2004, in
particular Section III.B). By modeling the data X , we are thus modeling the structure in the image
patches.

Given a data point xt, we can reconstruct the original (vectorized) image patch via

it = V−xt, V− = ED1/2, (23)

where E is the d × n matrix formed by the leading n eigenvectors of the covariance matrix of the
image patches. The diagonal n × n matrix D contains the corresponding eigenvalues. The matrix
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Figure 8: Distribution of the trade-off curves for contrastive divergence (CD, green), persistent con-
trastive divergence (PCD, cyan), and noise-contrastive estimation (NCE, red). The distri-
bution of the estimation error for maximum likelihood estimation is shown in black. The
thick curves show the median, the finer curves the 0.9 and 0.1 quantiles.

V− defined above is the pseudoinverse of the whitening matrix V = D−1/2ET . Since the column
vectors ofV− form a basis for a n dimensional subspace of Rd, x is the coordinate vector of i with
respect to that basis. The dimension reduction implies that the reconstruction cannot be perfect; the
reconstruction can also only performed up to the scale and average value of the patch because of
the the luminance and contrast gain control. Figure 9(a) shows examples of natural image patches
after extraction from the data base; Figure 9(b) shows the corresponding reconstructions i. Since
all image patches in Figure 9 were rescaled to use the full colormap, the effects of luminance and
contrast gain control are not visible. The effect of the dimension reduction is low-pass filtering.

5.2 Settings for Noise-Contrastive Estimation

Matlab code for the simulations is available from the authors’ homepage so that our description here
will not be exhaustive. All the models considered in the next subsections are estimated with noise-
contrastive estimation. We learn the parameters by optimization of the objective JT in Equation (8).
The two-layer models are estimated by first estimating one-layer models. The learned parameters
are used as initial values for the first layer in the estimation of the complete two-layer model. The
second layer is initialized to small random values.

For the contrastive noise distribution pn, we take a uniform distribution on the surface of the
n − 1 dimensional sphere S on which x is defined.8 Examples of image patches with coordinates
following pn are shown in Figure 9(c). Samples from pn can easily be created by sampling from
a standard normal distribution, followed by centering and rescaling such that Equation (22) holds.
Since pn is a constant, the log-ratio G(.;θ) in Equation (4) is up to an additive constant equal to

8. lnpn = − ln(2) −
n−1

2
ln(π) − (n − 2) ln(r) + lnΓ

(

n−1

2

)

with r =
√

n − 1.
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(a) Image patches (b) Reconstructions (c) Noise

Figure 9: (a) Natural image patches of size 25px×25px. (b) Reconstructed image patches after pre-
processing. These are examples of the image patches denoted by i in Equation (23) with
coordinate vectors x ∈R160. (c) Noise images which are obtained via Equation (23) if the
coordinates are uniformly distributed on the sphere S. Comparison with Figure (b) shows
that the coordinate vectors x for natural images are clearly not uniformly distributed on
the sphere. In the next subsections, we model their distribution.

lnpm(.;θ),
G(.;θ) = lnpm(.;θ)+ constant.

As pointed out in Section 2.2, θ evolves in the maximization of JT such thatG(u; θ̂T ) is as large as
possible for u ∈ X (natural images) but as small as possible for u ∈ Y (noise). For uniform noise,
the same must thus also hold for lnpm(u; θ̂T ). This observation will be a useful guiding tool for
the interpretation of the models below.

The factor ν = Tn/Td was set to 10. We found that an iterative optimization procedure where
we separate the data into subsets and optimize JT for increasingly larger values of ν reduced com-
putation time. The optimization for each ν is done with the nonlinear conjugate gradient method
of Rasmussen (2006). The size of the subsets is rather large, for example 80000 in the simulation
of the next subsection.9 A more detailed discussion of this optimization procedure can be found in
Appendix C.2.

5.3 Two-Layer Model with Thresholding Nonlinearities

The first model that we consider is

lnpm(x;θ) =
n
∑

k=1

f(yk;ak, bk)+ c, yk =
n
∑

i=1

Qki(w
T
i x)2, (24)

where f is a smooth, compressive thresholding function that is parameterized by ak and bk. See
Figure 10 for details regarding the parameterization and the formula for f . The parameters θ of

9. As pointed out in Section 4.3, the used nonlinear conjugate gradient algorithm is not suitable for stochastic optimiza-
tion with small minibatches.
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the model are the second-layer weights Qki ≥ 0, the first-layer weights wi ∈ Rn, the normalizing
parameter c ∈ R, as well as ak > 0 and bk ∈ R for the nonlinearity f . The definition of yk shows
that multiplying Qki by a factor γ2

i and wi at the same time by the factor 1/γi does not change
the value of yk. There is thus some ambiguity in the parameterization which could be resolved
by imposing a norm constraint either on the wi or on the columns of the matrix Q formed by the
weights Qki. It turned out that for the estimation of the model such constraints were not necessary.
For the visualization and interpretation of the results, we chose γi such that all thewi had norm one.

The motivation for the thresholding property of f is that, in line with Section 5.2, lnpm(.;θ) can
easily be made large for natural images and small for noise. The yk must just be above the thresh-
olds for natural image input and below for noise. This occurs when the vectors wi detect features
(regularities) in the input which are specific to natural images, and when, in turn, the second-layer
weights Qki detect characteristic regularities in the squared first-layer feature outputs wT

i x. The
squaring implements the assumption that the regularities in x and (−x) are the same so that the
pdf of x should be an even function of the wT

i x. Another property of the nonlinearity is its com-
pressive log-like behavior for inputs above the threshold. The motivation for this is to “counteract”
the squaring in the computation of yk. The compression of large values of yk leads to numerical
robustness in the computation of lnpm.

A model like the one in Equation (24) has been studied before by Osindero et al. (2006) and
Köster and Hyvärinen (2010). There are, however, a number of differences. The main difference
is that in our case x lies on a sphere while in the cited work, x was defined in the whole space
Rn. This difference allows us to use nonlinearities that do not decay asymptotically to −∞ which
is necessary if x is defined in Rn. A smaller difference is that we do not need to impose norm
constraints to facilitate the learning of the parameters.

5.3.1 RESULTS

For the visualization of the first-layer feature detectors wi, note that the inner product wT
i x equals

(wT
i V)i = w̃T

i i. Thewi ∈ Rn are coordinate vectors with respect to the basis given by the columns
ofV−, see Section 5.1, while the w̃i ∈ Rd are the coordinate vectors with respect to the pixel basis.
The latter vectors can thus be visualized as images. This is done in Figure 11(a). Another way to
visualize the first-layer feature detectors wi is to show the images which yield the largest feature
output while satisfying the constraints in Equation (22). These optimal stimuli are proportional
to V−(wi − 〈wi〉), where 〈wi〉 ∈ R is the average value of the elements in the vector wi, see
Appendix B.2 for a proof. The optimal stimuli are shown in Figure 11(b). Both visualizations show
that the first layer computes “Gabor-like” features, which is in line with previous research on natural
image statistics.

Figure 12 shows a random selection of the learned second-layer weights Qik. Figure 12(a)
shows that the weights are extremely sparse. The optimization started with the weights being
randomly assigned to small values, with the optimization most of them shrank to zero; few se-
lected ones, however, increased in magnitude. Note that this result was obtained without any norm
constraints on Q. From Figure 12(b), we see that the learned second-layer weights Qik are such
that they combine first-layer features of similar orientation, which are centered at nearby locations
(“complex cells”). The same figure shows also a condensed representation of the feature detectors
using icons. This form of visualization is used in Figure 13 to visualize all the second-layer feature
detectors.
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Figure 10: Two-layer model with thresholding nonlinearities. The family of nonlinearities used
in the modeling is f(y;a,b) = fth(ln(ay + 1) + b), y ≥ 0. The parameterized func-
tion is composed of a compressive nonlinearity ln(ay + 1), shown in Figure (a), and a
smooth rectification function fth(u + b) shown in Figure (b). Figure (c) shows exam-
ples of f(y;a,b) for different values of a and b. Parameter b sets the threshold, and
parameter a controls the steepness of the function. Since the scale of the weights in
Equation (24) is not restrained, the parameters ak do not need to be learned explicitly.
After learning, they can be identified by dividing yk in Equation (24) by ak so that
its expectation is one for natural images. The formula for the thresholding function is
fth(u) = 0.25ln(cosh(2u))+0.5u+0.17. The curves shown in blue are for b = −3 and
a ∈ {1,50,100,200, . . . ,500}. For the dashed curves in red, b = −5. The small squares
in Figure (c) indicate where f changes from convex to concave.

Figure 14(a) shows the learned nonlinearities f(.;ak, bk). Note that we incorporated the learned
normalizing parameter c as an offset c/n for each nonlinearity. The learned thresholding is similar
for feature outputs of mid- and high-frequency feature detectors (black, solid curves). For the feature
detectors tuned to low frequencies, the thresholds tend to be smaller (green, dashed curves). The
nonlinearities in black are convex for arguments y smaller than two (see red rectangle in the figure).
That is, they show a squashing behavior for y < 2. Looking at the distribution of the second-layer
outputs yk in Figure 14(b), we see that it is more likely that noise rather than natural images was the
input when the second-layer feature outputs yk are approximately between 0.5 and 2. In this regime,
the squashing nonlinearities map thus more often the noise input to small values than natural images
so that lnpm(u; θ̂T ) tends to be larger when input u is a natural image than when it is noise (see
Section 5.2). One could, however, think that the thresholding nonlinearities are suboptimal because
they ignore the fact that natural images lead, compared to the noise, rather often to yk which are close
to zero, see Figure 14(b). An optimal nonlinearity should, unlike the thresholding nonlinearities,
assign a large value to both large and small yk while mapping intermediate values of yk to small
numbers. The next subsection shows that such kinds of mappings emerge naturally when splines
are used to learn the nonlinearities from the data.

5.4 Two-Layer Model with Spline Nonlinearities

In the previous subsection, the family of nonlinearities f in Equation (24) was rather limited. Here,
we look for f in the larger family of cubic splines where we consider the location of the knots to
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(a) Feature detectors (b) Optimal stimuli

Figure 11: Two-layer model with thresholding nonlinearities: Visualization of the learned first-
layer feature detectors wi. (a) The feature detectors in the pixel basis. (b) The corre-
sponding optimal stimuli. The feature detectors in the first layer are “Gabor-like” (lo-
calized, oriented, bandpass). Comparison of the two figures shows that feature detectors
which appear noisy in the pixel basis are tuned to low-frequency input.
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Figure 12: Two-layer model with thresholding nonlinearities: Random selection of second layer
units. (a) Second-layer weightsQki for five different k (five different rows of the matrix
Q) are shown. The weights are extremely sparse so that in the sum

∑n
i=1 Qki(wT

i x)2

only few selected squared first-layer outputs are added together. (b) Every row shows
one second-layer feature detector. The first-layer feature detectors wi are shown as
image patches like in Figure 11, and the black bar under each patch indicates the strength
Qki by which a certain wi is pooled by the k-th second-layer feature detector. The
numerical values Qki for the first five rows are shown in Figure (a). The right-most
column shows a condensed visualization. The icons were created by representing each
first-layer feature by a bar of the same orientation and similar length as the feature, and
then superimposing them with weights given by Qki.
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Figure 13: Two-layer model with thresholding nonlinearities: Visualization of the first- and second-
layer feature detectors with icons. In the second layer, first-layer features of similar
orientations are pooled together. See Figure 12 for details of how the icons were created.
The feature detectors marked with a green frame are tuned to low frequencies.
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Figure 14: Two-layer model with thresholding nonlinearities: Learned nonlinearities and interpre-
tation. Natural images tend to have larger second-layer outputs yk than noise input since
the two processing layers, visualized in Figures 11 to 13, detect structure inherent to
natural images. Thresholding the yk provides a way to assign to natural images large
values in the model-pdf and to noise small values. In Figure (a), the nonlinearities act-
ing on pooled low-frequency feature detectors are shown in green (dashed lines), those
for medium and high frequency feature detectors in black (solid lines). The bold curves
in Figure (b) show the median, the other curves the 5% and 95% quantiles. The solid
curves in blue relate to natural images, the dashed curves in red to noise. As explained
in Figure 10, the yk have expectation one for natural images.
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be fixed (regression splines represented with B-spline basis functions, see for example Hastie et al.,
2009, Chapter 5).

The model that we consider here is

lnpm(x;θ) =
n
∑

k=1

f(yk;a1,a2, . . .)+ c, yk =
n
∑

i=1

Qki(w
T
i x)2. (25)

The difference between this and the model of the previous subsection is that the output nonlinearity
f is a cubic spline. Part of the parameters θ are thus as previously thewi ∈ Rn,Qki ≥ 0, and c ∈ R.
Additional parameters are the ai ∈ R which are the coefficients of the B-spline basis functions of
the cubic spline f . As before, we denote the matrix formed by the Qki byQ.

For the modeling of the nonlinearity f , we must define its domain, which is the range of its
arguments yk. A way to control the range of yk is to constrain the norm of the columns of Q and
also to constrain the vectors wk such that

max
i

E
{

(wT
i x)2

}

= 1, (26)

where the expectation is taken over the natural images.
We estimated the model in Equation (25) by first estimating a spline-based one-layer model

which is presented in Appendix C.3. In brief, in this model, we did not square the first-layer feature
outputs wT

i x and the matrix Q was the identity. The arguments of the spline nonlinearity f were
thus the feature outputs wT

i x without additional processing. The learned nonlinearity is shown in
Figure 16(a). In the following, we denote it by f1. In Appendix C.3, we point out that the shape of
f1 is closely related to the sparsity of the feature outputs when natural images are the input. Because
f1 is an even function, and because of the squaring in the definition of yk, we initialized f for the
estimation of the two-layer model as f(u) = f1(

√
u). This function is shown in Figure 16(b) (blue,

dashes). The learned wi of the one-layer model were used as initial points for the estimation of the
two-layer model. The Qki were randomly initialized to small values. It turned out that imposing
Equation (26) was enough for the learning to work and no norm constraint for the columns of Q

was necessary. The results were very similar whether there were norm constraints or not. In the
following, we report the results without any norm constraints.

5.4.1 RESULTS

Figure 15 visualizes the learned parameters wi and Qki in the same way as in Figures 12 and 13
for the two-layer model with thresholding nonlinearities. The learned feature extraction stage is
qualitatively very similar, up to two differences. The first difference is that many second-layer
weights Qki shrank to zero: 66 out of 160 rows of the matrix Q had so small values that we could
omit them while accounting for 99.9% of the sum

∑

ki Qki. The second difference is that the pooling
in the second layer is sometimes less sparse. In that case, the second layer still combines first-layer
feature detectors of the same orientation but they are not all centered at the same location.

The learned nonlinearity f is shown in Figure 16(b) (black, solid). The nonlinearity from the
one-layer model, shown in blue as a dashed curve, is altered so that small and large inputs are
assigned to larger numbers while intermediate inputs are mapped to smaller numbers. Compared
to the thresholding nonlinearities from the previous subsection, the learned nonlinearity has also
for small inputs large outputs. Since the second-layer feature outputs yk are sparser (that is, more
often very small or large) for natural images than for the noise, the shape of the learned nonlinearity
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Icons

(a) Pooling in the second layer (b) Representation with icons

Figure 15: Two-layer model with spline nonlinearities. (a) Random selection of the learned second-
layer units. (b) Representation of all the learned second-layer feature detectors as iconic
images.
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Figure 16: Two-layer model with spline nonlinearities. (a) Learned nonlinearity (black, solid) and
its random initialization (blue, dashes) for the one-layer model. The learned nonlinearity
is used as starting point in the learning of the two-layer model. (b) Learned nonlinearity
(black, solid) and its initialization (blue, dashes) for the two-layer model. The dashed
vertical lines indicate the 99% quantile for all the feature outputs for natural images.
Due to the lack of training examples, the nonlinearities should not be considered valid
beyond these lines.

implies that the estimated model assigns more often a higher probability density to natural images
than to the noise.
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5.5 Model Comparison

We have estimated models for natural images, both with thresholding nonlinearities and with splines.
We make here a simple model comparison.

A quantitative comparison is done by calculating for ten validation sets the value of the objective
function JT of noise-contrastive estimation (see Equation (8) for the definition). The sample size
of each validation set was Tv = 100000, and ν was set to 10, as in the estimation of the models. For
the same validation data, we also computed the performance measure L̂ = 1/Tv

∑

t lnpm(xt; θ̂T ),
which is an estimate for the rescaled log-likelihood, see Equation (13) in Section 3.1. As pointed
out there, L̂ is only an estimate of the rescaled log-likelihood because ĉ, which is an element of
the parameter vector θ̂T , is used instead of the correct normalizing constant. Both JT and the
log-likelihood have the property that models which fit the data better have a higher score.

Comparing the structure of data points which are considered likely by the different models is
a way to make a qualitative model comparison. Another approach would be to sample from the
models, which we do in Appendix C.5. In order to get the likely points, we drew random samples
that followed the noise distribution pn (uniform on the sphere), and used them as initial points in
the optimization of the various log-densities lnpm(x; θ̂T ) with respect to x under the constraint of
Equation (22). We used the same initial points for all models and visualized the likely points x̂ via
Equation (23) as images î = V−x̂.

The ICA model with Laplacian sources is a simple model for natural images. It has previously
also been used to model natural images after they have been projected on a sphere (Hyvärinen et al.,
2009, Chapter 9). The unnormalized model has been defined in Section 3.2 in Equation (17) and
consists of one processing layer with the fixed nonlinearity f(u) = −

√
2|u|. We include it in our

comparison and refer to it as one-layer model with “Laplacian nonlinearity”.

5.5.1 RESULTS

Table 1 shows that the spline-based two-layer model of Section 5.4 gives, on average, the largest
value of the objective function JT , and also LT . To investigate the merits of the spline output-
nonlinearity, we fixed the feature extraction stage of the thresholding model in Section 5.3 and
learned only the nonlinearity f using splines (for details, see Appendix C.4). The resulting model,
labeled “refinement” in the table, performs nearly as good as the best model. The one-layer models
with thresholding or Laplacian nonlinearities have the smallest objectives JT and LT . The two
models achieve the objectives in different, complimentary ways. For the thresholding model, the
absolute value of the feature outputs wT

i x must be large to yield a large objective while for the
model with the Laplacian nonlinearity f(wT

i x) = −
√

2|wT
i x|, the feature outputs must have small

absolute values. The two models consider thus different aspects of the, for natural images, typically
sparse feature outputs wT

i x. The one-layer model with spline nonlinearity combines both aspects,
see Figure 16(a), and yields also a higher score in the comparison. The same reason explains why
spline-based two-layer models have higher scores than the two-layer model with the thresholding
nonlinearity.

Figure 17 shows the likely data points from the various models pm. The models with large
objectives in Table 1 lead to image patches with particularly clear structure. The emergence of
structure can be explained in terms of sparse coding since image patches which lead to sparse
activations of the feature detectors are typically highly structured. Sparseness of the feature outputs
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One-layer model Two-layer model
Thresholding Laplacian Spline Thresholding Refinement Spline

JT , av -1.871 -1.518 -1.062 -0.8739 -0.6248 -0.6139
JT , std 0.0022 0.0035 0.0030 0.0029 0.0030 0.0037
LT , av -223.280 -222.714 -219,786 -220.739 -213.303 -212.598
LT , std 0.0029 0.0077 0.0137 0.0088 0.0282 0.0273

Table 1: Quantitative model comparison. The objective JT of noise-contrastive estimation, see
Equation (8), and the estimate L̂ of the (rescaled) log-likelihood, see Equation (13), are
used to measure the performance. Larger values indicate better performance. The table
gives the average (av) and the standard deviation (std) for ten validation sets. All models
are defined on a sphere and learned with noise-contrastive estimation. The features for
the one-layer models with thresholding and Laplacian nonlinearity are not shown in the
paper. The “one-layer, thresholding” model is identical to the “two-layer, thresholding”
model when the second layer is fixed to the identity matrix. With Laplacian nonlinearity
we mean the function f(u) = −

√
2|u|. The “two-layer, thresholding” model has been

presented in Section 5.3, and the “two-layer, spline” model in Section 5.4. The “one-layer,
spline” and “two-layer, refinement” models are presented in the Appendix C.3 and C.4,
respectively.

is facilitated by the nonlinearities in the models, and through the competition between the features
by means of the sphere-constraint on the coordinates x, as specified in Equation (22).

6. Conclusions

In this paper, we have considered the problem of estimating unnormalized statistical models for
which the normalizing partition function cannot be computed in closed form. Such models cannot be
estimated by maximization of the likelihood without resorting to numerical approximations which
are often computationally expensive. The main contribution of the paper is a new estimation method
for unnormalized models. A further contribution is made in the modeling of natural image statistics.

We have proven that our new estimation method, noise-contrastive estimation, provides a con-
sistent estimator for both normalized and unnormalized statistical models. The assumptions that
must be fulfilled to have consistency are not stronger than the assumptions that are needed in max-
imum likelihood estimation. We have further derived the asymptotic distribution of the estimation
error which shows that, in the limit of arbitrarily many contrastive noise samples, the estimator per-
forms like the maximum likelihood estimator. The new method has a very intuitive interpretation in
terms of supervised learning: The estimation is performed by discriminating between the observed
data and some artificially generated noise by means of logistic regression.

All theoretical results were illustrated and validated on artificial data where ground truth is
known. We have also used artificial data to assess the balance between statistical and computational
performance. In particular, we have compared the new estimation method to a number of other es-
timation methods for unnormalized models: Simulations suggest that noise-contrastive estimation
strikes a highly competitive trade-off. We have used the mean squared error of the estimated param-
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(a) One-layer, thresholding (b) One-layer, Laplacian (c) One-layer, spline

(d) Two-layer, thresholding (e) Two-layer, refinement (f) Two-layer, spline

Figure 17: Likely points under the learned models for natural images. See caption of Table 1 for
information on the models.

eters as statistical performance measure. It should be noted that this is only one possible criterion
among many (see Hyvärinen, 2008, for a recently proposed alternative measure of performance).

Noise-contrastive estimation as presented here extends the previous definition given by Gut-
mann and Hyvärinen (2010) since it allows for more noise samples than data points. We have also
previously considered such a generalization (Pihlaja et al., 2010). Unlike in that preliminary ver-
sion, our method here is asymptotically Fisher-efficient for all admissible noise densities when the
number of noise samples becomes arbitrarily large. Pihlaja et al. (2010) has established links of
noise-contrastive estimation to importance sampling which remain valid for this paper.

We applied noise-contrastive estimation to the modeling of natural images. Besides validating
the method on a large two-layer model, we have, as a new contribution to the understanding of nat-
ural image statistics, presented spline-based extensions: In previous models, the output nonlinearity
in the pdf was hand-picked. Here, we have parameterized it as a spline and learned it from the data.
The statistical models were all unnormalized and had several ten-thousands of parameters which
demonstrates that our new method can handle demanding estimation problems.
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Appendix A. Proofs of the Theorems

We give here detailed proofs for Theorem 1, 2 and 3 on nonparametric estimation, consistency and
the asymptotic distribution of the estimator, respectively.

A.1 Preliminaries

In the proofs, we often use the following properties of the function rν(u),

rν(u) =
1

1+ν exp(−u)
,

which was introduced in Equation (6):

1− rν(u) = r 1

ν

(−u)

∂rν(u)

∂u
= r 1

ν

(−u)rν(u)

∂

∂u
lnrν(u) = r 1

ν

(−u)

∂2

∂u2
lnrν(u) = −r 1

ν

(−u)rν(u)

∂

∂u
ln[1− rν(u)] = −rν(u)

∂2

∂u2
ln[1− rν(u)] = −r 1

ν

(−u)rν(u)

The functions h(u;θ) = rν (G(u;θ)) and 1−h(u;θ) = r 1

ν

(−G(u;θ)) are equal to

h(u;θ) =
pm(u;θ)

pm(u;θ)+νpn(u)
, 1−h(u;θ) =

νpn(u)

pm(u;θ)+νpn(u)
, (27)

see Equation (3). It follows that

νpn(u)rν (G(u;θ)) =
νpn(u)pm(u;θ)

pm(u;θ)+νpn(u)
, , (28)

pd(u)r 1

ν

(−G(u;θ)) =
νpn(u)pd(u)

pm(u;θ)+νpn(u)
, (29)

which are key properties for the proofs below.
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The first and second order derivatives are used in the following Taylor expansions

lnrν(u+ εu1 + ε2u2) = lnrν(u)+ εr 1

ν

(−u)u1 +

ε2

[

r 1

ν

(−u)u2 −
1

2
r 1

ν

(−u)rν(u)u2
1

]

+

O(ε3), (30)

ln
[

1− rν(u+ εu1 + ε2u2)
]

= ln[1− rν(u)]− εrν(u)u1 +

ε2

[

−rν(u)u2 −
1

2
r 1

ν

(−u)rν(u)u2
1

]

+

O(ε3). (31)

A.2 Proof of Theorem 1 (Nonparametric Estimation)

For clarity of the proof, we state an important stepping stone as a lemma.

A.2.1 LEMMA

The Taylor expansions in Equation (30) and Equation (31) are used to prove the following lemma.

Lemma 8 For ε > 0 and φ(x) a perturbation of the log-pdf fm(x) = lnpm(x),

J̃(fm + εφ) = J̃(fm)+ ε
∫

[pd(u)r 1

ν

(−fm(u)+ lnpn(u))−

νpn(u)rν(fm(u)− lnpn(u))]φ(u)du −
ε2

2

∫

r 1

ν

(−fm(u)+ lnpn(u))rν(fm(u)− lnpn(u))

(pd(u)+νpn(u))φ(u)2du +O(ε3).

Proof The proof is obtained by evaluating the objective function J̃ in Equation (11) at fm + εφ,
and making then use of the Taylor expansions in Equation (30) and Equation (31) with u =
fm(x)− lnpn(x), u1 = φ(x) and u2 = 0.

A.2.2 PROOF OF THE THEOREM

Proof A necessary condition for optimality is that in the expansion of J̃(fm +εφ), the term of order
ε is zero for any perturbation φ. This happens if and only if

pd(u)r 1

ν

(−fm(u)+ lnpn(u)) = νpn(u)rν(fm(u)− lnpn(u)).

With Equation (28) and Equation (29), this implies that J̃ has an extremum at pm if and only if

νpn(u)pd(u)

pm(u)+νpn(u)
=

νpn(u)pm(u)

pm(u)+νpn(u)
.

That is, as ν > 0, pm(u) = pd(u) at all points u where pn(u) -= 0. At points where pn(u) = 0, the
equation is trivially fulfilled. Hence, pm = pd, or fm = lnpd, leads to an extremum of J̃ .
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Inserting fm = lnpd into J̃ in Lemma 8 leads to

J̃(lnpd + εφ) = J̃(lnpd)−
ε2

2

{
∫

νpn(u)pd(u)

pd(u)+νpn(u)
φ(u)2du

}

+O(ε3).

Since the term of order ε2 is negative for all choices of φ, the extremum is a maximum. The assump-
tion that pn(u) -= 0 whenever pd(u) -= 0 shows that fm = lnpd is the only extremum and completes
the proof.

A.3 Proof of Theorem 2 (Consistency)

For clarity of the proof, we state important stepping stones as lemmata.

A.3.1 LEMMATA

The Taylor expansions in Equation (30) and Equation (31) are used to prove the following lemma
which is like Lemma 8 for J̃ but for the objective function J in Equation (10).

Lemma 9 For ε > 0 and ϕ ∈ Rm,

J(θ + εϕ) = J(θ)+ ε
∫

u1 [pd(u)(1−h(u;θ))−νpn(u)h(u;θ)]du +

ε2

{
∫

−
1

2
u2

1(1−h(u;θ))h(u;θ)(pd(u)+νpn(u))du+
∫

u2 (pd(u)(1−h(u;θ))−νpn(u)h(u;θ))du

}

+O(ε3),

where

u1 = ϕT g(u;θ),

u2 =
1

2
ϕT HG(u;θ)ϕ.

The term g(u;θ) is∇G(u;θ), andHG denotes the Hessian matrix ofG(u;θ) where the derivatives
are taken with respect to θ.

Proof With the definition of J in Equation (10), we have

J(θ + εϕ) =
∫

ln [rν (G(u;θ + εϕ))]pd(u)du +

ν
∫

ln [1− rν (G(u;θ + εϕ))]pn(u)du.

Developing G(u;θ + εϕ) till terms of order ε2 yields

G(u;θ + εϕ) = G(u;θ)+ εϕT g(u;θ)+ ε2 1

2
ϕT HG(u;θ)ϕ+O(ε3).

Defining u1 and u2 as in the lemma, we obtain

lnrν (G(u;θ + εν)) = lnrν

(

G(u;θ)+ εu1 + ε2u2 +O(ε3)
)

.
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Using now the Taylor expansions in Equation (30) and Equation (31) for u = G(u;θ), and the
identities h(u;θ) = rν (G(u;θ)) as well as 1−h(u;θ) = r 1

ν

(−G(u;θ)) proves the lemma.

Lemma 10 If pn(u) -= 0 whenever pd(u) -= 0 and if

Iν =
∫

g(u)g(u)T Pν(u)pd(u)du

is full rank, where

Pν(u) =
νpn(u)

pd(u)+νpn(u)
,

g(u) = ∇θ lnpm(u;θ)|θ=θ! ,

then
J(θ!) > J(θ! +ϕ) ∀ϕ -= 0.

Proof A necessary condition for optimality is that in the expansion of J(θ + εϕ) in Lemma 9, the
term of order ε is zero for any ϕ. This happens if

pd(u)(1−h(u;θ)) = νpn(u)h(u;θ),

that is, if
νpn(u)pd(u)

pm(u;θ)+νpn(u)
=

νpn(u)pm(u;θ)

pm(u;θ)+νpn(u)
,

where we have used Equation (28) and Equation (29) as in the proof for Lemma 8. The assumption
that ν > 0 and pd(.) = pm(.;θ!) implies together with the above equation that the term of order ε is
zero if θ = θ!.

The objective function J(θ! + εϕ) becomes thus

J(θ! + εϕ) = J(θ!)−
ε2

2

∫

u2
1(1−h(u;θ!))h(u;θ!)

(pd(u)+νpn(u))du +O(ε3).

The terms h(u;θ!) and 1−h(u;θ!) are with Equation (27)

h(u;θ!) =
pd(u)

pd(u)+νpn(u)
, 1−h(u;θ!) =

νpn(u)

pd(u)+νpn(u)
.

The expression for J(θ! + εϕ) becomes then

J(θ! + εϕ) = J(θ!)−
ε2

2
ϕT

[
∫

g(u)g(u)T Pν(u)pd(u)du

]

ϕ+O(ε3)

by inserting the definition of u1 evaluated at θ!, and making use of the definitions for Pν(u) and
g(u) in the statement of the lemma. The term of order ε2 defines the nature of the extremum at
θ!. If Iν is positive definite, J(θ!) is a maximum. As Iν is a positive semi-definite matrix, it is
positive definite if it is full rank.

Depending on the parameterization, there might be other values θ̌ which make the term of order
ε zero. Note that, by definition, J(θ) = J̃(lnpm(.;θ)) for any θ so that J(θ̌) = J̃(lnpm(.; θ̌)) and
J(θ!) = J̃(lnpm(.;θ!)) = J̃(lnpd). Now, by Theorem 1, J(θ̌) < J(θ!) for a suitable noise density
pn so that J attains a global maximum at θ!.
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A.3.2 PROOF OF THE THEOREM

The proof of consistency goes along the same lines as the proof of consistency for MLE (see for
example Wasserman, 2004, Chapter 9).
Proof To prove consistency, we have to show that given ε > 0, P (||θ̂T − θ!|| > ε) tends to zero as
Td → ∞. In what follows, it is sometimes useful to make the underlying probability space explicit
and write P (||θ̂T −θ!|| > ε) as P ({ω : ||θ̂T (ω)−θ!|| > ε}).

Since, by Lemma 10, J(θ!) is a global maximum, ||θ −θ!|| > ε implies that there is a δ(ε) such
that J(θ) < J(θ!)− δ(ε). Hence,

{ω : ||θ̂T (ω)−θ!|| > ε} ⊂ {ω : J(θ̂T (ω)) < J(θ!)− δ(ε)}

and thus
P (||θ̂T −θ!|| > ε) < P (J(θ̂T ) < J(θ!)− δ(ε)). (32)

Next, we investigate what happens to P (J(θ̂T ) < J(θ!)− δ(ε)) when Td goes to infinity. We have

J(θ!)−J(θ̂T ) = J(θ!)−JT (θ!)+JT (θ!)−J(θ̂T )

≤ J(θ!)−JT (θ!)+JT (θ̂T )−J(θ̂T )

as θ̂T has been defined as the argument which maximizes JT . Using the triangle inequality we
obtain further

|J(θ!)−J(θ̂T )| ≤ |J(θ!)−JT (θ!)|+ |JT (θ̂T )−J(θ̂T )|,

and
|J(θ!)−J(θ̂T )| ≤ 2sup

θ
|J(θ)−JT (θ)|,

from which follows that

P (|J(θ!)−J(θ̂T )| > δ(ε)) ≤ P (2sup
θ

|J(θ)−JT (θ)| > δ(ε)).

Using the assumption that JT (θ) converges in probability uniformly over θ to J(θ), we obtain
that for sufficiently large Td

P (|J(θ!)−J(θ̂T )| > δ(ε)) < ε2

for any ε2 > 0. As J(θ!) > J(θ) for any θ, we have thus the result that

P (J(θ̂T ) < J(θ!)− δ(ε)) < ε2

for any ε2 > 0. The probability P (J(θ̂T ) < J(θ!) − δ(ε)) can thus be made arbitrarily small by
choosing Td large enough. Combining this result with Equation (32), we conclude that P (||θ̂T −
θ!|| > ε) tends to zero as Td → ∞.

A.4 Proof of Theorem 3 (Asymptotic Normality)

For clarity of the proof, we state important stepping stones as lemmata.
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A.4.1 LEMMATA

In the following lemma, we use the definitions of the score function g(x;θ) and g(x) = g(x;θ!),
as well as the definition of the HessianHG, which were given in Lemma 9 and Lemma 10.

Lemma 11

0 = ∇θJT (θ!)+HJ(θ!)(θ̂T −θ!)+O(||θ̂T −θ!||2)

where

∇θJT (θ!) =
1

Td

Td
∑

t=1

(1−h(xt;θ
!))g(xt)−ν

1

Tn

Tn
∑

t=1

h(yt;θ
!)g(yt),

HJ(θ!) =
1

Td

Td
∑

t=1

{

−(1−h(xt;θ
!))h(xt;θ

!)g(xt)g(xt)
T +

(1−h(xt;θ
!))HG(xt;θ

!)}−

ν
1

Tn

Tn
∑

t=1

{

(1−h(yt;θ
!))h(yt;θ

!)g(yt)g(yt)
T +

h(yt;θ
!)HG(yt;θ

!)} .

Proof Using the chain rule, it follows from the relations in Section A.1 that

∇θ lnh(xt;θ) = (1−h(xt;θ))g(xt;θ)

∇θ ln [1−h(yt;θ)] = −h(yt;θ)g(yt;θ).

The derivative∇θJT (θ) of JT (θ), defined in Equation (9) as

JT (θ) =
1

Td

Td
∑

t=1

lnh(xt;θ)+ν
1

Tn

Tn
∑

t=1

ln [1−h(yt;θ)] ,

is

∇θJT (θ) =
1

Td

Td
∑

t=1

(1−h(xt;θ))g(x;θ)−ν
1

Tn

Tn
∑

t=1

h(yt;θ)g(yt;θ).

As θ̂T is the value of θ which maximizes JT (θ), we must have ∇θJT (θ̂T ) = 0. Doing a Taylor
series around θ̂T , we have

0 = ∇θJT (θ!)+HJ(θ!)(θ̂T −θ!)+O((||θ̂T −θ!||2).

Half of the lemma is proved when ∇θJT is evaluated at θ!. To prove the other half, we need to
calculate the Hessian HJ at θ!. The k-th row of the Hessian HJ(θ) is ∇θFk(θ)T where Fk is the
k-th element of the vector∇θJT . Denoting by gk the k-th element of the score function g, we have

∇θFk(θ) =
1

Td

Td
∑

t=1

{−∇θh(xt;θ)gk(xt;θ)+(1−h(xt;θ))∇θgk(xt;θ)}

−ν
1

Tn

Tn
∑

t=1

{∇θh(yt;θ)gk(yt;θ)+h(yt;θ)∇θgk(xt;θ)} .
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Using the chain rule, it follows from the relations in Section A.1 that

∇θh(u;θ) = (1−h(u;θ))h(u;θ)g(u;θ).

Hence,

∇θFk(θ) =
1

Td

Td
∑

t=1

{−(1−h(xt;θ))h(xt;θ)g(xt;θ)gk(xt;θ)+

(1−h(xt;θ))∇θgk(xt;θ)}−

ν
1

Tn

Tn
∑

t=1

{(1−h(yt;θ))h(yt;θ)g(yt;θ)gk(yt;θ)+

h(yt;θ)∇θgk(yt;θ)} ,

which proves the lemma.

For the next lemma, recall the definition of Iν given in Lemma 10 or Theorem 2.

Lemma 12 HJ(θ!) converges in probability to −Iν as the sample size Td tends to infinity.

Proof As Tn = νTd, Tn also tends to infinity when Td tends to infinity. As the sample sizes become
arbitrarily large, the sample averages become integration over the corresponding densities so that

lim
Td→∞

HJ(θ!)
P→

∫

−(1−h(x;θ!))h(x;θ!)g(x)g(x)T pd(x)dx +
∫

(1−h(x;θ!))HG(x;θ!)pd(x)dx −
∫

(1−h(y;θ!))h(y;θ!)g(y)g(y)T νpn(y)dy−
∫

h(y;θ!)HG(y;θ!)νpn(y)dy.

Reordering of the terms and changing the names of the integration variables to u gives

lim
Td→∞

HJ(θ!)
P→ −

∫

(1−h(u;θ!))h(u;θ!)g(u)g(u)T (pd(u)+νpn(u))du +
∫

((1−h(u;θ!))pd(u)−h(u;θ!)νpn(u))HG(u;θ!)du.

With Equation (28) and Equation (29), we have

(1−h(u;θ!))pd(u) = h(u;θ!)νpn(u), (33)

(1−h(u;θ!))h(u;θ!)(pd(u)+νpn(u)) =
νpn(u)pd(u)

pd(u)+νpn(u)
.

Hence,

lim
Td→∞

HJ(θ!)
P→ −

∫

νpn(u)pd(u)

pd(u)+νpn(u)
g(u)g(u)T du,

which is −Iν .
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Lemma 13 The expectation E∇θJT (θ!) is zero.

Proof We calculate

E∇θJT (θ!) =
1

Td

Td
∑

t=1

Eg(xt)(1−h(xt;θ
!))−

ν
1

Tn

Tn
∑

t=1

Eg(yt)h(yt;θ
!)

= Eg(x)(1−h(x;θ!))−ν Eg(y)h(y;θ!)

=
∫

g(u)(1−h(u;θ!))pd(u)du −

ν
∫

g(u)h(u;θ!)pn(u)du,

where the second equality follows from the i.i.d. assumption of the sample X and Y , respectively.
Reordering leads to

E∇θJT (θ!) =
∫

g(u)((1−h(u;θ!))pd(u)−h(u;θ!)νpn(u))du,

which is, with Equation (33), zero.

Lemma 14 The variance Var∇θJT (θ!) is

1

Td

(

Iν −
(

1+
1

ν

)

E(Pνg)E(Pνg)T
)

,

where Iν , Pν and g were defined in Lemma 10, and the expectation is taken over the data-pdf pd.

Proof As the expectation E∇θJT (θ!) is zero, the variance is given by E∇θJT (θ!)∇θJT (θ!)T .
Multiplying out gives

Var∇θJT (θ!) =
1

T 2
d

E





Td
∑

t=1

(1−h(xt;θ
!))g(xt)

Td
∑

t=1

(1−h(xt;θ
!))g(xt)

T



−

1

T 2
d

E





Td
∑

t=1

(1−h(xt;θ
!))g(xt)

Tn
∑

t=1

h(yt;θ
!)g(yt)

T



−

1

T 2
d

E





Tn
∑

t=1

h(yt;θ
!)g(yt)

Td
∑

t=1

(1−h(xt;θ
!))g(xt)

T



+

1

T 2
d

E

[

Tn
∑

t=1

h(yt;θ
!)g(yt)

Tn
∑

t=1

h(yt;θ
!)g(yt)

T

]

.
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Since the samples are all independent from each other, we have

Var∇θJT (θ!) =
1

T 2
d

Td
∑

t=1

E
[

(1−h(xt;θ
!))2g(xt)g(xt)

T
]

+

1

T 2
d

Td
∑

t,τ=1
t&=τ

E[(1−h(xt;θ
!))g(xt)]E

[

(1−h(xτ ;θ!))g(xτ )T
]

−

1

T 2
d

Td
∑

t=1

Tn
∑

τ=1

E[(1−h(xt;θ
!))g(xt)]E

[

h(yτ ;θ!)g(yτ )T
]

−

1

T 2
d

Tn
∑

t=1

Td
∑

τ=1

E[h(yt;θ
!)g(yt)]E

[

(1−h(xτ ;θ!))g(xτ )T
]

+

1

T 2
d

Tn
∑

t,τ=1
t&=τ

E[h(yt;θ
!)g(yt)]E

[

h(yτ ;θ!)g(yτ )T
]

+

1

T 2
d

Tn
∑

t=1

E
[

h(yt;θ
!)2g(yt)g(yt)

T
]

.

As we assume that all xt, and also yt, are identically distributed, the above expression simplifies to

Var∇θJT (θ!) =
1

Td

∫

(1−h(u;θ!))2g(u)g(u)T pd(u)du +

T 2
d −Td

T 2
d

mxmT
x −

TdTn

T 2
d

mxmT
y −

TdTn

T 2
d

mymT
x +

T 2
n −Tn

T 2
d

mymT
y +

Tn

T 2
d

∫

h(u;θ!)2g(u)g(u)T pn(u)du, (34)

where

mx =
∫

(1−h(u;θ!))g(u)pd(u)du,

my =
∫

h(u;θ!)g(u)pn(u)du.

Denoting by A the sum of the first and last line of Equation (34), we have

A =
1

Td

∫

g(u)g(u)T
[

(1−h(u;θ!))2pd(u)+h(u;θ!)2νpn(u)
]

du

since Tn = νTd. Now, Equation (27) and pm(u;θ!) = pd(u) imply that

(1−h(u;θ!))2pd(u)+h(u;θ!)2νpn(u) =
νpn(u)pd(u)

pd(u)+νpn(u)

= Pνpd(u),
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so that

A =
1

Td

∫

g(u)g(u)T Pνpd(u)du

=
1

Td
Iν .

Denote by B the second line of Equation (34). Rearranging the terms, we have

B = mx

∫

[(1−h(u;θ!))pd(u)−h(u;θ!)νpn(u)]g(u)T du −

1

Td
mxmT

x . (35)

Again, Equation (27) and pm(u;θ!) = pd(u) imply that

(1−h(u;θ!))pd(u) = h(u;θ!)νpn(u)

=
νpn(u)pd(u)

pd(u)+νpn(u)

= Pνpd(u),

so that the first line in Equation (35) is zero and

mx =
∫

Pνg(u)pd(u)du.

The term B is thus

B = −
1

Td

∫

Pνg(u)pd(u)du

∫

Pνg(u)T pd(u)du.

Denote by C the third line of Equation (34). Rearranging the terms, we have with Tn = νTd

C = −
ν

Td
mymT

y +νmy(νmT
y −mT

x ).

The term νmy is with Equation (27) and pm(u;θ!) = pd(u)

νmy =
∫

Pνg(u)pd(u)du,

so that νmy = mx, and hence

C = −
1

νTd
(νmy)(νmT

y )

=
1

ν
B.

All in all, the variance Var∇θJT (θ!) is thus

Var∇θJT (θ!) = A+B +C

=
1

Td

(

Iν −
(

1+
1

ν

)

E(Pνg)E
(

PνgT
)

)

,

where
E(Pνg) =

∫

Pνg(u)pd(u)du.
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A.4.2 PROOF OF THE THEOREM

We are now ready to give the proof of Theorem 3.
Proof Up to terms of order O(||θ̂T −θ!||2), we have with Lemma 11

√

Td(θ̂T −θ!) = −H−1
J

√

Td∇θJT (θ!).

By Lemma 12,HJ
P→ −Iν for large sample sizes Td. Using Lemma 13 and Lemma 14, we see that

√

Td∇θJT (θ!)

converges in distribution to a normal distribution of mean zero and covariance matrix

Iν −
(

1+
1

ν

)

E(Pνg)E(Pνg)T ,

which implies that
√

Td(θ̂T − θ!) converges in distribution to a normal distribution of mean zero
and covariance matrixΣ,

Σ = I−1
ν −

(

1+
1

ν

)

I−1
ν E(Pνg)E(Pνg)T I−1

ν .

Appendix B. Calculations

The following sections contain calculations needed in Section 3.3 and Section 5.3.

B.1 Theory, Section 3.3: Asymptotic Variance for Orthogonal ICA Model

We calculate here the asymptotic covariance matrix of the estimation error for an orthogonal ICA
model when a Gaussian distribution is used as noise distribution in noise-contrastive estimation.
This result is used to make the predictions about the estimation error in Section 3.3. The calculations
show that the asymptotic variance does not depend on the mixing matrix but only on the dimension
of the data. Similar calculations can be used to show that this also holds for maximum likelihood
estimation.

A random variable x following an ICA model with orthogonal mixing matrix A = (a1 . . .an)
has the distribution

pd(x) =
1

Z

n
∏

i=1

f(aT
i x),

where Z is the partition function. By orthogonality ofA,

pd(Ax) =
1

Z

n
∏

i=1

f(xi),

which equals ps(x) where ps is the distribution of the sources s of the ICA model. Also by or-
thogonality of A, the noise distribution pn with the same covariance as x is the standard normal
distribution. In particular, pn(Ax) = pn(x).
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For the calculation of the asymptotic variance, we need to compute the matrix Iν which occurs
in Theorem 2, Iν =

∫

g(u)g(u)T Pν(u)pd(u)du . With the above data and noise distribution,
Pν(u) has the property that

Pν(Au) =
νpn(Au)

pd(Au)+νpn(Au)

=
νpn(u)

ps(u)+νpn(u)
.

Hence Pν(Au) does not depend on A. Below, we will denote Pν(Au) by P̃ν(u). For the ICA
model, the vector g(u) has the form

g(u) = (g1(u), . . . ,gn(u),gc(u))T

where gi(u) = ∇ai
lnpm(u) = f ′(aT

i u)u and gc(u) = ∂c lnpm(u) = 1. By orthogonality ofA, we
have

gi(Au) = Af ′(ui)u.

We denote the vector f ′(ui)u by g̃i(u) so that gi(Au) = Ag̃i(u). Hence,

g(Au) = A(g̃1(u), . . . , g̃n(u),1)T

whereA is a block-diagonal matrix with nmatricesA on the diagonal and a single 1 in the (n+1)-
th slot. As a shorthand, we will denote g(Au) byAg̃(u).

With these preliminaries, using the change of variables u = Av,

Iν =
∫

pd(u)g(u)g(u)T Pν(u)du

=
∫

ps(v)Ag̃(v)g̃(v)T AT P̃ν(v)dv

= AĨνAT ,

where the matrix
Ĩν =

∫

ps(v)g̃(v)g̃(v)T P̃ν(v)dv

does not depend on the mixing matrix A but only on the distribution of the sources s, the noise
distribution pn, and ν. Moreover, by orthogonality ofA, the inverse of Iν is given by

I−1
ν = AĨ

−1

ν AT .

The same reasoning shows that
∫

pd(u)Pν(u)g(u)du = A

∫

ps(v)g̃(v)P̃ν(v)dv,

which we will denote below by Am̃. Again, m̃ does not depend on A. Hence, the asymptotic
covariance matrix Σ,

Σ = I−1
ν −

(

1+
1

ν

)

I−1
ν E(Pνg)E(Pνg)T I−1

ν ,
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in Theorem 3 is for the ICA model with orthogonal mixing matrixA given by

ΣortICA = A

[

Ĩ
−1

ν −
(

1+
1

ν

)

Ĩ
−1

ν m̃m̃T Ĩ
−1

ν

]

AT .

The block matrix A is orthogonal since A is orthogonal. The asymptotic variance, that is the trace
of ΣortICA, does hence not depend onA.

B.2 Natural Images, Section 5.3: Optimal Stimuli

We show here that the optimal stimulus, namely the image which yields the largest feature output for
featurew while satisfying the sphere constraints in Equation (22), is proportional toV−(w−〈w〉).
The term 〈w〉 denotes the average value of the elements in the vector w.

Each coordinate vector x defines an image i = V−x, see Equation (23). The optimal image is
thus i∗ = V−x∗ where x∗ is the solution to the optimization problem

max
x

wT x

subject to
∑n

k=1 x(k) = 0 and 1/(n−1)
∑n

k=1 x(k)2 = 1, which are the constraints in Equation (22).
The Lagrangian associated with this constrained optimization problem is

L(x,λ,ω) = wT x −λ

(

1

n−1

n
∑

k=1

x(k)2 −1

)

−ω
n
∑

k=1

x(k)

The maximizing x∗ is x∗ = (n−1)/(2λ)(w−ω). Taking ω such that the constraint
∑n

k=1 x∗(k) = 0
is fulfilled gives

x∗ =
n−1

2λ
(w −〈w〉).

Hence, the optimal image i∗ is proportional toV−(w −〈w〉).
Note that if we had a norm constraint on i instead of the constraints in Equation (22), the

Lagrangian would be

L̃(x,λ) = wT x −λ

(

n
∑

k=1

x(k)2dk −1

)

where we have used that iT i = xT V−T
V−x = xT Dx. The n × n matrix D is diagonal with the

eigenvalue dk of the covariance matrix of the natural image patches as k-th element. The opti-
mal x would thus be x̃∗ = 1/(2λ)D−1w so that the optimal image ĩ∗ would be proportional to
V−D−1w = ED−1/2w = VT w, for which we have used the notation w̃ in Section 5.3. Since the
eigenvalues dk fall off with the spatial frequency f (like 1/f2, see for example Hyvärinen et al.,
2009, Chapter 5.6) the norm constraint on i punishes low frequencies more heavily than the con-
straints in Equation (22). As a consequence, the w̃, which are shown in Figure 11(a), are tuned to
high frequencies while the optimal stimuli i∗, shown in Figure 11(b), contain more low frequency
components.

Appendix C. Further Simulation Results

The following sections contain additional simulation results related to Section 4 and Section 5.
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Figure 18: Trade-off between statistical and computational performance for contrastive divergence
(CD).While the algorithms were running, measurements of the estimation error at a
given time were made. The time variable indicates thus the time since the algorithm
was started. Note the difference to Figure 6 where the time indicates the time-till-
convergence. The plots show the median performance over the 100 estimation problems.
CDx y refers to contrastive divergence with xMonte Carlo steps, each using y leapfrog
steps.

C.1 Trade-Off, Section 4: Comparison of the Different Settings of Contrastive and Persistent
Contrastive Divergence

We compare here the different settings of contrastive and persistent contrastive divergence. Since
the two estimations methods do not have an objective function, and given the randomness that is
introduced by the minibatches, choosing a reliable stopping criterion is difficult. Hence, we did not
impose any stopping criterion but the maximal number of iterations. The algorithms had always
converged before this maximal number of iterations was reached, in the sense that the estimation
error did not visibly decrease any more. In real applications, where the true parameters are not
known, assessing convergence based on the estimation error is, however, clearly not possible.

C.1.1 RESULTS

Figure 18 shows that for contrastive divergence, using 20 leapfrog steps gives better results than
using only three leapfrog steps. A trade-off between computation time and accuracy is visible:
running the Markov chains for three Markov steps (CD3 20, in dark green) yields more accurate
estimates than running them for one Markov step (CD1 20, in cyan) but the computations take also
longer.

Figure 19 shows that for the tested schemes of persistent contrastive divergence, using one
Markov step together with 40 leapfrog steps (PCD1 40, in cyan) is the preferred choice for Laplacian
sources; for logistic sources, it is PCD1 20 (shown in light green).
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Figure 19: Trade-off between statistical and computational performance for persistent contrastive
divergence (PCD). The results are plotted in the same way as for contrastive divergence
in Figure 18.

C.2 Natural Images, Section 5: Reducing Computation Time in the Optimization

The objective function JT in Equation (8) is defined through an sample average. In an iterative
optimization scheme, not all the data may be used to compute the average. The reason for using a
smaller subset of the data can lie in memory considerations or in the desire to speed up the compu-
tations. We analyze here what statistical cost (reduction of estimation accuracy) such a optimization
scheme implies. Furthermore, we show that optimizing JT for increasingly larger values of ν re-
duces computation time without affecting estimation accuracy. The presented results were obtained
by using the the nonlinear conjugate gradient algorithm of Rasmussen (2006) for the optimization.

As working example, we consider the unnormalized Gaussian distribution of Section 3.1 for
n = 40. Estimating the precision matrix and the normalizing parameter means estimating 821 pa-
rameters. We use Td = 50000, and ν = 10. We assume further that, for whatever reason, it is
not feasible to work with all the data points at the same time but only with T̃d = 25000 samples
(although for the present example, it is of course possible to use all the data).

C.2.1 RESULTS

The lower black curve in Figure 20(a) shows the performance for the hypothetical situation where
we could use all the data. The mean squared error (MSE) reaches the level which Corollary 4
predicts (dashed horizontal line). This is the smallest error which can be obtained with noise-
contrastive estimation for ν = 10 and Td = 50000. The upper black curve in the same figure shows
the MSE when only a fixed subset with T̃d = 25000 data points is used in the optimization. This
clearly leads to less precise estimates. The performance can, however, be improved by randomly
choosing a new subset of size T̃d after two updates of the parameters (red curve). The improved
performance comes, however, at the cost of slowing down convergence. If the resampling of the
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Figure 20: Analysis of the optimization strategy in Section 5. See Section C.2 for details.

subset is switched at a lower rate, for example, after 10 updates, the speed of convergence stays the
same but the accuracy does not improve (blue curve).

Figure 20(b) shows the proposed optimization strategy, which we also use in Section 5 for the
simulations with natural image data: We iteratively optimize JT for increasingly larger values of ν.
Whenever we increase ν to ν + 1, we also take a new subset. When ν reaches its maximal value,
which is here ν = 10, we switch the subset after two parameter updates. For the other values of
ν, we switch the subsets at a lower rate of 50 iterations. The results for this optimization strategy
are shown in green (curve labelled “iterative optim”). It speeds up convergence while achieving the
same precision as in the optimization with resampled subsets of size T̃d alone (red curve in Figures
(a) and (b)). By resampling new subsets, all the data are actually used in the optimization. However,
the estimation accuracy is clearly worse than when all the data are used at once (as in the lower black
curve). Hence, there is room for improvement in the way the optimization is performed.

C.3 Natural Images, Section 5.4: Details for the Spline-Based One-Layer Model

The one-layer model that we consider here is

lnpm(x;θ) =
n
∑

k=1

f(wT
k x;a1,a2, . . .)+ c,

where the nonlinearity f is a cubic spline. While the two-layer models in Section 5.3 and Section 5.4
were hardcoded to assign the same value to x and −x, here, no symmetry assumption is made. The
parameters are the feature weights wk ∈ Rn, c ∈ R for the normalization of the pdf, as well as
the ai ∈ R for the parameterization of the nonlinearity f . For the modeling of the nonlinearity, its
domain needs to be defined. Its domain is related to the range of its arguments wT

k x. To avoid
ambiguities in the model specification, we constrain the vectors as in Equation (26). Defining f as
a cubic spline on the whole real line is impossible since the number of parameters ai would become
intractable. With the constraint in Equation (26), it is enough to define f only on the interval
[−10 10] as a cubic spline. For that, we use a knot sequence with an equal spacing of 0.1. Outside
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the interval, we define f to stay constant. With these specifications, we can write f in terms of
B-spline basis functions with 203 coefficients a1, . . . ,a203.

C.3.1 RESULTS

The learned features are “Gabor-like” (results not shown). We observed, however, a smaller number
of feature detectors that are tuned to low frequencies. Figure 16(a) in Section 5.4 shows the learned
nonlinearity f (black solid curve) and the random initialization (blue dashed curve). The dashed
vertical lines indicate the interval where 99% of the feature outputs occur for natural image input.
The learned nonlinearity should thus only be considered valid on that interval. The nonlinearity has
two striking properties: First, it is an even function. Note that no such constraint was imposed, so
the symmetry of the nonlinearity is due to the symmetry in the natural images. This result validates
the symmetry assumption inherent in the two-layer models. It also updates a previous result of ours
where we have searched for f in a more restrictive space of functions and no symmetric nonlinearity
emerged (Gutmann and Hyvärinen, 2009). Second, f is not monotonic. The shape of f is closely
related to the sparsity of the feature outputs wT

k x. Since the absolute values of the feature outputs
are often very large or very small in natural images, f tends to map natural images to larger numbers
than the noise input. This means that the model assigns more often a higher probability density to
natural images than to the noise.

C.4 Natural Images, Section 5.5: Refinement of the Thresholding Model

We are taking here a simple approach to the estimation of a two-layer model with spline nonlinearity
f : We leave the feature extraction layers that were obtained for the thresholding model in Section 5.3
fixed, and learn only the cubic spline f . The model is thus

lnpm(x;θ) =
n
∑

k=1

f(yk;a1,a2, . . .)+ c, yk =
n
∑

i=1

Qki(w
T
i x)2,

where the vector θ contains the parameters ai for f and the normalizing parameter c. The knots of
the spline are set to have an equal spacing of 0.1 on the interval [0 20]. Outside that interval, we
define f to stay constant. With that specification, we can write f in terms of 203 B-spline basis
functions. The parameter vector θ ∈ R204 contains then the 203 coefficients for the basis functions
and the parameter c.

C.4.1 RESULTS

Figure 21(a) shows the learned nonlinearity (black solid curve) and its random initialization (blue
dashed curve). The dashed vertical line around y = 4 indicates the border of validity of the nonlin-
earity since 99% of the yk fall, for natural image input, to the left of the dashed line. The salient
property of the emerging nonlinearity is the “dip” after zero which makes f non-monotonic, as the
nonlinearity which emerged in Section 5.4. Figure 21(b) shows the effective nonlinearities fk when
the different scales of the second layer outputs yk and the normalizing parameter c are taken into
account, as we have done in Figure 14(a). We calculated the scale σk by taking the average value
of yk over the natural images. The different scales σk then define different nonlinearities. Incorpo-
rating the normalizing parameter c into the nonlinearity, we obtain the set of effective nonlinearities
fk(y),

fk(y) = f(σky)+ c/n, k = 1, . . .n. (36)
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Figure 21: Refinement of the thresholding model of Section 5.3. Only the nonlinearity was learned,
the features were kept fixed. The features are shown in Figures 11 to 13. (a) Learned
spline (black solid curve) and the initialization (blue dashed curve). The dashed vertical
line indicates the border of validity of the learned nonlinearity since 99% of the yk fall,
for natural image input, to the left of it. (b) The different scales of the yk give rise to a
set of effective nonlinearities fk, as defined in Equation (36). Nonlinearities acting on
low-frequency feature detectors are shown in green (dashed lines), the others in black
(solid lines), as in Figure 14(a).

For the nonlinearities fk, the dip occurs between zero and two. Inspection of Figure 14(b) shows
that the optimal nonlinearities fk take, unlike the thresholding nonlinearities, the distribution of the
second-layer outputs yk fully into account. The region where the dip occurs is just the region where
noise input is more likely than natural image input. This means that the model is assigning more
often a higher probability density to natural images than to the noise.

C.5 Natural Images, Section 5.5: Samples from the Different Models

In Figure 17, we compared images which are considered likely by the different models. In Figure 22,
we show samples that we drew from the models using Markov chains (Hamiltonian Monte Carlo).
Since the models are defined on a sphere, we constrained the Hamilitonian dynamics by projecting
the states after each leapfrog step back onto the sphere. The number of leapfrog steps was set to 100,
and the rejection rate to 0.35 (Neal, 2010, Section 4.4, p.30). The top row shows the most likely
samples while the bottom row show the least likely ones. The least likely samples appear similar
for all models. For the more probable ones, however, the two-layer models lead to more structured
samples than the one-layer models.
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LaplacianThresholding Spline

(a) One-layer models

Refinement SplineThresholding

(b) Two-layer models

Figure 22: Sampling from the learned models of natural images. Figure (a) shows samples from the
one-layer models, Figure (b) shows samples from the two-layer models. The samples
are sorted so that the top ones are the most likely ones while those at the bottom are the
least probable ones. See caption of Table 1 in Section 5.5 for information on the models
used. Samples of the training data and the noise are shown in Figure 9 in Section 5.1.
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Abstract

We consider a model for which it is important, early in processing, to estimate some variables
with high precision, but perhaps at relatively low recall. If some variables can be identified with
near certainty, they can be conditioned upon, allowing further inference to be done efficiently.
Specifically, we consider optical character recognition (OCR) systems that can be bootstrapped
by identifying a subset of correctly translated document words with very high precision. This
“clean set” is subsequently used as document-specific training data. While OCR systems produce
confidence measures for the identity of each letter or word, thresholding these values still produces
a significant number of errors.

We introduce a novel technique for identifying a set of correct words with very high precision.
Rather than estimating posterior probabilities, we bound the probability that any given word is
incorrect using an approximate worst case analysis. We give empirical results on a data set of
difficult historical newspaper scans, demonstrating that our method for identifying correct words
makes only two errors in 56 documents. Using document-specific character models generated from
this data, we are able to reduce the error over properly segmented characters by 34.1% from an
initial OCR system’s translation.1
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1. Introduction

A long-standing desire in classification has been the ability to adapt a model specifically to a given
test instance. For instance, if one had a reliable method for gauging the probability of correctness
of an initial set of predictions, then one could iteratively use the predictions likely to be correct to
refine the classification model and adapt to the specific test distribution. This general strategy has
been considered in the past (Ho, 1998; Hong and Hull, 1995b,c), but particularly within the domain
of computer vision, it has not had much success. We believe that this lack of success stems from
the difficulty of reliably estimating probabilities in the high dimensional vector spaces common in
computer vision. Rather than attempting to reliably estimate probabilities for all predictions, we
instead propose a shift in perspective, focusing on identifying cases where we can reliably bound
probabilities.

We show that this old idea of using a first pass system to identify some reliable samples, which
are then used in turn to train a second pass system, can be quite powerful when the method of
selecting reliable samples is appropriate. In particular, by formally upper bounding the probability
of error in a first pass system, we can select results whose probability of error is not greater than
some very small threshold, leading to the automatic selection of a subset of results of the first
pass system with very low error rate. These results can be considered highly reliable “training
data”, specific to the test distribution, for a second pass system. Using this test-specific training
data, we demonstrate significant error reductions on some difficult OCR problems. Thus, the main
contribution of our paper is the combination of standard bounding techniques with the idea of multi-
pass test-specific classification systems. To our knowledge, there is no preceding work which does
this.

We first describe why adapting a model to a specific test distribution is an important goal, and
in Section 2, discuss our rationale for bounding rather than estimating probabilities.

1.1 Adapting to the Test Distribution

In supervised learning, we are given training data {(xi,yi)} to learn a model capable of predicting
variables y from observations x, and apply this model at test time to new, previously unseen obser-
vations x′. An important implicit assumption in this framework is that the training instances (xi,yi)
are drawn from the same distribution as the test instances (x′,y′). Unfortunately, however, this is
often not the case, and when this assumption is violated, the performance of supervised learning
techniques can decay rapidly.

One natural setting in which this scenario arises is text recognition. In everyday life, we en-
counter a variety of fonts and character appearances that differ widely from each other and may be
entirely new to us, such as in outdoor signs, graffiti, and handwritten messages. Despite not having
appropriate labeled training examples, as humans we would be able to quickly adapt and recognize
such text, whereas a machine learning algorithm would not.

There are several methods of addressing this problem. We may attempt to leverage knowledge
from a closely related task and apply that knowledge to solve the new test problem, as in transfer
learning. Alternatively, we may attempt to explicitly parameterize and model the manner in which
the data varies, as in a hierarchical Bayes model. Instead, we argue for a third, non-parametric
option, inspired by human behavior.

When presented with text in an unusual font, or with a new situation in general, we argue that
humans will first identify elements that they are very confident in their understanding of, based on
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previous experience. For instance, they may be able to identify a particular letter based on similarity
to previously seen fonts or by the occurrence statistics. Once they have done this, they will condition
on this information and use it as an aid to understanding the remaining elements.

Similarly, we argue that a machine learning algorithm could benefit by first understanding, with
very low probability of being incorrect, some subset of the new test instance, and conditioning on
this information as training data specific to the test case.

Ideally, rather than making a hard decision and potentially throwing away useful information,
we would like to maintain a distribution over the possible interpretations, such as a distribution over
the possible characters a particular letter could be. We could then reason probabilistically over the
different joint labelings of all characters to determine a maximum a posteriori estimate. In practice,
however, we believe this has two pitfalls. The first is the difficulty in obtaining accurate distribu-
tions over labels, especially when dealing with very high dimensional data, as we describe later.
These initial errors can then propagate as we do further reasoning. The second is the computational
complexity of performing learning and inference on such distributions over labelings. Instead, by
making a hard decision, we can make learning and inference much more efficient, and make use of
the conditioned information as test-case specific training data with minor modifications to standard
algorithms. In essence, by making hard decisions only where we are very confident of the labeling,
we gain the computational efficiencies associated with making such decisions without the common
risk of making unrecoverable errors.

1.2 Document-Specific OCR

In this paper, we focus on the problem of improving optical character recognition (OCR) perfor-
mance on difficult test cases. In these instances, the non-stationarity between the distribution in the
training examples and distribution in the test cases arises due to factors such as non-standard fonts
and corruption from noise and low resolution.

Applying the reasoning above, we would like to obtain training data from the test documents
themselves. In this paper, we use the output from an OCR program and identify a list of words which
the program got correct. We can then use these correct words to build new, document-specific OCR
models.

While identifying correct words in OCR program output may seem like an easy thing to do, to
our knowledge, there are no existing techniques to perform this task with very high accuracy. There
are many methods that could be used to produce lists of words that are mostly correct, but contain
some errors. Unfortunately, such lists are not much good as training data for document-specific
models since they contain errors, and these errors in training propagate to create more errors later.

Although some classifiers may be robust to errors in the training data, this will be very dependent
on the number of training examples available. For characters such as ’j’ that appear less frequently,
having even a few errors may mean that more than half of the training examples are incorrect. While
we can tolerate some errors in character sets such as ’e’, we cannot tolerate them everywhere.

Thus, it is essential that our error rate be very low in the list of words we choose as correct. As
described below, our error rate is less than 0.002, as predicted by our theoretical bounds, making
our generated lists appropriate for training document-specific models.

We first give some background on why we believe this problem of bounding probabilities to
achieve high-precision, document-specific training data is interesting. In Section 3, we present the
specifics of our method for creating nearly error-free training sets, and give theoretical bounds on the
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probability of error in these sets in Section 4. We then describe how we use the document-specific
model to reduce the error rate in Section 5, and give experimental set-up and results in Section 6.
Finally, we conclude with directions for future research in OCR, as well as potential applications of
our method to other problem domains, in Section 8.

2. Background

Humans and machines both make lots of errors in recognition problems. However, one of the most
interesting differences between people and machines is that, for some inputs, humans are extremely
confident of their results and appear to be well-justified in this confidence. Machines, on the other
hand, while producing numbers such as posterior probabilities, which are supposed to represent
confidences, are often wrong even when posterior probabilities are extremely close to 1.

This is a particularly vexing problem when using generative models in areas like computer
vision and pattern recognition. For example, consider a two class problem in which we are dis-
criminating between two similar image classes, A and B. Because images are so high-dimensional,
likelihood exponents are frequently very small, and small percentage errors in these exponents can
render the posteriors meaningless. For example, suppose that Pr(image|A) = exp(−1000+εA) and
Pr(image|B) = exp(−1005+ εB), where εA and εB represent errors in the estimates of the image
distributions.2 Assuming a roughly equal prior on A and B, if εA and εB are Gaussian distributed
with standard deviation a small proportion (for instance, around 1%) of the magnitude of the expo-
nents, the estimate of the posterior will be extremely sensitive to the error. In particular, we will
frequently conclude, incorrectly, that Pr(B|image) ≈ 1 and Pr(A|image) ≈ 0. This phenomenon,
which is quite common in computer vision, makes it quite difficult to assess confidence values in
recognition problems.

Rather than estimating posterior probabilities very accurately in order to be sure of certain re-
sults, we suggest an alternative. We formulate our confidence estimate as an hypothesis test that a
certain result is incorrect, and if there is sufficient evidence, we reject the hypothesis that the re-
sult is incorrect. As we shall see, this comes closer to bounding the probabilities of certain results,
which can be done with greater confidence, than estimating the probability of results, which is much
more difficult. A critical aspect of our approach is that if there is insufficient evidence to reject a
hypothesis, then we make no judgment on the correctness of the result. Our process only makes
decisions when there is enough evidence, and avoids making decisions when there is not.

One interesting aspect of our work is that we make use of our bounding result as an important
intermediate step in our overall system. In general, bounds given in machine learning are used to
give theoretical justification for pursuing a particular algorithm and to gain insights on why they
work. For instance, variational mean field inference can be viewed as optimizing a lower bound on
the log partition function (Koller and Friedman, 2009).

In contrast, we make active use of our bound to guarantee that our document-specific training
data will be nearly error-free. In this way, our bound plays in an integral role in the system itself,
rather than as an analysis of the system.

2. Such errors are extremely difficult to avoid in high-dimensional estimation problems, since there is simply not enough
data to estimate the exponents accurately.
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2.1 OCR and Document-Specific Modeling

Despite claims to the contrary, getting OCR systems to obtain very high accuracy rates on mod-
erately degraded documents continues to be a challenging problem (Nagy, 2000). One promising
approach to achieving very high OCR accuracy rates is to incorporate document-specific model-
ing (Ho, 1998; Hong and Hull, 1995b,c). This set of approaches attempts to refine OCR models to
specifically model the document currently being processed by adapting to the fonts in the document,
adapting to the noise model in the document, or adapting to the lexicon in the document.

If one had some method for finding a sample of words in a document that were known to be
correct with high confidence, one could effectively use the characters in such words as training data
with which to build document-specific models of the fonts in a document. Resolving this circular-
dependency problem is not easy, however.

To tackle this problem of producing “clean word lists” for document-specific modeling, we
consider a somewhat different approach. Rather than trying to estimate the probability that an inter-
mediate output of an OCR system (like an HMM or CRF) is correct and then thresholding this prob-
ability, we instead form a set of hypotheses about each word in the document. Each hypothesis poses
that one particular word of the first-pass OCR system is incorrect. We then search for hypotheses
that we can reject with high confidence. More formally, we treat a third party OCR system (in this
case, the open source OCR program Tesseract (http://code.google.com/p/tesseract-ocr/)
as a null hypothesis generator, in which each attempted transcription T produced by the OCR sys-
tem is treated as the basis for a separate null hypothesis. The null hypothesis for word T is simply
“Transcription T is incorrect.”. LettingW be the true identity of a transcription T , we notate this as

T %=W.

Our goal is to find as many hypotheses as possible that can be rejected with high confidence.
In this paper, we take high confidence to mean with fewer than 1 error in a thousand rejected
hypotheses. As we mention later, we only make 2 errors in 4465 words in our clean word lists, even
when they come from quite challenging documents.

Before proceeding, we stress that the following are not goals of this paper:
• to present a complete end-to-end system for OCR,

• to produce accurate estimates of the probability of error of particular words in OCR.
Once again, our goal is to produce large lists of clean words from OCR output and demonstrate

how they can be used for document-specific modeling. After presenting our method for produc-
ing clean word lists, we provide a formal analysis of the bounds on the probability of incorrectly
including a word in our clean word list, under certain assumptions. When our assumptions hold,
our error bound is very loose, meaning our true probability of error is much lower. However, some
documents do in fact violate our assumptions.

We analyze this approach, and find that, with modest assumptions, we can bound the probability
that our method produces an error at less than 0.002. Moreover, as a first-step validation of our
general approach, we give a simple method for building a model from the document-specific data
that significantly reduces the character error on a difficult, real-world data set.

We also compare our method with using the built-in confidence measure of a public domain
OCR system, and thresholding this value to produce document-specific training data. We find that
this method produces results that are less consistent and worse at reducing character error than our
method.

367



HUANG, KAE, DOERSCH AND LEARNED-MILLER

2.2 Related Work

Our approach has ties with both prior work in OCR as well as methods outside of OCR, such as in
image retrieval. We give a survey of related work below.

2.2.1 IN OCR

There has been significant work done in making use of the output of OCR in an iterative fashion,
although all different from the work we present here. Kukich (1992) surveyed various methods
to correct words, either in isolation or with context, using natural language processing techniques.
Isolated-word error correction methods analyze spelling error patterns, for example, by deriving
heuristics for common errors or by examining phonetic errors, and attempting to fix these errors
through techniques such as minimum edit distance, n-gram statistics, and neural networks. Context-
dependent word correction methods include using statistical language models such as word n-gram
probabilities to correct errors using neighboring words.

Kolak (2003) developed a generative model to estimate the true word sequence from noisy OCR
output. They assume a generative process that produces words, characters, and word boundaries,
in order to model segmentation and character recognition errors of an OCR system. The model
can be trained on OCR output paired with ground truth and then used to post-process and correct
additional OCR output by finding the set of words, characters, and word boundaries that maximize
the probability of the observed labeling.

Our work is distinguished from the above mentioned methods in that we examine the document
images themselves to build document-specific models of the characters. A similar idea was used
by Hong and Hull (1995a), who examined the inter-word relationships of character patches to help
constrain possible interpretations. Specifically, they cluster whole word images and use majority
voting of the associated OCR labels to decide on the correct output and create character image
prototypes. This information is then used to correct additional errors by examining sub-patterns
(e.g., a word is a prefix of another word) and decompositions of unknown words into known word
patterns using the document images. Our work extends these ideas to produce clean, document-
specific training data that can then be used in other methods, rather than only using potentially
noisy labels through sub-pattern and decomposition analysis.

Our work is also related to a variety of approaches that leverage inter-character similarity in
documents in order to reduce the dependence upon a priori character models. One method for
making use of such information is to treat OCR as a cryptogram decoding problem, which dates
back to Casey (1986) and Nagy (1986). After performing character clustering, decoding can be
performed by a lexicon-based method (Ho and Nagy, 2000) or using hidden Markov models (Lee,
2002); however, such methods are limited by the assumption that characters can be clustered cleanly
into pure clusters consisting of only one character. This particular problem can be overcome by
solving the decoding problem iteratively, using word and character statistics to first decode least
ambiguous characters, then to iteratively decode progressively more difficult characters (Kae and
Learned-Miller, 2009).

An alternative approach to obtaining document-specific character models is presented by Ed-
wards and Forsyth (2005), using an iterative algorithm to extract character templates from high
confidence regions. One major difference is that we provide a theoretical bound on the number of
errors expected using our algorithm to identify highly confident words. Another significant differ-
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ence is that the authors provide a small amount of manually defined training data in their application,
whereas we provide none.

Another method for leveraging inter-character similarity is to perform some type of charac-
ter clustering. Hobby and Ho (1997) perform clustering in order to replace individual, potentially
degraded character images, with a smoothed image over the cluster. Breuel (2003) learns a proba-
bilistic similarity function to perform nearest-neighbor classification of characters.

The inability to attain high confidence in either the identity or equivalence of characters in these
papers has hindered their use in subsequent OCR developments. We hope that the high confidence
values we obtain will spur the use of these techniques for document-specific modeling.

2.2.2 OTHER WORK

Outside of OCR, our work is similar to Leisink and Kappen (2003), which deals with inference in
graphical models for which exact inference is intractable. As an alternative to approximate inference
techniques (which may bound a different quantity, the log partition function), they directly bound the
marginal probabilities at each node in an iterative process called bound propagation. Each iteration
consists of solving a linear program, where some of the constraints are due to bounds computed by
previous iterations.

The end product of bound propagation is an upper and lower bound for each of the marginal
probabilities of the nodes in the graphical model, with no guarantee on the tightness of any particular
bound. In contrast, our work focuses on finding the subset of words for which we can put a very
tight bound on the probability of error, and thus is a different approach under the general idea of
bounding probabilities.

Our work is also related to the problem of covariate shift (Shimodaira, 2000), in which it is
assumed that the conditional distributions p(y|x) remain the same for both the training and test
distributions, but the distribution on the observations p(x) may differ. In this case, letting p0(x) be
the distribution for the training set, and p1(x) be the distribution for a test set, one can reweight the
log likelihood of the training instances with p1(x)

p0(x) . The principal difficulty is estimating this ratio.
In particular, in OCR, test documents may have a range of degradation and noise, and potentially
unseen font models, and thus the support of p0(x) may potentially not contain the support of p1(x),
in which case a re-weighting approach could not be applied. Moreover, noise and font appearance
specific to the test document may also lead to a change in p(y|x) for ambiguous or noisy x. Instead,
our work attempts to identify highly confident labelings (x’,y’) in order to characterize the test-
specific distribution over appearance and labels.

Another area closely related to the method presented in this paper is the meta-recognition work
of Scheirer et al. (2011). They consider the problem of multiclass recognition, such as object or face
recognition. A given test image produces a set of scores indicating how well the test image matched
each class. Since the test image can belong to at most one class, all but the highest returned score
can be used to model the distribution of non-matching scores, specific to the single test image. The
authors use some fraction of the top non-matching scores produced for a test image to model the
tail of the non-matching distribution using extreme value theory, and then use this distribution to
normalize the top matching score.

Similar to our work, the tail distribution that is modeled can be used to attempt to reject the null
hypothesis that the top matching score belongs to the non-matching distribution. Our work differs
in that we specifically focus only on cases where we can reject this null hypothesis with very high
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confidence. To do so, we leverage the appearance of the entire document, which allows us to be
more robust to cases where the test distribution differs substantially from the training distribution.

The idea of identifying objects which can confidently be given a particular label is also an
important component of query expansion in the information retrieval field. Query expansion is a
technique used to add terms to an initial query based on the highly ranking documents of the initial
query. In Chum et al. (2007), query expansion is used for image retrieval where the initial results of
an image query are processed to find resulting images that the system is confident match the initial
query. The confidence in a particular match is evaluated using a spatial verification scheme that is
similar to our consistency check presented below. This verification is critical to query expansion, as
false positives can lead to drift, causing irrelevant features to be added to the expanded query. Later,
we propose a possible extension to see whether our bound analysis can be applied to give a bound
on the probability of a false match passing the spatial verification.

Building models specific to a test image has also been applied in other areas of computer vision.
In work by Nilsback and Zisserman (2007), an initial, general flower model is applied to an image to
segment a flower from the background. This initial segmentation is used to build an image-specific
color model of the foreground flower, and this process of segmentation and color estimation is
iterated until convergence.

Berg et al. (2007) follow a similar approach to image parsing, first extracting a per pixel segmen-
tation of the image, then using pixels with high confidence to learn an image-specific color model
of sky and building. Ramanan (2006) uses an initial edge model to infer the pose of a person in the
image, then uses this to build an image-specific color model, and iterates until convergence. These
methods can be sensitive to the initial steps, underscoring the need for high precision in construct-
ing image-specific models. Sapp et al. (2010) take a slightly different approach by using similarity
between a test image and a set of training exemplars and kernel regression to learn image-specific
model parameters, and then performing inference with the image-specific model.

3. Method for Producing Clean Word Lists

In this section, we present our method for examining a document bitmap and the output of an OCR
system for that document to produce a so-called clean word list, that is, a list of words which we
believe to be correct, with high confidence. Our success will be measured by the number of words
that can be produced, and whether we achieve a very low error rate in the clean list. Ideally, we must
produce a clean word list which is large enough to provide sufficient training data for document-
specific modeling.

We assume the following setup.

• We are provided with a document D in the form of a grayscale image.

• We are provided with an OCR system.

• We further assume that the OCR system provides an attempted segmentation of the docu-
ment D into words, and that the words are segmented into characters. It is not necessary
that the segmentation be entirely correct, but merely that the system produces an attempted
segmentation.

• In addition to a segmentation of words and letters, the system should produce a best guess
for every character it has segmented, and hence, by extension, of every word (or string) it has
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segmented. Of course, we do not expect all of the characters or words to be correct, as that
would make our exercise pointless.

• Using the segmentations provided by the OCR system, we assume we can extract the gray-
valued bitmaps representing each guessed character from the original document image.

• Finally, we assume we are given a lexicon. Our method is relatively robust to the choice of
lexicon, and assumes there will be a significant number of non-lexicon words in the document.

We define a few terms before proceeding. The Hamming distance between two strings of the
same number of characters is the number of character substitutions necessary to convert one string to
the other. The Hamming ball of radius r for a wordW , Hr(W ), is the set of strings whose Hamming
distance toW is less than or equal to r. Later, after defining certain equivalence relationships among
highly confusable characters such as ’o’ and ’c’, we define a pseudo-Hamming distance which is
equivalent to the Hamming distance except that it ignores substitutions among characters in the
same equivalence class. We also use the notions of edit distance, which extends Hamming distance
by including joins and splits of characters, and pseudo-edit distance, which is edit distance using
the aforementioned equivalence classes.

Our method for identifying words in the clean list has three basic steps. We consider each word
T output by the initial OCR system.

1. If T is not in the lexicon, we discard it and make no attempt to classify whether it is correct.
That is, we do not put it on the clean word list.3

2. Given that T is a lexicon word, we evaluate whether H1(T ) is non-empty, that is, whether
there are any lexicon words for which a single change of a letter can produce T . If H1(T ) is
non-empty, we discard T and again make no attempt to classify whether it is correct.

3. Assuming we have passed the first two tests, we now perform a consistency check (described
below) of each character in the word. If the consistency check is passed, we declare the word
to be correctly recognized and include it in the clean list.

3. Why is it not trivial to simply declare any output of an OCR system that is a lexicon word to be highly confident?
The reason is that OCR systems frequently use language models to project uncertain words onto nearby lexicon
words. For example, suppose the original string was “Rumpledpigskin”, and the OCR system, confused by its initial
interpretation, projected “Rumpledpigskin” onto the nearest lexicon word “Rumplestiltskin”. A declaration that this
word is correct would then be wrong. However, our method will not fail in this way because if the true string were
in fact “Rumpledpigskin”, the character consistency check would never pass. It is for this reason that our method is
highly non-trivial, and represents a significant advance in the creation of highly accurate clean word lists.

We could potentially restrict our attention to OCR systems that did not project onto lexicon words, or for which
it is possible to access intermediate results prior to such projection. For such results, it is much more likely that a
word labeled as a lexicon word with an empty Hamming ball of some radius is, in fact, correctly labeled. We choose
not to make such a restriction, both so that our method is more general, and because projecting uncertain words to
nearby lexicon words can often substantially increase the labeling accuracy. In other words, by only considering
labelings obtained without such projection, we may find far fewer words that we can confidently classify as being
correctly labeled, due to the lower accuracy of the initial OCR system. The benefit of using a lexicon is evident in the
scene text recognition work of Weinman et al. (2009). In this work, simply forcing all predicted words to be lexicon
words led to a 3 percentage point increase in word accuracy, and incorporating factors with lexicon information into
the probability model led to an additional 5 percentage point increase in word accuracy. By performing a more robust
analysis than accepting lexicon words, our method is equally applicable to sophisticated OCR systems that make use
of lexicon information.
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3.1 Consistency Check

In the following discussion, we use the term glyph to refer to a rectangular portion of an image that
is likely to be a single character, but may be only a portion of a character, multiple characters, or a
stray mark. LetWj be the true character class of the jth glyph of a wordW , and let Tj be the initial
OCR system’s interpretation of the same glyph. The goal of a consistency check is to ensure that the
OCR system’s interpretation of a glyph is reliable. We will assess reliability by checking whether
other similar-looking glyphs are usually interpreted the same by the OCR system.

To understand the purpose of the consistency check, consider the following situation. Imagine
that a document contains a stray mark that does not look like any character at all, but was interpreted
by the initial OCR system as a character. If the OCR system thought that the stray mark was a
character, it would have to assign it to a character class like ’t’. We would like to detect that this
character is unreliable. Our scheme for doing this is to find other characters that are similar to this
glyph, and to check the identity assigned to those characters by the initial OCR system. If a large
majority of those characters are given the same interpretation by the OCR system, then we consider
the original character to be reliable. Since it is unlikely that the characters closest to the stray mark
are clustered tightly around the true character ’t’, we hope to detect that the stray mark is atypical,
and hence unreliable.

More formally, to test a glyph g for reliability, we first find the M glyphs in the document that
are most similar to g (using normalized correlation as the similarity measure). If a fraction θ of the
M glyphs most similar to g have the character label c, then we say that the glyph g is θ-dominated
by c. More precisely, we run the following procedure:

// n : vector storing the counts for each character c.
// L : set of character labels.
// M : number of glyphs to compare to.
n[c]← 0, ∀c ∈ L
for i← 1 to M do

c← label of character ith most similar to g
n[c] = n[c]+1
if n[c]i+1 > θ then
return g is θ-dominated by c

end
end
return g is undominated

Algorithm 1: Consistency check algorithm.

There are three possible outcomes of the consistency check. The first is that the glyph g is dominated
by the same class c as the OCR system’s interpretation of g, namely Tj. The second outcome is that g
is dominated by some other class that does not match Tj. The third outcome is that g is undominated,
meaning that the neighbors of g are relatively inconsistent. In the latter two cases, we declare the
glyph g to be unreliable. The interpretation of glyph g is reliable only if g is dominated by the same
class as the original OCR system. Furthermore, a word is included in the clean list only if all of the
characters in the word are reliable.

The constants used in our experiments were M = 20 and θ = 0.66. That is, we compared
each glyph against a maximum of 20 other glyphs in our reliability check, and we insisted that a
“smoothed” estimate of the number of similarly interpreted glyphs was at least 0.66 before declaring
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a character to be reliable. We now analyze the probability of making an error in the clean set, under
a specific set of assumptions.

4. Theoretical Bound

For a word in a document, let W be the ground truth label of the word and T be the initial OCR
system’s labeling of the word. Consider the problem of trying to estimate the probability that the
labeling was correct, P(W = wt |T = wt). It is difficult to formulate a bound or performance guaran-
tee on such an estimate, due to the non-stationarity in the sequence of words. The distribution and
appearance of words is dependent on the topics and fonts present in the document containing the
words, and any noise in the document, which may range from local, such as stray marks, to global,
such as low contrast. Therefore, we would not be able to rely on a general i.i.d. assumption on the
words.

Rather than attempting to estimate the probability that the labeling was correct, we circumvent
the above problems by focusing on bounding the probability for a subset of words. Let C be a
binary indicator equal to 1 if the word passed the consistency check. We want to upper bound the
probability Pr(W %= wt |T = wt ,C = 1) when wt is a lexicon word and has an empty Hamming ball
of size 1. We decompose the probability into three terms:

Pr(W %= wt |T = wt ,C = 1) = ∑
w %=wt

Pr(W = w|T = wt ,C = 1)

= ∑
w %=wt ,w∈Lex

Pr(W = w|T = wt ,C = 1)

+ ∑
w %=wt ,w/∈Lex

Pr(W = w|T = wt ,C = 1)

= ∑
w %=wt ,w∈Lex,|w|=|wt |

Pr(W = w|T = wt ,C = 1) (1)

+ ∑
w %=wt ,w∈Lex,|w| %=|wt |

Pr(W = w|T = wt ,C = 1)

+ ∑
w %=wt ,w/∈Lex

Pr(W = w|T = wt ,C = 1).

Our approach for bounding this probability will be to individually bound the three terms in
Equation 1. The first term considers all words in the lexicon with the same length as wt , and
accounts for the most likely type of error. The second term considers all words in the lexicon,
but with a different length from wt , and so considers many more possible words resulting from
segmentation errors, but each of which is much less likely to occur. Finally the third term considers
words not in the lexicon, each of which occurs even less frequently.

To bound the first term, we can consider all words of a given Hamming distance i from wt . Our
strategy will then be to bound the contribution to the error from all words of Hamming distance i,
enabling us to bound the total error as the sum of a geometric series. We can then follow the same
approach to bound the next two terms, where we will instead need to consider edit distance rather
than Hamming distance.

In order to bound these terms using a geometric series, we will need two initial steps. We will
need an upper bound on the probability of the consistency check passing for a specific character
when the label is incorrect (2ε), and a lower bound on the probability of the consistency check
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passing when the label is correct (δ). We explain these quantities in the next section. Next, we will
need to relate these bounds on the character consistency check, Pr(C = 1|T = wt ,W ), to the terms
in the geometric series, Pr(W = w|T = wt ,C = 1), which we do in Section 4.2.

4.1 Bounding the Character Consistency Check

We will rewrite the Pr(W = w|T = wt ,C = 1) terms as bounds involving Pr(C = 1|T = wt ,W = w)
using Bayes’ rule. We will make the assumption that the individual character consistency checks are
independent, although this is not exactly true, since there may be local noise that degrades characters
in a word in the same way.

Assume that each character is formed on the page by taking a single true, latent appearance
based on the font and the particular character class and adding some amount of noise. Let ε be
an upper bound on the probability that noise has caused a character of any given class to look like
it belongs to another specific class other than its own class. More formally, letting pc(a) be the
probability of a character appearance a for a given class c under the noise model, ε satisfies, for all
character classes c1,c2,c1 %= c2,

ε>
∫
a|pc1 (a)<pc2 (a)

pc1(a)da. (2)

In order to obtain a small value for ε, and hence later a small probability of error, we revise
Equation 2 to be a bound only on non-confusable character classes. In other words, since some
character classes are highly confusable, such as ’o’, ’c’, and ’e’, we ignore such substitutions when
computing Hamming and edit distance. We’ll refer to these distances as pseudo distances, so “mode”
and “mere” have a true Hamming distance of 2 but a pseudo-Hamming distance of 1.

This is similar to defining an equivalence relation where confusable characters belong to the
same equivalence class, and computing distance over the quotient set, but without transitivity, as,
for example, ’h’ may be confusable with ’n’, and ’n’ may be confusable with ’u’, but ’h’ may not
necessarily be confusable with ’u’.

For a character to pass a consistency check with the label c2 when the true underlying label is
c1, roughly one of two things must happen: (a) either the character was corrupted and looked more
like c2 than c1, or (b) some number of other characters with label c2 were corrupted and looked like
c1’s.

The probability (a) is clearly upper bounded by ε, since it requires both the corruption and most
of its neighbors to have the same label c2. Since ε) 1 and (b) requires several other characters
with label c2 to be corrupted to look like c1, the probability of (b) should be bounded by (a), and
thus ε, as well. Therefore the probability of the consistency check giving a label c2 when the true
underlying label is c1 is less than 2ε, for any classes c1,c2.

We will also need a lower bound on the probability that a character consistency check will
succeed if the OCR system’s label of the character matches the ground truth label. Let δ be a lower
bound on this quantity, which is dependent on both the amount of noise in the document and the
length of the document. (The latter condition is due to the fact that the character consistency check
requires a character to match to at least a certain number of other similarly labeled characters, so,
for example, if that number is not present in the document to begin with, then the check will fail
with certainty.)
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4.2 Bounding One Term

Consider bounding Pr(W = w|T = wt ,C = 1):

Pr(W = w|T = wt ,C = 1)

=
Pr(C = 1|T = wt ,W = w)Pr(W = w|T = wt)

∑w′ Pr(C = 1|T = wt ,W = w′)Pr(W = w′|T = wt)

=
Pr(C = 1|T = wt ,W = w)Pr(T = wt |W = w)Pr(W = w)

∑w′ Pr(C = 1|T = wt ,W = w′)Pr(T = wt |W = w′)Pr(W = w′)

≤
Pr(C = 1|T = wt ,W = w)Pr(T = wt |W = w)Pr(W = w)
Pr(C = 1|T = wt ,W = wt)Pr(T = wt |W = wt)Pr(W = wt)

. (3)

Here the inequality follows from the fact that wt is one of the words being summed over in the
denominator, and hence replacing the sum with only the wt component will make the denominator
less than or equal to the sum.

4.3 Bounding the Probability of Lexicon Words

Recall that wt , the initial OCR system’s word labeling, is a lexicon word with empty pseudo-
Hamming ball of size 1. For lexicon words w, we will assume that

Pr(T = wt |W = w)Pr(W = w)
Pr(T = wt |W = wt)Pr(W = wt)

< 1,

or, equivalently,
Pr(W = w|T = wt)
Pr(W = wt |T = wt)

< 1. (4)

One way to view this is to think of T = wt as a feature. Then, for a reasonable classifier, this
assumption should hold for any document in the training set, as this is simply the Bayes decision
rule. (If the assumption did not hold, then we could increase the training accuracy by predicting w
whenever we saw the feature T = wt .)

Thus, we are assuming that a test document does not differ from the training documents used
to train the initial OCR system so much as to change the most probable word conditioned on the
feature T = wt , as suggested by Equation 4.4 Note that wt has an empty Hamming ball of size 1, so
w differs from wt by at least two letters. For this assumption to be violated, either the document must
be such that at least one letter is consistently interpreted as another, or has an extremely different
prior distribution on words than that of the training set, both of which are unlikely. As we discuss
later, the first case is also problematic for the character consistency check as well, and so falls
outside the scope of documents for which our method will be applicable.

It is important to note that this does not imply that the word accuracy need be particularly high,
for example, if all the words have the same prior probability of occurring, then the assumption could
hold for a classifier with accuracy simply better than the chance accuracy of 1

|Lex| , where |Lex| is the
size of the lexicon.

Applying this to Equation 3, we get

Pr(W = w|T = wt ,C = 1) ≤
Pr(C = 1|T = wt ,W = w)
Pr(C = 1|T = wt ,W = wt)

. (5)

4. This assumption is similar to, but slightly weaker than, the assumption made under covariate shift (Shimodaira, 2000).

375



HUANG, KAE, DOERSCH AND LEARNED-MILLER

4.3.1 BOUNDING THE PROBABILITY OF LEXICON HAMMING WORDS

Consider a lexicon word w that is a pseudo-Hamming distance i from wt . We can then simplify
Equation 5 to

Pr(W = w|T = wt ,C = 1) ≤
(2ε)i

δi

by making use of the assumption that the character consistency checks are independent, and that w
and wt only differ in i characters. For those i characters, w does not match the OCR system’s label
and wt does match the OCR system’s label, so we use the bounds 2ε and δ.

Now let Di be the number of lexicon words of pseudo-Hamming distance i away from wt . Let
rD be the rate of growth of Di as a function of i, that is, Di+2 ≤ riDD2. Assume, since ε) 1, that
rD( 2εδ ) <

1
2 .
5 (To produce a final number for our theoretical bound, we later assume that ε < 10−3

and δ2> 10−1. Given these numbers, our assumption becomes rd < 79, which is a very conservative
bound as experiments on the lexicon used in our main experiments showed that rD is generally
bounded by 5.)

To get the total contribution to the error from all lexicon Hamming words, we sum over Di for
all i> 1,

∑
w %=wt ,w∈Lex,|w|=|wt |

Pr(W = w|T = wt ,C = 1) ≤ ∑
i=2

Di
(2ε)i

δi

= D2
(2ε)2

δ2
+D2

(2ε)2

δ2 ∑
i=1

(2rD
ε
δ
)i

≤ 8D2
ε2

δ2
.

4.3.2 BOUNDING LEXICON EDIT WORDS

Traditionally, edit distance is computed in terms of number of substitutions, insertions, and deletions
necessary to convert one string to another string. In our context, a more natural notion may be splits
and joins rather than insertions and deletions. For example, the interpretation of an ’m’ may be split
into an ’r’ and an ’n’, or vice-versa for a join.

The probability that a split or a join passes the consistency check is upper bounded by (2ε)2.
We can see this from two perspectives. First, a split or join has traditional edit distance of 2, since it
requires an insertion or deletion and a substitution (“m” to “mn” insertion followed by “mn” to “rn”
substitution).

A more intuitive explanation is that, for a split, one character must be corrupted to look like the
left hand side of the resulting character and another character corrupted to look like the right hand
side, and for a join, the left hand side of a character must be corrupted to look like one character and
the right hand side corrupted to look like another.

Similar to the case of confusable characters for substitutions, we also ignore confusable charac-
ters for splits and joins, namely ’r’ followed by ’n’ with ’m’, and ’v’ followed by ’v’ with ’w’. Thus,
“corn” and “comb” have an edit distance of 2 but a pseudo-edit distance of 1.

5. Recall that δ, as defined earlier, is a lower bound on the probability that a character consistency check will succeed if
the OCR system’s label of the character is correct.
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Consider a lexicon word w with pseudo-edit distance i from wt , and involving at least one inser-
tion or deletion (so |w| %= |wt |). Similar to the lexicon Hamming words, we can simplify Equation 5
for w as

Pr(W = w|T = wt ,C = 1) ≤
(2ε)i+1

δi
,

since each substitution contributes a 2εδ and each insertion or deletion, of which there is at least one,
contributes a (2ε)2

δ .
Let Ei be the number of lexicon words w with a pseudo-edit distance i away from wt and |w| %=

|wt |. Again, also assume that rE , the rate of growth of Ei, satisfies rE( 2εδ ) <
1
2 . Summing the total

contribution to the error from lexicon edit words,

∑
w %=wt ,w∈Lex,|w| %=|wt |

Pr(W = w|T = wt ,C = 1) ≤ ∑
i=1

Ei
(2ε)i+1

δi

= E1
(2ε)2

δ
+E1

(2ε)2

δ ∑
i=1

(2rE
ε
δ
)i

≤ 8E1
ε2

δ

≤ 8E1
ε2

δ2
.

4.4 Bounding Non-Lexicon Words

Let Ni be the set of non-lexicon words with a pseudo-edit distance i from wt , and let pi =
Pr(T=wt |W∈Ni)Pr(W∈Ni)
Pr(T=wt |W=wt)Pr(W=wt) . Assume the rate of growth of rN of pi satisfies rN(

2ε
δ )<

1
2 .

Rearranging Equation 3 and summing over all non-lexicon words:

∑
w %=wt ,w/∈Lex

Pr(W = w|T = wt ,C = 1)

≤∑
i=1
∑
w∈Ni

Pr(C = 1|T = wt ,W = w)Pr(W = w|T = wt)
Pr(C = 1|T = wt ,W = wt)Pr(W = wt |T = wt)

≤∑
i=1
∑
w∈Ni

(2ε)i

δi
Pr(W = w|T = wt)
Pr(W = wt |T = wt)

=∑
i=1

(2ε)i

δi
Pr(W ∈ Ni|T = wt)
Pr(W = wt |T = wt)

=∑
i=1

(2ε)i

δi
pi

≤ p1
2ε
δ
+ p1

2ε
δ ∑i=1

(2rN
ε
δ
)i

≤ 4p1
ε
δ2

.
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4.5 Final Bound

Combining each of the individual bounds derived above, we have

Pr(W %= wt |T = wt ,C = 1) ≤
(8D2+8E1)ε2+4p1ε

δ2
.

To use this in practice, we need to set some realistic (but conservative) values for the remaining
constants. For ε< 10−3, 8D2+8E1 < 102, 4p1 < 10−1, δ2 > 10−1,

Pr(W %= wt |T = wt ,C = 1) ≤ 2 ·10−3.

The bounds for the constants chosen above were selected conservatively to hold for a large range
of documents, from very clean to moderately noisy. Not all documents will necessarily satisfy
these bounds. In a sense, these inequalities define the set of documents for which our algorithm
is expected to work, and for heavily degraded documents that fall outside this set, the character
consistency checks may no longer be robust enough to guarantee a very low probability of error.

Our final bound on the probability of error, 0.002, is the result of a worst case analysis under
our assumptions. If our assumptions hold, the probability of error will likely be much lower for the
following reasons. For most pairs of letters, ε = 10−3 is not a tight upper bound. The quantity on
the right of Equation 4 is typically much lower than 1. The rate of growths rD,rE ,rN are typically
much lower than assumed. The bound on p1, the non-lexicon word probabilities, is not a tight upper
bound, as non-lexicon words mislabeled as lexicon words are rare. Finally, the number of Hamming
and edit distance neighbors D2 and E1 will typically be less than assumed.

On the other hand, for sufficiently noisy documents, and certain types of errors, our assumptions
do not hold. Some of the problematic cases include the following. As discussed, the assumption that
the individual character consistency checks are independent is not true. If a document is degraded or
has a font such that one letter is consistently interpreted as another,6 then that error will likely pass
the consistency check (i.e., ε will be very large). If a document is degraded or is very short, then δ
may be much smaller than 10− 1

2 . (The character consistency check requires a character to match to
at least a certain number of other similarly labeled characters, so, for example, if that number isn’t
present in the document to begin with, then the check will fail with certainty.) Finally, if the lexicon
is not appropriate for the document then 4p1 < 10−1 may not hold. This problem is compounded if
the OCR system projects to lexicon words. Still these assumptions appear to hold for a wide range
of documents.

5. Character Recognition

To validate the utility of our clean word lists, we implemented a simple technique for constructing
document-specific character appearance models, using SIFT features (Lowe, 2004),7 and demon-
strated that this model can be used to significantly reduce character error in the remainder of the
document. We refer to our algorithm as SIFT Align. In the future, we believe these clean word
lists can be incorporated into more sophisticated document-specific OCR models to obtain further
improvements in recognition accuracy, as we discuss in future work.

6. It should be noted that the probability of such an error (consistently interpreting one letter as another) is substantially
reduced by using a language model, for example, projecting uncertain words to nearby lexicon words.

7. A SIFT feature is essentially computed by dividing the image into a set of non-overlapping patches, and computing
a histogram over edge orientations weighted by edge strength, for each patch.
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We use the traditional SIFT descriptor without applying the Gaussian weighting because we did
not want to weight the center of an image more highly than the rest. In addition, we fix the scale to
be 1 and orientation to be 0 at all times. The SIFT Align procedure is presented below:

1. Compute the SIFT descriptor for each character image in the clean list, at the center of the
image.

2. Compute the component-wise arithmetic mean of all SIFT descriptors for each character class
in the clean list. These mean descriptors are the “representations” (or character models) of
the respective classes.

3. For each character image in the clean list, compute a SIFT descriptor for each point in a
window in the center of the image (we use a 5x5 window) and select the descriptor with
smallest L2 distance to the mean SIFT descriptor for this character class. This aligns each
character’s descriptor to the mean class descriptor.

4. Test images are defined as follows. We start by collecting all character images that are not
in the clean list (since we do not want to test on images we trained on). We also filter the
test images as follows. If Tesseract gives a label to an image that is not a label for any of the
clean set characters, then we do not include this character in our test set. The rationale for
this is the following. Since our method will only assign to a character a label that appears in
the clean set, then if the character was originally correct, we will definitely introduce an error
by attempting to correct it. Furthermore, we have no direct information about the appearance
of characters whose labels are not in the clean set, so it is relatively difficult to assess if the
original label is unreasonable. For these reasons, we only attempt to correct characters whose
Tesseract label appears as one of the clean set labels.

5. For each test image, again compute a 5x5 window of 25 SIFT descriptors, and select the
descriptor which has minimum L2 distance to any of the mean descriptors. This aligned
descriptor is the final descriptor for the test image.

6. Pass the SIFT descriptors for the training/test images found in the previous steps to a multi-
class SVM.

In summary, this classifier can be described as simply using an SVM with SIFT descriptors, except
that care is taken to align characters as well as possible for both training and testing. We use
the SVMmulticlass implementation8 of multiclass SVM (Tsochantaridis et al., 2004) and use a high
C value of 5,000,000, which was selected through cross-validation. This makes sense since we
generally do not have many instances of each character class in the clean list, and so we want a
minimum of slack, which a high C value enforces.

6. Experiments

In this section, we describe three types of experiments. First, we show that our procedure for
generating clean sets achieves the very low error rate predicted by our bounds. Next, we show that
for a collection of 56 documents, using the clean sets to train new, document-specific classifiers

8. SVM implementation can be found at http://svmlight.joachims.org/.
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Figure 1: Thick blue boxes indicate clean list words. Dashed red boxes indicate Tesseract’s confi-
dent word list. Thin green boxes indicate words in both lists. Despite being in Tesseract’s
list of high confidence words, “timber” is misrecognized by Tesseract as “timhcr”. All
other words in boxes were correctly translated by Tesseract. (Best viewed in color.)

significantly reduces OCR errors over the initial OCR system used. Finally, we show what happens
if a traditional measure of confidence is used to select a document-specific training set. In particular,
we show that our clean sets have far fewer errors and result in document-specific models that can
correct a much larger number of errors in the original OCR output.

6.1 Initial Clean Set Experiments

We experimented with two sets of documents. The first set consists of 10 documents from the
JSTOR archive9 and Project Gutenberg.10 This initial set of documents was used to evaluate our
clean list generation algorithm and develop our algorithm for producing character models from the
clean lists (Kae et al., 2009). In this work, our clean lists selected an average of 6% of the words
from each document. These clean lists did not contain a single error, that is, the precision of our
clean lists was 100%. This strongly supports our theoretical bounds established in Section 4.

9. JSTOR can be found at http://www.jstor.org.
10. Project Gutenberg can be found at http://www.gutenberg.org/.
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Figure 2: Character error reduction rates for SIFT Align using the clean list (SIFT Align Clean)
and Tesseract’s confident word list (SIFT Align Tess) on the test sets of 56 documents.
SIFT Align Clean increases the error rate in 10 documents whereas SIFT Align Tess
increases the error rate in 21 documents.

6.2 Correcting OCR Errors

After establishing the basic viability of the clean set procedure, we selected another set of documents
on which to test our end-to-end system of generating clean sets, using them to build document-
specific models, and using these models, in turn, to correct errors made by the original OCR system.

The second set of documents, used for performance evaluation of the SIFT Align algorithm, are
56 documents taken from the Chronicling America11 archive of historical newspapers. Since our
initial OCR system (Tesseract) can only accept blocks of text and does not perform layout analysis,
we manually cropped out single columns of text from these newspaper pages. Other than cropping
and converting to the TIFF image format for Tesseract, the documents were not modified in any
way. There are on average 1204 words per document. The clean list contains 2 errors out of a total
of 4465 words, within the theoretical bound of 0.002 mentioned earlier.

In an effort to increase the size of the clean lists beyond 6% per document, we experimented with
relaxing some of the criteria used to select the clean lists. In particular, we allowed the Hamming
ball of radius 1 for a word to be non-empty as long as the words within the ball did not appear within
the original OCR system’s translation. By making this small change, we were able to increase the
size of the clean lists to an average of 18% per document while introducing at most one error per
document. We refer to the original clean lists as conservative clean lists and to the modified, larger,

11. Documents can be found at http://chroniclingamerica.loc.gov/.
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Figure 3: Sample of results from two documents. A thin green box indicates both the initial OCR
system (Tesseract) and SIFT Align correctly classified the character. A dashed red box
indicates both systems misclassified the character, and a thick blue box indicates that
SIFT Align classified the character correctly and Tesseract misclassified it. In this ex-
ample, there are no cases shown where Tesseract correctly classified a character and
SIFT Align misclassifies it. (Best viewed in color.)

and slightly less accurate clean lists as aggressive clean lists. We decided to use the aggressive clean
lists for our experiments because they contain few errors and there are more character instances.12
From this point, our use of “clean list” refers to the aggressive clean list.

We then ran Tesseract on all documents, obtaining character bounding boxes13 and guesses
for each character. Next, we used Mechanical Turk14 to label all character bounding boxes to
produce a ground truth labeling. We instructed annotators to only label bounding boxes for which a
single character is clearly visible. Other cases (multiple characters in the bounding box or a partial
character) were discarded.

After the initial OCR system was used to make an initial pass at each document, the clean
list for that document was extracted. Character recognition was then performed as described in
Section 5. Even though many of the characters were already recognized correctly by the original

12. To account for the looser criteria of the aggressive set, we would need to add a term to the theoretical bound that
considers the probability of error due to the true labeling of the word being a neighbor of Hamming distance 1 from
the OCR system’s interpretation. This term would be D1q 2εδ , where D1 is the number of neighbors of Hamming
distance 1, and q is the probability that a word that was not detected anywhere in the document actually appears in
the document. Given our assumed bounds of ε < 10−3, δ2 > 10−1, if we further assume D1q to be conservatively
bounded by 0.3, then using the aggressive criteria doubles the probability of error to 0.004.

We note that the assumptions we make to produce the theoretical bound are very conservative. This leaves
room for some experimentation to find the optimal balance between probability of error and clean set size, while still
maintaining an empirical error close to the predicted bound of 0.002.

13. This feature is not available out of the box; we edited the source code.
14. Mechanical Turk can be found at https://www.mturk.com/mturk/welcome.
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OCR system, our approach improves the recognition to produce an even higher accuracy than the
original OCR system’s accuracy, on average. As shown in the next section, in most cases, this
resulted in correcting a significant portion of the characters in the documents.

6.3 Comparison to Another Confidence Measure

In order to judge the effectiveness of using our clean list, we also generated another confident word
list using Tesseract’s own measure of confidence.15 To generate the confident word list, we sort
Tesseract’s recognized words by their measure of confidence and take the top n words that result in
the same number of characters as our clean list.

In Figure 1, we show a portion of a document and the corresponding subset of clean list words
(generated by our process) and highly confident Tesseract words. All of the words in our clean list
were, in fact, correctly labeled by the initial Tesseract pass. In other words, our clean list for this
example was error free. But Tesseract’s high confidence word list includes “timber” which was
mistranslated by Tesseract.

We refer to the SIFT Align algorithm using our clean list as SIFT Align Clean and the SIFT Align
algorithm using Tesseract’s confidences as SIFT Align Tess. In Figure 2, we show the charac-
ter error reduction rates for both SIFT Align Clean and SIFT Align Tess. In 46 of the 56 docu-
ments, SIFT Align Clean results in a reduction of errors whereas SIFT Align Tess reduces error
in 35 documents. Note this figure shows percent error reduction, not the raw number of errors.
SIFT Align Clean made a total of 2487 character errors (44.4 errors per document) on the test set
compared to 7745 errors (138.3 errors per document) originally made by Tesseract on those same
characters. For the 10 cases where SIFT Align Clean increased error, SIFT Align Clean made 356
character errors and Tesseract made 263 errors. Thus, overall, the error reductions achieved by
SIFT Align Clean were much greater than the errors introduced.

SIFT Align Clean outperforms Sift Align Tess. Average error reduction for
SIFT Align Clean is 34.1% compared to 9.5% for Sift Align Tess. Error reduction is calculated as
(TT −ST )/TD where TT is # Tesseract errors in the test set, ST is # SIFT Align errors in the test
set and TD is # Tesseract errors in the document. SIFT Align Clean also reduces the character error
in more documents than does Sift Align Tess.

Our test cases only consider properly segmented characters which account for about half of
all the errors in these documents. The error reduction for SIFT Align Clean over all characters
(segmented properly or not) is 20.3%.

Our experiments have shown that, on two separate sets of documents, our conservative clean
sets have very low error rates, meeting the theoretical bounds presented, and that by relaxing the
criteria slightly, we can get significantly larger sets while maintaining a low error rate. We have
shown that using these clean sets to build document-specific models can significantly reduce OCR
errors, and that traditional confidence measures do not result in the same benefits.

7. Applications to Other Domains

We believe that our method of identifying subsets of results for which we can achieve a very high
bound of being correct can also be applied to other domains outside of OCR.

15. There are two measures of word confidence in Tesseract, described in the Tesseract documentation as “rating” and
“certainty”. We use “certainty”.
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One such domain is speech recognition. Here, our consistency check would be over acoustic
signals rather than a patch of pixels from a scanned document. This check would be similar to
Algorithm 1 except that we now apply the check to a segment of speech signal. In this speech
recognition context, the segment is now the “glyph” g and we want to check whether the label
assigned to g is reliable by comparing g with other segments from the same recording that are most
similar to g. Acoustic segment g should be given the same label (in our terminology, dominated by
that label) as its most similar segments. We can then form equivalence classes of easily confusable
phonemes, and perform consistency checks on segments of speech that have been labeled as a word
with an empty pseudo-Hamming distance of 1. We could then follow a procedure similar to the
proof presented in Section 4 to bound the probability that segments of speech that pass such a
consistency check were incorrectly labeled.

By using this framework for speech recognition, we can potentially obtain the equivalent of
clean lists: portions of speech for which we are very confident the initial labeling was correct. This
may allow us to refine the speech recognition model to be specific to the recording, for instance,
allowing for a model that is specific to a particular individual’s accent.

The application of our idea to speech recognition may involve a slightly different set of difficul-
ties than when applied to OCR. For instance, identifying word segmentations may be more difficult.
However, when training speech recognition systems, we may have access to an additional source of
information in the form of closed captions. We can model the closed captions as a noisy signal of
the ground truth, independent of the speech recognizer. Taking a conservative estimate of the closed
captioning error rate, we can use the closed captions to reduce our bound on the probability of error
by requiring that the closed captioning match the labeling given by the speech recognition system.

In Lamel et al. (2002), audio with closed captions is used to generate additional labeled training
data for a speech recognizer, by aligning the speech recognizer output to the closed captioning and
accepting segments where the two agree. Given the large amount of closed captioning data available,
this scenario is particularly amenable to our method of generating high precision training data (at
some cost to recall). Additionally, using a consistency check approach as presented in Algorithm 1
can yield advantages over using an ad-hoc check such as directly accepting segments where the
speech recognizer and closed captioning agree. For instance, we may find it necessary to throw out
words where the two agree if the word has many nearby phonemic neighbors with which it may be
confused, and thereby likely reduce the error rate of the labelings used as training data.

Another potential application for our bound analysis is in the area of information retrieval using
query expansion. As mentioned earlier in Section 2.2.2, query expansion is a technique used in
information retrieval to add terms to an initial query based on the highly ranked documents of the
initial query. One issue when performing query expansion is that matching with false positives can
quickly lead to errors due to drift in the query. For image retrieval, Chum et al. (2007) give a method
of spatial verification to eliminate false matches. In this context, queries are objects in images and
images are represented using a bag-of-visual-words.

Let the original query image be Q, and let the set of images returned initially by the search
engine be R. The goal is to identify returned images {Ri} that we believe contain the same object as
Q with very high confidence. We can then add these images {Ri} to the query and repeat the search
procedure with this expanded query set, ideally increasing the number of relevant images returned
by the search engine.

To reduce the possibility of adding a false match Ri to the query set, Chum et al. (2007) apply
a spatial verification procedure as follows. A feature point in Ri matching a feature point in Q
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generates a hypothesized transformation that would put the object in Ri in correspondence with the
object in Q. If this hypothesis leads to at least a certain number of matching feature points in Ri and
Q (same visual word and location after transformation), then Ri is spatially verified and added to the
query set.

We could estimate a bound on the probability of a false match passing spatial verification by
assuming a feature in a random, non-matching returned image matches a feature in the query image
Q with probability p. If we further assume that the probability of two features matching is indepen-
dent of the other features in Q and returned image Ri, then the number of features in correspondence
between the Q and non-matching result Ri is a binomial distribution with parameters n, the number
of features in the query image, and p.

A result image Ri passes the spatial verification if, for at least one hypothesized transformation
for puttingQ in correspondence with Ri, at least 20 features are in correspondence. With the number
of hypotheses being approximately 103, n also being approximately 103, and a conservatively high
estimate of p as 10−3 (given a visual dictionary of size 106), we find that even with a requirement
of just at least 12 features being in correspondence, the probability of a false match being spatially
verified is less than 103 · (1−∑11i=0

(n
i
)

pi(1− p)n−i)< 10−6.
However, spatial verification will likely result in more errors than predicted by this analysis,

due to the overly restrictive assumption that the probability of features matching in a result image
Ri is independent of the other features. One potential method for removing this assumption is to
analyze the error in terms of common substructures: features belonging to similar substructures are
more likely to match, but the probability of one feature matching is independent of the features in
different substructures of the same image. This analysis may suggest ways of improving the spatial
verification, such as requiring that the matching features not be closely clustered in only one section
of the image.

8. Conclusions and Future Work

In this paper, we advocate dealing with the problem of non-stationarity between the training and test
distributions by identifying a subset of information whose interpretation we can be confident of, and
using this information as test-specific training data. We have applied this approach to the problem
of OCR, demonstrating that we can produce high-precision document-specific training data. Under
modest assumptions, we show the error rate of this labeled data to be bounded by 0.002, and give
empirical results consistent with this theoretical bound.

By combining this document-specific training data with simple appearance-based character
recognition techniques, we are able to achieve significant reductions in average character error.
We believe that further improvements can be achieved by using the clean lists in conjunction with
more sophisticated models, such as document-specific language models, as suggested by Wick et al.
(2007). In addition, while our work has taken the character segmentations produced by the initial
OCR system as fixed, we believe that the clean lists can also be used to re-segment and fix the large
percentage of initial errors that result from incorrect character segmentation.

Lastly, we also show potential applications to problems in other domains such as speech recog-
nition and query expansion. While many of the techniques used in this work are specific to an OCR
application, we believe that the principles are quite general, and that the search for more formal
bounds on probabilities of error will lead toward a variety of new applications.
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Abstract
Sparse additive models are families of d-variate functions with the additive decomposition
f ∗ = ∑ j∈S f ∗j , where S is an unknown subset of cardinality s # d. In this paper, we consider
the case where each univariate component function f ∗j lies in a reproducing kernel Hilbert space
(RKHS), and analyze a method for estimating the unknown function f ∗ based on kernels combined
with !1-type convex regularization. Working within a high-dimensional framework that allows
both the dimension d and sparsity s to increase with n, we derive convergence rates in the L2(P)
and L2(Pn) norms over the class Fd,s,H of sparse additive models with each univariate function f ∗j
in the unit ball of a univariate RKHS with bounded kernel function. We complement our upper
bounds by deriving minimax lower bounds on the L2(P) error, thereby showing the optimality of
our method. Thus, we obtain optimal minimax rates for many interesting classes of sparse additive
models, including polynomials, splines, and Sobolev classes. We also show that if, in contrast to
our univariate conditions, the d-variate function class is assumed to be globally bounded, then much
faster estimation rates are possible for any sparsity s = Ω(

√
n), showing that global boundedness

is a significant restriction in the high-dimensional setting.
Keywords: sparsity, kernel, non-parametric, convex, minimax

1. Introduction

The past decade has witnessed a flurry of research on sparsity constraints in statistical models.
Sparsity is an attractive assumption for both practical and theoretical reasons: it leads to more
interpretable models, reduces computational cost, and allows for model identifiability even under
high-dimensional scaling, where the dimension d exceeds the sample size n. While a large body of
work has focused on sparse linear models, many applications call for the additional flexibility pro-
vided by non-parametric models. In the general setting, a non-parametric regression model takes the
form y= f ∗(x1, . . . ,xd)+w, where f ∗ :Rd →R is the unknown regression function, and w is scalar
observation noise. Unfortunately, this general non-parametric model is known to suffer severely
from the so-called “curse of dimensionality”, in that for most natural function classes (e.g., twice
differentiable functions), the sample size n required to achieve any given error grows exponentially
in the dimension d. Given this curse of dimensionality, it is essential to further constrain the com-
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plexity of possible functions f ∗. One attractive candidate is the class of additive non-parametric
models (see Hastie and Tibshirani, 1986), in which the function f ∗ has an additive decomposition
of the form

f ∗(x1,x2, . . . ,xd) =
d

∑
j=1

f ∗j (x j), (1)

where each component function f ∗j is univariate. Given this additive form, this function class no
longer suffers from the exponential explosion in sample size of the general non-parametric model.
Nonetheless, one still requires a sample size n' d for consistent estimation; note that this is true
even for the linear model, which is a special case of Equation (1).

A natural extension of sparse linear models is the class of sparse additive models, in which the
unknown regression function is assumed to have a decomposition of the form

f ∗(x1,x2 . . . ,xd) =∑
j∈S

f ∗j (x j), (2)

where S ⊆ {1,2, . . . ,d} is some unknown subset of cardinality |S| = s. Of primary interest is the
case when the decomposition is genuinely sparse, so that s# d. To the best of our knowledge, this
model class was first introduced by Lin and Zhang (2006), and has since been studied by various
researchers (e.g., Koltchinskii and Yuan, 2010; Meier et al., 2009; Ravikumar et al., 2009; Yuan,
2007). Note that the sparse additive model (2) is a natural generalization of the sparse linear model,
to which it reduces when each univariate function is constrained to be linear.

In past work, several groups have proposed computationally efficient methods for estimating
sparse additive models (2). Just as !1-based relaxations such as the Lasso have desirable properties
for sparse parametric models, more general !1-based approaches have proven to be successful in
this setting. Lin and Zhang (2006) proposed the COSSO method, which extends the Lasso to cases
where the component functions f ∗j lie in a reproducing kernel Hilbert space (RKHS); see also Yuan
(2007) for a similar extension of the non-negative garrote (Breiman, 1995). Bach (2008) analyzes
a closely related method for the RKHS setting, in which least-squares loss is penalized by an !1-
sum of Hilbert norms, and establishes consistency results in the classical (fixed d) setting. Other
related !1-based methods have been proposed in independent work by Koltchinskii and Yuan (2008),
Ravikumar et al. (2009) and Meier et al. (2009), and analyzed under high-dimensional scaling (d'
n). As we describe in more detail in Section 3.4, each of the above papers establish consistency and
convergence rates for the prediction error under certain conditions on the covariates as well as the
sparsity s and dimension d. However, it is not clear whether the rates obtained in these papers are
sharp for the given methods, nor whether the rates are minimax-optimal. Past work by Koltchinskii
and Yuan (2010) establishes rates for sparse additive models with an additional global boundedness
condition, but as will be discussed at more length in the sequel, these rates are not minimax optimal
in general.

This paper makes three main contributions to this line of research. Our first contribution is to
analyze a simple polynomial-time method for estimating sparse additive models and provide upper
bounds on the error in the L2(P) and L2(Pn) norms. The estimator1 that we analyze is based on a
combination of least-squares loss with two !1-based sparsity penalty terms, one corresponding to

1. The same estimator was proposed concurrently by Koltchinskii and Yuan (2010); we discuss connections to this work
in the sequel.
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an !1/L2(Pn) norm and the other an !1/‖ · ‖H norm. Our first main result (Theorem 1) shows that
with high probability, if we assume the univariate functions are bounded and independent, the error
of our procedure in the squared L2(Pn) and L2(P) norms is bounded by O

( s logd
n + sν2n

)
, where the

quantity ν2n corresponds to the optimal rate for estimating a single univariate function. Importantly,
our analysis does not require a global boundedness condition on the class Fd,s,H of all s-sparse
models, an assumption that is often imposed in classical non-parametric analysis. Indeed, as we
discuss below, when such a condition is imposed, then significantly faster rates of estimation are
possible. The proof of Theorem 1 involves a combination of techniques for analyzingM-estimators
with decomposable regularizers (Negahban et al., 2009), combined with various techniques in em-
pirical process theory for analyzing kernel classes (e.g., Bartlett et al., 2005; Mendelson, 2002;
van de Geer, 2000). Our second contribution is complementary in nature, in that it establishes
algorithm-independent minimax lower bounds on L2(P) error. These minimax lower bounds, stated
in Theorem 2, are specified in terms of the metric entropy of the underlying univariate function
classes. For both finite-rank kernel classes and Sobolev-type classes, these lower bounds match our
achievable results, as stated in Corollaries 1 and 2, up to constant factors in the regime of sub-linear
sparsity (s = o(d)). Thus, for these function classes, we have a sharp characterization of the asso-
ciated minimax rates. The lower bounds derived in this paper initially appeared in the Proceedings
of the NIPS Conference (December 2009). The proofs of Theorem 2 is based on characterizing
the packing entropies of the class of sparse additive models, combined with classical information
theoretic techniques involving Fano’s inequality and variants (e.g., Has’minskii, 1978; Yang and
Barron, 1999; Yu, 1996).

Our third contribution is to determine upper bounds on minimax L2(P) and L2(Pn) error when
we impose a global boundedness assumption on the class Fd,s,H . More precisely, a global bound-
edness condition means that the quantity B(Fd,s,H ) = sup f∈Fd,s,H supx |∑

d
j=1 f j(x j)| is assumed to be

bounded independently of (s,d). As mentioned earlier, our upper bound in Theorem 1 does not
impose a global boundedness condition, whereas in contrast, the analysis of Koltchinskii and Yuan
(2010), or KY for short, does impose such a global boundedness condition. Under global bound-
edness, their work provides rates on the L2(P) and L2(Pn) norm that are of the same order as the
results presented here. It is natural to wonder whether or not this difference is actually significant—
that is, do the minimax rates for the class of sparse additive models depend on whether or not global
boundedness is imposed? In Section 3.5, we answer this question in the affirmative. In particular,
Theorem 3 and Corollary 3 provide upper bounds on the minimax rates, as measured in either the
L2(P) and L2(Pn)-norms, under a global boundedness condition. These rates are faster than those
of Theorem 3 in the KY paper, in particular showing that the KY rates are not optimal for problems
with s = Ω(

√
n). In this way, we see that the assumption of global boundedness, though relatively

innocuous for classical (low-dimensional) non-parametric problems, can be quite limiting in high
dimensions.

The remainder of the paper is organized as follows. In Section 2, we provide background on
kernel spaces and the class of sparse additive models considered in this paper. Section 3 is devoted
to the statement of our main results and discussion of their consequences; it includes description
of our method, the upper bounds on the convergence rate that it achieves, and a matching set of
minimax lower bounds. Section 3.5 investigates the restrictiveness of the global uniform bounded-
ness assumption and in particular, Theorem 3 and Corollary 3 demonstrate that there are classes of
globally bounded functions for which faster rates are possible. Section 4 is devoted to the proofs of
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our three main theorems, with the more technical details deferred to the Appendices. We conclude
with a discussion in Section 5.

2. Background and Problem Set-up

We begin with some background on reproducing kernel Hilbert spaces, before providing a precise
definition of the class of sparse additive models studied in this paper.

2.1 Reproducing Kernel Hilbert Spaces

Given a subset X ⊂ R and a probability measure Q on X , we consider a Hilbert space H ⊂ L2(Q),
meaning a family of functions g :X →R, with ‖g‖L2(Q) <∞, and an associated inner product 〈·, ·〉H
under which H is complete. The space H is a reproducing kernel Hilbert space (RKHS) if there
exists a symmetric function K : X ×X → R+ such that for each x ∈ X : (a) the function K(·,x)
belongs to the Hilbert space H , and (b) we have the reproducing relation f (x) = 〈 f ,K(·,x)〉H
for all f ∈ H . Any such kernel function must be positive semidefinite; under suitable regularity
conditions, Mercer’s theorem (1909) guarantees that the kernel has an eigen-expansion of the form

K(x,x′) =
∞

∑
k=1

µkφk(x)φ!(x′), (3)

where µ1 ≥ µ2 ≥ µ3 ≥ . . . ≥ 0 are a non-negative sequence of eigenvalues, and {φk}∞k=1 are the
associated eigenfunctions, taken to be orthonormal in L2(Q). The decay rate of these eigenvalues
will play a crucial role in our analysis, since they ultimately determine the rate νn for the univariate
RKHS’s in our function classes.

Since the eigenfunctions {φk}∞k=1 form an orthonormal basis, any function f ∈ H has an ex-
pansion of the f (x) = ∑∞

k=1 akφk(x), where ak = 〈 f , φk〉L2(Q) =
∫
X f (x)φk(x)dQ(x) are (gener-

alized) Fourier coefficients. Associated with any two functions in H—say f = ∑∞
k=1 akφk and

g= ∑∞
k=1 bkφk—are two distinct inner products. The first is the usual inner product in L2(Q),

〈 f , g〉L2(Q) :=
∫
X f (x)g(x)dQ(x). By Parseval’s theorem, it has an equivalent representation in

terms of the expansion coefficients—namely

〈 f , g〉L2(Q) =
∞

∑
k=1

akbk.

The second inner product, denoted 〈 f , g〉H , is the one that defines the Hilbert space; it can be written
in terms of the kernel eigenvalues and generalized Fourier coefficients as

〈 f , g〉H =
∞

∑
k=1

akbk
µk

.

Using this definition, the Hilbert ball of unit radius for a kernel with eigenvalues {µk}∞k=1 and eigen-
functions {φk}∞k=1 is given by

BH (1) :=
{
f =

∞

∑
k=1

akφk |
∞

∑
k=1

a2k
µk

≤ 1
}
.

For more background on reproducing kernel Hilbert spaces, we refer the reader to various standard
references (e.g., Aronszajn, 1950; Saitoh, 1988; Schölkopf and Smola, 2002; Wahba, 1990).
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2.2 Sparse Additive Models Over RKHS

For each j = 1, . . . ,d, let H j ⊂ L2(Q) be a reproducing kernel Hilbert space of univariate functions
on the domain X ⊂ R. We assume that

E[ f j(x)] =
∫
X
f j(x)dQ(x) = 0 for all f j ∈H j, and for each j = 1,2, . . . ,d.

As will be clarified momentarily, our observation model (5) allows for the possibility of a non-zero
mean f , so that there is no loss of generality in this assumption. For a given subset S⊂ {1,2, . . . ,d},
we define

H (S) :=
{
f =∑

j∈S
f j | f j ∈H j, and f j ∈ BH j(1) ∀ j ∈ S

}
,

corresponding to the class of functions f : X d → R that decompose as sums of univariate functions
on co-ordinates lying within the set S. Note that H (S) is also (a subset of) a reproducing kernel
Hilbert space, in particular with the norm

‖ f‖2H (S) =∑
j∈S

‖ f j‖2H j
,

where ‖ ·‖H j denotes the norm on the univariate Hilbert spaceH j. Finally, for s ∈ {1,2, . . . ,2d/23},
we define the function class

Fd,s,H :=
⋃

S⊂{1,2,...,d}
|S|=s

H (S). (4)

To ease notation, we frequently adopt the shorthand F = Fd,s,H , but the reader should recall that
F depends on the choice of Hilbert spaces {H j}dj=1, and moreover, that we are actually studying a
sequence of function classes indexed by (d,s).

Now let P=Qd denote the product measure on the space X d ⊆ Rd . Given an arbitrary f ∗ ∈ F ,
we consider the observation model

yi = f + f ∗(xi)+wi, for i= 1,2, . . . ,n, (5)

where {wi}ni=1 is an i.i.d. sequence of standard normal variates, and {xi}ni=1 is a sequence of design
points in Rd , sampled in an i.i.d. manner from P.

Given an estimate f̂ , our goal is to bound the error f̂ − f ∗ under two norms. The first is the
usual L2(P) norm on the space F ; given the product structure of P and the additive nature of any
f ∈ F , it has the additive decomposition ‖ f‖2L2(P) = ∑d

j=1 ‖ f j‖2L2(Q). In addition, we consider the
error in the empirical L2(Pn)-norm defined by the sample {xi}ni=1, defined as

‖ f‖2L2(Pn) :=
1
n

n

∑
i=1

f 2(xi).

Unlike the L2(P) norm, this norm does not decouple across the dimensions, but part of our anal-
ysis will establish an approximate form of such decoupling. For shorthand, we frequently use the
notation ‖ f‖2 = ‖ f‖L2(P) and ‖ f‖n = ‖ f‖L2(Pn) for a d-variate function f ∈ F . With a minor abuse
of notation, for a univariate function f j ∈ H j, we also use the shorthands ‖ f j‖2 = ‖ f j‖L2(Q) and
‖ f j‖n = ‖ f j‖L2(Qn).
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3. Main Results and Their Consequences

This section is devoted to the statement of our three main results, and discussion of some of their
consequences. We begin in Section 3.1 by describing a regularized M-estimator for sparse additive
models, and we state our upper bounds for this estimator in Section 3.2. We illustrate our upper
bounds for various concrete instances of kernel classes. In Section 3.3, we state minimax lower
bounds on the L2(P) error over the class Fd,s,H , which establish the optimality of our procedure. In
Section 3.4, we provide a detailed comparison between our results to past work, and in Section 3.5
we discuss the effect of global boundedness conditions on optimal rates.

3.1 A Regularized M-Estimator For Sparse Additive Models

For any function of the form f = ∑d
j=1 f j, the (L2(Qn),1) and (H ,1)-norms are given by

‖ f‖n,1 :=
d

∑
j=1

‖ f j‖n, and ‖ f‖H ,1 :=
d

∑
j=1

‖ f j‖H ,

respectively. Using this notation and defining the sample mean ȳn = 1
n ∑

n
i=1 yi, we define the cost

functional

L( f ) =
1
2n

n

∑
i=1

(
yi− ȳn− f (xi)

)2
+λn‖ f‖n,1+ρn‖ f‖H ,1.

The cost functional L( f ) is least-squares loss with a sparsity penalty ‖ f‖n,1 and a smoothness
penalty ‖ f‖H ,1. Here (λn,ρn) are a pair of positive regularization parameters whose choice will be
specified by our theory. Given this cost functional, we then consider theM-estimator

f̂ ∈ argmin
f
L( f ) subject to f = ∑d

j=1 f j and ‖ f j‖H ≤ 1 for all j = 1,2, . . . ,d. (6)

In this formulation (6), the problem is infinite-dimensional in nature, since it involves optimization
over Hilbert spaces. However, an attractive feature of this M-estimator is that, as a consequence of
the representer theorem (Kimeldorf and Wahba, 1971), it can be reduced to an equivalent convex
program in Rn×Rd . In particular, for each j = 1,2, . . . ,d, let K j denote the kernel function for
co-ordinate j. Using the notation xi = (xi1,xi2, . . . ,xid) for the ith sample, we define the collection
of empirical kernel matrices K j ∈Rn×n, with entries K j

i! =K j(xi j,x! j). By the representer theorem,
any solution f̂ to the variational problem (6) can be written in the form

f̂ (z1, . . . ,zd) =
n

∑
i=1

d

∑
j=1

α̂i jK
j(z j,xi j),

for a collection of weights
{
α̂ j ∈ Rn, j = 1, . . . ,d

}
. The optimal weights (α̂1, . . . , α̂d) are any

minimizer to the following convex program:

arg min
α j∈Rn

αTj K jα j≤1

{
1
2n

‖y− ȳn−
d

∑
j=1

K jα j‖22+λn
d

∑
j=1

√
1
n
‖K jα j‖22+ρn

d

∑
j=1

√
αTj K jα j

}
. (7)
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This problem is a second-order cone program (SOCP), and there are various algorithms for finding
a solution to arbitrary accuracy in time polynomial in (n,d), among them interior point methods
(e.g., see §11 in Boyd and Vandenberghe 2004).

Various combinations of sparsity and smoothness penalties have been used in past work on
sparse additive models. For instance, the method of Ravikumar et al. (2009) is based on least-
squares loss regularized with single sparsity constraint, and separate smoothness constraints for
each univariate function. They solve the resulting optimization problem using a back-fitting pro-
cedure. Koltchinskii and Yuan (2008) develop a method based on least-squares loss combined
with a single penalty term ∑d

j=1 ‖ f j‖H . Their method also leads to an SOCP if H is a repro-
ducing kernel Hilbert space, but differs from the program (7) in lacking the additional sparsity
penalties. Meier et al. (2009) analyzed least-squares regularized with a penalty term of the form
∑d
j=1

√
λ1‖ f j‖2n+λ2‖ f j‖2H , where λ1 and λ2 are a pair of regularization parameters. In their

method, λ1 controls the sparsity while λ2 controls the smoothness. If H is an RKHS, the method
in Meier et al. (2009) reduces to an ordinary group Lasso problem on a different set of variables,
which can be cast as a quadratic program. The more recent work of Koltchinskii and Yuan (2010)
is based on essentially the same estimator as problem (6), except that we allow for a non-zero mean
for the function, and estimate it as well. In addition, the KY analysis involves a stronger condition
of global boundedness. We provide a more in-depth comparison of our analysis and results with the
past work listed above in Sections 3.4 and 3.5.

3.2 Upper Bound

We now state a result that provides upper bounds on the estimation error achieved by the estima-
tor (6), or equivalently (7). To simplify presentation, we state our result in the special case that
the univariate Hilbert space H j, j = 1, . . . ,d are all identical, denoted by H . However, the analysis
and results extend in a straightforward manner to the general setting of distinct univariate Hilbert
spaces, as we discuss following the statement of Theorem 1.

Let µ1 ≥ µ2 ≥ . . . ≥ 0 denote the non-negative eigenvalues of the kernel operator defining the
univariate Hilbert space H , as defined in Equation (3), and define the function

Qσ,n(t) :=
1√
n
[ ∞

∑
!=1
min{t2,µ!}

]1/2
.

Let νn > 0 be the smallest positive solution to the inequality

40ν2n ≥ Qσ,n(νn), (8)

where the 40 is simply used for technical convenience. We refer to νn as the critical univariate rate,
as it is the minimax-optimal rate for L2(P)-estimation of a single univariate function in the Hilbert
space H (e.g., Mendelson, 2002; van de Geer, 2000). This quantity will be referred to throughout
the remainder of the paper.

Our choices of regularization parameters are specified in terms of the quantity

γn := κmax
{
νn,

√
logd
n

}
, (9)
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where κ is a fixed constant that we choose later. We assume that each function within the unit ball of
the univariate Hilbert space is uniformly bounded by a constant multiple of its Hilbert norm—that
is, for each j = 1, . . . ,d and each f j ∈H ,

‖ f j‖∞ := sup
x j

| f j(x j)|≤ c ‖ f j‖H . (10)

This condition is satisfied for many kernel classes including Sobolev spaces, and any univariate
RKHS in which the kernel function2 bounded uniformly by c. Such a condition is routinely imposed
for proving upper bounds on rates of convergence for non-parametric least squares in the univariate
case d = 1 (see, e.g., Stone, 1985; van de Geer, 2000). Note that this univariate boundedness does
not imply that the multivariate functions f = ∑ j∈S f j in F are uniformly bounded independently of
(d,s); rather, since such functions are the sum of s terms, they can take on values of the order

√
s.

The following result applies to any class Fd,s,H of sparse additive models based on a univariate
Hilbert space satisfying condition (10), and to the estimator (6) based on n i.i.d. samples (xi,yi)ni=1
from the observation model (5).

Theorem 1 Let f̂ be any minimizer of the convex program (6) with regularization parameters
λn ≥ 16γn and ρn ≥ 16γ2n. Then provided that nγ2n =Ω(log(1/γn)), there are universal constants
(C,c1,c2) such that

P

[
max{‖ f̂ − f ∗‖22, ‖ f̂ − f ∗‖2n}≥C

{
sλ2n+ sρn

}]
≤ c1 exp(−c2nγ2n).

We provide the proof of Theorem 1 in Section 4.1.

3.2.1 REMARKS

First, the technical condition nγ2n=Ω(log(1/γn)) is quite mild, and satisfied in most cases of interest,
among them the kernels considered below in Corollaries 1 and 2.

Second, note that setting λn = cγn and ρn = cγ2n for some constant c ∈ [16,∞) yields the rate
Θ(sγ2n+ sρn) = Θ( s logdn + sν2n). This rate may be interpreted as the sum of a subset selection term
( s logdn ) and an s-dimensional estimation term (sν2n). Note that the subset selection term ( s logdn )
is independent of the choice of Hilbert space H , whereas the s-dimensional estimation term is
independent of the ambient dimension d. Depending on the scaling of the triple (n,d,s) and the
smoothness of the univariate RKHS H , either the subset selection term or function estimation term
may dominate. In general, if logdn = o(ν2n), the s-dimensional estimation term dominates, and vice
versa otherwise. At the boundary, the scalings of the two terms are equivalent.

Finally, for clarity, we have stated our result in the case where the univariate Hilbert space H
is identical across all co-ordinates. However, our proof extends with only notational changes to the
general setting, in which each co-ordinate j is endowed with a (possibly distinct) Hilbert space H j.
In this case, the M-estimator returns a function f̂ such that (with high probability)

max
{
‖ f̂ − f ∗‖2n, ‖ f̂ − f ∗‖22

}
≤ C

{
s logd
n

+∑
j∈S
ν2n, j

}
,

2. Indeed, we have

sup
x j

| f j(x j)|= sup
x j

|〈 f j(.),K(.,x j)〉H | ≤ sup
x j

√
K(x j,x j)‖ f j‖H .
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where νn, j is the critical univariate rate associated with the Hilbert space H j, and S is the subset on
which f ∗ is supported.

Theorem 1 has a number of corollaries, obtained by specifying particular choices of kernels.
First, we discuss m-rank operators, meaning that the kernel function K can be expanded in terms
of m eigenfunctions. This class includes linear functions, polynomial functions, as well as any
function class based on finite dictionary expansions. First we present a corollary for finite-rank
kernel classes.

Corollary 1 Under the same conditions as Theorem 1, consider an univariate kernel with finite
rank m. Then any solution f̂ to the problem (6) with λn = cγn and ρn = cγ2n with 16≤ c<∞ satisfies

P

[
max

{
‖ f̂ − f ∗‖2n,‖ f̂ − f ∗‖22

}
≥C

{s logd
n

+ s
m
n
}]

≤ c1 exp
(
− c2(m+ logd)

)
.

Proof : It suffices to show that the critical univariate rate (8) satisfies the scaling ν2n = O(m/n). For
a finite-rank kernel and any t > 0, we have

Qσ,n(t) =
1√
n

√
m

∑
j=1
min{t2,µj} ≤ t

√
m
n
,

from which the claim follows by the definition (8).

Next, we present a result for the RKHS’s with infinitely many eigenvalues, but whose eigenval-
ues decay at a rate µk 5 (1/k)2α for some parameter α > 1/2. Among other examples, this type
of scaling covers the case of Sobolev spaces, say consisting of functions with α derivatives (e.g.,
Birman and Solomjak, 1967; Gu, 2002).

Corollary 2 Under the same conditions as Theorem 1, consider an univariate kernel with eigen-
value decay µk 5 (1/k)2α for some α> 1/2. Then the kernel estimator defined in (6) with λn = cγn
and ρn = cγ2n with 16≤ c< ∞ satisfies

P

[
max

{
‖ f̂ − f ∗‖2n,‖ f̂ − f ∗‖22

}
≥C

{s logd
n

+ s
(1
n
) 2α
2α+1

}]
≤ c1 exp

(
− c2(n

1
2α+1 + logd)

)
.

Proof : As in the previous corollary, we need to compute the critical univariate rate νn. Given the
assumption of polynomial eigenvalue decay, a truncation argument shows that Qσ,n(t) = O

( t1− 1
2α√
n

)
.

Consequently, the critical univariate rate (8) satisfies the scaling ν2n 6 ν
1− 1

2α
n /

√
n, or equivalently,

ν2n 6 n−
2α
2α+1 .

3.3 Minimax Lower Bounds

In this section, we derive lower bounds on the minimax error in the L2(P)-norm that complement
the achievability results derived in Theorem 1. Given the function class F , we define the minimax
L2(P)-errorMP(Fd,s,H ) to be the largest quantity such that

inf
f̂n
sup
f ∗∈F

P f ∗ [‖ f̂n− f ∗‖22 ≥MP(Fd,s,H )]≥ 1/2, (11)
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where the infimum is taken over all measurable functions of the n samples {(xi,yi)}ni=1, and P f ∗

denotes the data distribution when the unknown function is f ∗. Given this definition, note that
Markov’s inequality implies that

inf
f̂n
sup
f ∗∈F

E‖ f̂n− f ∗‖22 ≥
MP(Fd,s,H )

2
.

Central to our proof of the lower bounds is the metric entropy structure of the univariate re-
producing kernel Hilbert spaces. More precisely, our lower bounds depend on the packing entropy,
defined as follows. Let (G ,ρ) be a totally bounded metric space, consisting of a set G and a metric
ρ : G ×G → R+. An ε-packing of G is a collection { f 1, . . . , f M} ⊂ G such that ρ( f i, f j) ≥ ε for
all i 7= j. The ε-packing number M(ε;G ,ρ) is the cardinality of the largest ε-packing. The packing
entropy is the simply the logarithm of the packing number, namely the quantity logM(ε;G ,ρ), to
which we also refer as the metric entropy. In this paper, we derive explicit minimax lower bounds
for two different scalings of the univariate metric entropy.

3.3.1 LOGARITHMIC METRIC ENTROPY

There exists some m> 0 such that

logM(ε;BH (1),L2(P))5 m log(1/ε) for all ε ∈ (0,1). (12)

Function classes with metric entropy of this type include linear functions (for which m = k), uni-
variate polynomials of degree k (for which m = k+ 1), and more generally, any function space
with finite VC-dimension (van der Vaart and Wellner, 1996). This type of scaling also holds for any
RKHS based on a kernel with rank m (e.g., see Carl and Triebel, 1980), and these finite-rank kernels
include both linear and polynomial functions as special cases.

3.3.2 POLYNOMIAL METRIC ENTROPY

There exists some α> 0 such that

logM(ε;BH (1),L2(P))5 (1/ε)1/α for all ε ∈ (0,1). (13)

Various types of Sobolev/Besov classes exhibit this type of metric entropy decay (e.g., Birman and
Solomjak, 1967; Gu, 2002). In fact, any RKHS in which the kernel eigenvalues decay at a rate k−2α
have a metric entropy with this scaling (Carl and Stephani, 1990; Carl and Triebel, 1980).

We are now equipped to state our lower bounds on the minimax risk (11):

Theorem 2 Given n i.i.d. samples from the sparse additive model (5) with sparsity s ≤ d/4, there
is an universal constant C > 0 such that:

(a) For a univariate class H with logarithmic metric entropy (12) indexed by parameter m, we
have

MP(Fd,s,H ) ≥ C
{
s log(d/s)

n
+ s

m
n

}
.
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(b) For a univariate class H with polynomial metric entropy (13) indexed by α, we have

MP(Fd,s,H ) ≥ C
{
s log(d/s)

n
+ s

(1
n
) 2α
2α+1

}
.

The proof of Theorem 2 is provided in Section 4.2. The most important consequence of Theorem 2 is
in establishing the minimax-optimality of the results given in Corollary 1 and 2; in particular, in the
regime of sub-linear sparsity (i.e., for which logd = O(log(d/s))), the combination of Theorem 2
with these corollaries identifies the minimax rates up to constant factors.

3.4 Comparison With Other Estimators

It is interesting to compare these convergence rates in L2(Pn) error with those established in the past
work. Ravikumar et al. (2009) show that any solution to their back-fitting method is consistent in
terms of mean-squared error risk (see Theorem 3 in their paper), but their analysis does not allow
s→∞. The method of Koltchinskii and Yuan (2008) is based regularizing the least-squares loss with
the (H ,1)-norm penalty—that is, the regularizer ∑d

j=1 ‖ f j‖H ; Theorem 2 in their paper provides a
rate that holds for the triple (n,d,s) tending to infinity. In quantitative terms, however, their rates are
looser than those given here; in particular, their bound includes a term of the order s

3 logd
n , which is

larger than the bound in Theorem 1. Meier et al. (2009) analyze a different M-estimator to the one
we analyze in this paper. Rather than adding two separate (H ,1)-norm and an (‖.‖n,1)-norm penal-
ties, they combine the two terms into a single sparsity and smoothness penalty. For their estimator,
Meier et al. (2009) establish a convergence rate of the form O(s( logdn )

2α
2α+1

)
in the case of α-smooth

Sobolev spaces (see Theorem 1 in their paper). Note that relative to optimal rates given here in The-
orem 2(b), this scaling is sub-optimal: more precisely, we either have logd

n < ( logdn )
2α
2α+1 , when the

subset selection term dominates, or ( 1n)
2α
2α+1 < ( logdn )

2α
2α+1 , when the s-dimensional estimation term

dominates. In all of the above-mentioned methods, it is unclear whether or not a sharper analysis
would yield better rates. Finally, Koltchinskii and Yuan (2010) analyze the same estimator as the
M-estimator (6), and for the case of polynomial metric entropy, establish the same rates Theorem 1,
albeit under a global boundedness condition. In the following section, we study the implications of
this assumption.

3.5 Upper Bounds Under A Global Boundedness Assumption

As discussed previously in the introduction, the paper of Koltchinskii and Yuan (2010), referred
to as KY for short, is based on the M-estimator (6). In terms of rates obtained, they establish a
convergence rate based on two terms as in Theorem 1, but with a pre-factor that depends on the
global quantity

B= sup
f∈Fd,s,H

‖ f‖∞ = sup
f∈Fd,s,H

sup
x

| f (x)|,

assumed to be bounded independently of dimension and sparsity. Such types of global boundedness
conditions are fairly standard in classical non-parametric estimation, where they have no effect on
minimax rates. In sharp contrast, the analysis of this section shows that for sparse additive models in
the regime s=Ω(

√
n), such global boundedness can substantially speed upminimax rates, showing

that the rates proven in KY are not minimax optimal for these classes. The underlying insight is as
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follows: when the sparsity grows, imposing global boundedness over s-variate functions substan-
tially reduces the effective dimension from its original size s to a lower dimensional quantity, which
we denote by sKB(s,n), and moreover, the quantity KB(s,n) → 0 when s = Ω(

√
n) as described

below.
Recall the definition (4) of the function class Fd,s,H . The model considered in the KY paper is

the smaller function class

F ∗
d,s,H (B) :=

⋃
S⊂{1,2,...,d}

|S|=s

H (S,B),

where H (S,B) :=
{
f = ∑ j∈S f j | f j ∈H , and f j ∈ BH (1) ∀ j ∈ S and ‖ f‖∞ ≤ B

}
.

The following theorem provides sharper rates for the Sobolev case, in which each univariate
Hilbert space has eigenvalues decaying as µk 5 k−2α for some smoothness parameter α> 1/2. Our
probabilistic bounds involve the quantity

δn :=max
(
√
s log(d/s)

n
,B(

s
1
α logs
n

)1/4
)
, (14)

and our rates are stated in terms of the function

KB(s,n) := B
√
logs(s−1/2αn1/(4α+2))2α−1,

where it should be noted that KB(s,n)→ 0 if s=Ω(
√
n).

With this notation, we have the following upper bound on the minimax risk over the function
class F ∗

d,s,H (B).

Theorem 3 Consider any RKHSH with eigenvalue decay k−2α, and uniformly bounded eigenfunc-
tions (i.e., ‖φk‖∞ ≤ C < ∞ for all k). Then there are universal constants (c1,c2,κ) such that with
probability greater than 1−2exp

(
− c1nδ2n

)
, we have

min
f̂

max
f ∗∈F ∗

d,s,H (B)
‖ f̂ − f ∗‖22 ≤ κ2(1+B)Csn−

2α
2α+1

(
KB(s,n)+n−1/(2α+1) log(d/s)

)

︸ ︷︷ ︸
MP(F ∗

d,s,H (B))

, (15)

as long as nδ2n =Ω(log(1/δn)).

We provide the proof of Theorem 3 in Section 4.3; it is based on analyzing directly the least-
squares estimator over F ∗

d,s,H (B). The assumption that ‖φk‖∞ ≤C < ∞ for all k includes the usual
Sobolev spaces in which φk are (rescaled) Fourier basis functions. An immediate consequence of
Theorem 3 is that the minimax rates over the function class F ∗

d,s,H (B) can be strictly faster than
minimax rates for the class Fd,s,H , which does not impose global boundedness. Recall that the
minimax lower bound from Theorem 2 (b) is based on the quantity

MP(Fd,s,H ) := C1
{
s
(1
n
) 2α
2α+1 +

s log(d/s)
n

}
= C1sn−

2α
2α+1

(
1+n−1/(2α+1) log(d/s)

)
,

for a universal constantC1. Note that up to constant factors, the achievable rate (15) from Theorem 3
is the same except that the term 1 is replaced by the function KB(s,n). Consequently, for scalings of
(s,n) such that KB(s,n)→ 0, global boundedness conditions lead to strictly faster rates.
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Corollary 3 Under the conditions of Theorem 3, we have

MP(Fd,s,H )

MP(F ∗
d,s,H (B))

≥
C1(1+n−1/(2α+1) log(d/s))

Cκ2(1+B)(KB(s,n)+n−1/(2α+1) log(d/s))
→+∞

whenever B= O(1) and KB(s,n)→ 0.

3.5.1 REMARKS

The quantity KB(s,n) is guaranteed to decay to zero as long as the sparsity index s grows in a non-
trivial way with the sample size. For instance, if we have s = Ω(

√
n) for a problem of dimension

d = O(nβ) for any β ≥ 1/2, then it can be verified that KB(s,n) = o(1). As an alternative view
of the differences, it can be noted that there are scalings of (n,s,d) for which the minimax rate
MP(Fd,s,H ) over Fd,s,H is constant—that is, does not vanish as n→ +∞—while the minimax rate
MP(F ∗

d,s,H (B)) does vanish. As an example, consider the Sobolev class with smoothness α = 2,
corresponding to twice-differentiable functions. For a sparsity index s=Θ(n4/5), then Theorem 2(b)
implies thatMP(Fd,s,H ) =Ω(1), so that the minimax rate over Fd,s,H is strictly bounded away from
zero for all sample sizes. In contrast, under a global boundedness condition, Theorem 3 shows that
the minimax rate is upper bounded asMP(F ∗

d,s,H (B)) = O
(
n−1/5

√
logn

)
, which tends to zero.

In summary, Theorem 3 and Theorem 2(b) together show that the minimax rates over Fd,s,H
and F ∗

d,s,H (B) can be drastically different. Thus, global boundedness is a stringent condition in
the high-dimensional setting; in particular, the rates given in Theorem 3 of Koltchinskii and Yuan
(2010) are not minimax optimal when s=Ω(

√
n).

4. Proofs

In this section, we provide the proofs of our three main theorems. For clarity in presentation, we
split the proofs up into a series of lemmas, with the bulk of the more technical arguments deferred
to the appendices. This splitting allows our presentation in Section 4 to be relatively streamlined.

4.1 Proof of Theorem 1

At a high-level, Theorem 1 is based on an appropriate adaptation to the non-parametric setting of
various techniques that have been developed for sparse linear regression (e.g., Bickel et al., 2009;
Negahban et al., 2009). In contrast to the parametric setting where classical tail bounds are suf-
ficient, controlling the error terms in the non-parametric case requires more advanced techniques
from empirical process theory. In particular, we make use of various concentration theorems for
Gaussian and empirical processes (e.g., Ledoux, 2001; Massart, 2000; Pisier, 1989; van de Geer,
2000), as well as results on the Rademacher complexity of kernel classes (Bartlett et al., 2005;
Mendelson, 2002).

At the core of the proof are three technical lemmas. First, Lemma 1 provides an upper bound
on the Gaussian complexity of any function of the form f = ∑d

j=1 f j in terms of the norms ‖ ·‖H ,1
and ‖ · ‖n,1 previously defined. Lemma 2 exploits the notion of decomposability (Negahban et al.,
2009), as applied to these norms, in order to show that the error function belongs to a particular
cone-shaped set. Finally, Lemma 3 establishes an upper bound on the L2(P) error of our estimator
in terms of the L2(Pn) error. The latter lemma can be interpreted as proving that our problem
satisfies non-parametric analog of a restricted eigenvalue condition (Bickel et al., 2009), or more
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generally, of a restricted strong convexity condition (Negahban et al., 2009). The proof of Lemma 3
involves a new approach that combines the Sudakov minoration (Pisier, 1989) with a one-sided tail
bound for non-negative random variables (Chung and Lu, 2006; Einmahl and Mason, 1996).

Throughout the proof, we use C and ci, i = 1,2,3,4 to denote universal constants, independent
of (n,d,s). Note that the precise numerical values of these constants may change from line to line.
The reader should recall the definitions of νn and γn from Equations (8) and (9) respectively. For a
subset A⊆ {1,2, . . . ,d} and a function of the form f = ∑d

j=1 f j, we adopt the convenient notation

‖ fA‖n,1 := ∑
j∈A

‖ f j‖n, and ‖ fA‖H ,1 := ∑
j∈A

‖ f j‖H . (16)

We begin by establishing an inequality on the error function ∆̂ := f̂ − f ∗. Since f̂ and f ∗ are,
respectively, optimal and feasible for the problem (6), we are guaranteed that L( f̂ ) ≤ L( f ∗), and
hence that the error function ∆̂ satisfies the bound

1
2n

n

∑
i=1

(wi+ f − ȳn− ∆̂(xi))2+λn‖ f̂‖n,1+ρn‖ f̂‖H ,1≤
1
2n

n

∑
i=1

(wi+ f − ȳn)2+λn‖ f ∗‖n,1+ρn‖ f ∗‖H ,1.

Some simple algebra yields the bound

1
2
‖∆̂‖2n ≤

∣∣1
n

n

∑
i=1

wi∆̂(xi)
∣∣+ |ȳn− f |

∣∣1
n

n

∑
i=1

∆̂(xi)
∣∣+λn‖∆̂‖n,1+ρn‖∆̂‖H ,1. (17)

Following the terminology of van de Geer (2000), we refer to this bound as our basic inequality.

4.1.1 CONTROLLING DEVIATION FROM THE MEAN

Our next step is to control the error due to estimating the mean |ȳn− f |. We begin by observ-
ing that this error term can be written as ȳn− f = 1

n ∑
n
i=1(yi− f ). Next we observe that yi− f =

∑ j∈S f ∗j (xi j)+wi is the sum of the s independent random variables f ∗j (xi j), each bounded in ab-
solute value by one, along with the independent sub-Gaussian noise term wi; consequently, the
variable yi − f is sub-Gaussian with parameter at most

√
s+1. (See, for instance, Lemma 1.4

in Buldygin and Kozachenko 2000). By applying standard sub-Gaussian tail bounds, we have
P(|ȳn− f | > t) ≤ 2exp(− nt2

2(s+1) ), and hence, if we define the event C (γn) = {|ȳn− f | ≤
√
sγn},

we are guaranteed

P[C (γn)]≥ 1−2exp(−
nγ2n
4

).

For the remainder of the proof, we condition on the event C (γn). Under this conditioning, the
bound (17) simplifies to:

1
2
‖∆̂‖2n ≤

∣∣1
n

n

∑
i=1

wi∆̂(xi)
∣∣+

√
sγn‖∆̂‖n+λn‖∆̂‖n,1+ρn‖∆̂‖H ,1,

where we have applied the Cauchy-Schwarz inequality to write
∣∣ 1
n ∑

n
i=1 ∆̂(xi)

∣∣≤ ‖∆̂‖n.
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4.1.2 CONTROLLING THE GAUSSIAN COMPLEXITY TERM

The following lemma provides control the Gaussian complexity term on the right-hand side of
inequality (17) by bounding the Gaussian complexity for the univariate functions ∆̂ j, j = 1,2, . . . ,d

in terms of their ‖ · ‖n and ‖ · ‖H norms. In particular, recalling that γn = κmax{
√

logd
n , νn}, we

have the following lemma.

Lemma 1 Define the event

T (γn) :=
{
∀ j = 1,2, . . . ,d,

∣∣1
n

n

∑
i=1

wi∆̂ j(xi j)
∣∣≤ 8γ2n ‖∆̂ j‖H +8γn ‖∆̂ j‖n

}
.

Then under the condition nγ2n =Ω(log(1/γn)), we have

P(T (γn))≥ 1− c1 exp(−c2nγ2n).

The proof of this lemma, provided in Appendix B, uses concentration of measure for Lipschitz
functions of Gaussian random variables (e.g., Ledoux, 2001), combined with peeling and weighting
arguments from empirical process theory (Alexander, 1987; van de Geer, 2000). In particular, the
subset selection term ( s logdn ) in Theorem 1 arises from taking the maximum over all d components.

The remainder of our analysis involves conditioning on the event T (γn)∩C (γn). Using Lemma 1,
when conditioned on the event T (γn)∩C (γn) we have:

‖∆̂‖2n ≤ 2
√
sγn‖∆̂‖n+(16γn+2λn)‖∆̂‖n,1+(16γ2n+2ρn)‖∆̂‖H ,1. (18)

4.1.3 EXPLOITING DECOMPOSABILITY

Recall that S denotes the true support of the unknown function f ∗. By the definition (16), we can
write ‖∆̂‖n,1 = ‖∆̂S‖n,1+‖∆̂Sc‖n,1, where ∆̂S :=∑ j∈S ∆̂ j and ∆̂Sc :=∑ j∈Sc ∆̂ j. Similarly, we have an
analogous representation for ‖∆̂‖H ,1. The next lemma shows that conditioned on the event T (γn),
the quantities ‖∆̂‖H ,1 and ‖∆̂‖n,1 are not significantly larger than the corresponding norms as applied
to the function ∆̂S.

Lemma 2 Conditioned on the events T (γn) and C (γn), and with the choices λn ≥ 16γn and ρn ≥
16γ2n, we have

λn‖∆̂‖n,1+ρn‖∆̂‖H ,1 ≤ 4λn‖∆̂S‖n,1+4ρn‖∆̂S‖H ,1+
1
2
sγ2n. (19)

The proof of this lemma, provided in Appendix C, is based on the decomposability (see Negahban
et al. 2009) of the ‖ ·‖H ,1 and ‖ ·‖n,1 norms. This lemma allows us to exploit the sparsity assumption,
since in conjunction with Lemma 1, we have now bounded the right-hand side of the inequality (18)
by terms involving only ∆̂S.

For the remainder of the proof of Theorem 1, we assume λn ≥ 16γn and ρn ≥ 16γ2n. In particular,
still conditioning on C (γn)∩T (γn) and applying Lemma 2 to inequality (18), we obtain

‖∆̂‖2n ≤ 2
√
sγn‖∆̂‖n+3λn‖∆̂‖n,1+3ρn‖∆̂‖H ,1

≤ 2
√
sλn‖∆̂‖n+12λn‖∆̂S‖n,1+12ρn‖∆̂S‖H ,1+

3
32
sρn,
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Finally, since both f̂ j and f ∗j belong toBH (1), we have ‖∆̂ j‖H ≤‖ f̂ j‖H +‖ f ∗j ‖H ≤ 2, which implies
that ‖∆̂S‖H ,1 ≤ 2s, and hence

‖∆̂‖2n ≤ 2
√
sλn‖∆̂‖n+12λn‖∆̂S‖n,1+25sρn. (20)

4.1.4 UPPER BOUNDING ‖∆̂S‖n,1

The next step is to control the term ‖∆̂S‖n,1 = ∑ j∈S ‖∆̂ j‖n that appears in the upper bound (20).

Ideally, we would like to upper bound it by a quantity of the order
√
s‖∆̂S‖2 =

√
s
√
∑ j∈S ‖∆̂ j‖22.

Such an upper bound would follow immediately if it were phrased in terms of the population ‖ ·‖2-
norm rather than the empirical-‖ · ‖n norm, but there are additional cross-terms with the empirical
norm. Accordingly, a somewhat more delicate argument is required, which we provide here. First
define the events

A j(λn) := {‖∆̂ j‖n ≤ 2‖∆̂ j‖2+λn},

andA(λn)=∩dj=1A j(λn). By applying Lemma 7 fromAppendix Awith t = λn≥ 16γn and b= 2, we
conclude that ‖∆̂ j‖n≤ 2‖∆̂ j‖2+λn with probability greater than 1−c1 exp(−c2nλ2n). Consequently,
if we define the event A(λn) = ∩ j∈SA j(λn), then this tail bound together with the union bound
implies that

P[Ac(λn)]≤ s c1 exp(−c2nλ2n) ≤ c1 exp(−c′2nλ2n), (21)

where we have used the fact that λn =Ω(
√

logs
n ). Now, conditioned on the event A(λn), we have

‖∆̂S‖n,1 =∑
j∈S

‖∆̂ j‖n ≤ 2∑
j∈S

‖∆̂ j‖2+ sλn (22)

≤ 2
√
s‖∆̂S‖2+ sλn ≤ 2

√
s‖∆̂‖2+ sλn.

Substituting this upper bound (22) on ‖∆̂S‖n,1 into our earlier inequality (20) yields

‖∆̂‖2n ≤ 2
√
sλn‖∆̂‖n+24

√
sλn‖∆̂‖2+12sλ2n+25sρn. (23)

At this point, we encounter a challenge due to the unbounded nature of our function class. In
particular, if ‖∆̂‖2 were upper bounded by Cmax(‖∆̂‖n,

√
sλn,

√sρn), then the upper bound (23)
would immediately imply the claim of Theorem 1. If one were to assume global boundedness of
the multivariate functions f̂ and f ∗, as done in past work of Koltchinskii and Yuan (2010), then an
upper bound on ‖∆̂‖2 of this form would directly follow from known results (e.g., Theorem 2.1 in
Bartlett et al. 2005.) However, since we do not impose global boundedness, we need to develop a
novel approach to this final hurdle.

4.1.5 CONTROLLING ‖∆̂‖2 FOR UNBOUNDED CLASSES

For the remainder of the proof, we condition on the event A(λn)∩ T (γn)∩ C (γn). We split our
analysis into three cases. Throughout the proof, we make use of the quantity

δ̃n := Bmax(
√
sλn,

√
sρn), (24)
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where B ∈ (1,∞) is a constant to be chosen later in the argument.
Case 1: If ‖∆̂‖2 < ‖∆̂‖n, then combined with inequality (23), we conclude that

‖∆̂‖2n ≤ 2
√
sλn‖∆̂‖n+24

√
sλn‖∆̂‖n+12sλ2n+25sρn.

This is a quadratic inequality in terms of the quantity ‖∆̂‖n, and some algebra shows that it implies
the bound ‖∆̂‖n ≤ 15max(

√
sλn,

√sρn). By assumption, we then have ‖∆̂‖2 ≤ 15max(
√
sλn,

√sρn)
as well, thereby completing the proof of Theorem 1.

Case 2: If ‖∆̂‖2 < δ̃n, then together with the bound (23), we conclude that

‖∆̂‖2n ≤ 2
√
sλn‖∆̂‖n+24

√
sλnδ̃n+12sλ2n+25sρn.

This inequality is again a quadratic in ‖∆̂‖n; moreover, note that by definition (24) of δ̃n, we have
sλ2n+ sρn =O(δ̃2n). Consequently, this inequality implies that ‖∆̂‖n ≤Cδ̃n for some constantC. Our
starting assumption implies that ‖∆̂‖2 ≤ δ̃n, so that the claim of Theorem 1 follows in this case.

Case 3: Otherwise, we may assume that ‖∆̂‖2 ≥ δ̃n and ‖∆̂‖2 ≥ ‖∆̂‖n. In this case, the inequal-
ity (23) together with the bound ‖∆̂‖2 ≥ ‖∆̂‖n implies that

‖∆̂‖2n ≤ 2
√
sλn‖∆̂‖2+24

√
sλn‖∆̂‖2+12sλ2n+25sρn. (25)

Our goal is to establish a lower bound on the left-hand-side—namely, the quantity ‖∆̂‖2n—in terms
of ‖∆̂‖22. In order to do so, we consider the function class G(λn,ρn) defined by functions of the form
g= ∑d

j=1 g j, and such that

λn‖g‖n,1+ρn‖g‖H ,1 ≤ 4λn‖gS‖n,1+4ρn‖gS‖H ,1+
1
32
sρn, (26)

‖gS‖1,n ≤ 2
√
s‖gS‖2+ sλn and (27)

‖g‖n ≤ ‖g‖2. (28)

Conditioned on the eventsA(γn), T (γn) and C (γn), and with our choices of regularization parameter,
we are guaranteed that the error function ∆̂ satisfies all three of these constraints, and hence that
∆̂ ∈ G(λn,ρn). Consequently, it suffices to establish a lower bound on ‖g‖n that holds uniformly
over the class G(λn,ρn). In particular, define the event

B(λn,ρn) :=
{
‖g‖2n ≥ ‖g‖22/2 for all g ∈ G(λn,ρn) such that ‖g‖2 ≥ δ̃n

}
.

The following lemma shows that this event holds with high probability.

Lemma 3 Under the conditions of Theorem 1, there are universal constants ci such that

P[B(λn,ρn)]≥ 1− c1 exp(−c2nγ2n).

We note that this lemma can be interpreted as guaranteeing a version of restricted strong convex-
ity (see Negahban et al., 2009) for the least-squares loss function, suitably adapted to the non-
parametric setting. Since we do not assume global boundedness, the proof of this lemma requires
a novel technical argument, one which combines a one-sided tail bound for non-negative random
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variables (Chung and Lu, 2006; Einmahl and Mason, 1996) with the Sudakov minoration (Pisier,
1989) for the Gaussian complexity. We refer the reader to Appendix D for the details of the proof.

Using Lemma 3 and conditioning on the eventB(λn,ρn), we are guaranteed that ‖∆̂‖2n≥‖∆̂‖22/2,
and hence, combined with our earlier bound (25), we conclude that

‖∆̂‖22 ≤ 4
√
sλn‖∆̂‖2+48

√
sλn‖∆̂‖2+24sλ2n+50sρn.

Hence ‖∆̂‖n ≤ ‖∆̂‖2 ≤Cmax(
√
sλn,

√sρn), completing the proof of the claim in the third case.

In summary, the entire proof is based on conditioning on the three events T (γn), A(λn) and
B(λn,ρn). From the bound (21) as well as Lemmas 1 and 3, we have

P
[
T (γn)∩A(λn)∩B(λn,ρn)∩C (γn)

]
≥ 1− c1 exp

(
− c2nγ2n

)
,

thereby showing that max{‖ f̂ − f ∗‖2n,‖ f̂ − f ∗‖22} ≤ Cmax(sλ2n,sρn) with the claimed probability.
This completes the proof of Theorem 1.

4.2 Proof of Theorem 2

We now turn to the proof of the minimax lower bounds stated in Theorem 2. For both parts (a) and
(b), the first step is to follow a standard reduction to testing (see, e.g., Has’minskii, 1978; Yang and
Barron, 1999; Yu, 1996) so as to obtain a lower bound on the minimax errorMP(Fd,s,H ) in terms of
the probability of error in a multi-way hypothesis testing. We then apply different forms of the Fano
inequality (see Yang and Barron, 1999; Yu, 1996) in order to lower bound the probability of error
in this testing problem. Obtaining useful bounds requires a precise characterization of the metric
entropy structure of Fd,s,H , as stated in Lemma 4.

4.2.1 REDUCTION TO TESTING

We begin with the reduction to a testing problem. Let { f 1, . . . , f M} be a δn-packing ofF in the ‖ ·‖2-
norm, and let Θ be a random variable uniformly distributed over the index set [M] := {1,2, . . . ,M}.
Note that we are using M as a shorthand for the packing number M(δn;F ,‖ · ‖2). A standard
argument (e.g., Has’minskii, 1978; Yang and Barron, 1999; Yu, 1996) then yields the lower bound

inf
f̂
sup
f ∗∈F

P
[
‖ f̂ − f ∗‖22 ≥ δ2n/2

]
≥ inf

Θ̂
P[Θ̂ 7=Θ],

where the infimum on the right-hand side is taken over all estimators Θ̂ that are measurable functions
of the data, and take values in the index set [M].

Note that P[Θ̂ 7= Θ] corresponds to the error probability in a multi-way hypothesis test, where
the probability is taken over the random choice of Θ, the randomness of the design points Xn1 :=
{xi}ni=1, and the randomness of the observations Yn1 := {yi}ni=1. Our initial analysis is performed
conditionally on the design points, so that the only remaining randomness in the observations Yn1
comes from the observation noise {wi}ni=1. From Fano’s inequality (Cover and Thomas, 1991), for

any estimator Θ̂, we have P
[
Θ̂ 7=Θ | Xn1

]
≥ 1−

IXn1 (Θ;Y
n
1 )+log2

logM , where IXn1 (Θ;Y
n
1 ) denotes the mutual

information between Θ and Yn1 with Xn1 fixed. Taking expectations over Xn1 , we obtain the lower
bound

P
[
Θ̂ 7=Θ

]
≥ 1−

EXn1
[
IXn1 (Θ;Y

n
1 )
]
+ log2

logM
. (29)
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The remainder of the proof consists of constructing appropriate packing sets of F , and obtaining
good upper bounds on the mutual information term in the lower bound (29).

4.2.2 CONSTRUCTING APPROPRIATE PACKINGS

We begin with results on packing numbers. Recall that logM(δ;F ,‖ · ‖2) denotes the δ-packing
entropy of F in the ‖ ·‖2 norm.

Lemma 4 (a) For all δ ∈ (0,1) and s≤ d/4, we have

logM(δ;F ,‖ ·‖2) = O
(
s logM(

δ√
s
;BH (1),‖ ·‖2)+ s log

d
s
)
.

(b) For a Hilbert class with logarithmic metric entropy (12) and such that ‖ f‖2 ≤ ‖ f‖H , there
exists set { f 1, . . . , f M} with logM ≥ C

{
s log(d/s)+ sm

}
, and

δ ≤ ‖ f k− f !‖2 ≤ 8δ for all k 7= ! ∈ {1,2, . . . ,M}.

The proof, provided in Appendix E, is combinatorial in nature. We now turn to the proofs of parts
(a) and (b) of Theorem 2.

4.2.3 PROOF OF THEOREM 2(A)

In order to prove this claim, it remains to exploit Lemma 4 in an appropriate way, and to upper
bound the resulting mutual information. For the latter step, we make use of the generalized Fano
approach (e.g., Yu, 1996).

From Lemma 4, we can find a set { f 1, . . . , f M} that is a δ-packing of F in !2-norm, and such
that ‖ f k− f !‖2 ≤ 8δ for all k,! ∈ [M]. For k = 1, . . . ,M, let Qk denote the conditional distribution
of Yn1 conditioned on Xn1 and the event {Θ = k}, and let D(Qk ‖Q!) denote the Kullback-Leibler
divergence. From the convexity of mutual information (Cover and Thomas, 1991), we have the
upper bound IXn1 (Θ;Y

n
1 )≤

1
(M2)

∑M
k,!=1D(Qk ‖Q!). Given our linear observation model (5), we have

D(Qk ‖Q!) =
1
2σ2

n

∑
i=1

(
f k(xi)− f !(xi)

)2
=

n ‖ f k− f !‖2n
2

,

and hence

EXn1
[
IXn1 (Y

n
1 ;Θ)

]
≤
n
2
1

(M
2
) ∑
k 7=!

EXn1 [‖ f
k− f !‖2n] =

n
2
1

(M
2
) ∑
k 7=!

‖ f k− f !‖22.

Since our packing satisfies ‖ f k− f !‖22 ≤ 64δ2, we conclude that

EXn1
[
IXn1 (Y

n
1 ;Θ)

]
≤ 32nδ2.

From the Fano bound (29), for any δ > 0 such that 32nδ
2+log2
logM < 1

4 , then we are guaranteed that
P[Θ̂ 7=Θ]≥ 3

4 . From Lemma 4(b), our packing set satisfies logM ≥C
{
sm+ s log(d/s)

}
, so that so

that the choice δ2 = C′{ sm
n + s log(d/s)

n
}
, for a suitably small C′ > 0, can be used to guarantee the

error bound P[Θ̂ 7= Θ]≥ 3
4 .

407



RASKUTTI, WAINWRIGHT AND YU

4.2.4 PROOF OF THEOREM 2(B)

In this case, we use an upper bounding technique due to Yang and Barron (1999) in order to upper
bound the mutual information. Although the argument is essentially the same, it does not fol-
low verbatim from their claims—in particular, there are some slight differences due to our initial
conditioning—so that we provide the details here. By definition of the mutual information, we have

IXn1 (Θ;Y
n
1 ) =

1
M

M

∑
k=1

D(Qk ‖PY ),

whereQk denotes the conditional distribution of Yn1 given Θ= k and still with Xn1 fixed, whereas PY
denotes the marginal distribution of PY .

Let us define the notion of a covering number, in particular for a totally bounded metric space
(G ,ρ), consisting of a set G and a metric ρ : G ×G → R+. An ε-covering set of G is a collection
{ f 1, . . . , f N} of functions such that for all f ∈G there exists k ∈ {1,2, ...,N} such that ρ( f , f k)≤ ε.
The ε-covering number N(ε;G ,ρ) is the cardinality of the smallest ε-covering set.

Now let {g1, . . . ,gN} be an ε-cover of F in the ‖ · ‖2 norm, for a tolerance ε to be chosen. As
argued in Yang and Barron (1999), we have

IXn1 (Θ;Y
n
1 ) =

1
M

M

∑
j=1

D(Q j ‖PY )≤ D(Qk ‖
1
N

N

∑
k=1

Pk),

where P! denotes the conditional distribution of Yn1 given g! and Xn1 . For each !, let us choose g!
∗(k)

as follows: !∗(k) ∈ argmin!=1,...,N ‖g!− f k‖2. We then have the upper bound

IXn1 (Θ;Y
n
1 )≤

1
M

M

∑
k=1

{
logN+

n
2
‖g!

∗(k)− f k‖2n
}
.

Taking expectations over Xn1 , we obtain

EXn1 [IXn1 (Θ;Y
n
1 )]≤

1
M

M

∑
k=1

{
logN+

n
2
EXn1 [‖g

!∗(k)− f k‖2n]
}

≤ logN+
n
2
ε2,

where the final inequality follows from the choice of our covering set.
From this point, we can follow the same steps as Yang and Barron (1999). The polynomial

scaling (13) of the metric entropy guarantees that their conditions are satisfied, and we conclude
that the minimax error is lower bounded by any δn > 0 such that nδ2n ≥ C logN(δn;F ,‖ ·‖2). From
Lemma 4 and the assumed scaling (13), it is equivalent to solve the equation

nδ2n ≥ C
{
s log(d/s)+ s(

√
s/δn)1/α

}
,

from which some algebra yields δ2n =C
{ s log(d/s)

n + s
(1
n
) 2α
2α+1

}
as a suitable choice.
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4.3 Proof of Theorem 3

Recall the definition of F ∗
d,s,H (B) andH (S,B) from Section 3.5; note that it guarantees that ‖ f ∗‖∞≤

B. In order to establish upper bounds on the minimax rate in L2(P)-error over F ∗
d,s,H (B), we ana-

lyze a least-squares estimator—albeit not the same as the original M-estimator (6)—constrained to
F ∗
d,s,H (B), namely

f̂ ∈ arg min
f∈F ∗

d,s,H (B)

n

∑
i=1

(yi− ȳn− f (xi))2. (30)

Since our goal is to upper bound the minimax rate in L2(P) error, it is sufficient to upper bound
the L2(P)-norm of f̂ − f ∗ where f̂ is any solution to (30). The proof shares many steps with the
proof of Theorem 1. First, the same reasoning shows that the error ∆̂ := f̂ − f ∗ satisfies the basic
inequality

1
n

n

∑
i=1

∆̂2(xi)≤
2
n
|
n

∑
i=1

wi∆̂(xi)|+ |ȳn− f |
∣∣1
n

n

∑
i=1

∆̂(xi)
∣∣.

Recall the definition (14) of the critical rate δn. Once again, we first control the term error due
to estimating the mean |ȳn− f | = | 1n ∑

n
i=1(yi− f )|. Since | f ∗(xi)| is at most B and wi is standard

Gaussian and independent, the random variable yi− f = f ∗(xi)+wi is sub-Gaussian with parameter√
B2+1. The samples are all i.i.d., so that by standard sub-Gaussian tail bounds, we have

P[|ȳn− f |> t]≤ 2exp(−
nt2

2(B2+1)
).

Setting A(δn) = {|ȳn− f |≤ Bδn}, it is clear that

P[A(δn)]≥ 1−2exp(−
nδ2n
4

).

For the remainder of the proof, we condition on the event A(δn), in which case Equation (17)
simplifies to

1
2
‖∆̂‖2n ≤

∣∣1
n

n

∑
i=1

wi∆̂(xi)
∣∣+Bδn‖∆̂‖n. (31)

Here we have used the fact that
∣∣1
n ∑

n
i=1 ∆̂(xi)

∣∣≤ ‖∆̂‖n, by the Cauchy-Schwartz inequality.
Now we control the Gaussian complexity term

∣∣1
n ∑

n
i=1wi∆̂(xi)

∣∣. For any fixed subset S, define
the random variable

Ẑn(w, t;H (S,2B)) := sup
∆∈H (S,2B)
‖∆‖n≤t

∣∣1
n

n

∑
i=1

wi∆(xi)
∣∣. (32)

We first bound this random variable for a fixed subset S of size 2s, and then take the union bound
over all

( d
2s
)
possible subsets.
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Lemma 5 Assume that the RKHS H has eigenvalues (µk)∞k=1 that satisfy µk 5 k−2α and eigenfunc-
tions such that ‖φk‖∞ ≤C. Then we have

P
[
∃t > 0 such that Ẑn(w, t;H (S,2B))≥ 16BC

√
s1/α logs

n
+3tδn

]
≤ c1 exp(−9nδ2n).

The proof of Lemma 5 is provided Appendix F.1. Returning to inequality (31), we note that by
definition,

2
n
|
n

∑
i=1

wi∆̂(xi)|≤ max
|S|=2s

Ẑn(w,‖∆̂‖n;H (S,2B)).

Lemma 5 combined with the union bound implies that

max
|S|=2s

Ẑn(w,‖∆̂‖n;H (S,2B))≤ 16BC

√
s1/α logs

n
+3δn‖∆̂‖n

with probability at least 1− c1
( d
2s
)
exp(−3nδ2n). Our choice (14) of δn ensures that this probability

is at least 1− c1 exp(−c2nδ2n). Combined with the basic inequality (31), we conclude that

‖∆̂‖2n ≤ 32BC

√
s1/α logs

n
+7Bδn ‖∆̂‖n (33)

with probability 1− c1 exp(−c2nδ2n).
By definition (14) of δn, the bound (33) implies that ‖∆̂‖n = O(δn) with high probability. In

order to translate this claim into a bound on ‖∆̂‖2, we require the following result:

Lemma 6 There exist universal constants (c,c1,c2) such that for all t ≥ cδn, we have

‖g‖2
2

≤ ‖g‖n ≤
3
2
‖g‖2 for all g ∈H (S,2B) with ‖g‖2 ≥ t (34)

with probability at least 1− c1 exp(−c2nt2).

Proof The bound (34) follows by applying Lemma 7 in Appendix A withG =H (S,2B) and b= 2B.
The critical radius from equation (35) needs to satisfy the relation Qw,n(εn;H (S,2B)) ≤ ε2n

40 . From

Lemma 11, the choice ε2n = 320BC
√

s1/α logs
n satisfies this relation. By definition (14) of δn, we have

δn ≥ cεn for some universal constant c, which completes the proof.

This lemma implies that with probability at least 1−c1 exp(−c2Bnδ2n), we have ‖∆̂‖2≤ 2‖∆̂‖n+
Cδn. Combined with our earlier upper bound on ‖∆̂‖n, this completes the proof of Theorem 3.

5. Discussion

In this paper, we have studied estimation in the class of sparse additive models in which each uni-
variate function lies within a reproducing kernel Hilbert space. In conjunction, Theorems 1 and 2
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provide a precise characterization of the minimax-optimal rates for estimating f ∗ in the L2(P)-norm
for various kernel classes with bounded univariate functions. These classes include finite-rank ker-
nels (with logarithmic metric entropy), as well as kernels with polynomially decaying eigenvalues
(and hence polynomial metric entropy). In order to establish achievable rates, we analyzed a sim-
ple M-estimator based on regularizing the least-squares loss with two kinds of !1-based norms, one
defined by the univariate Hilbert norm and the other by the univariate empirical norm. On the other
hand, we obtained our lower bounds by a combination of approximation-theoretic and information-
theoretic techniques.

An important feature of our analysis is we assume only that each univariate function is bounded,
but do not assume that the multivariate function class is bounded. As discussed in Section 3.5,
imposing a global boundedness condition in the high-dimensional setting can lead to a substantially
smaller function classes; for instance, for Sobolev classes and sparsity s=Ω(

√
n), Theorem 3 shows

that it is possible to obtain much faster rates than the optimal rates for the class of sparse additive
models with univariate functions bounded. Theorem 3 in our paper shows that the rates obtained
under global boundedness conditions are not minimax optimal for Sobolev spaces in the regime
s=Ω(

√
n).

There are a number of ways in which this work could be extended. Our work considered only
a hard sparsity model, in which at most s co-ordinate functions were non-zero, whereas it could
be realistic to use a “soft” sparsity model involving !q-norms. Some recent work by Suzuki and
Sugiyama (2012) has studied some extensions of this type. In addition, the analysis here was based
on assuming independence of the covariates x j, j = 1,2, . . .d; it would be interesting to investigate
the case when the random variables are endowed with some correlation structure. One might expect
some changes in the optimal rates, particularly if many of the variables are strongly dependent.
Finally, this work considered only the function class consisting of sums of co-ordinate functions,
whereas a natural extension would be to consider nested non-parametric classes formed of sums
over hierarchies of subsets of variables.
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Appendix A. A General Result On Equivalence Of L2(P) And L2(Pn) Norms

Since it is required in a number of our proofs, we begin by stating and proving a general result that
provides uniform control on the difference between the empirical ‖ ·‖n and population ‖ ·‖2 norms
over a uniformly bounded function class G . We impose two conditions on this class:

(a) it is uniformly bounded, meaning that there is some b≥ 1 such that ‖g‖∞ ≤ b for all g ∈ G .

(b) it is star-shaped, meaning that if g ∈ G , then λg ∈ G for all λ ∈ [0,1].
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For each co-ordinate, the Hilbert ball BH (2) satisfies both of these conditions; we use G = BH (2).
(To be clear, we cannot apply this result to the multivariate function class Fd,s,H , since it is not
uniformly bounded.)

Let {σi}ni=1 be an i.i.d. sequence of Rademacher variables, and let {xi}ni=1 be an i.i.d. sequence
of variables from X , drawn according to some distribution Q. For each t > 0, we define the local
Rademacher complexity

Qσ,n(t,G) := Ex,σ
[
sup

‖g‖2≤t
g∈G

1
n

n

∑
i=1

σig(xi)
]

We let εn denote the smallest solution (of size at least 1/
√
n) to the inequality

Qσ,n(εn,G) =
ε2n
40

, (35)

where our scaling by the constant 40 is for later theoretical convenience. Such an εn exists, because
the star-shaped property implies that the function Qσ,n(t,G)/t is non-increasing in t. This quantity
corresponds to the critical rate associated with the population Rademacher complexity. For any
t ≥ εn, we define the event E(t) :=

{
sup g∈G

‖g‖2≤t

∣∣‖g‖n−‖g‖2
∣∣≥ bt

2
}
.

Lemma 7 Suppose that ‖g‖∞ ≤ b for all g ∈ G . Then there exist universal constants (c1,c2) such
that for any t ≥ εn,

P
[
E(t)

]
≤ c1 exp(−c2nt2).

In addition, for any g ∈G with ‖g‖2 ≥ t, we have ‖g‖n ≤ ‖g‖2(1+ b
2), and moreover, for all g ∈G

with ‖g‖2 ≥ bt, we have
1
2
‖g‖2 ≤ ‖g‖n ≤

3
2
‖g‖2, (36)

both with probability at least 1− c1 exp(−c2nt2).

Lemma 7 follows from a relatively straightforward adaptation of known results (e.g., Lemma 5.16
in van de Geer, 2000 and Theorem 2.1 in Bartlett et al., 2005), so we omit the proof details here.

Appendix B. Proof of Lemma 1

The proof of this lemma is based on peeling and weighting techniques from empirical process theory
(Alexander, 1987; van de Geer, 2000) combined with results on the local Rademacher and Gaussian
complexities of kernel classes (Bartlett et al., 2005; Mendelson, 2002). For each univariate Hilbert
space H j =H , let us introduce the random variables

Ẑn(w, t;H ) := sup
‖g j‖H≤1
‖g j‖n≤t

∣∣1
n

n

∑
i=1

wig j(xi j)
∣∣, and Zn(w, t;H ) := Ex

[
sup

‖g j‖H≤1
‖g j‖2≤t

∣∣1
n

n

∑
i=1

wig j(xi j)
∣∣
]
,

(37)
where wi ∼ N(0,1) are i.i.d. standard normal. The empirical and population Gaussian complexities
are given by

Q̂w,n(t,H ) := Ew
[
Ẑn(w; t,H )

]
and Qw,n(t,H ) := Ew

[
Zn(w; t,H )

]
.
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For future reference, we note that in the case of a univariate Hilbert space H with eigenvalues
{µk}∞k=1, results in Mendelson (2002) imply that there are universal constants c! ≤ cu such that for
all t2 ≥ 1/n, we have

c!√
n
[ ∞

∑
k=1
min{t2,µk}

]1/2 ≤ Qw,n(t,H ) ≤
cu√
n
[ ∞

∑
k=1
min{t2,µk}

]1/2
, (38)

for all j. The same bounds hold for the local Rademacher complexity in our special case of repro-
ducing kernel Hilbert spaces.

Let ν̂n, j > 0 denote the smallest positive solution r of the inequality

Q̂w,n(r,H )≤ 4r2. (39)

The function Q̂w,n(r,H ) defines the local Gaussian complexity of the kernel class in co-ordinate
j. Recall the bounds (38) that apply to both the empirical and population Gaussian complexities.
Recall that the critical univariate rate νn is defined in terms of the population Gaussian complexity
(see Equation (8)).

B.1 Some Auxiliary Results

In order to prove Lemma 1, we also need some auxiliary results, stated below as Lemmas 8 and 9.

Lemma 8 For any function class G and all δ≥ 0, we have

P
[
|Ẑn(w, t,G)− Q̂w,n(t,G)|≥ δt

]
≤ 2exp

(
−
nδ2

2
)
, and (40)

P
[
|Zn(w, t,G)−Qw,n(t,G)|≥ δt

]
≤ 2exp

(
−
nδ2

2

)
. (41)

ProofWe have

|Ẑn(w, t,G)− Ẑn(w′, t,G)| ≤ sup
g∈G

‖g‖n≤t

1
n
|
n

∑
i=1

(wi−w′
i)g(xi)| ≤

t√
n
‖w−w′‖2,

showing that Ẑn(w, t,G) is t√
n -Lipschitz with respect to the !2 norm. Consequently, concentration

for Lipschitz functions of Gaussian random variables (see Ledoux, 2001) yields the tail bound (40).
Turning to the quantity Zn(w, t,H ), a similar argument yields that

|Zn(w, t,G)−Zn(w′, t,G)|≤ Ex
[
sup
g∈G

‖g‖2≤t

1
n
|
n

∑
i=1

(wi−w′
i)g(xi)|

]

≤ sup
g∈G

‖g‖2≤t

Ex
[(1
n

n

∑
i=1

g2(xi))1/2
]
‖w−w′‖2 ≤

t√
n
‖w−w′‖2,

where the final step uses Jensen’s inequality and the fact that Ex[g2(xi)]≤ t2 for all i= 1, . . . ,n. The
same reasoning then yields the tail bound (41).
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Our second lemma involves the event D(γn) :=
{
ν̂n, j ≤ γn, for all j = 1,2, . . . ,d

}
, where we

recall the definition (39) of ν̂n, j, and that γn := κmax
{
νn,

√
logd
n

}
.

Lemma 9 For all 1≤ j ≤ d, we have

P
[
ν̂n, j ≤ γn

]
≥ 1− c1 exp(−c2nγ2n).

Proof
We first bound the probability of the event {ν̂n, j > γn} for a fixed H j. Let g ∈ BH j(1) be any

function such that ‖g‖2 > t ≥ νn. Then conditioned on the sandwich relation (36) with b= 1, we are
guaranteed that ‖g‖n > t

2 . Taking the contrapositive, we conclude that ‖g‖n ≤
t
2 implies ‖g‖2 ≤ t,

and hence that Ẑn(w, t/2,H )≤ Zn(w, t,H ) for all t ≥ νn, under the stated conditioning.
For any t ≥ νn, the inequalities (36), (40) and (41) hold with probability at least

1− c1 exp(−c2nt2). Conditioning on these inequalities, we can set t = γn > νn, and thereby obtain

Q̂w,n(γn,H )
(a)
≤ Ẑn(w,γn,H )+ γ2n
(b)
≤ Zn(w,2γn,H )+ γ2n
(c)
≤ Qw,n(2γn,H )+2γ2n
(d)
≤ 4γ2n,

where inequality (a) follows from the bound (40), inequality (b) follows the initial argument, in-
equality (c) follows from the bound (41), and inequality (d) follows since 2γn > εn and the definition
of εn.

By the definition of ν̂n, j as the minimal t such that Q̂w,n(t,H ) ≤ 4t2, we conclude that for
each fixed j = 1, . . . ,n, we have ν̂n, j ≤ γn with probability at least 1− c1 exp(−c2nγ2n). Finally, the

uniformity over j = 1,2, . . . ,d follows from the union bound and our choice of γn ≥ κ
√

logd
n .

B.2 Main Argument To Prove Lemma 1

We can now proceed with the proof of Lemma 1. Combining Lemma 9 with the union bound over
j = 1,2, . . . ,d, we conclude that that

P[D(γn)]≥ 1− c1 exp(−c2nγ2n),

as long as c2 ≥ 1. For the remainder of our proofs, we condition on the event D(γn). In particular,
our goal is to prove that

∣∣1
n

n

∑
i=1

wi f j(xi j)
∣∣≤C

{
γ2n ‖ f j‖H + γn ‖ f j‖n

}
for all f j ∈H (42)
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with probability greater than 1− c1 exp(−c2nγ2n). By combining this result with our choice of γn
and the union bound, the claimed bound then follows on P[T (γn)].

If f j = 0, then the claim (42) is trivial. Otherwise we renormalize f j by defining g j := f j/‖ f j‖H ,
and we write

1
n

n

∑
i=1

wi f j(xi j) = ‖ f j‖H
1
n

n

∑
i=1

wig j(xi j) ≤ ‖ f j‖H Ẑn
(
w;‖g j‖n,H

)
,

where the final inequality uses the definition (37), and the fact that ‖g j‖H = 1. We now split the
analysis into two cases: (1) ‖g j‖n ≤ γn, and (2) ‖g j‖n > γn.

Case 1: ‖g j‖n ≤ γn. In this case, it suffices to upper bound the quantity Ẑn(w;γn,H ). Note that
‖g j‖H = 1 and recall definition (37) of the random variable Ẑn. On one hand, since γn ≥ ν̂n, j by
Lemma 9, the definition of ν̂n, j implies that Q̂w,n(γn,H ) ≤ 4γ2n, and hence

E[Ẑn(w;γn;H )] = Q̂w,n(γn;H )≤ 4γ2n.

Applying the bound (40) from Lemma 8 with δ= γn = t, we conclude that Ẑn(w;γn;H )≤C γ2n with
probability at least 1− c1 exp

{
− c2nγ2n

}
, which completes the proof in the case where ‖g‖n ≤ γn.

Case 2: ‖g j‖n > γn. In this case, we study the random variable Ẑn(w;r j;H ) for some r j > γn.
Our intermediate goal is to prove the bound

P

[
Ẑn(w;r j;H )≥Cr j γn

]
≤ c1 exp

{
− c2nγ2n

}
. (43)

Applying the bound (40) with t = r j and δ = γn, we are guaranteed an upper bound of the form
Ẑn(w;r j;H )≤ Q̂w,n(r j,H )+ r j γn with probability at least 1− c1 exp

(
− c2nγ2n). In order to com-

plete the proof, we need to show that Q̂w,n(r j,H )≤ r j γn. Since r j > γn > ν̂n, j, we have

Q̂w,n(r j,H ) =
r j
ν̂n, j

Ew
[

sup
‖g j‖n≤ν̂n, j
‖g j‖H≤

ν̂n, j
r j

∣∣1
n

n

∑
i=1

wig j(xi j)
∣∣] ≤

r j
ν̂n, j

Q̂w,n(ν̂n, j,H ) ≤ 4r jν̂n, j,

where the final inequality uses the fact that Q̂w,n(ν̂n, j,H )≤ 4 ν̂2n, j. On the eventD(γn) from Lemma 9,
we have ν̂n, j ≤ γn, from which the claim (43) follows.

We now use the bound (43) to prove the bound (42), in particular via a “peeling” operation
over all choices of r j = ‖ f j‖n/‖ f j‖H . (See van de Geer, 2000 for more details on these peeling
arguments.) We claim that it suffices to consider r j ≤ 1. It is equivalent to show that ‖g j‖n ≤ 1 for
any g j ∈ BH (1). Since ‖g j‖∞ ≤ ‖g j‖H ≤ 1, we have ‖g j‖2n = 1

n ∑
n
i=1 g2j(xi j) ≤ 1, as required. Now

define the event

T j(γn) :=
{
∃ f j ∈ BH (1) |

∣∣1
n

n

∑
i=1

wi f j(xi j)
∣∣> 8 ‖ f j‖H γn

‖ f j‖n
‖ f j‖H

, and
‖ f j‖n
‖ f j‖H

∈ (γn,1]
}
.

and the sets Sm :=
{
2m−1γn ≤

‖ f j‖n
‖ f j‖H

≤ 2mγn
}
for m = 1,2, . . . ,M. By choosing M = 2log2(1/γn),

we ensure that 2Mγn ≥ 1, and hence that if the event T j(γn) occurs, then it must occur for function
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f j belonging to some Sm, so that we have a function f j such that
‖ f j‖n
‖ f j‖H

≤ tm := 2mγn, and

∣∣1
n

n

∑
i=1

wi f j(xi j)
∣∣> 8 ‖ f j‖H γn

‖ f j‖n
‖ f j‖H

≥C ‖ f j‖H tm,

which implies that Ẑn(w; tm,H ) ≥ 4tm. Consequently, by union bound and the tail bound (43), we
have

P[T j(γn)]≤M c1 exp
{
− c2nγ2n

}
≤ c1 exp

{
− c′2nγ

2
n
}

by the condition nγ2n =Ω(log(1/γn)), which completes the proof.

Appendix C. Proof of Lemma 2

Define the function

L̃(∆) :=
1
2n

n

∑
i=1

(
wi+ f + ȳn−∆(xi)

)2
+λn‖ f ∗+∆‖n,1+ρn‖ f ∗+∆‖H ,1

and note that by definition of our M-estimator, the error function ∆̂ := f̂ − f ∗ minimizes L̃ . From
the inequality L̃(∆̂)≤ L̃(0), we obtain the upper bound 1

2‖∆̂‖
2
n ≤ T1+T2, where

T1 :=
∣∣1
n

n

∑
i=1

wi∆̂(xi)
∣∣+ |ȳn− f |

∣∣1
n

n

∑
i=1

∆̂(xi)
∣∣, and

T2 := λn
d

∑
j=1

{
‖ f ∗j ‖n−‖ f ∗j + ∆̂ j‖n

}
+ρn

d

∑
j=1

{
‖ f ∗j ‖H −‖ f ∗j + ∆̂ j‖H

}
.

Conditioned on the event C (γn), we have the bound |ȳn− f |
∣∣1
n ∑

n
i=1 ∆̂(xi)

∣∣ ≤
√
sγn‖∆̂‖n, and hence

1
2‖∆̂‖

2
n ≤ T2+

∣∣1
n ∑

n
i=1wi∆̂(xi)

∣∣+
√
sγn‖∆̂‖n, or equivalently

0 ≤
1
2
(
‖∆̂‖n−

√
sγn

)2 ≤ T2+
∣∣1
n

n

∑
i=1

wi∆̂(xi)
∣∣+

1
2
sγ2n. (44)

It remains to control the term T2. On one hand, for any j ∈ Sc, we have

‖ f ∗j ‖n−‖ f ∗j + ∆̂ j‖n = −‖∆̂ j‖n, and ‖ f ∗j ‖H −‖ f ∗j + ∆̂ j‖H = −‖∆̂ j‖H .

On the other hand, for any j ∈ S, the triangle inequality yields ‖ f ∗j ‖n−‖ f ∗j + ∆̂ j‖n ≤ ‖∆̂ j‖n, with a
similar inequality for the terms involving ‖ ·‖H . Combined with the bound (44), we conclude that

0≤
1
n

n

∑
i=1

wi∆̂(xi)+λn
{
‖∆̂S‖n,1−‖∆̂Sc‖n,1

}
+ρn

{
‖∆̂S‖H ,1−‖∆̂Sc‖H ,1

}
+
1
2
sγ2n. (45)

Recalling our conditioning on the event T (γn), by Lemma 1, we have the upper bound

∣∣1
n

n

∑
i=1

wi∆̂(xi)|≤ 8
{
γn‖∆̂‖n,1+ γ2n‖∆̂‖H ,1

}
.
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Combining with the inequality (45) yields

0≤ 8
{
γn‖∆̂‖n,1+ γ2n‖∆̂‖H ,1

}
+λn

{
‖∆̂S‖n,1−‖∆̂Sc‖n,1

}
+ρn

{
‖∆̂S‖H ,1−‖∆̂Sc‖H ,1

}
+
1
2
sγ2n

≤
λn
2
‖∆̂‖n,1+

ρn
2
‖∆̂‖H ,1+λn

{
‖∆̂S‖n,1−‖∆̂Sc‖n,1

}
+ρn

{
‖∆̂S‖H ,1−‖∆̂Sc‖H ,1

}
+
1
2
sγ2n,

where we have recalled our choices of (λn,ρn). Finally, re-arranging terms yields the claim (19).

Appendix D. Proof of Lemma 3

Recalling the definitions (26), (27) and (28) of the function class G(λn,ρn) and the critical radius
δ̃n from Equation (24), we define the function class G ′(λn,ρn, δ̃n) :=

{
h ∈ G(λn,ρn) | ‖h‖2 = δ̃n

}
,

and the alternative event

B ′(λn,ρn) :=
{
‖h‖2n ≥ δ̃2n/2 for all h ∈ G ′(λn,ρn, δ̃n)

}
.

We claim that it suffices to show that B ′(λn,ρn) holds with probability at least 1− c1 exp(−c2nγ2n).
Indeed, given an arbitrary non-zero function g∈G(λn,ρn), consider the rescaled function h= δ̃n

‖g‖2 g.
Since g ∈ G(λn,ρn) and G(λn,ρn) is star-shaped, we have h ∈ G(λn,ρn), and also ‖h‖2 = δ̃n by
construction. Consequently, when the event B ′(λn,ρn) holds, we have ‖h‖2n ≥ δ̃2n/2, or equivalently
‖g‖2n ≥ ‖g‖22/2, showing that B(λn,ρn) holds. Accordingly, the remainder of the proof is devoted
to showing that B ′(λn,ρn) holds with probability greater than 1− c1 exp(−c2nγ2n). Alternatively, if
we define the random variable Zn(G ′) := sup f∈G ′

{
δ̃2n− 1

n ∑
n
i=1 f 2(xi)

}
, then it suffices to show that

Zn(G ′)≤ δ̃2n/2 with high probability.
Recall from Section 4.2.4 the definition of a covering set; here we use the notion of a proper

covering, which restricts the covering to use only members of the set G . Letting Npr(ε;G ,ρ) denote
the propert covering number, it can be shown that Npr(ε;G ,ρ)≤ N(ε;G ,ρ)≤ Npr(ε/2;G ,ρ). Now
let g1, . . . ,gN be a minimal δ̃n/8-proper covering of G ′ in the L2(Pn)-norm, so that for all f ∈ G ′,
there exists g= gk ∈ G ′ such that ‖ f −g‖n ≤ δ̃n/8. We can then write

δ̃2n−
1
n

n

∑
i=1

f 2(xi) =
{
δ̃2n−

1
n

n

∑
i=1

g2(xi)
}
+
{1
n

n

∑
i=1

(g2(xi)− f 2(xi))
}
.

By the Cauchy-Schwartz inequality, we have

1
n

n

∑
i=1

(g2(xi)− f 2(xi)) =
1
n

n

∑
i=1

(g(xi)− f (xi))(g(xi)+ f (xi))

≤

√
1
n

n

∑
i=1

(g(xi)− f (xi))2
√
1
n

n

∑
i=1

( f (xi)+g(xi))2

= ‖g− f‖n

√
1
n

n

∑
i=1

( f (xi)+g(xi))2.

By our choice of the covering, we have ‖g− f‖n ≤ δ̃n/8. On the other hand, we have
√
1
n

n

∑
i=1

( f (xi)+g(xi))2 ≤
√
2‖ f‖2n+2‖g‖2n ≤

√
4δ̃2n = 2δ̃n,
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where the final inequality follows since ‖ f‖n = ‖g‖n = δ̃n. Overall, we have established the upper
bound 1

n ∑
n
i=1 (g2(xi)− f 2(xi))≤ δ̃2n

4 , and hence shown that

Zn(G ′)≤ max
g1,g2,...,gN

{
δ̃2n−

1
n

n

∑
i=1

(gk(xi))
}
+
δ̃2n
4
,

where N = Npr(δ̃n/8,G ′,‖ · ‖n). For any g in our covering set, since g2(xi) ≥ 0, we may apply a
one-sided tail bound (e.g., Theorem 3.5 from Chung and Lu, 2006, or Lemma 2.1 in Einmahl and
Mason, 1996) with t = δ̃2n/4 to obtain the one-sided tail bound

P[δ̃2n−
1
n

n

∑
i=1

g2(xi)≥
δ̃2n
4
]≤ exp

(
−

nδ̃4n
32E[g4(x)]

)
, (46)

where we used the upper bound var(g2(x)) ≤ E[g4(x)]. Next using the fact that the variables
{g j(x j)}dj=1 are independent and zero-mean, we have

E[g4(x)] =
d

∑
j=1

E[g4j(x j)]+
(
4
2

)
∑
j 7=k

E[[g2j(x j)]E[g
2
k(xk)]

≤ 4
d

∑
j=1

E[g2j(x j)]+6
d

∑
j=1

E[g2j(x j)]
d

∑
k=1

E[g2k(xk)]

≤ 4δ̃2n+6δ̃4n
≤ 10δ̃2n,

where the second inequality follows since ‖g j‖∞ ≤ ‖g j‖H ≤ 2 for each j. Combining this upper
bound on E[g4(x)] with the earlier tail bound (46) and applying union bound yields

P[ max
k=1,2,...,N

{
δ̃2n−

1
n

n

∑
i=1

g2(xi)
}
≥
δ̃2n
4
]≤ exp

(
logNpr(δ̃n/8,G ′,‖ ·‖n)−

nδ̃2n
320

)
. (47)

It remains to bound the covering entropy logNpr(δ̃n/8,G ′,‖ ·‖n). Since the proper covering en-
tropy logNpr(δ̃n/8,G ′,‖ ·‖n) is at most logN(δ̃n/16,G ′,‖ ·‖n), it suffices to upper bound the usual
covering entropy. Viewing the samples (x1,x2, ...,xn) as fixed, let us define the zero-mean Gaus-
sian process {Wg,g ∈ G ′} viaWg := 1√

n ∑
n
i=1 εig(xi), where the variables {εi}ni=1 are i.i.d. standard

Gaussian variates. By construction, we have var[(Wg−Wf ))] = ‖g− f‖2n. Consequently, by the Su-
dakov minoration (see Pisier, 1989), for all ε> 0, we have ε

√
logN(ε;G ′,‖ ·‖n)≤ 4Eε[supg∈G ′Wg].

Setting ε= δ̃n/16 and performing some algebra, we obtain the upper bound

1√
n

√
logN(δ̃n/16;G ′,‖ ·‖n)≤

64
δ̃n

Eε[ sup
g∈G ′

1
n

n

∑
i=1

εig(xi)]. (48)

The final step is to upper bound the Gaussian complexity Eε[ sup
g∈G ′

1
n ∑

n
i=1 εig(xi)]. In the proof of

Lemma 1, we showed that for any co-ordinate j ∈ {1,2, . . . ,d}, the univariate Gaussian complexity
is upper bounded as

E
[

sup
‖g j‖n≤r j
‖g j‖H≤Rj

1
n

n

∑
i=1

εig j(xi j)
]
≤ C

{
γn r j+ γ2nR j

}
.
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Summing across co-ordinates and recalling the fact that the constant C may change from line to
line, we obtain the upper bound

Eε[ sup
g∈G ′

1
n

n

∑
i=1

εig(xi)]≤C sup
g∈G ′

{
γn ‖g‖1,n+ γ2n‖g‖1,H

}

(a)
≤ C sup

g∈G ′

{
4γn ‖gS‖1,n+4γ2n‖gS‖1,H +

1
32
sρn

}

(b)
≤ C sup

g∈G ′

{
γn ‖gS‖1,n+ sρn

}

(c)
≤ C sup

g∈G ′

{
γn [2

√
s‖g‖2+ sγn]+ sρn

}
,

where step (a) uses inequality (26) in the definition of G ′; step (b) uses the inequality ‖g j‖H ≤ 2 for
each co-ordinate and hence ‖gS‖1,H ≤ 2s, and our choice of regularization parameter ρn ≥ γ2n; and
step (c) uses inequality (27) in the definition of G ′. Since ‖g‖2 = δ̃n for all g ∈ G ′, we have shown
that

Eε[ sup
g∈G ′

1
n

n

∑
i=1

εig(xi)]≤C
{
sγ2n+

√
sγnδ̃n+ sρn

} (d)
≤ C

{ δ̃2n
B2

+
δ̃2n
B
}
, (49)

where inequality (d) follows from our choice (24) of δ̃n, and the constant B can be chosen as large
as we please. In particular, by choosing B sufficiently large, and combining the bound (49) with the
Sudakov bound (48), we can ensure that

1
n
logN(δ̃n/16;G ′,‖ ·‖n)≤

δ̃2n
640

.

Combined with the earlier tail bound (47), we conclude that

P[ max
k=1,2,...,N

{
δ̃2n−

1
n

n

∑
i=1

g2(xi)
}
≥
δ̃2n
4
]≤ exp

(
−
nδ̃2n
640

)
,

which completes the proof of Lemma 3.

Appendix E. Proof of Lemma 4

In this section, we present the proofs of Lemma 4 (a) and (b).

E.1 Proof of Part (a)

Let N =M( δ√
s ;BH (1),‖ ·‖2)−1, and define I = {0,1, . . . ,N}. Consider the set

S :=
{
u ∈ I d | ‖u‖0 :=

d

∑
j=1

I[u j 7= 0] = s
}
. (50)
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Note that this set has cardinality |S| =
(d
s
)
Ns, since any element is defined by first choosing s co-

ordinates are non-zero, and then for each co-ordinate, choosing non-zero entry from a total of N
possible symbols.

For each j = 1, . . . ,d, let {0, f 1j , f 2j , . . . , f Nj } be a δ/
√
s-packing of BH (1). Based on these

packings of the univariate function classes, we can useS to index a collection of functions contained
inside F . In particular, any u ∈S uniquely defines a function gu = ∑d

j=1 g
uj
j ∈ F , with elements

gujj =

{
f u jj if u j 7= 0
0 otherwise.

Since ‖u‖0 = s, we are guaranteed that at most s co-ordinates of g are non-zero, so that g ∈ F .
Now consider two functions gu and hv contained within the class {gu,u ∈S}. By definition, we

have

‖gu−hv‖22 =
d

∑
j=1

‖ f u jj − f v jj ‖
2
2 ≥

δ2

s

d

∑
j=1

I[u j 7= v j], (51)

Consequently, it suffices to establish the existence of a “large” subset A ⊂ S such that the
Hamming metric ρH(u,v) := ∑d

j=1 I[u j 7= v j] is at least s/2 for all pairs u,v ∈ A , in which case we
are guaranteed that ‖g−h‖22 ≥ δ2. For any u ∈S, we observe that

∣∣∣∣
{
v ∈S | ρH(u,v)≤

s
2
}∣∣∣∣≤

(
d
s
2

)
(N+1)

s
2 .

This bound follows because we simply need to choose a subset of size s/2 where u and v agree, and
the remaining s/2 co-ordinates can be chosen arbitrarily in (N+ 1) s2 ways. For a given set A , we
write ρH(u,A)≤ s

2 if there exists some v ∈ A such that ρH(u,v)≤ s
2 . Using this notation, we have

∣∣∣∣
{
u ∈S | ρH(u,A)≤

s
2
}∣∣∣∣≤ |A |

(
d
s
2

)
(N+1)

s
2

(a)
< |S|,

where inequality (a) follows as long as

|A |≤ N∗ :=
1
2

(d
s
)

(d
s
2

)
Ns

(N+1)s/2
.

Thus, as long as |A | ≤ N∗, there must exist some element u ∈S such that ρH(u,A)> s
2 , in which

case we can form the augmented set A ∪ {u}. Iterating this procedure, we can form a set with N∗

elements such that ρH(u,v)≥ s
2 for all u,v ∈ A .

Finally, we lower bound N∗. We have

N∗
(i)
≥
1
2
(d− s
s/2

) s
2 (N)s

(N+1)s/2

=
1
2
(d− s
s/2

) s
2 Ns/2( N

N+1
)s/2

≥
1
2
(d− s
s/2

) s
2 Ns/2,
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where inequality (i) follows by elementary combinatorics (see Lemma 5 in Raskutti et al., 2011 for
details). We conclude that for s≤ d/4, we have

logN∗ =Ω
(
s log

d
s
+ s logM(

δ√
s
;BH (1),‖ ·‖2)

)
,

thereby completing the proof of Lemma 4(a).

E.2 Proof of Part (b)

In order to prove part (b), we instead let N =M( 12 ;BH (1),‖ ·‖2)−1, and then follow the same steps.
Since logN =Ω(m), we have the modified lower bound

logN∗ =Ω
(
s log

d
s
+ sm

)
,

Moreover, instead of the lower bound (51), we have

‖gu−hv‖22 =
d

∑
j=1

‖ f u jj − f v jj ‖
2
2 ≥

1
4

d

∑
j=1

I[u j 7= v j] ≥
s
8
,

using our previous result on the Hamming separation. Furthermore, since ‖ f j‖2 ≤ ‖ f j‖H for any
univariate function, we have the upper bound

‖gu−hv‖22 =
d

∑
j=1

‖ f u jj − f v jj ‖
2
2 ≤

d

∑
j=1

‖ f u jj − f v jj ‖
2
H .

By the definition (50) of S, at most 2s of the terms f u jj − f v jj can be non-zero. Moreover, by
construction we have ‖ f u jj − f v jj ‖H ≤ 2, and hence

‖gu−hv‖22 ≤ 8s.

Finally, by rescaling the functions by
√
8δ/

√
s, we obtain a class of N∗ rescaled functions {g̃u,u ∈

I} such that
‖g̃u− h̃v‖22 ≥ δ2, and ‖g̃u− h̃v‖22 ≤ 64δ2,

as claimed.

Appendix F. Results For Proof Of Theorem 3

The reader should recall from Section 3.5 the definitions of the function classes F ∗
d,s,H (B) and

H (S,B). The function class H (S,B) can be parameterized by the two-dimensional sequence
(a j,k) j∈S ,k∈N of co-efficients, and expressed in terms of two-dimensional sequence of basis func-
tions (φ j,k) j∈S ,k∈N and the sequence of eigenvalues (µk)k∈N for the univariate RKHS H as follows:

H (S,B) :=
{
f =∑

j∈S

∞

∑
k=1

a j,kφ j,k |
∞

∑
k=1

a2j,k
µk

≤ 1 ∀ j ∈ S and ‖ f‖∞ ≤ B
}
.

For any integerM ≥ 1, we also consider the truncated function class

H (S,B,M) :=
{
f =∑

j∈S

M

∑
k=1

a j,kφ j,k |
∞

∑
k=1

a2j,k
µk

≤ 1 ∀ j ∈ S and ‖ f‖∞ ≤ B
}
.
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Lemma 10 We have the inclusion H (S,B,M)⊆
{
f ∈H (S) | ∑ j∈S∑

M
k=1 |a j,k|≤ B

√
M
}
.

Proof Without loss of generality, let us assume that S = {1,2, ...,s}, and consider a function f =
∑s
j=1 f j ∈H (S,B,M). Since each f j acts on a different co-ordinate, we are guaranteed that ‖ f‖∞ =

∑s
j=1 ‖ f j‖∞. Consider any univariate function f j = ∑M

k=1 a j,kφ j,k. We have

M

∑
k=1

|a j,k|≤
√
M
( M

∑
k=1

a2j,k

)1/2 (a)
≤

√
M

[
E[ f 2j (Xj)]

]1/2 ≤
√
M‖ f j‖∞,

where step (a) uses the fact that E[ f 2j (Xj)] = ∑∞
k=1 a2j,k ≥ ∑M

k=1 a2j,k for any M ≥ 1. Adding up the
bounds over all co-ordinates, we obtain

‖a‖1 =
s

∑
j=1

M

∑
k=1

|a j,k|≤
√
M

s

∑
j=1

‖ f j‖∞ =
√
M‖ f‖∞ ≤

√
MB,

where the final step uses the uniform boundedness condition.

F.1 Proof of Lemma 5

Recalling the definition of Ẑn(w; t,H (S,2B)) stated from (32), let us view it as a function of the
standard Gaussian random vector (w1, . . . ,wn). It is straightforward to verify that this variable is
Lipschitz (with respect to the Euclidean norm) with parameter at most t/

√
n. Consequently, by

concentration for Lipschitz functions (see Ledoux, 2001), we have

P
[
Ẑn(w; t,H (S,2B))≥ E[Ẑn(w; t,H (S,2B))]+3tδn

]
≤ exp

(
−
9nδ2n
2

)
.

Next we prove an upper bound on the expectations

Q̂w,n(t;H (S,2B)) := Ew
[

sup
g∈H (S,2B)
‖g‖n≤t

1
n

n

∑
i=1

wig(xi)
]
, and

Qw,n(t;H (S,2B)) := Ex,w
[

sup
g∈H (S,2B)
‖g‖2≤t

1
n

n

∑
i=1

wig(xi)
]
.

Lemma 11 Under the conditions of Theorem 3, we have

max
{
Q̂w,n(t;H (S,2B)), Qw,n(t;H (S,2B))

}
≤ 8BC

√
s1/α logs

n
.

Proof By definition, any function g ∈ H (S,2B) has support at most 2s, and without loss of gener-
ality (re-indexing as necessary), we assume that S = {1,2, ...,2s}. We can thus view functions in
H (S,2B) as having domain R2s, and we can an operator Φ that maps from R2s to [!2(N)]2s, via

x <→Φ j,k(x) = φ j,k(x j), for j = 1, . . . ,2s, and k ∈ N.
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Any function in g∈H (S,2B) can be expressed in terms of two-dimensional sequence (a j,k) and the
functions (Φ j,k) as g(x) = g(x1,x2, . . . ,x2s) = ∑2sj=1∑

∞
k=1Φ j,k(x)a j,k = 〈〈Φ(x), a〉〉, where 〈〈·, ·〉〉 is

a convenient shorthand for the inner product between the two arrays.
For any function g ∈H (S,2B), triangle inequality yields the upper bound

sup
g∈2H (S,2B)

1
n
|
n

∑
i=1

wi〈〈Φ(xi), a〉〉|≤ sup
g∈2H (S,2B)

1
n
|
n

∑
i=1

wi〈〈Φ·,1:M(xi), a·,1:M〉〉
︸ ︷︷ ︸

A1

+A2 (52)

where A2 := supg∈2H (S,2B)
1
n |∑

n
i=1wi〈〈Φ·,M+1:∞(xi), a·,M+1:∞〉〉|.

F.1.1 BOUNDING THE QUANTITIES Ex,w[A1] AND Ew[A1]

By Hölder’s inequality and Lemma 10, we have

A1 ≤
1√
n

sup
g∈2H (S,2B)

‖a·,1:M‖1,1max
j,k

|
n

∑
i=1

wi√
n
Φ j,k(xi)| ≤

2 B
√
M√
n

max
j,k

|
n

∑
i=1

wi√
n
Φ j,k(xi)|.

By assumption, we have |Φ j,k(xi)|≤C for all indices (i, j,k), implying that ∑n
i=1

wi√
nΦ j,k(xi) is zero-

mean with sub-Gaussian parameter bounded by C and we are taking the maximum of 2s×M such
terms. Consequently, we conclude that

Ew[A1]≤ 4BC
√
M log(2Ms)

n
. (53)

Note that the same bound holds for Ex,w[A1].

F.1.2 BOUNDING THE QUANTITIES Ex,w[A2] AND Ew[A2]

In order to control this term, we simply recognize that it corresponds to the usual Gaussian com-
plexity of the sum of 2s univariate Hilbert spaces, each of which is an RKHS truncated to the
eigenfunctions {µk}k≥M+1. In particular, we have

1
n
|
n

∑
i=1

wi〈〈Φ·,M+1:∞(xi), a·,M+1:∞〉〉|≤
1√
n

2s

∑
j=1

| ∑
k≥M+1

a j,k
n

∑
i=1

Φ j,k(xi)
wi√
n

︸ ︷︷ ︸
b j,k

|

=
1√
n

2s

∑
j=1

| ∑
k≥M+1

a j,k√µk
√
µkb j,k|

(i)
≤

1√
n

2s

∑
j=1

√√√√ ∑
k≥M+1

a2j,k
µk

√
∑

k≥M+1
µkb2j,k

(ii)
≤

1√
n

2s

∑
j=1

√
∑

k≥M+1
µkb2j,k,

where step (i) follows by applying the Cauchy-Schwarz inequality, and step (ii) exploits the fact that

∑k≥M+1
a2j,k
µk ≤ 1 for all j.
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This bound no longer depends on the coefficients a (or equivalently, the function g), so that we
have shown that

Ew[A2]≤
1√
n

2s

∑
j=1

Ew
[√

∑
k≥M+1

µkb2j,k
]
≤

1√
n

2s

∑
j=1

√
∑

k≥M+1
µkEw[b2j,k],

where the second step uses Jensen’s inequality to move the expectation inside the square root. Re-
calling that b2j,k =

(
∑n
i=1Φ j,k(xi) wi√

n

)2 and using the independence of the noise variable {wi}ni=1, we
have

Ew[b2j,k] =
1
n

n

∑
i=1

Φ2j,k(xi)Ew[w
2
i ] ≤ C2.

Putting together the pieces, we conclude that

Ew[A2]≤
C√
n

2s

∑
j=1

√
∑

k≥M+1
µk =

2Cs√
n

√
∑

k≥M+1
µk. (54)

Once again, a similar bound holds for Ex,w[A2].
Substituting the bounds (53) and (54) into the inequality (52), we conclude that

Qw,n(2H (S,2B))≤ 4BC
√
M log(2Ms)

n
+2Cs

√
∑k≥M+1µk

n

≤ 4BC
√
M log(2Ms)

n
+2Cs

√
M1−2α

n
,

where the second inequality follows from the relation µk 5 k−2α. Finally, setting M = s
1
α yields the

claim. Note that the same argument works for the Rademacher complexity, since we only exploited
the sub-Gaussianity of the variables wi. This completes the proof of Lemma 11.

Returning to the proof of Lemma 5, combining Lemma 11 with the bound (40) in Lemma 8:

P
[
Ẑn(w; t,H (S,2B))≥ 8BC

√
s1/α logs

n
+3tδn

]
≤ exp

(
−
9nδ2n
2

)
.

Since ‖g‖n ≤ 2B for any function g ∈ H (S,2B), the proof Lemma 5 is completed using a peeling
argument over the radius, analogous to the proof of Lemma 1 (see Appendix B).
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Abstract
When learning models that are represented in matrix forms, enforcing a low-rank constraint can
dramatically improve the memory and run time complexity, while providing a natural regularization
of the model. However, naive approaches to minimizing functions over the set of low-rank matrices
are either prohibitively time consuming (repeated singular value decomposition of the matrix) or
numerically unstable (optimizing a factored representation of the low-rank matrix). We build on
recent advances in optimization over manifolds, and describe an iterative online learning procedure,
consisting of a gradient step, followed by a second-order retraction back to the manifold. While
the ideal retraction is costly to compute, and so is the projection operator that approximates it, we
describe another retraction that can be computed efficiently. It has run time and memory complexity
of O((n+m)k) for a rank-k matrix of dimension m× n, when using an online procedure with
rank-one gradients. We use this algorithm, LORETA, to learn a matrix-form similarity measure
over pairs of documents represented as high dimensional vectors. LORETA improves the mean
average precision over a passive-aggressive approach in a factorized model, and also improves over
a full model trained on pre-selected features using the same memory requirements. We further
adapt LORETA to learn positive semi-definite low-rank matrices, providing an online algorithm
for low-rank metric learning. LORETA also shows consistent improvement over standard weakly
supervised methods in a large (1600 classes and 1 million images, using ImageNet) multi-label
image classification task.
Keywords: low rank, Riemannian manifolds, metric learning, retractions, multitask learning,
online learning

1. Introduction

Many learning problems involve models represented in matrix form. These include metric learning,
collaborative filtering, and multi-task learning where all tasks operate over the same set of features.
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†. Also at Google Research, 1600 Amphitheatre Parkway, Mountain View CA, 94043.
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In many of these tasks, a natural way to regularize the model is to limit the rank of the corresponding
matrix. In metric learning, a low-rank constraint allows to learn a low dimensional representation
of the data in a discriminative way. In multi-task problems, low-rank constraints provide a way to
tie together different tasks. In all cases, low-rank matrices can be represented in a factorized form
that dramatically reduces the memory and run-time complexity of learning and inference with that
model. Low-rank matrix models could therefore scale to handle substantially many more features
and classes than models with full rank dense matrices.

Unfortunately, the rank constraint is non-convex, and in the general case, minimizing a convex
function subject to a rank constraint is NP-hard (Natarajan, 1995).1 As a result of these issues, two
main approaches have been commonly used to address the problem of learning under a low-rank
constraint. Sometimes, a matrixW ∈ R

n×m of rank k is represented as a product of two low dimen-
sion matricesW = ABT ,A ∈ R

n×k,B ∈ R
m×k and simple gradient descent techniques are applied to

each of the product terms separately (Bai et al., 2009). Second, projected gradient algorithms can
be applied by repeatedly taking a gradient step and projecting back to the manifold of low-rank
matrices. Unfortunately, computing the projection to that manifold becomes prohibitively costly for
large matrices and cannot be computed after every gradient step.

Work in the field has focused mostly on two realms. First, learning low-rank positive semi-
definite (PSD) models (as opposed to general low-rank models), as in the works of Kulis et al.
(2009) and Meyer et al. (2011). Second, approximating a noisy matrix of observations by a low-
rank matrix, as in the work of Negahban and Wainwright (2010). This task is commonly addressed
in the field of recommender systems. Importantly, the current paper does not address the problem
of low-rank approximation to a given data matrix, but rather addresses the problem of learning a
low-rank parametric model in the context of ranking and classification.

In this paper we propose new algorithms for online learning on the manifold of low-rank matri-
ces. It is based on an operation called retraction, which is an operator that maps from a vector space
that is tangent to the manifold, into the manifold (Do Carmo, 1992; Absil et al., 2008). Retrac-
tions include the projection operator as a special case, but also include other operators that can be
computed substantially more efficiently. We use second order retractions to develop LORETA —an
online algorithm for learning low-rank matrices. LORETA has a memory and run time complexity of
O((n+m)k) per update when the gradients have rank one. We show below that the case of rank-one
gradients is relevant to numerous online learning problems.

We test LORETA in two different domains and learning tasks. First, we learn a bilinear similarity
measure among pairs of text documents, where the number of features (text terms) representing each
document could become very large. LORETA performed better than other techniques that operate
on a factorized model, and also improves retrieval precision by 33% as compared with training a
full rank model over pre-selected most informative features, using comparable memory footprint.
Second, we applied LORETA to image multi-label ranking, a problem in which the number of classes
could grow to millions. LORETA significantly improved over full rank models, using a fraction of
the memory required. These two experiments suggest that low-rank optimization could become
very useful for learning in high-dimensional problems.

1. Some special cases are solvable (notably, PCA), relying mainly on singular value decomposition (Fazel et al., 2005)
and semi-definite programming techniques. For SDP of rank k ≥ 2 it is not known whether this problem is NP-hard.
For k = 1 it is equivalent to the MAX-CUT problem (Briët et al., 2010). Both SDP and SVD scale poorly to large
scale tasks.
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This paper is organized as follows. We start with an introduction to optimization on manifolds,
describing the notion of retractions. We then derive our low-rank online learning algorithm in three
variants: one which learns a general low-rank matrix, one which learns a low-rank PSD matrix, and
one which concentrates most of the learning in a reduced dimensional space. Finally we test our
algorithms in two applications: learning similarity of text documents, and multi-label ranking on a
set of one million images.

This paper extends a shorter version published in Advances in Neural Information Systems
(Shalit et al., 2010), by adding a new PSD version of the algorithm, much larger-scale and wider
experiments, giving a full mathematical discussion and proofs, and adding thorough complexity
analysis.

2. Optimization on Riemannian Manifolds

The field of numerical optimization on smooth manifolds has advanced significantly in the past
few years. For a recent exposition on this subject see Absil et al. (2008). We start with a short
introduction to embedded manifolds, which are the focus of this paper.

An embedded manifold is a smooth subset of an ambient space R
n. For instance, the set

{x : ||x||2 = 1,x ∈ R
n}, the unit sphere, is an n−1 dimensional manifold embedded in n-dimensional

space R
n. As another example, the orthogonal group On, which comprises of the set of orthogo-

nal n× n matrices, is an n(n−1)
2 dimensional manifold embedded in Rn×n. Here we focus on the

manifold of low-rank matrices, namely, the set of n×m matrices of rank k where k < m,n. It
is an (n+m)k− k2 dimensional manifold embedded in R

n×m, which we denote M n,m
k , or plainly

M . Embedded manifolds inherit many properties from the ambient space, a fact which simplifies
their analysis. For example, the natural Riemannian metric for embedded manifolds is simply the
Euclidean metric restricted to the manifold.

Motivated by online learning, we focus here on developing a stochastic gradient descent proce-
dure to minimize a loss function L over the manifold of low-rank matricesM n,m

k ,

min
W

L(W ) s.t. W ∈M n,m
k .

To illustrate the challenge in this problem, consider a simple stochastic gradient descent algorithm
(Figure 1). At every step t of the algorithm, a gradient step updateWt − ∇̃L(Wt) takes the model
outside of the manifold M and has to be mapped back onto the manifold. The most common
mapping operation is the projection operation, which, given a pointWt− ∇̃L(Wt) outside the man-
ifold, would find the closest point inM . Unfortunately, the projection operation is very expensive
to compute for the manifold of low-rank matrices, since it basically involves a singular value de-
composition. Here we describe a wider class of operations called retractions, that serve a similar
purpose: they find a point on the manifold that is in the direction of the gradient. To explain how re-
tractions are computed, we first describe the notion of a tangent space and the Riemannian gradient
of a function on a manifold.

2.1 Riemannian Gradient and the Tangent Space

Each pointW in an embedded manifold M has a tangent space associated with it, denoted TWM ,
as shown in Figure 2 (for a formal definition of the tangent space, see Appendix A). The tangent
space is a vector space of the same dimension as the manifold that can be identified in a natural way
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Figure 1: Projection onto the manifold is just a particular case of a retraction. Retractions are
defined as operators that approximate the geodesic gradient flow on the manifold.

with a linear subspace of the ambient space. It is usually simple to compute the linear projection PW
of any point in the ambient space onto the tangent space TWM .

Given a manifoldM and a differentiable function L :M →R, the Riemannian gradient ∇L(W )
of L onM at a pointW is a vector in the tangent space TWM . A very useful property of embedded
manifolds is the following: given a differentiable function f defined on the ambient space (and thus
on the manifold), the Riemannian gradient of f at pointW is simply the linear projection PW of the
Euclidean gradient of f onto the tangent space TWM .

Thus, if we denote the Euclidean gradient of L in Rn×m by ∇̃L , we have∇L(W ) = PW (∇̃L). An
important consequence follows in case the manifold represents the set of points obeying a certain
constraint. In this case the Riemannian gradient of f is equivalent to the Euclidean gradient of f
minus the component which is normal to the constraint. Indeed this normal component is exactly
the component which is irrelevant when performing constrained optimization.

The Riemannian gradient allows us to computeWt+ 1
2 =Wt−ηt∇L(W ), for a given iterate point

Wt and step size ηt . We now examine howWt+ 1
2 can be mapped back onto the manifold.

2.2 Retractions

Intuitively, retractions capture the notion of "going along a straight line" on the manifold. The math-
ematically ideal retraction is called the exponential mapping (Do Carmo, 1992, Chapter 3): it maps
the tangent vector ξ ∈ TWM to a point along a geodesic curve which goes throughW in the direc-
tion of ξ Figure 1. Unfortunately, for many manifolds (including the low-rank manifold considered
here) calculating the geodesic curve is computationally expensive (Vandereycken et al., 2009). A
major insight from the field of Riemannian manifold optimization is that one can use retractions
which merely approximate the exponential mapping. Using such retractions maintains the conver-
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gence properties obtained with the exponential mapping, but is much cheaper computationally for a
suitable choice of mapping.

Definition 1 Given a point W in an embedded manifold M , a retraction is any function RW :
TWM →M which satisfies the following two conditions (Absil et al., 2008, Chapter 4):

1. Centering: RW (0) =W.

2. Local rigidity: The curve γ : (−ε,ε)→M defined by γξ(τ) = RW (τξ) satisfies
γ̇ξ(0) = ξ, where γ̇ is the derivative of γ by τ.

It can be shown that any such retraction approximates the exponential mapping to a first or-
der (Absil et al., 2008). Second-order retractions, which approximate the exponential mapping to
second order aroundW , have to satisfy in addition the following stricter condition:

PW
(

dRW (τξ)
dτ2

|τ=0

)

= 0,

for all ξ ∈ TWM , where PW is the linear projection from the ambient space onto the tangent space
TWM . When viewed intrinsically, the curve RW (τξ) defined by a second-order retraction has zero
acceleration at pointW , namely, its second order derivatives are all normal to the manifold. The best
known example of a second-order retraction onto embedded manifolds is the projection operation
(Absil and Malick, 2010), which maps a point X to the point Y ∈M which is closest to it in the
Frobenius norm. That is, the projection of X ontoM is simply:

Pro jM (X) = argmin
Y∈M

‖X−Y‖Fro

Importantly, such projections are viewed here as one type of a second order approximation to the
exponential mapping, which can be replaced by any other second-order retractions, when computing
the projection is too costly (see Figure 1).

Given the tangent space and a retraction, we now define a Riemannian gradient descent proce-
dure for the loss L at pointWt ∈M . Conceptually, the procedure has three steps (Figure 2):

1. Step 1: Ambient gradient: Obtain the Euclidean gradient ∇̃L(Wt) in the ambient space.

2. Step 2: Riemannian gradient: Linearly project the ambient gradient onto the tangent space
TWM . Compute ξt = PWt (∇̃L(Wt)).

3. Step 3: Retraction: Retract the Riemannian gradient ξt back to the manifold: Wt+1 =
RWt (ξt).

With a proper choice of step size, this procedure can be proved to have local convergence for
any retraction (Absil et al., 2008). In practice, the algorithm merges these three steps for efficiency,
as discussed in the next section.
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Figure 2: A three step procedure for computing a retracted gradient at pointWt . Step 1: standard
(Euclidean) gradient step. Step 2: linearly project ambient gradient onto tangent space
TWM in order to get the Riemannian gradient ξt . Step 3: retract the Riemannian gradient
ξt back to the manifold.

3. Online Learning on the Low-rank Manifold

Based on the retractions described above, we now present an online algorithm for learning low-rank
matrices, by performing stochastic gradient descent on the manifold of low-rank matrices. We name
the algorithm LORETA (for a LOw rank RETraction Algorithm). At every iteration the algorithm
suffers some loss, and performs a Riemannian gradient step followed by a retraction to the manifold
M

n,m
k . Section 3.1 discusses general online updates. Section 3.2 discusses the very common case

where the online updates induce a gradient of rank r = 1.

Algorithm 1 : Online algorithm for learning in the manifold of low-rank matrices
Input: Initial low-rank model matrixW 0 ∈M n,m

k . Examples (x0,x1, . . .). Loss function L . Gradient
descent step sizes (η0,η1, . . .).
Output: Final low-rank model matrixW final ∈M n,m

k .

repeat:
Get example xt
Calculate the stochastic loss gradient: ∇̃L(Wt ;xt)
Linearly project onto the tangent space: ξt = PWt (∇̃L(Wt ;xt))
Retract back to the manifold: Wt+1 = RWt (−ηtξt)

until stopping condition is satisfied
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In what follows, lowercase Greek letters like ξ denote an abstract tangent vector, and uppercase
Roman letters like A denote concrete matrix representations as kept in memory (taking n×m float
numbers to store). We intermix the two notations, as in ξ= AZ, when the meaning is clear from the
context. The set of n× k matrices of rank k is denoted Rn×k∗ .

3.1 The General-Rank LORETA Algorithm

In online learning we are repeatedly given a rank-r gradient matrix Z = ∇̃LW , and want to compute
a step on M n,m

k in the direction of Z. As a first step we find its linear projection onto the tangent
space Ẑ = PW (Z).

We start with a lemma that gives a representation of the tangent space TWM (Figure 2), ex-
tending the constructions given by Vandereycken and Vandewalle (2010) to the general manifold of
low-rank matrices.

Lemma 2 Let W ∈M n,m
k have a (non-unique) factorizationW = ABT , where A ∈Rn×k

∗ , B ∈Rm×k
∗ .

Let A⊥ ∈Rn×(n−k) and B⊥ ∈Rm×(m−k) be the orthogonal complements of A and B respectively, such
that AT⊥A= 0, BT⊥B= 0, AT⊥A⊥ = In−k, BT⊥B⊥ = Im−k. The tangent space toM n,m

k at W is:

TWM =

{

[

A A⊥
]

[

M NT
1

N2 0

][

BT
BT⊥

]

:M ∈ R
k×k,N1 ∈ R

(m−k)×k,N2 ∈ R
(n−k)×k

}

.

Proof The proof is given in Appendix A.

We note that the assumption that A and B are both of full column rank is tantamount to assuming
that the modelW is exactly of rank k, and no less. Let ξ ∈ TWM be a tangent vector toW = ABT .
From the characterization above it follows that ξ can be decomposed in a unique manner into three
orthogonal components: ξ= ξAB+ξAB⊥+ξA⊥B, where:

ξAB = AMBT , ξAB⊥ = ANT
1 B

T
⊥, ξA⊥B = A⊥N2BT . (1)

It is easy to verify that each pair is orthogonal, following from the relations AT⊥A= 0, BT⊥B= 0.
We wish to find the three matrices M, N1 and N2 associated with Ẑ = PW (Z), such that Ẑ =

AMBT +ANT
1 BT⊥+A⊥N2BT . We can find each of the matrices M, N1 and N2 separately, because

each belongs to a space orthogonal to the other two. Thus we solve the following three problems:

argmin
M∈Rk×k

‖Z−AMBT‖2Fro,

argmin
N1∈R

(m−k)×k
‖Z−ANT

1 B
T
⊥‖

2
Fro,

argmin
N2∈R

(n−k)×k
‖Z−A⊥N2BT‖2Fro .

To find the minimum of each of these three equations, we compute the derivatives and set them
to zero. The solutions involve the pseudoinverses of A and B. Since A and B are of full column rank,
their pseudoinverses are A† = (ATA)−1AT , B† = (BTB)−1BT .
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M = (ATA)−1ATZB(BTB)−1 = A†ZB†T , (2)
N1 = BT⊥Z

TA(ATA)−1 = BT⊥Z
TA†,

N2 = AT⊥ZB(B
TB)−1 = AT⊥ZB

†T .

The matrix AA† is the matrix projecting onto the column space of A, and similarly for B. We
will denote these matrices by PA, PB, etc. For the matrices projecting onto A⊥ and B⊥’s columns
we actually have PA⊥ = A⊥AT⊥ because the columns of A⊥ are orthogonal, and likewise for PB⊥ .
Substituting the expressions in Equation (2) into expressions of the components of the Riemannian
gradient vector in Equation (1), we obtain:

ξAB = PAZPB, ξAB⊥ = PAZPB⊥ , ξA⊥B = PA⊥ZPB.

We can now define the retraction. The following theorem presents the retraction we will apply.

Theorem 3 Let W ∈M n,m
k , W = ABT , and W † = B†TA†. Let ξ ∈ TWM n,m

k ,
ξ= ξAB+ξAB⊥+ξA⊥B, as in Equation (1), and let:

V1 =W +
1
2
ξAB+ξA⊥B−

1
8
ξABW †ξAB−

1
2
ξA⊥BW †ξAB ,

V2 =W +
1
2
ξAB+ξAB⊥ −

1
8
ξABW †ξAB−

1
2
ξABW †ξAB⊥ .

The mapping
RW (ξ) =V1W †V2

is a second order retraction from a neighborhood ΘW ⊂ TWM n,m
k toM n,m

k .

Proof The proof is given in Appendix B.

A more succinct representation of this retraction is the following:

Lemma 4 The retraction RW (ξ) can be presented as:

RW (ξ) =

[

A
(

Ik+
1
2
M−

1
8
M2

)

+A⊥N2
(

Ik−
1
2
M
)]

·

[

B
(

Ik+
1
2
MT −

1
8
(

MT )2
)

+B⊥N1
(

Ik−
1
2
MT

)]T
.

Proof The proof is given in Appendix C.

As a result from Lemma 4, we can calculate the retraction as the product of two low-rank factors:
the first is an n×k matrix, the second a k×m matrix. Given a gradient ∇̃L(x) in the ambient space,
we can calculate the matrices M, N1 and N2 which allow us to represent its projection onto the
tangent space, and furthermore allow us to calculate the retraction. We now have all the ingredients
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Algorithm 2 : Naive Riemannian stochastic gradient descent
Input: Matrices A ∈ R

n×k
∗ , B ∈ R

m×k
∗ s.t. W = ABT . Gradient matrix G ∈ R

n×m s.t.
G = −η∇̃L(W ) ∈ R

n×m, where ∇̃L(W ) is the gradient in the ambient space and η > 0 is
the step size.

Output: Matrices Z1 ∈ R
n×k
∗ , Z2 ∈ R

m×k
∗ such that Z1ZT2 = RW (−η∇L(W )).

Compute: matrix dimension
A† = (ATA)−1AT , B† = (BTB)−1BT k×n, k×m
A⊥, B⊥= orthogonal complements of A,B n× (n− k), m× (m− k)
M = A†GB†T k× k
N1 = BT⊥G

TA†T (m− k)× k
N2 = AT⊥GB

†T (n− k)× k
Z1 = A

(

Ik+ 1
2M−

1
8M

2)+A⊥N2
(

Ik− 1
2M

)

n× k
Z2 = B

(

Ik+ 1
2M

T − 1
8(M

T )2
)

+B⊥N1
(

Ik− 1
2M

T ) m× k

necessary for a Riemannian stochastic gradient descent algorithm. The procedure is outlined in
Algorithm 2.

Algorithm 2 explicitly computes and stores the orthogonal complement matrices A⊥ and B⊥,
which in the low rank case k+ m,n, have size O(mn), the same as the full sized W . To improve
the memory complexity, we use the fact that the matrices A⊥ and B⊥ always operate with their
transpose. Since A⊥ and B⊥ have orthogonal columns, the matrix A⊥AT⊥ is actually the projection
matrix that we denoted earlier by PA⊥ , and likewise for B⊥. Because of orthogonal complementarity,
these projection matrices are equal to In−PA and Im−PB respectively. Thus we can write A⊥N2 =
(

I−AA†
)

ZB†T , and a similar identity for B⊥N1.
Consider now the case where the gradient matrix is of rank-r and is available in a factorized

form Z = G1GT
2 , with G1 ∈ R

n×r, G2 ∈ R
m×r. Using the factorized gradient we can reformulate the

algorithm to keep in memory only matrices of size at most max(n,m)×k or max(n,m)×r. Optimiz-
ing the order of matrix operations so that the number of operations is minimized gives Algorithm
3. The runtime complexity of Algorithm 3 is readily computed based on matrix multiplications
complexity,2 and is O

(

(n+m)(k+ r)2
)

.

3.2 LORETA With Rank-one Gradients

In many learning problems, the gradient matrix ∇̃L(W ) required for a gradient step update has a
rank of one. This is the case for example, when the matrix modelW acts as a bilinear form on two
vectors, p and q, and the loss is a piecewise linear function of pTWq (as in Grangier and Bengio,
2008; Chechik et al., 2010; Weinberger and Saul, 2009; Shalev-Shwartz et al., 2004 and Section 7.1
below). In that case, the gradient is the rank-one outer product matrix pqT . As another example,
consider the case of multitask learning, where the matrix modelW operates on a vector input p, and
the loss is the squared loss ‖Wp−q‖2 between the multiple predictionsWp and the true labels q.
The gradient of this loss is (Wp−q)pT , which is again a rank-one matrix. We now show how to

2. We assume throughout this paper the use of ordinary (schoolbook) matrix multiplication.
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Algorithm 3 : LORETA-r - General-rank Riemannian stochastic gradient descent
Input: Matrices A ∈ R

n×k
∗ , B ∈ R

m×k
∗ s.t. W = ABT . Matrices G1 ∈ R

n×r, G2 ∈ R
m×r s.t.

G1GT
2 = −η∇̃L(W ) ∈ R

n×m, where ∇̃L(W ) is the gradient in the ambient space and η > 0 is the
step size.

Output: Matrices Z1 ∈ R
n×k
∗ , Z2 ∈ R

m×k
∗ such that Z1ZT2 = RW (−η∇L(W )).

Compute: matrix dimension runtime complexity
A† = (ATA)−1AT , B† = (BTB)−1BT k×n, k×m O((n+m)k2)
a1 = A† ·G1, b1 = B† ·G2 k× r, k× r O((n+m)kr)
a2 = A ·a1 n× r O(nkr)
Q= b1T ·a1 r× r O(kr2)
a3 =− 12a2+

3
8a2 ·Q+G1− 1

2G1 ·Q n× r O(nr2)
Z1 = A+a3 ·b1T n× k O(nkr)
b2 =

(

GT
2B

)

·B† r×m O(mkr)
b3 =− 12b2+

3
8Q ·b2+GT

2 −
1
2Q ·GT

2 r×m O(mr2)
ZT2 = BT +a1 ·b3 k×m O(mkr)

reduce the complexity of each iteration to be linear in the model rank k when the rank of the gradient
matrix is r = 1.

Algorithm 4 : LORETA-1 - Rank-one Riemannian stochastic gradient descent
Input: Matrices A ∈ R

n×k
∗ , B ∈ R

m×k
∗ s.t. W = ABT . Matrices A† and B†, the pseudo-inverses of A

and B respectively. Vectors p ∈ R
n×1, q ∈ R

m×1 s.t. pqT = −η∇̃L(W ) ∈ R
n×m, where ∇̃L(W ) is

the gradient in the ambient space and η> 0 is the step size.

Output: Matrices Z1 ∈ R
n×k
∗ , Z2 ∈ R

m×k
∗ s.t. Z1ZT2 = RW (−η∇L(W )). Matrices Z†1 and Z

†
2 , the

pseudo-inverses of Z1 and Z2 respectively.

Compute: matrix dimension runtime complexity
a1 = A† ·p,b1 = B† ·q k×1 O((n+m)k)
a2 = A ·a1 n×1 O(nk)
s= b1T ·a1 1×1 O(k)
a3 = a2

(

− 12 +
3
8s
)

+p(1− 1
2s) n×1 O(n)

Z1 = A+a3 ·b1T n× k O(nk)
b2 =

(

qTB
)

·B† 1×m O(mk)
b3 = b2

(

− 12 +
3
8s
)

+qT (1− 1
2s) 1×m O(m)

ZT2 = BT +a1 ·b3 k×m O(mk)
Z†1 = rank_one_pseudoinverse_update(A,A†,a3,b1) k×n O(nk)
Z†2 = rank_one_pseudoinverse_update(B,B†,b3,a1) k×m O(mk)

Given rank-one gradients, the most computationally demanding step in Algorithm 3 is the com-
putation of the pseudo-inverse of the matrices A and B, taking O(nk2) and O(mk2) operations. All
other operations are O(max(n,m) · k) at most. To speed up calculations we use the fact that for
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r = 1 the outputs Z1 and Z2 become rank-one updates of the input matrices A and B. This enables
us to keep the pseudo-inverses A† and B† from the previous round, and perform a rank-one update
to them, following a procedure developed by Meyer (1973). The full procedure is included in Ap-
pendix D. This procedure is similar to the better known Sherman-Morrison formula for the inverse
of a rank-one perturbed matrix, and its computational complexity for an n× k matrix is O(nk) op-
erations. Using that procedure, we derive our final algorithm, LORETA-1, the rank-one Riemannian
stochastic gradient descent. Its overall time and space complexity are both O((n+m)k) per gradient
step. It can be seen that the LORETA-1 algorithm uses only basic matrix operations, with the most
expensive ones being low-rank matrix-vector multiplication and low-rank matrix-matrix addition.
The memory requirement of LORETA-1 is about 4nk (assuming m = n), since it receives four in-
put matrices of size nk (A,B,A†,B†) and assuming it can compute the four outputs (Z1,Z2,Z†1 ,Z

†
2),

in-place while destroying previously computed terms.

4. Online Learning of Low-rank Positive Semidefinite Matrices

In this section we adapt the derivation above to the special case of positive semidefinite (PSD)
matrices. PSDmatrices are of special interest because they encode a true Euclidean metric. An n-by-
n PSDmatrixW of rank-k can be factored asW =YYT , withY ∈R

n×k. Thus, the bilinear form xTWz
is equal to (Yx)T (Yz), which is a Euclidean inner product in the space spanned by Y ’s columns.
These properties have led to an extensive use of PSDmatrix models in metric and similarity learning,
see, for example, Xing et al. (2002), Goldberger et al. (2005), Globerson and Roweis (2006), Bar-
Hillel et al. (2006) and Jain et al. (2008). The set of n-by-n PSDmatrices of rank-k forms a manifold
of dimension nk− k(k−1)

2 , embedded in the Euclidean space Rn×n (Vandereycken et al., 2009). We
denote this manifold by S+(k,n).

We now give a characterization of the tangent space of this manifold, due to Vandereycken and
Vandewalle (2010).

Lemma 5 Let W ∈ S+(k,n) have a (non-unique) factorization W = YYT , where Y ∈ R
n×k
∗ . Let

Y⊥ ∈ R
n×(n−k) be the orthogonal complement of Y such that YT⊥Y = 0, Y T⊥Y⊥ = In−k. The tangent

space to S+(k,n) at W is:

TWS+(k,n) =
{

[

Y Y⊥
]

[

S NT

N 0

][

YT
YT⊥

]

: S ∈ R
k×k,N ∈ R

(n−k)×k,S= ST
}

.

Proof See Vandereycken and Vandewalle (2010), Proposition 5.2.

Let ξ∈ TWS+(k,n) be a tangent vector toW =YYT . As shown by Vandereycken and Vandewalle
(2010), ξ can be decomposed into two orthogonal components, ξ= ξS+ξP. Given a rank-r gradient
matrix Z, and using the projection matrices PY and PY⊥ they show that:

ξS = PY
Z+ZT

2
PY ,

ξP = PY⊥
Z+ZT

2
PY +PY

Z+ZT

2
PY⊥ .

Using this characterization of the tangent vector when given an ambient gradient Z, one can
define a retraction analogous to that defined in Section 3. This retraction is referred to as R(2)

W in
Vandereycken and Vandewalle (2010).
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Theorem 6 Let W ∈ S+(k,n), W = YYT , and W † be its pseudo-inverse. Let ξ ∈ TWS+(k,n), ξ =
ξS+ξP, as described above, and let

V =W +
1
2
ξS+ξP−

1
8
ξSW †ξS−

1
2
ξPW †ξS.

The mapping RPSDW (ξ) =VW †V is a second order retraction from a neighborhood
ΘW ⊂ TWS+(k,n) to S+(k,n).

Proof See Vandereycken and Vandewalle (2010), Proposition 5.10.

Algorithm 5 : LORETA-1-PSD - Rank-one Riemannian PSD stochastic gradient descent
Input: Amatrix Y ∈R

n×k
∗ , s.t.W =YYT . The matrix Y †, the pseudoinverse of Y . Vectors p∈R

n×1,
q ∈ R

n×1 s.t. pqT = −η∇̃L(W ) ∈ R
n×m, where ∇̃L(W ) is the gradient in the ambient space and

η> 0 is the step size.

Output: Matrix Z ∈ R
n×k
∗ , s.t. ZZT = RPSDW (−η∇L(W )). Matrix Z†, the pseudo-inverse of Z.

Compute: matrix dimension runtime
complexity

h1 = Y †p k×1 O(nk)
h2 = Y †q k×1 O(nk)
n1 = h1Th1 1×1 O(k)
n2 = h2Th2 1×1 O(k)
ĥ1 = Yh1 n×1 O(nk)
ĥ2 = Yh2 n×1 O(nk)
s= h1Th2 1×1 O(k)
l1 = (− 14 +

3
32s)ĥ1+( 12 −

1
8s)p+

3
32n1ĥ2−

1
8n1q n×1 O(n)

l2 = (− 14 +
3
32s)ĥ2+( 12 −

1
8s)q+

3
32n2ĥ1−

1
8n2p n×1 O(n)

P1 = l1h2T n× k O(nk)
P2 = l2h1T n× k O(nk)
Z = Y +P1+P2 n× k O(nk)
Z†temp = rank_one_pseudoinverse_update(Y,Y †, l1,h2) k×n O(nk)
Z† = rank_one_pseudoinverse_update(Y +P1,Z†temp, l2,h1) k×n O(nk)

Following the derivation of algorithms 2-4, and after some rearrangement, we obtain a PSD
version of the LORETA-1 algorithm. This PSD version is given in Algorithm (5). The algorithm
is very similar to LORETA-1 , but instead of learning a general rank-k matrix it learns a positive
semidefinite rank-k matrix. The computational complexity and memory complexity of a gradient
step for this algorithm is O(nk), namely, it is linear in the reduced number of model parameters.

5. Manifold Identification

Until now, we formalized the problem of learning a low-rank matrix based on a factorization
W = AB. At test time, computing the bilinear score using the model can be even faster when
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the data is sparse. For instance, given two vectors x1 and x2 with c1 and c2 non-zero values, com-
puting the bilinear form xT1ABTx2 requires O(c1k+k+kc2) =O((c1+c2)k) operations, and can be
significantly faster than the dense case. However, at training time, the LORETA-1 algorithm still has
a complexity of O((m+n)k) for each iteration even when the data is sparse.

The current section describes an attempt to adapt LORETA-1 such that it treats sparse data more
efficiently. The empirical evaluation of this adaptation showed mixed results, but we include the
derivation for completeness. The main idea is to separate the low-rank projection into two steps.
First, a projection to a low dimensional space Ax that can be computed efficiently when x is sparse.
Then, learning a second matrix, whose role is to tune the representation in the k-dimensional space.

To explain the idea, we focus on the case of learning a low-rank model which parametrizes
a similarity function. The model is W = ABT , A ∈ R

n×k, B ∈ R
n×k. The similarity between two

vectors p,q ∈ R
n is then given by

Sim(p,q) = pTWq= (ATp)T · (BTq). (3)

This similarity measure can be viewed as the cosine similarity in R
k between the projected vectors

BTq and ATp. We now introduce another similarity model which operates directly in the projected
space. Formally, we haveM ∈ R

k×k, and the similarity model is

Sim(p,q) = (ATp)TM(BTq) = pTAMBTq. (4)

Clearly, since the model in Equation (4) involves only linear matrix multiplications, its descrip-
tive power is equivalent to that of the model Equation (3). However, it has the potential to be
learned faster. To speed the training we can iterate between learning the outer projections A,B us-
ing LORETA , and learning the inner low-dimensional similarity model M using standard methods
operating in the low-dimensional space. Specifically, the idea is to execute s update steps of M for
every update step of A,B (Algorithm 6). After s update steps to M, it is decomposed using SVD to
obtainM =USVT , and these factors are used to update the outer projections using A← AUsqrt(S),
B← BVsqrt(S).

Consider the computational complexity: Given two sparse vectors x1, x2 with c1 and c2 non-zero
values respectively, projecting them using A and B to the low dimensional space takesO(k(c1+c2)),
and an update step of M takes O(k2). Decomposing M using SVD takes O(k3), so the overall
complexity for s updates is O

(

k ·
(

s(k+ c1+ c2)+ k2
))

. When s ≥ k the cost of decomposition is
amortized across manyM updates and does not increase the overall complexity. The update of A, B
takes O(k(n+m)) as before. This approach is related to the idea of manifold identification (Oberlin
and Wright, 2007), where the learning of A, B "identifies" a manifold of rank k and the inner steps
operate to tune the representation within that subspace.

This iterative procedure could be a significant speed up compared to the original O((m+ n)k).
Unfortunately, when we tested this algorithm in a similarity learning task (as in Section 7.1), its
performance was not as good as that of LORETA-1. The main reason was numerical instability:
The matrix M typically collapsed to match few directions in A, and decomposing it has amplified
the same A directions. This approach awaits deeper investigation which is outside the scope of the
current paper.

6. Related Work

A recent summary of many advances in the field of optimization on manifolds is given by Absil
et al. (2008). Advances in this field have lately been applied to matrix completion (Keshavan et al.,
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Algorithm 6 : Manifold identification meta-algorithm
Input: Initial model matrices A ∈ R

n×k
∗ , B ∈ R

m×k
∗ s.t. W = ABT . Matrices A† and B†, the

pseudo-inverses of A and B respectively. Loss function L .
Output: Matrices A ∈ R

n×k
∗ , B ∈ R

m×k
∗ s.t. W = ABT .

Parameters: η1: LORETA step size . η2: low-dimensional similarity learning step size. s: number
of low-dimensional learning steps per round

repeat:
[g1,g2] = ∇L(ABT )
[A,B,A†,B†] = LORETA

(

A,B,A†,B†,g1,g2,η1
)

initialize M = Ik
for i=1:s

[g1,g2] = ∇L(AMBT )
M = f ull− rank−metric− learning

(

M,ATg1,BTg2,η2
)

endfor
[U,S,V ] = svd(M)
A= A ·U · sqrt(S)
B= B ·V · sqrt(S)

until stopping condition is satisfied

2010), tensor-rank estimation (Eldén and Savas, 2009; Ishteva et al., 2011) and sparse PCA (Journée
et al., 2010b).

Broadly speaking, there are two kinds of manifolds used in optimization. The first are embedded
manifolds, manifolds that form a subset of Euclidean space, and are the ones we employ in this work.
The second kind are quotient manifolds, which are formed by defining an equivalence relation on
a Euclidean space, and endowing the resulting equivalence classes with an appropriate Riemannian
metric. For example, the equivalence relation on Rn defined by x∼ y ⇐⇒ ∃λ> 0, x= λy, yields a
quotient space called the real projective space when given a proper Riemannian metric.

More specific to the field of low-rank matrix manifolds, work has been done on the general
problem of optimization with low-rank positive semi-definite (PSD) matrices. The latest and most
relevant is the work of Meyer et al. (2011). In this work, Meyer and colleagues develop a framework
for Riemannian stochastic gradient descent on the manifold of PSD matrices, and apply it to the
problem of kernel learning and the learning of Mahalanobis distances. Their main technical tool is
that of quotient manifolds mentioned above, as opposed to the embedded manifold we use in this
work. Another paper which uses a quotient manifold representation is that of Journée et al. (2010a),
which introduces a method for optimizing over low-rank PSD matrices.

In their 2010 paper (Vandereycken and Vandewalle, 2010), Vandereycken et al. introduced a
retraction for PSD matrices in the context of modeling systems of partial differential equations. We
build on this work in order to construct our methods of learning general and PSD low-rank matrices.

In general, the problem of minimizing a convex function over the set of low-rank matrices was
addressed by several authors, including Fazel (2002). Recht et al. (2010) and more recently Jain
et al. (2011) also consider the same problem, with additional affine constraints, and its connection
to recent advances in compressed sensing. The main tools used in these papers are the trace norm
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(sum of singular values) and semi-definite programming. See also Fazel et al. (2005) for a short
introduction to these methods.

More closely related to the current paper are the papers by Kulis et al. (2009) and Meka et al.
(2008). Kulis et al. (2009) deal with learning low-rank PSD matrices, and use the rank-preserving
log-det divergence and clever factorization and optimization in order to derive an update rule with
runtime complexity of O(nk2) for an n×n matrix of rank k. Meka et al. (2008) use online learning
in order to find a minimal rank square matrix under approximate affine constraints. The algorithm
does not directly allow a factorized representation, and depends on an "oracle" component, which
typically requires to compute an SVD.

Multi-class ranking with a large number of features was studied by Bai et al. (2009), and in the
context of factored representations, by Weston et al. (2011) (WSABIE). WSABIE combines pro-
jected gradient updates with a novel sampling scheme which is designed to minimize a ranking loss
named WARP. WARP is shown to outperform simpler triplet sampling approaches. Since WARP
yields rank-1 gradients, it can easily be adapted for Riemannian SGD, but we leave experiments
with such sampling schemes to future work.

7. Experiments

We tested LORETA in two learning tasks: learning a similarity measure between pairs of text doc-
uments using the 20-newsgroups data collected by Lang (1995), and learning to rank image label
annotations based on a multi-label annotated set, using the ImageNet data set (Deng et al., 2009).
Matlab code for LORETA-1 is available online at http://chechiklab.biu.ac.il/research/LORETA.

7.1 Learning Similarity on the 20 Newsgroups Data Set

In our first set of experiments, we looked at the problem of learning a similarity measure between
pairs of text documents. Similarity learning is a well studied problem, closely related to metric
learning (see Yang 2007 for a review). It has numerous applications in information retrieval such as
query by example, and finding related content on the web.

One approach to learn pairwise relations is to measure the similarity of two documents p,q∈R
n

using a bilinear form parametrized by a modelW ∈ R
n×n:

SW (p,q) = pTWq.

Such models can be learned online (Chechik et al., 2010) and were shown to achieve high precision.
Sometimes the matrixW is required to be symmetric and positive definite, which means it actually
encodes a metric, also known as a Mahalanobis distance. Unfortunately, since the number of param-
eters grows as n2, storing the matrixW in memory is only feasible for limited feature dimensionality.
To handle larger vocabularies, like those containing all textual terms found in a corpus, a common
approach is to pre-select a subset of the features and train a model over the low dimensional data.
However, such preprocessing may remove crucial signals in the data even if features are selected in
a discriminative way.

To overcome this difficulty, we used LORETA-1 and LORETA-1-PSD to learn a rank-k parametriza-
tion of the modelW . This model can be factorized asW = ABT , where A,B ∈ R

n×k for the general
case, or asW = AAT for the PSD case. In each of our experiments, we selected a subset of n fea-
tures, and trained a rank k model. We varied the number of features n and the rank of the matrix k
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so as to use a fixed amount of memory. For example, we used a rank-10 model with 50K features,
and a rank-50 model with 10K features.

7.1.1 SIMILARITY LEARNING WITH LORETA-1

We use an online procedure similar to that in Grangier and Bengio (2008) and Chechik et al. (2010).
At each round, three instances are sampled: a query document q∈R

n, and two documents p+, p− ∈
R
n such that p+ is known to be more similar to q than p−. We wish that the model assigns a higher
similarity score to the pair (q,p+) than the pair (q,p−), and hence use the online ranking hinge loss
defined as lW (q,p+,p−) = [1−SW (q,p+)+SW (q,p−)]+, where [z]+ = max(z,0).

We initialized the model to be a truncated identity matrix, with only the first k ones along the
diagonal. This corresponds in our case to choosing the k most informative terms as the initial data
projection.

7.1.2 DATA PREPROCESSING AND FEATURE SELECTION

We used the 20 newsgroups data set (people.csail.mit.edu/jrennie/20Newsgroups), containing 20
classes with approximately 1000 documents each. We removed stop words but did not apply stem-
ming. The document terms form a vocabulary of 50,000 terms, and we selected a subset of these
features that conveyed high information about the identity of the class (over the training set) using
the infogain criterion (Yang and Pedersen, 1997). This is a discriminative criterion,which measures
the number of bits gained for category prediction by knowing the presence or absence of a term in a
document. The selected features were normalized using tf-idf, and then represented each document
as a bag of words. Two documents were considered similar if they shared the same class label, out
of the possible 20 labels.

7.1.3 EXPERIMENTAL PROCEDURE AND EVALUATION PROTOCOL

The 20 newsgroups site proposes a split of the data into train and test sets. We repeated splitting 5
times based on the sizes of the proposed splits (a train / test ratio of 65% / 35%). We evaluated the
learned similarity measures using a ranking criterion. We view every document q in the test set as a
query, and rank the remaining test documents p by their similarity scores qTWp. We then compute
the precision (fraction of positives) at the top r ranked documents. We then average the precision
over all positions r such that there exists a positive example in the top r. This final measure is called
mean average precision, and is commonly used in the information retrieval community (Manning
et al., 2008, Chapter 8).

7.1.4 COMPARISONS

We compared LORETA with the following approaches.

1. Naive gradient descent (GD): similar to Bai et al. (2009). The model is represented as a
product of two matricesW = ABT . Stochastic gradient descent steps are computed over the
factors A and B, for the same loss used by LORETA lW (q,p+,p−). The GD steps are:

Anew = A−ηq(p−−p+)TB,
Bnew = B−η(p−−p+)qTA .

We found this approach to be very unstable, and thus its results are not presented.
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2. Naive PSD gradient descent: similar to the method above, except that now the model is con-
strained to be PSD. The model is represented as a productW = AAT . Stochastic gradient de-
scent steps are computed over the factor A for the same loss used by LORETA : lW (q,p+,p−).
As shown by Meyer et al. (2011), this is in fact equivalent to Riemannian stochastic GD in the
manifold of PSD matrices when this manifold is endowed with a certain metric the authors
call the flat metric.
The GD step is:

Anew = A−η
(

q(p−−p+)T +(p−−p+)qT
)

A.

The step size η was chosen by cross validation. This approach was more stable in the PSD
case than in the general case, probably because the invariant space here is only the group
of orthogonal matrices (which are well-conditioned), as opposed to the group of invertible
matrices which might be ill-conditioned.

3. Iterative Passive-Aggressive (PA): since we found the above general GD procedure (1) to be
very unstable, we experimented with a related online algorithm from the family of passive-
aggressive algorithms (Crammer et al., 2006). We iteratively optimize over A given a fixed B
and vice versa. The optimization is a tradeoff between minimizing the loss lW , and limiting
how much the models change at each iteration. The steps sizes for updating A and B are
computed to be:

ηA = min
(

lW (q,p+,p−)
‖q‖2 ·‖BT (p+−p−)‖2

,C
)

,

ηB = min
(

lW (q,p+,p−)
‖(p+−p−)‖2 ·‖ATq‖2

,C
)

.

C is a predefined parameter controlling the maximum magnitude of the step size, chosen by
cross-validation. This procedure is numerically more stable because of the normalization by
the norms of the matrices multiplied by the gradient factors.

4. Full rank similarity learning models. We compared with two full rank online metric learn-
ing methods, LEGO (Jain et al., 2008) and OASIS (Chechik et al., 2010). Both algorithms
learn a full (non-factorized) model, and were run with n = 1000, in order to be consistent
with the memory constraint of LORETA-1. We have also compared with both full-rank mod-
els using rank 2000, that is, 4 times the memory constraint. We have not compared with batch
approaches such as Kulis et al. (2009), since they are not expected to scale to very large data
sets such as those our work is ultimately aiming towards.

In addition, we have experimented with the method for learning PSD matrices using a polar
geometry characterization of the quotient manifold, due to Meyer et al. (2011). This method’s
runtime complexity is O((n+m)k2), and we have found that its performance was not in line with
the methods described above.

7.1.5 RESULTS

Figure 3c shows the mean average precision obtained with all the above methods. LORETA out-
performs the other approaches across all ranks. LORETA-PSD achieves slightly higher precision
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than LORETA. The reason may be that similarity was defined based on two samples belonging to
a common class, and this relation is symmetric and transitive, two relations which are respected
by PSD matrices but not by general similarity matrices. Moreover, LORETA-PSD learned faster
along the training iterations when compared with LORETA - see Figure 3a for a comparison of the
learning curves. Interestingly, for both LORETA algorithms learning a low-rank model of rank 30,
using the best 16660 features, was significantly more precise than learning a much fuller model of
rank 100 and 5000 features, or a model using the full 50000 word vocabulary but with rank 10 . The
intuition is that LORETA can be viewed as adaptively learning a linear projection of the data into
low dimensional space, which is tailored to the pairwise similarity task.

7.2 Image Multilabel Ranking

Our second set of experiments tackled the problem of learning to rank labels for images taken from
a large number of classes (L= 1660) with multiple labels per image.

In our approach, we learn a linear classifier over n features for each label c ∈ C = {1, . . . ,L},
and stack all models together to a single matrix W ∈ R

L×n. At test time, given an image p ∈ R
n,

the product Wp provides scores for every label for that image p. Given ground truth labeling, a
good model would rank the true labels higher than the false ones. Each row of the matrix model can
be thought of as a sub-model for the corresponding label. Imposing a low-rank constraint on the
model implies that these sub-models are linear combinations of a smaller number of latent models.
Alternatively, we can view learning a factored rank-k modelW = ABT as learning a projection and
classifier in the projected space concurrently. The matrix BT projects the data onto a k dimensional
space, and the matrix A consists of L classifiers operating in the low-dimensional space. The data
we used for the experiment had ∼1500 labels, but the full ImageNet data set currently has ∼15000
labels, and is growing.

7.2.1 ONLINE LEARNING OF LABEL RANKINGS WITH LORETA-1

At each iteration, an image p is sampled, and using the current modelW the scores for all its labels
are computed,Wp. These scores are compared with the ground truth labeling y= {y1, . . . ,yr}⊂ C .
We wish for all the scores of the true labels to be higher than the scores for the other labels by
a margin of 1. Thus, the learner suffers a multilabel multiclass hinge loss as follows. Let ȳ =
argmaxs/∈y(Wp)s, be the negative label which obtained the highest score, where (Wp)s is the sth
component of the score vectorWp.

The loss is then L(W,p,y) = ∑r
i=1 [(Wp)ȳ− (Wp)yi +1]+, which is the sum of the margins

between the top-ranked false label and all the positive labels which violated the margin of one from
it. We used the subgradient G of this loss for LORETA: for the set of indices i1, i2, . . . id ⊂ y which
incurred a non zero hinge loss, the i j row of G is p, and for the row ȳ G is −d ·p. The matrix G is
rank one, unless no loss was suffered in which case it is 0.

The non-convex and stochastic nature of the learning procedure has lead us to try several initial
conditions:

• Zero matrix: in this initialization we begin with a low-rank matrix composed entirely of
zeros. This matrix is not included in the low-rank manifoldM n,m

k , since its rank is less than
k. We therefore perform a simple pre-training session in which we add up subgradients until
a matrix of rank k is obtained. In practice we added the first 2k subgradients (each such
subgradient being of rank one), and then performed an SVD to obtain the best rank-k model.
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Figure 3: (a) Mean average precision (mAP) over 20 newsgroups test set as traced along LORETA
learning for various ranks. Curve values are averages over 5 train-test splits. (b) Com-
parison of the learning curves of LORETA and LORETA-PSD. LORETA-PSD learns faster
than LORETA across all ranks (shown are results for ranks 10, 40 and 100). (c) mAP of
different models with varying rank. For each rank, a different number of features was
selected using an information gain criterion, such that the total memory requirement is
kept fixed (number of features × rank is constant). 50000 features were used for rank
= 10. LEGO and OASIS were trained with the same memory (using 1000 features and
rank=1000), as well as with 4 times the same memory (rank=2000). Error bars denote
the standard error of the mean over 5 train-test splits.

We chose 2k because we wanted to ensure that the matrix we obtain has rank greater or equal
to k.

447



SHALIT, WEINSHALL AND CHECHIK

(a) ImageNet 50K (b) ImageNet 1M
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Figure 4: ImageNet data. Mean average precision (mAP) as a function of the rank k. Curves are
means over five train-test splits. Error bars denote the standard error of the mean. Note
the different scale of the left and right figure. All hyper parameters were selected using
cross validation. Three different initializations were used: the zero matrix, a zero padded
k× k identity matrix, and a product of two i.i.d. Gaussian matrices. See Section 7.2.1 for
details.

• Zero-padded identity: we begin with a matrix composed of the k× k identity matrix Ik on
the top left corner, padded with zeros so as to form an L×n matrix. This is guaranteed to be
of rank k. The choice of the location of the identity matrix block is arbitrary.

• Independent Gaussian: we sample independently the entries of the two factor matrices A ∈
R
n×k, BRm×k from a standard normal distribution. This model is thus initialized as a product
of two random Gaussian matrices.

7.2.2 DATA SET AND PREPROCESSING

We used data from the ImageNet 2010 Challenge (www.imagenet.org/challenges/LSVRC/2010/)
containing images labeled with respect to the WordNet hierarchy. Each image was manually labeled
with a single class label (for a total of 1000 classes). We added labels for each image, using classes
along the path to the root of the hierarchy (adding 676 classes in total). We discarded ancestor labels
covering more than 10% of the images, leaving 1660 labels (5.2 labels per image on average). We
used ImageNet’s bag of words representation, based on vector quantizing SIFT features with a
vocabulary of 1000 words, followed by tf-idf normalization.

7.2.3 EXPERIMENTAL PROCEDURE AND EVALUATION PROTOCOL

We trained on two data sets. A medium scale one of 50000 images, and a large data set consisting
of 908210 images. We tested on 20000 images for the medium scale, and 252284 images for the
large scale. The quality of the learned label ranking was evaluated using themean average precision
(mAP) criterion mentioned in 7.1.3 above (Manning et al., 2008, Chapter 8).
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ImageNet 1M Precision vs. Time
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Figure 5: (a) Mean average precision (mAP) as function of single CPU processing time in seconds
for different algorithms and model ranks, presented on a log-scale. Matrix Perceptron
(black squares) and Group Multi-Class Perceptron (purple crosses) are both full rank
(rank=1000), and their curves are reproduced on all six panels for comparison. For each
rank and algorithm (LORETA and PA), we used the best performing initialization scheme.
(b) mAP of the best performing model for different algorithms and time points. Error
bars represent standard deviation across 5 train-test splits.
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7.2.4 COMPARISONS

We compared the performance of LORETA on this task with three other approaches:

1. PA - Iterative Passive-Aggressive: same as described in Section 7.1.4 above for the 20
Newsgroups experiment.

2. Matrix Perceptron: a full rank stochastic subgradient descent. The model is initialized as a
zero matrix of size 1660 × 1000, and in each round the loss subgradient is subtracted from it.
After a sufficient number of rounds, the model is typically full rank and dense.

3. GroupMulti-Class Perceptron: a mixed (2,1) norm online mirror descent algorithm (Kakade
et al., 2010). This algorithm encourages a group-sparsity pattern within the learned matrix
model, thus presenting an alternative form of regularization when compared with low-rank
models.

LORETA and PA were run using a range of model ranks. For all three methods, the step size (or
the C parameter for PA) was chosen by 5-fold cross validation on a validation set.

7.2.5 RESULTS

Figure 4 plots the mAP precision of LORETA and PA for different model ranks, while showing on
the right the mAP of the full rank 1000 Matrix Perceptron and (2,1) norm algorithms. LORETA
significantly improves over all other methods across all ranks. However, we note that LORETA,
being a non-convex algorithm, does depend significantly on the method of initialization, with the
zero-padded identity matrix being the best initialization for lower rank models, and the zero matrix
the best initialization for higher rank models (rank ≥ 150).

In Figure 5 we show the accuracy as a function of CPU tim on a single CPU for the different
algorithms and model ranks. We ran Matlab R2011a on an Intel Xeon 2.27 GHz machine, and
used Matlab’s -singlethread flag to control multithreading. The higher-rank LORETA models
outperform all others both in the short time scale (∼ 1000 sec.) and the long time scale (∼ 100,000
sec.). For some of the higher-rank models there is evident overtraining at some point, but this
overtraining could be avoided by adopting an early-stopping procedure.

8. Discussion

We presented LORETA, an algorithm which learns a low-rank matrix based on stochastic Rie-
mannian gradient descent and efficient retraction to the manifold of low-rank matrices. LORETA
achieves superior precision in a task of learning similarity in high dimensional feature spaces, and
in multi-label annotation, where it scales well with the number of classes. A PSD variant of LORETA
can be used efficiently for low-rank metric learning.

There are many ways to tie together different classifiers in a multi-class setting. We have seen
here that a low-rank assumption coupled with a Riemannian SGD procedure outperformed the (2,1)
mixed norm. Other approaches leverage the hierarchical structure inherent in many of these tasks.
For example, Deng et al. (2011) use the label hierarchy of ImageNet to compute a similarity measure
between images.

For similarity learning, the approach we take in this paper uses a weak supervision based on
ranking similar pairs: one only knows that the pair (q,p+) is more similar than the pair (q,p−). In
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some cases, a stronger supervision signal is available, like the classes of each objects are known. In
these cases, Deng et al. (2011) have shown how to use class identities to construct good features by
training an SVM classifier on each class and using its scaled output as a feature. They show that
such features can lead to very good performance, with the added advantage that the features can be
learned in parallel. The weak supervision approach that we take here aims to handle the case, which
is particularly common in large scale data sets collected through web users’ activity, where weaker
supervision is much easier to collect.

In this paper, we used simple sampling schemes for both the similarity learning and multiple-
labelling experiments. More elaborate sampling techniques such as those proposed by Weston et al.
(2011), which focus on “hard negatives”, may yield significant performance improvements. As
these approaches typically involve rank-one gradients when implemented as online learning algo-
rithms, they are well suited for being used in conjunction with LORETA, and this will be the subject
of future work.

LORETA yields a factorized representation of the low-rank matrix. For similarity learning, these
factors project to a low-dimensional space where similarity is evaluated efficiently. For classifica-
tion, it can be viewed as learning two matrix components: one that projects the high dimensional
data into a low dimension, and a second that learns to classify in the low dimension. In both
approaches, the low-dimensional space is useful for extracting the relevant structure from the high-
dimensional data, and for exploring the relations between large numbers of classes.
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Appendix A. Proof of Lemma 2

We formally define the tangent space of a manifold at a point on the manifold, and then describe an
auxiliary parametrization of the tangent space to the manifoldM n,m

k at a pointW ∈M n,m
k .

Definition 7 The tangent space TWM to a manifoldM ⊂ R
n at a point W ∈M is the linear space

spanned by all the tangent vectors at 0 to smooth curves γ : R→M such that γ(0) =W. That is,
the set of tangents in R

n to smooth curves within the manifold which pass through the point W.

In order to characterize the tangent space ofM n,m
k , we look into the properties of smooth curves

γ, where for each t, γ(t) ∈M n,m
k .

For any such curve, because of the rank k assumption, we may assume that for all t ∈ R, there
exist (non-unique) matrices A(t) ∈ R

n×k
∗ , B(t) ∈ R

m×k
∗ , such that γ(t) = A(t)B(t)T . We now wish to

find the tangent vectors to these curves. By the product rule we have:

γ̇(0) = A(0)Ḃ(0)T + Ȧ(0)B(0)T .
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SinceW = γ(0) = A(0)B(0)T = ABT we have forW = ABT :

TWM n,m
k =

{

AXT +YBT |X ∈ R
m×k,Y ∈ R

n×k
}

. (5)

This is because any choice of matrices X , Y such that X = Ḃ, Y = Ȧwill give us some tangent vector,
and for any tangent vector there exist such matrices. The space above is clearly a linear space. Being
a tangent space to a manifold, it has the same dimension as the manifold: (n+m)k− k2.

Recall the definition of the tangent space given in Lemma 1:

TWM n,m
k =

{

[

A A⊥
]

[

M NT
1

N2 0

][

BT
BT⊥

]

:M ∈ R
k×k,N1 ∈ R

(m−k)×k,N2 ∈ R
(n−k)×k

}

. (6)

To prove Lemma 2, it is easy to verify by counting that the dimension of the space as defined
in Equation (6) above is (n+m)k− k2. Using the notation above, we can see that by taking X =
MBT +N1BT⊥ and Y = A⊥N2, the space defined in Equation (6) is included in TWM n,m

k as defined in
Equation (5). Since it is a linear subspace of equal dimension, both spaces must be equal !

Appendix B. Proof of Theorem 3

We state the theorem again here.

Theorem 8 Let W ∈M n,m
k , W = ABT , andW † = B†TA†. Let ξ ∈ TWM n,m

k , ξ= ξAB+ξAB⊥+ξA⊥B,
as in 1, and let:

V1 =W +
1
2
ξAB+ξA⊥B−

1
8
ξABW †ξAB−

1
2
ξA⊥BW †ξAB ,

V2 =W +
1
2
ξAB+ξAB⊥ −

1
8
ξABW †ξAB−

1
2
ξABW †ξAB⊥ .

The mapping
RW (ξ) =V1W †V2 (7)

is a second order retraction from a neighborhood ΘW ⊂ TWM n,m
k toM n,m

k .

Proof To prove that Equation (7) defines a retraction, we first show that V1W †V2 is a rank-k matrix.
Note that there exist matrices Z1 ∈ R

n×k and Z2 ∈ R
m×k such that V1 = Z1BT and , V2 = AZT2 . A

sufficient condition for the matrices Z1 and Z2 to be of full rank is that the matrix M is of limited
norm. Thus, for all tangent vectors lying in some neighborhood ΘW ⊂ TWM n,m

k of 0 ∈ TWM n,m
k ,

the above relation is indeed a retraction to the manifold. In practice this is never a problem, as the
set of matrices not of full rank is of zero measure, and in practice we have found these matrices to
always be of full rank. Thus, RW (ξ) = V1W †V2 = Z1BTB(BTB)−1(ATA)−1ATAZT2 = Z1ZT2 , which,
given that Z1 and Z2 are of full column rank, is exactly a rank-k, n×m matrix.

Next we show that RW (ξ) is a retraction, and of second order. It is obvious that RW (0) =W ,
since the projection of the zero vector is zero, and thus ξAB, ξAB⊥ and ξA⊥B are all zero.

Expanding V1W †V2 up to second order terms in ξ, many terms cancel and we end up with:

RW (ξ) =W +ξAB+ξAB⊥+ξA⊥B+ξA⊥BW †ξAB⊥+O(‖ξ‖3)

=W +ξ+ξA⊥BW †ξAB⊥+O(‖ξ‖3).
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Local first order rigidity is immediately apparent. If we expand the only second order term,
ξA⊥BW †ξAB⊥ , we see that it equals A⊥N2NT

1 BT⊥. We claim this term is orthogonal to the tangent
space TWM n,m

k . If we take, using the characterization in Lemma 2, an arbitrary tangent vector
AM̃BT +AÑT

1 BT⊥+A⊥Ñ2BT in TWM n,m
k , we can calculate the inner product:

〈(

A⊥N2NT
1 B

T
⊥

)

,
(

AM̃BT +AÑT
1 B

T
⊥+A⊥Ñ2BT

)〉

=

tr
(

B⊥N1NT
2 A

T
⊥AM̃B

T +B⊥N1NT
2 A

T
⊥AÑ

T
1 B

T
⊥+B⊥N1NT

2 A
T
⊥A⊥Ñ2B

T )=

tr
(

B⊥N1NT
2 A

T
⊥A⊥Ñ2B

T )=

tr
(

BTB⊥N1NT
2 A

T
⊥A⊥Ñ2

)

= 0

with the equalities stemming from the fact that AT⊥A= 0, BT⊥B= 0, and from standard trace identi-
ties. Thus, the second order term cancels out if we project the second derivative of the curve defined
by the retraction, as required by the second-order condition

PW
(

dRW (τξ)
dτ2

|τ=0

)

= 0 ∀ξ ∈ TWM .

We see that the second order term is contained in the normal space. This concludes the proof
that the retraction is a second order retraction.

Appendix C. Proof of Lemma 4

Let us see how can we calculate the needed terms explicitly. When evaluating the expression
V1W †V2, we can use the algebraic relations: WW † = PA andW †W = PB. From this we can conclude
that: WW †ξAB = ξAB, ξABW †W = ξAB, ξA⊥BW †W = ξA⊥B andWW †ξAB⊥ = ξAB⊥ . These relations,
along with many terms that cancel out, lead to the following expression:

RW (ξ) =V1W †V2 =

W +ξAB+ξAB⊥+ξA⊥B−
1
8
ξABW †ξABW †ξAB−

3
8
ξABW †ξABW †ξAB⊥

−
3
8
ξA⊥BW †ξABW †ξAB+ξA⊥BW †ξAB⊥ −ξA⊥BW †ξABW †ξAB⊥

+
1
16
ξABW †ξABW †ξABW †ξAB⊥+

1
16
ξA⊥BW †ξABW †ξABW †ξAB

+
1
64
ξABW †ξABW †ξABW †ξAB+

1
4
ξA⊥BW †ξABW †ξABξAB⊥ .

We now substitute the matrices M, N1 and N2 into the above relation. Most terms cancel out.
For example, we have the identity ξABW †ξAB = AM2BT , ξABW †ξABW †ξAB = AM3BT and so forth.
We obtain the following relation:

RW (ξ) = ABT +AMBT +ANT
1 B

T
⊥+A⊥N2BT −

1
8
AM3BT

−
3
8
AM2NT

1 B
T
⊥−

3
8
A⊥N2M2BT +A⊥N2NT

1 B
T
⊥−A⊥N2MN

T
1 B

T
⊥

+
1
16
AM3NT

1 B
T
⊥+

1
16
A⊥N2M3BT +

1
64
AM4BT +

1
4
A⊥N2M2NT

1 B
T
⊥.
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Collecting terms by the leftmost and rightmost factors, we obtain:

RW (ξ) = A
(

Ik+M−
1
8
M3+

1
64
M4

)

BT

+A
(

Ik−
3
8
M2+

1
16
M3

)

NT
1 B

T
⊥

+A⊥N2
(

Ik−
3
8
M2+

1
16
M3

)

BT

+A⊥N2
(

Ik−M+
1
4
M2

)

NT
1 B

T
⊥ .

Finally, treating the first and fourth lines as a polynomial expression in M, and taking its poly-
nomial square root, we can split the above sum into the product of an n× k matrix and a k×m
matrix:

RW (ξ) =

[

A
(

Ik+
1
2
M−

1
8
M2

)

+A⊥N2
(

Ik−
1
2
M
)]

·

[

B
(

Ik+
1
2
MT −

1
8
(

MT )2
)

+B⊥N1
(

Ik−
1
2
MT

)]T
.

Appendix D. Rank One Pseudoinverse Update Rule

For completeness we develop below the procedure for updating the pseudoinverse of a rank-1 per-
turbed matrix (Meyer, 1973), following the derivation of Petersen and Pedersen (2008). We wish
to find a matrix G such that for a given matrix A along with its pseudo-inverse A†, and vectors of
appropriate dimension c and d, we have:

(

A+ cdT
)†

= A†+G.

We have used the fact that A has a full column rank to simplify slightly the algorithm of Petersen
and Pedersen (2008).
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Algorithm 7 : Rank one pseudo-inverse update
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Ĝ= v wT

‖w‖2 k×n
G= G− Ĝ k×n
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Abstract
We propose a probabilistic model for clustering Boolean data where an object can be simultane-
ously assigned to multiple clusters. By explicitly modeling the underlying generative process that
combines the individual source emissions, highly structured data are expressed with substantially
fewer clusters compared to single-assignment clustering. As a consequence, such a model provides
robust parameter estimators even when the number of samples is low. We extend the model with
different noise processes and demonstrate that maximum-likelihood estimation with multiple as-
signments consistently infers source parameters more accurately than single-assignment clustering.
Our model is primarily motivated by the task of role mining for role-based access control, where
users of a system are assigned one or more roles. In experiments with real-world access-control
data, our model exhibits better generalization performance than state-of-the-art approaches.
Keywords: clustering, multi-assignments, overlapping clusters, Boolean data, role mining, latent
feature models

1. Introduction

Clustering defines the unsupervised learning task of grouping a set of data items into subsets such
that items in the same group are similar. While clustering data into disjoint clusters is conceptually
simple, the exclusive assignment of data to clusters is often overly restrictive, especially when data
is structured. In this work, we advocate a notion of clustering that is not limited to partitioning
the data set. More generally, we examine the task of inferring the hidden structure responsible for
generating the data. Specifically, multiple clusters can simultaneously generate a data item using
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a problem dependent link function. By adopting a generative viewpoint, such data originate from
multiple sources.

Consider, for instance, individuals’ movie preferences. A person might belong to the “comedy”
cluster or the “classics” cluster, where each cluster membership generates a preference for the re-
spective genre of movies. However, some people like both comedy movies and classics. In standard
single-assignment clustering, a third “comedy&classics” cluster would be created for them. Under
the generative viewpoint, we may assign individuals simultaneously to both of the original clus-
ters to explain their preferences. Note that this differs from “fuzzy” clustering, where objects are
partially assigned to clusters such that these fractional assignments (also called “mixed member-
ship”) add up to 1. In our approach, an object can be assigned to multiple clusters at the same time,
that is, the assignments of an object can sum to a number larger than 1. Membership in a second
cluster does not decrease the intensity of the membership in the first cluster. We call this approach
multi-assignment clustering (MAC).

In a generative model that supports multi-assignments, one must specify how a combination of
sources generates an object. In this paper, we investigate clustering for Boolean data. The combined
emissions from individual sources generate an object by the Boolean OR operation. In the example
of the movie preferences, this means that an individual belonging to both the comedy and the classics
cluster likes a comedy film like “Ghostbusters” as much as someone from the comedy cluster, and
likes the classic movie “Casablanca” as much as someone who only belongs to the classics group.

In this paper, we develop a probabilistic model for structured Boolean data. We examine var-
ious application-specific noise processes that account for the irregularities in the data and we the-
oretically investigate the relationships among these variants. Our experiments show that multi-
assignment clustering computes more precise parameter estimates than state-of-the art clustering
approaches. As a real-world application, our model defines a novel and highly competitive solu-
tion to the role mining problem. This task requires to infer a user-role assignment matrix and a
role-permission assignment matrix from a Boolean user-permission assignment relation defining an
access-control system. The generalization ability of our model in this domain outperforms other
multi-assignment techniques.

The remainder of this paper is organized as follows. In the next section, we survey the literature
on Boolean matrix factorization and the clustering of Boolean data. In Section 3, we derive our
generative model and its variants and describe parameter inference in Section 4. In Section 5, we
present experiments on synthetic and real-world data generated from multiple sources.

2. Related Work

In this section, we provide an overview of existing methods for the exploratory analysis of Boolean
data. The described approaches have been developed within different research areas and have dif-
ferent objectives. However, they all aim to produce a structured representation of given binary data.
The research areas include association-rule mining, formal concept analysis, clustering, dimension
reduction, latent feature models, and database tiling. We distinguish between methods that search
for an exact representation of the data and methods that approximate the representation. In the fol-
lowing, we review several related problem formulations and compare the approaches used to solve
them.
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2.1 Problem Formulations

There are different problem formulations that arise in the context of Boolean matrix factorization.
In this section, we explain the most characteristic ones and relate them to each other.

2.1.1 EXACT BOOLEAN MATRIX DECOMPOSITION AND EQUIVALENT PROBLEMS

These methods aim at an exact Boolean factorization of the input matrix. The earliest formulation
of such problems is presumably the set-cover problem (also called set basis problem) presented by
Gimpel (1974) and Cormen et al. (2001).

Definition 1 (Set-Cover Problem) Given a set of finite sets x = {x1,x2, ...,xN}, find a basis u =
{u1,u2, ...,uK} with minimal cardinality K such that each xi can be represented as a union of a
subset of u.

All sets in x have a vector representation in a D-dimensional Boolean space, where a 1 at dimen-
sion d indicates the membership of item d in the respective set. D is the cardinality of the union
of x1,x2, ...,xN . The matrix z ∈ {0,1}N×K then indicates which subsets of u cover the sets in x:
zik = 1 indicates that uk covers xi. Using this notation, the set-covering problem is equivalent to
finding an exact Boolean decomposition of a binary matrix x with minimal K. An exact Boolean
decomposition is x= z∗u, where the Boolean matrix product ∗ is defined such that

xid =
K∨

k=1
(zik∧ukd) . (1)

Belohlavek and Vychodil (2010) show that the set cover problem is equivalent to Boolean factor
analysis, where each factor corresponds to a row of u. Keprt and Snásel (2004) show that the
factors together with the objects assigned to them can, in turn, be regarded as formal concepts as
defined in the field of Formal Concept Analysis (FCA) by Ganter and Wille (1999). Stockmeyer
(1975) shows that the set-cover problem is NP-hard and the corresponding decision problem is
NP-complete. Since the set-cover problem is equivalent to the other problems, this also holds for
Boolean factor analysis, finding the exact Boolean decomposition of a binary matrix, and FCA.
Approximation heuristics exist and are presented below.

2.1.2 APPROXIMATE BOOLEAN MATRIX DECOMPOSITION

An approximate decomposition of a matrix x is often more useful than an exact one. One can dis-
tinguish two problems, which we refer to as the lossy compression problem (LCP) and the structure
inference problem (SIP). For LCP, two different formulations exist. In the first formulation of Miet-
tinen et al. (2006), the size of the matrix u is fixed and the reconstruction error is to be minimized.

Definition 2 (LCP1: Minimal Deviation for given K) For a given binary N×D matrix x and a
given number K <min(N,D), find an N×K matrix z and a K×D matrix u such that the deviation
||x− z∗u|| is minimal.

Alternatively, the deviation is given, as in Vaidya et al. (2007), and the minimal z and u must be
found to approximate x.

Definition 3 (LCP2: Minimal K for Given Deviation) For a given binary N×D matrix x and a
given deviation δ, find the smallest number K < min(N,D), a N×K matrix z, and a K×D matrix
u such that ||x− z∗u||≤ δ.
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x ∈ {0,1}N×D

z∈
{0
,1
}N
×
K

u ∈ {0,1}K×Doutput
=⇒ ∗

Figure 1: Dimensions of input data and output of the problems defined in Definitions 1–4.

The norm in both formulations of LCP is usually the Hamming distance. Both problems are NP-hard
as shown by Vaidya et al. (2007).

In the structure inference problem (SIP), the matrix x is assumed to be generated from a structure
part (z∗,u∗) and a random noise part. The goal is to find the decomposition (z∗,u∗) that recovers the
structure and disregards the noise.

Definition 4 (SIP) Let the binary N×D matrix x be given. Assuming that x was generated from a
hidden structure (z∗,u∗) and perturbed by noiseΘ such that x∼ p(x|Θ,z∗ ∗u∗), infer the underlying
structure (z∗,u∗).

There is a substantial difference between SIP and the two lossy compression problems LCP1 and
LCP2. Assuming that some of the entries are corrupted, neither the closest approximation of the
original matrix nor the best compression is desirable. Instead, the goal is to infer a structure under-
lying the data at hand rather than to decompose the matrix with the highest possible accuracy. Since
the structure of the data is repeated across the samples, whereas its noise is irregular, better structure
recovery will also provide better prediction of new samples or missing observations.

2.2 Approaches

Depending on the problem formulation, there are several ways how the factorization problems are
approached. In this section we provide an overview over related methods.

2.2.1 COMBINATORIAL APPROACHES

The problems LCP1 and LCP2 are NP-hard. Heuristic methods to find approximate solutions usu-
ally construct candidate sets for the rows of the matrix u, and then greedily pick candidates such
that, in each step, the reconstruction error is minimal. For the set covering problem defined in Cor-
men et al. (2001), the candidate set is the set of all possible formal concepts. For the approximate
decomposition problem described in Miettinen et al. (2006), candidates are computed using asso-
ciation rule mining as presented in Agrawal et al. (1993). A predefined number of candidates is
then iteratively chosen and assigned to the objects such that, in each step, the data set is optimally
approximated. We will refer to this algorithm, originally presented in Miettinen et al. (2006), as the
Discrete Basis Problem Solver (DBPS) and use Miettinen’s implementation of DBPS in some of our
experiments. In the greedy algorithm proposed in Belohlavek and Vychodil (2010), the construction
of a large candidate set is avoided by iteratively constructing the next best candidate.
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2.2.2 MODEL-BASED APPROACHES

Solutions to the structure inference problem as presented in Wood et al. (2006),
Šingliar and Hauskrecht (2006), Kabán and Bingham (2008), and Streich et al. (2009) are often
based on probabilistic models. The likelihood that is most similar to the one we propose is the
noisy-OR gate introduced in Pearl (1988). Our model allows random flips in both directions. The
noisy-ORmodel, which is constrained to random bit flips from zeros to ones, is thus a special case of
the noise model that we present in Section 3.2.4. A detailed comparison of the relationship between
the noisy-OR model and our approach follows in Section 3.

There are two models that use a noisy-OR likelihood. Noisy-OR component analysis (NOCA),
as in Šingliar and Hauskrecht (2006), is based on a variational inference algorithm by Jaakkola and
Jordan (1999). This algorithm computes the global probabilities p(u j = 1), but does not return a
complete decomposition. A non-parametric model based on the Indian-Buffet process (Griffiths
and Ghahramani, 2011) and a noisy-OR likelihood is presented in Wood et al. (2006). We call this
approach infinite noisy-OR (INO). Our method differs from INO with respect to the data likelihood
and with respect to optimization. While our model yields an exact solution to an approximate model,
replacing the binary assignments by probabilistic assignments, the inference procedure for INO aims
at solving the exact model by sampling. INO is a latent feature model, as described by Ghahramani
et al. (2007), with Boolean features. Latent feature models explain data by combinations of multiple
features that are indicated as active (or inactive) in a binary matrix z. Being a member in multiple
clusters (encoded in z) is technically equivalent to having multiple features activated.

Binary independent component analysis (BICA) of Kabán and Bingham (2008) is a factor model
for binary data. The combination of the binary factors is modeled with linear weights and thus
deviates from the goal of finding binary decompositions as we defined it above. However, the
method can be adapted to solve binary decomposition problems and performs well under certain
conditions as we will demonstrate in Section 5.2.

Two other model-based approaches for clustering binary data are also related to our model, al-
though more distantly. Kemp et al. (2006) presented a biclustering method that infers concepts in
a probabilistic fashion. Each object and each feature is assigned to a single bicluster. A Dirichlet
process prior (Antoniak, 1974; Ferguson, 1973) and a Beta-Bernoulli likelihood model the assign-
ments of the objects. Heller and Ghahramani (2007) presented a Bayesian non-parametric mixture
model including multiple assignments of objects to binary or real-valued centroids. When an object
belongs to multiple clusters, the product over the probability distributions of all individual mixtures
is considered, which corresponds to the conjunction of the mixtures. This constitutes a probabilistic
model of the Boolean AND, whereas in all the above methods mentioned, as well as in our model,
the data generation process uses the OR operation to combine mixture components.

In this paper, we provide a detailed derivation and an in-depth analysis of the model that we
proposed in Streich et al. (2009). We thereby extend the noise part of the model to several variants
and unify them in a general form. Moreover, we provide an approach for the model-order selection
problem.

2.3 Applications

There are numerous applications for Boolean matrix factorization. In this paper we will focus on one
specific application, the role mining problem, which was first formulated by Kuhlmann et al. (2003).
This problem can be approached as a multi-assignment clustering problem since in role mining the
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associated data sets are clearly generated by multiple sources. Our model was motivated by this
security-relevant problem. In the following, we will describe this problem and give representative
examples of the main role mining methods that have been developed.

2.3.1 ROLE MINING AND RBAC

The goal of role mining is to automatically decompose a binary user-permission assignment matrix
x into a role-based access control (RBAC) configuration consisting of a binary user-role assignment
matrix z and a binary role-permission assignment matrix u. RBAC, as defined in Ferraiolo et al.
(2001), is a widely used technique for administrating access-control systems where users access
sensitive resources. Instead of directly assigning permissions to users, users are assigned to one
or more roles (represented by the matrix z) and obtain the permissions contained in these roles
(represented by u).

The major advantages of RBAC over a direct user-permission assignment (encoded in the ma-
trix x) are ease of maintenance and increased security. RBAC simplifies maintenance for two rea-
sons. First, roles can be associated with business roles, i.e. tasks in an enterprise. This business
perspective on the user is more intuitive for humans than directly assigning individual low-level
permissions. Second, assigning users to just a few roles is easier than assigning them to hundreds
of individual permissions. RBAC increases security over access-control on a user-permission level
because it simplifies the implementation and the audit of security policies. Also, it is less likely
that an administrator wrongly assigns a permission to a user. RBAC is currently the access control
solution of choice for many mid-size and large-scale enterprises.

2.3.2 STRUCTURE AND EXCEPTIONS IN ACCESS CONTROL MATRICES

The regularities of an access control matrix x, such as permissions that are assigned together to many
users, constitute the structure of x. Exceptional user-permission assignments are not replicated over
the users and thus do not contribute to the structure. There are three reasons for the existence of
such exceptional assignments. First, exceptional assignments are often granted for ‘special’ tasks,
for example if an employee temporarily substitutes for a colleague. Such exceptions may initially be
well-motivated, but often the administrator forgets to remove them when the user no longer carries
out the exceptional task. The second reason for exceptional assignments is simply administrative
mistakes. Errors may happen when a new employee enters the company, or permissions might not
be correctly updated when an employee changes position within the company. Finally, exceptional
assignments can be intentionally granted to employees carrying out highly specialized tasks.

The role mining step should ideally migrate the regularities of the assignment matrix x to RBAC,
while filtering out the remaining exceptional permission assignments. We model exceptional as-
signments (all three cases) with a noise model described in Section 3.2. We are not aware of any
way to distinguish these three cases when only user-permission assignments are given as an input.
However, being able to separate exceptional assignments from the structure in the data substantially
eases the manual search for errors.

2.3.3 PRIOR ART

There is no consensus in the literature on the objective of role mining. An overview of all existing
problem definitions is provided in Frank et al. (2010). We consider role mining as an inference
problem, which we defined in Definition 4. Numerous algorithms for role mining exist. Molloy et al.
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(2008) apply an algorithm from formal concept analysis (see Ganter and Wille, 1999) to construct
candidate roles (rows in u). The technique presented in Vaidya et al. (2007) uses an improved
version of the database tiling algorithm from Han et al. (2000). In contrast to the method presented
in Agrawal and Srikant (1994), their tiling algorithm avoids the construction of all concepts by using
an oracle for the next best concept. A method based on a probabilistic model is proposed in Frank
et al. (2008). The model is derived from the logical representation of a Boolean two-level hierarchy
and is divided into several subcases. For one of the cases with only single assignments of objects,
the bi-clustering method presented in Kemp et al. (2006) is used for inference.

3. Generative Model for Boolean Data from Multiple Sources

In this section we explain our model of the generation process of binary data, where data may
be generated by multiple clusters. The observed data stems from an underlying structure that is
perturbed by noise. We will first present our model for the structure and afterwards provide a
unifying view on several noise processes presented in the literature.

We use a probabilistic model that describes the generative process. This has two advantages over
discrete optimization approaches. First, considering a separate noise process for the irregularities
of the data yields an interpretation for deviations between the input matrix x and its decomposi-
tion (z,u). Second, the probabilistic representation of the sources u is a relaxation of the original
computationally hard problem, as explained in the previous sections.

Let the observed data consist of N objects, each associated with D binary dimensions. More
formally, we denote the data matrix by x, with x ∈ {0,1}N×D. We denote the ith row of the matrix
by xi∗, and the dth column by x∗d . We use this notation for all matrices.

3.1 Structure Model

The systematic regularities of the observed data are captured by its structure. More specifically,
the sources associated with the clusters generate the structure xS ∈ {0,1}N×D. The association of
data items to sources is encoded in the binary assignment matrix z ∈ {0,1}N×K , with zik = 1 if and
only if the data item i belongs to the source k, and zik = 0 otherwise. The sum of the assignment
variables for the data item i, ∑k zik, can be larger than 1, which denotes that a data item i is assigned
to multiple clusters. This multiplicity gives rise to the name multi-assignment clustering (MAC).
The sources are encoded as rows of u ∈ {0,1}N×K .

Let the set of the sources of an object be Li := {k ∈ {1, . . . ,K}|zik = 1}. Let be the set of all
possible assignment sets and L ∈ be one such an assignment set. The value of xSid is a Boolean
disjunction of the values at dimension d of all sources to which object i is assigned. The Boolean
disjunction in the generation process of an xSid results in a probability for x

S
id = 1, which is strictly

non-decreasing in the number of associated sources |Li|: If any of the sources in Li emits a 1 in
dimension d, then xSid = 1. Conversely, x

S
id = 0 requires that all contributing sources have emitted a

0 in dimension d.
Let βkd be the probability that source k emits a 0 at dimension d: βkd := p(ukd = 0). This

parameter matrix β ∈ [0,1]K×D allows us to simplify notation and to write

pS
(

xSid = 0 |zi∗,β
)

=
K

∏
k=1

βzikkd and pS
(

xSid = 1 |zi∗,β
)

= 1− pS
(

xSid = 0 |zi∗,β
)

.

465



FRANK, STREICH, BASIN AND BUHMANN

The parameter matrix β encodes these probabilities for all sources and dimensions. Employing the
notion of assignment sets, one can interpret the product

βLid :=
K

∏
k=1

βzikkd (2)

as the source of the assignment set Li. However, note that this interpretation differs from an actual
single-assignment setting where L := | | independent sources are assumed and must be inferred.
Here, we only have K×D parameters βkd whereas in single-assignment clustering, the number of
source parameters would be L×D, which can be up to 2K ×D. The expression βLid is rather a
‘proxy’-source, which we introduce just for notational convenience. The probability distribution of
a xid generated from this structure model given the assignments Li and the sources β is then

pS
(

xSid |Li,β
)

= (1−βLid)
xSid (βLid)

1−xSid . (3)

Note that we include the empty assignment set in the hypothesis class, i.e. a data item i need not
belong to any class. The corresponding row xSi∗ contains only zeros and any element with the value
1 in the input matrix is explained by the noise process.

In the following sections, we describe various noise models that alter the output of the structure
model. The structure part of the model together with a particular noise process is illustrated in
Figure 2.

3.1.1 STRUCTURE COMPLEXITY AND SINGLE-ASSIGNMENT CLUSTERING

In the general case, which is when no restrictions on the assignment sets are given, there are L =
2K possible assignment sets. If the number of clusters to which an object can be simultaneously
assigned is bounded byM, this number reduces to L= ∑M

m=0
(K
m
)

.
The particular case with M = 1 provides a model variant that we call Single-Assignment Clus-

tering (SAC). In order to endow SAC with the same model complexity as MAC, we provide it with
L clusters. Each of the assignment sets is then identified with one of the clusters. The clusters
are treated (and, in particular, updated) independently of each other by computing the cluster pa-
rameters βL∗ for each L , discarding the dependencies in the original formulation. The underlying
generative model of SAC, as well as the optimality conditions for its parameters, can be obtained by
treating all assignment sets L independently in the subsequent equations. With all centroids com-
puted according to Equation 2, the single-assignment clustering model yields the same probability
for the data as the multi-assignment clustering model.

3.2 Noise Models and their Relationship

In this section, we first present the mixture noise model, which interprets the observed data as a
mixture of independent emissions from the structure part and a noise source. Each bit in the matrix
can thus be generated either by the structure model or by an independent global noise process. We
then derive a more general formulation for this noise model. Starting there, we derive the flip model,
where some randomly chosen bits of the signal matrix xS are flipped, either from 0 to 1 or from 1 to
0. The noisy-OR model (Pearl, 1988) is a special case of the flip noise model, allowing only flips
from 0 to 1.
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The different noise models have different parameters. We denote the noise parameters of a
model α by Θα

N . The full set of parameters for structure and noise is then Θα := (β,Θα
N). As

additional notation, we use the indicator function I{p} for a predicate p, defined as

I{p} :=
{

1 if p is true
0 otherwise .

3.2.1 MIXTURE NOISE MODEL

In the mixture noise model, each xid is generated either by the signal distribution or by a noise
process. The binary indicator variable ξid indicates whether xid is a noisy bit (ξid = 1) or a signal
bit (ξid = 0). The observed xid is then generated by

xid = (1−ξid)xSid+ξidxNid ,

where the generative process for the signal bit xSid is either described by the deterministic rule in
Equation 1 or by the probability distribution in Equation 3. The noise bit xNid follows a Bernoulli
distribution that is independent of object index i and dimension index d:

pN
(

xNid |r
)

= rx
N
id (1− r)1−x

N
id . (4)

Here, r is the parameter of the Bernoulli distribution indicating the probability of a 1. Combining
the signal and noise distributions, the overall probability of an observed xid is

pmixM (xid |Li,β,r,ξid)= pN(xid |r)ξid pS(xid |Li,β)1−ξid . (5)

We assume ξid to be Bernoulli distributed with a parameter ε := p(ξid = 1) called the noise fraction.
The joint probability of xid and ξid given the assignment matrix z and all parameters is thus

pmixM (xid ,ξ |z,β,r,ε) = pM (xid |z,β,r,ξ) · εξid (1− ε)1−ξid .

Since different xid are conditionally independent given the assignments z and the parameters Θmix,
we have

pmixM (x,ξ |z,β,r) =∏
id
pmixM (xid ,ξ |z,β,r) .

The noise indicators ξid cannot be observed. We therefore marginalize out all ξid to derive the
probability of x as

pmixM (x |z,β,r,ε) =∑
{ξ}

pmixM (x,ξ |z,β,r,ε)

=∏
id

(ε · pN(xid)+(1− ε) · pS(xid)) .

The observed data x is thus a mixture between the emissions of the structure part (which has weight
1− ε) and the noise emissions (with weight ε). Introducing the auxiliary variable

qmixLid := pmixM (xid = 1 |z,β,r,ε) = εr+(1− ε)(1−βLid)

to represent the probability that xid = 1 under this model, we get a data-centric representation of the
probability of x as

pmixM (x |z,β,r,ε) =∏
id
(xid qmixLid +(1− xid)

(

1−qmixLid
)

) . (6)

The parameters of the mixture noise model are ΘmixN := (ε,r). Since ε and r are independent of
d and i, we will refer to ε and r as parameters of a ‘global’ noise process.
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Figure 2: The generative model of Boolean MAC with mixture noise. Li is the assignment set of
object i, indicating which Boolean sources from u generated it. The bit ξid selects whether
the noise-free bit xSid or the noise bit x

N
id is observed.

3.2.2 GENERALIZED NOISE MODEL

In this section, we generalize the mixture noise model presented above. Doing so, we achieve a
generalized formulation that covers, among others, the mentioned noisy-OR model.

The overall generation process has two steps:

1. The signal part of the data is generated according to the sources, as described in Section 3.1.
It is defined by the probability pS

(

xSid |Li,β
)

(Equation 3).

2. A noise process acts on the signal xS and thus generates the observed data matrix x. This noise
process is described by the probability pα(xid |xSid ,Θ

α
N), where α identifies the noise model and

Θα
N are the parameters of the noise model α.

The overall probability of an observation xid given all parameters is thus

pαM (xid |Li,β,Θα
N) =∑

xSid

pS
(

xSid |Li,β
)

· pα
(

xid |xSid,Θ
α
N
)

.

3.2.3 MIXTURE NOISE MODEL

The mixture noise model assumes that each xid is explained either by the structure model or by
an independent global noise process. Therefore, the joint probability of pmix

(

xid |xSid,Θ
mix
N
)

can be
factored as

pmix
(

xid |xSid,Θ
mix
N
)

= pmixM
(

xid |xSid ,x
N
id,ξid

)

· pmixN (xNid|r) ,

with
pmixM

(

xid |xSid ,x
N
id,ξid

)

=
(

I{xSid=xid}
)1−ξid (

I{xNid=xid}
)ξid

.
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pS(xSid |Li,β) and p
mix
N (xNid |r) are defined by Equation 3 and Equation 4 respectively. Summing out

the unobserved variables xSid and x
N
id yields

pmixM (xid |Li,β,r,ξid) =
1

∑
xSid=0

1

∑
xNid=0

pmixM
(

xid ,xSid,x
N
id|Li,β,r,ξid

)

= pS (xid |Li,β)1−ξid · pmixN (xid |r)ξid

= (1−ξid)pS (xid |Li,β)+ξid pmixN (xid |r) .

Integrating out the noise indicator variables ξid leads to the same representation as in Equation 5.

3.2.4 FLIP NOISE MODEL

In contrast to the previous noise model, where the likelihood is a mixture of independent noise
and signal distributions, the flip noise model assumes that the effect of the noise depends on the
signal itself. The data is generated from the same signal distribution as in the mixture noise model.
Individual bits are then randomly selected and flipped. Formally, the generative process for a bit xid
is described by

xid = xSid⊕ξid ,

where ⊕ denotes addition modulo 2. Again, the generative process for the structure bit xSid is de-
scribed by either Equation 1 or Equation 3. The value of ξid indicates whether the bit xSid is to be
flipped (ξid = 1) or not (ξid = 0). In a probabilistic formulation, we assume that the indicator ξid for
a bit-flip is distributed according to ξid ∼ p(ξid|xSid,ε0,ε1). Thus, the probability of a bit-flip, given
the signal and the noise parameters (ε0,ε1), is

p(ξid|xSid,ε0,ε1) =
(

ε
xSid
1 ε

1−xSid
0

)ξid(

(1− ε1)x
S
id (1− ε0)1−x

S
id
)1−ξid

,

with the convention that 00 = 1. Given the flip indicator ξid and the signal bit xSid , the final observa-
tion is deterministic:

pflipM (xid|ξid,xSid) = x
I
{ξid +=x

S
id}

id (1− xid)
I
{ξid=x

S
id} .

The joint probability distribution is then given by

pflip
(

xid |xSid,Θ
flip
N

)

=
1

∑
ξid=0

pflipM (xid |ξid,xSid) · p(ξid|x
S
id,ε0,ε1) .

3.2.5 RELATION BETWEEN THE NOISE PARAMETERS

Our unified formulation of the noise models allows us to compare the influence of the noise pro-
cesses on the clean signal under different noise models. We derive the parameters of the flip noise
model that is equivalent to a given mixture noise model based on the probabilities pmix(xid |xSid,Θ

α
N)

and pflip(xid |xSid,Θ
α
N), for the cases (xid = 1,xSid = 0) and (xid = 0,x

S
id = 1):

The mixture noise model with ΘmixN = (ε,r) is equivalent to the flip noise model with ΘflipN =

(ε · r,ε · (1− r)). Conversely, we have that the flip noise model with ΘflipN = (ε0,ε1) is equivalent to
themixture noise model with ΘmixN =

(

ε0+ ε1,
ε0

ε0+ε1

)

.
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Hence the two noise-processes are just different representations of the same process. We there-
fore use only the mixture noise model in the remainder of this paper and omit the indicator α to
differentiate between the different noise models.

3.2.6 OBJECT-WISE AND DIMENSION-WISE NOISE PROCESSES

In the following, we extend the noise model presented above. Given the equivalence of mix and flip
noise, we restrict ourselves to the mixture noise model.
Dimension-wise Noise. Assume a separate noise process for every dimension d, which is pa-

rameterized by rd and has intensity εd . We then have

p(x |z,β,ε) =∏
i,d

(

εdrxidd (1− rd)1−xid +(1− εd)(1−βLid)
xid β1−xid

Lid

)

.

Object-wise Noise. Now assume a separate noise process for every object i, which is parame-
terized by εi and ri. As before, we have

p(x |z,β,ε) =∏
i,d

(

εirxidi (1− ri)1−xid +(1− εi)(1−βLid)
xid β1−xid

Lid

)

.

Note that these local noise models are very specific and could be used in the following appli-
cation scenarios. In role mining, some permissions are more critical than others. Hence it appears
reasonable to assume a lower error probability for the dimension representing, for example, root
access to a central database server than for the dimension representing the permission to change the
desktop background image. However we observed experimentally that the additional freedom in
these models often leads to an over-parametrization and thus worse overall results. This problem
could possibly be reduced by introducing further constraints on the parameters, such as a hierarchi-
cal order.

4. Inference

We now describe an inference algorithm for our model. While the parameters are ultimately inferred
according to the maximum likelihood principle, we use the optimization method of deterministic
annealing presented in Buhmann and Kühnel (1993) and Rose (1998). In the following, we specify
the deterministic annealing scheme used in the algorithm. In Section 4.2 we then give the character-
istic magnitudes and the update conditions in a general form, independent of the noise model. The
particular update equations for the mixture model are then derived in detail in Section 4.3.

4.1 Annealed Parameter Optimization

The likelihood of a data matrix x (Equation 6) is highly non-convex in the model parameters and a
direct maximization of this function will likely be trapped in local optima. Deterministic annealing
is an optimization method that parameterizes a smooth transition from the convex problem of maxi-
mizing the entropy (i.e. a uniform distribution over all possible clustering solutions) to the problem
of minimizing the empirical risk R. The goal of this heuristic is to reduce the risk of being trapped in
a local optimum. Such methods are also known as continuation methods (see Allgower and Georg,
1980). In our case, R is the negative log likelihood. Formally, the Lagrange functional

F :=−T logZ = G [R]−TH
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is introduced, with Z being the partition function over all possible clustering solutions (see Equa-
tion 10), and G denotes the Gibbs distribution (see Equation 9 and Equation 8). The Lagrange
parameter T (called the computational temperature) controls the trade-off between entropy maxi-
mization and minimization of the empirical risk. Minimizing F at a given temperature T is equiva-
lent to constraint minimization of the empirical risk R with a lower limit on the entropy H. In other
words, H is a uniform prior on the likelihood of the clustering solutions. Its weight decreases as the
computational temperature T is incrementally reduced.

At every temperature T , a gradient-based expectation-maximization (EM) step computes the
parameters that minimize F . The E-step computes the risks RiL (Equation 7) of assigning data item
i to the assignment set L . The corresponding responsibilities γiL (Equation 8) are computed for all i
and L based on the current values of the parameters. The M-step first computes the optimal values
of the noise parameters. Then it uses these values to compute the optimal source parameters β. The
individual steps are described in Section 4.3.

We determine the initial temperature as described in Rose (1998) and use a constant cooling
rate (T ← ϑ ·T , with 0< ϑ< 1) . The cooling is continued until the responsibilities γiL for all data
items i peak sharply at single assignment sets Li.

4.2 Characteristic Magnitudes and Update Conditions

Following our generative approach to clustering, we aim at finding the maximum likelihood solution
for the parameters. Taking the logarithm of the likelihood simplifies the calculations as products be-
come sums. Also, the likelihood function conveniently factors over the objects and features enabling
us to investigate the risk of objects individually. We define the empirical risk of assigning an object
i to the set of clusters L as the negative log-likelihood of the feature vector xi∗ being generated by
the sources contained in L :

RiL := log p(xi·|Li,Θ) =−∑
d
log(xid (1−qLd)+(1− xid)qLd) . (7)

The responsibility γiL of the assignment-set L for data item i is given by

γiL :=
exp(−RiL/T )

∑L ′∈ exp(−RiL ′/T )
. (8)

The matrix γ defines a probability distribution over the space of all clustering solutions. The ex-
pected empirical risk G [R] of the solutions under this probability distribution G is

G [RiL ] =∑
i
∑
L

γiLRiL . (9)

Finally, the state sum Z and the free energy F are defined as follows.

Z :=∏
i
∑
L

exp(−RiL/T ) (10)

F :=−T logZ =−T∑
i
log

(

∑
L

exp(−RiL/T )

)

Given the above, we derive the updates of the model parameters based on the first-order condi-
tion of the free energy F . We therefore introduce the generic model parameter θ, which stands for
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any of the model parameters, i.e. θ ∈
{

βµν,ε0,ε1,ε,r
}

. Here, µ is some particular value of source
index k and ν is some particular value of dimension index d. Using this notation, the derivative of
the free energy with respect to θ is given by

∂F
∂θ

=∑
i
∑
L

γiL
∂RiL
∂θ

=∑
i
∑
L

γiL∑
d

(1−2xid) ∂qLd∂θ

xid (1−qLd)+(1− xid)qLd
.

4.3 Update Conditions for the Mixture Noise Model

Derivatives for the mixture noise model (θ ∈
{

βµν,ε,r
}

) are:

∂qmix
Ld

∂βµν
= (1− ε)βL\{µ},d I{ν=d}I{µ∈L},

∂qmix
Ld
∂ε

= 1− r−βLd,
∂qmix

Ld
∂r

=−ε.

This results in the following first-order conditions for the mixture noise model:

∂Fmix

∂βµν
= (1− ε) ∑

Lµ∈L
βL\{µ},ν

{

∑i:xiν=1 γ
mix
iL

εr+(1− ε)(1−βLν)
−

∑i:xiν=0 γ
mix
iL

1− εr− (1− ε)(1−βLν)

}

= 0,

∂Fmix

∂ε
=∑

d

{

∑
L

(1− r−βLd)∑i:xid=1 γ
mix
iL

εr+(1− ε)(1−βLd)
−∑

L

(1− r−βLd)∑i:xid=0 γ
mix
iL

1− εr− (1− ε)(1−βLd)

}

= 0,

∂Fmix

∂r
= ε∑

d

{

∑
L

∑i:xid=0 γ
mix
iL

1− εr− (1− ε)(1−βLd)
−∑

L

∑i:xid=1 γ
mix
iL

εr+(1− ε)(1−βLd)

}

= 0.

There is no analytic expression for the solutions of the above equations, the parameters βµν, ε, and
r are thus determined numerically. In particular, we use Newton’s method to determine the optimal
values for the parameters. We observed that this method rapidly converges, usually needing at most
5 iterations.

The above equations contain the optimality conditions for the single-assignment clustering
(SAC) model as a special case. As only assignment sets L with one element are allowed in this
model, we can globally substitute L by k and get βL∗ = βk∗. Furthermore, since 1 is the neutral
element for multiplication, we get βL\{µ},ν = 1.

In the noise-free case, the value for the noise fraction is ε = 0. This results in a significant
simplification of the update equations.

5. Experiments

In this section, we first introduce the measures that we employ to evaluate the quality of clustering
solutions. Afterwards, we present results on both synthetic and real-world data.

5.1 Evaluation Criteria

For synthetic data, we evaluate the estimated sources by their Hamming distance to the true sources
being used to generate the data. For real-world data, the appropriate evaluation criteria depend on
the task. Independent of the task, the generalization ability of a solution indicates how well the
solution fits to the unknown underlying probability distribution of the data. Moreover, as argued in
Frank et al. (2010), the ability of a solution to generalize to previously unseen users is the appropriate
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quality criterion for the role mining problem. In the following, we introduce these two measures,
parameter mismatch and generalization ability.

The following notation will prove useful. We denote by ẑ and û the estimated decomposition of
the matrix x. The reconstruction of the matrix based on this decomposition is denoted by x̂, where
x̂ := ẑ∗ û. Furthermore, in experiments with synthetic data, the signal part of the matrix is known.
As indicated in Section 3, it is denoted by xS.

5.1.1 PARAMETER MISMATCH

Experiments with synthetic data allow us to compare the values of the true model parameters with
the inferred model parameters. We report below on the accuracies of both the estimated centroids û
and the noise parameters.

To evaluate the accuracy of the centroid estimates, we use the average Hamming distance be-
tween the true and the estimated centroids. In order to account for the arbitrary numbering of
clusters, we permute the centroid vectors uk∗ with a permutation π(k) such that the estimated and
the true centroids agree best. Namely,

a(û) :=
1

K ·D
min
π∈PK

K

∑
k=1

∣

∣

∣

∣uk∗ − ûπ(k)∗
∣

∣

∣

∣ ,

where PK denotes the set of all permutations of K elements. Finding the π ∈ PK that minimizes the
Hamming distance involves solving the assignment problem, which can be calculated in polynomial
time using the Hungarian algorithm of Kuhn (2010). Whenever we know the true model parameters,
we will assess methods based on parameter mismatch, always reporting this measure in percent.

5.1.2 GENERALIZATION ERROR

For real world data, the true model parameters are unknown and there might even exist a model
mismatch between the learning model and the true underlying distribution that generated the input
data set x(1). Still, one can measure how well the method infers this distribution by testing if the
estimated distribution generalizes to a second data set x(2) that has been generated in the same way
as x(1). To measure this generalization ability, we first randomly split the data set along the objects
into a training set x(1) and a validation set x(2). Then we learn the factorization ẑ, û based on the
training set and transfer it to the validation set.

Note that the transfer of the learned solution to the validation set is not as straight-forward in
such an unsupervised scenario as it is in classification. For transferring, we use the method proposed
by Frank et al. (2011). For each object i in x(2), we compute its nearest neighbor ψNN(i) in x(1) ac-
cording to the Hamming distance. We then create a new matrix z′ defined by z′i∗ = ẑψNN(i)∗ for all i.
As a consequence, each validation object is assigned to the same set of sources as its nearest neigh-
bor in the training set. The possible assignment sets as well as the source parameters are thereby
restricted to those that have been trained without seeing the validation data. The generalization error
is then

G(ẑ, û,x(2),ψNN) :=
1

N(2) ·D

∥

∥

∥
x(2)− z′ ∗ û

∥

∥

∥
,

with z′ =
(

ẑψNN(1)∗, ẑψNN(2)∗, . . . , ẑψNN(N(2))∗

)T
,
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5 10 15 20

source 1
source 2
source 3

(a) Overlapping Sources (b) Orthogonal Sources

Figure 3: Overlapping sources (left) and orthogonal sources (right) used in the experiments with
synthetic data. Black indicates a 1 and white a 0 for the corresponding matrix element.
In both cases, the three sources have 24 dimensions.

where N(2) is the number of objects in the validation data set and ∗ is the Boolean matrix product as
defined in Equation 1. This measure essentially computes the fraction of wrongly predicted bits in
the new data set.

As some of the matrix entries in x(2) are interpreted as noise, it might be impossible to reach a
generalization error of 0%. However, this affects all methods and all model variants. Moreover, we
are ultimately interested in the total order of models with respect to this measure and not in their
absolute scores. Since we assume that the noise associated with the features of different objects is
independent, we deduce from a low generalization error that the algorithm can infer sources that
explain—up to residual noise—the features of new objects from the same distribution. In contrast, a
high generalization error implies that the inferred sources wrongly predict most of the matrix entries
and thus indicates overfitting.

Note that the computation of generalization error differs from the approach taken in Streich et al.
(2009). There, only û is kept fixed, and ẑ is ignored when computing the generalization error. The
assignment sets z′ of the new objects are recomputed by comparing all source combinations with
a fraction κ of the bits of these objects. The generalization error is the difference of the remaining
(1−κ) bits to the assigned sources. In our experiments on model-order selection, this computation
of generalization error led to overfitting. As z′ was computed independently from ẑ, fitting all
possible role combinations to the validation data, it supports tuning one part of the solution to this
data. With the nearest neighbor-based transfer of ẑ, which is computed without using the validation
set, this is not possible. Overfitting is therefore detected more reliably than in Streich et al. (2009).

In order to estimate the quality of a solution, we use parameter mismatch in experiments with
synthetic data and generalization error in experiments with real data.

5.2 Experiments on Synthetic Data

This section presents results from several experiments on synthetic data where we investigate the
performance of different model variants and other methods. Our experiments have the following
setting in common. First, we generate data by assigning objects to one or more Boolean vectors
out of a set of predefined sources. Unless otherwise stated, we will use the generating sources as
depicted in Figure 3. Combining the emissions of these sources via the OR operation generates
the structure of the objects. Note that the sources can overlap, i.e. multiple sources emit a 1 at a
particular dimension. In a second step, we perturb the data set by a noise process.

With synthetic data, we control all parameters, namely the number of objects and sources, the
geometry of the Boolean source vectors (i.e. we vary them between overlapping sources and or-
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thogonal sources), the fraction of bits that are affected by the noise process, and the kind of noise
process. Knowing the original sources used to generate the data set enables us to measure the accu-
racy of the estimators, as described in Section 5.1. The goal of these experiments is to investigate
the behavior of different methods under a wide range of conditions. The results will help us in
interpreting the results on real-world data in the next section.

We repeat all experiments ten times, each time with different random noise. We report the
median (and 65% percentiles) of the accuracy over these ten runs.

5.2.1 COMPARISON OF MAC WITH OTHER CLUSTERING TECHNIQUES

The main results of the comparison between MAC and other clustering techniques are shown in
Figure 4. Each panel illustrates the results of one of the methods under five different experimental
setups. We generate 50 data items from each single source as well as from each combination of two
sources. Furthermore, 50 additional data items are generated without a source, i.e. they contain no
structure. This experimental setting yields 350 data items in total. The overlapping sources are used
as shown in Figure 3(a), and the structure is randomly perturbed by a mixture noise process. The
probability of a noisy bit being 1 is kept fixed at r = 0.5, while the fraction of noisy bits, ε, varies
between 0% and 99%. The fraction of data from multiple sources is 50% for the experiments plotted
with square markers. Experiments with only 20% (80%) of the data are labeled with circles (with
stars). Furthermore, we label experiments with orthogonal sources (Figure 3(b)) with ’x’. Finally,
we use ’+’ labels for results on data with a noisy-OR noise process, i.e. r = 1.

5.2.2 BINARY INDEPENDENT COMPONENT ANALYSIS (BICA)

BICA has a poor parameter accuracy in all experiments with data from overlapping clusters. This
behavior is caused by the assumption of orthogonal sources, which fails to hold for such data. BICA
performs better on data that was modified by the symmetric mixture noise process than on data from
a noisy-OR noise process. Since BICA does not have a noise model, the data containing noise from
the noisy-OR noise process leads to extra 1s in the source estimators. This effect becomes important
when the noise fraction rises above 50%. We observe that, overall, the error rate does not vary much
for overlapping sources.

The effect of the source geometry is particularly noticeable. On data generated by orthogonal
sources, i.e. when the assumption of BICA is fulfilled, the source parameters are perfectly recon-
structed for noise levels up to 65%. Only for higher noise levels, does the accuracy break down. The
assumption of orthogonal source centroids is essential for BICA’s performance as the poor results
on data with non-orthogonal sources show. As more data items are generated by multiple, non-
orthogonal sources, the influence of the mismatch between the assumption underlying BICA and
the true data increases. This effect explains why the source parameter estimators for non-orthogonal
centroids become less accurate when going from 20% of multi-assignments to 80%.

5.2.3 DISCRETE BASIS PROBLEM SOLVER (DBPS)

Figure 4(b) shows that this method yields accurate source parameter estimators for data generated
by orthogonal sources, and, to a lesser degree, for data sets that contain a small percentage of
multi-assignment data. As the fraction of multi-assignment data increases, the accuracy of DBPS
decreases.
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(a) Accuracy of BICA (b) Accuracy of DBPS

(c) Accuracy of INO (d) Accuracy of MAC

Figure 4: Accuracy of source parameter estimation for five different types of data sets in terms of
mismatch to the true sources. We use (circle, square, star) symmetric Bernoulli noise
and overlapping sources with three different fractions of multi-assignment data, (x) or-
thogonal sources and symmetric noise, and (+) overlapping sources and a noisy-or noise
process. Solid lines indicate the median over 10 data sets with random noise and dashed
lines show the 65% confidence intervals.

The reason for the low accuracy on multi-assignment data arises from the greedy optimization
of DBPS. It selects a new source out of a candidate set such that it can explain as many objects as
possible by the newly chosen source. In a setting where most of the data is created by a combination
of sources, DBPS will first select a single source that equals the disjunction of the true sources
because this covers the most 1s. We call this effect combination-singlet confusion. It is a special case
of the typical problem of forward selection. Lacking a generative model for source-combinations,
DBPS cannot use the observation of objects generated by source-combinations to gather evidence
for the individual sources. As a consequence, the first selected source estimates fit to the source-
combinations and not to the true individual sources. Often, the last selected sources are left empty,
leading to a low estimation accuracy.
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Note the effect of a small amount of noise on the accuracy of DBPS. The clear structure of the
association matrix is perturbed, and the candidates might contain 0s in some dimensions. As a result,
the roles selected in the second and subsequent steps are non-empty, making the solution more
similar to the true sources. This results in the interesting effect where the accuracy increases when
going from noise-free matrices to those with small amount of noise (for higher noise, it decreases
again because of overfitting).

DBPS obtains accurate estimators in the setting where the data is generated by orthogonal data
(labeled ’x’). Here, the candidate set does not contain sources that correspond to combinations of
true sources, and the greedy optimization algorithm can only select a candidate source that corre-
sponds to a true single source. DBPS thus performs best with respect to source parameter estimation
when the generating sources are orthogonal. In contrast to BICA, which benefits from the explicit
assumption of orthogonal sources, DBPS favors such sources because of the properties of its greedy
optimizer.

5.2.4 INFINITE NOISY-OR (INO)

The infinite noisy-OR is a non-parametric Bayesian method. To obtain a single result, we ap-
proximate the a posteriori distribution by sampling and then choose the parameters with highest
probability. This procedure estimates the maximum a posterior solution. Furthermore, in contrast
to BICA, DBPS, and all MAC variants, INO determines the number of sources by itself and might
obtain a value different than the number of sources used to generate the data. If the number inferred
by INO is smaller than the true number, we choose the closest true sources to compute the parameter
mismatch. If INO estimates a larger set of sources than than the true one, the best-matching INO
sources are used. This procedure systematically overestimates the accuracy of INO, whereas INO
actually solves a harder task that includes model-order selection. A deviation between the estimated
number of sources and the true number mainly occurs at the mid-noise level (approximately 30% to
70% noisy bits).

In all settings, except the case where 80% of the data items are generated by multiple sources,
INO yields perfect source estimators up to noise levels of 30%. For higher noise levels, its accuracy
rapidly drops. While the generative model underlying INO enables this method to correctly interpret
data items generated by multiple sources, a high percentage (80%) of such data poses the hardest
problem for INO.

For noise fractions above approximately 50%, the source parameter estimators are only slightly
better than random in all settings. On such data, the main influence comes from the noise, while the
contribution of different source combinations is no longer important.

5.2.5 MULTI-ASSIGNMENT CLUSTERING (MAC)

The multi-assignment clustering method yields perfect parameter estimators for noise levels up to
40% in all experimental settings considered. The case with 80% of multi-assignment data is the
most challenging one for MAC. When only 50% or 20% of the data items are generated by more
than one source, the parameter estimates are accurate for noise levels up to 55% or 60% of noisy
bits. When few data items originate from a single source, MAC fails to separate the contributions
of the individual sources. These single-source data items function as a kind of ‘anchor’ and help the
algorithm to converge to the true parameters of the individual sources. For very high noise levels
(90% and above), the performance is again similar for all three ratios of multi-assignment data.
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In comparison to the experiments with overlapping sources described in the previous paragraph,
MAC profits from orthogonal centroids and yields superior parameter accuracy for noise levels
above 50%. As for training data with little multi-assignment data, orthogonal centroids simplify the
task of disentangling the contributions of the individual sources. When a reasonable first estimate
of the source parameters can be derived from single-assignment data, a 1 in dimension d of a data
item is explained either by the unique source which has a high probability of emitting a 1 in this
dimension, or by noise—even if the data item is assigned to more than one source.

Interestingly, MAC’s accuracy peaks when the noise is generated by a noisy-OR noise process.
The reason is that observing a 1 at a particular bit creates a much higher entropy of the parameter
estimate than observing a 0: a 1 can be explained by all possible combinations of sources having a
1 at this position, whereas a 0 gives strong evidence that all sources of the object are 0. As a conse-
quence, a wrong bit being 0 is more severe than a wrong 1. The wrong 0 forces the source estimates
to a particular value whereas the wrong 1 distributes its ‘confusion’ evenly over the sources. As the
noisy-OR creates only 1s, it is less harmful. This effect could, in principle, also help other methods
if they managed to appropriately disentangle combined source parameters.

5.2.6 PERFORMANCE OF MAC VARIANTS

We carry out inference with the MAC model and the corresponding Single-Assignment Clustering
(SAC) model, each with and without the mixture noise model. These model variants are explained
in Section 3.1.1. The results illustrated in Figure 5 are obtained using data sets with 350 objects. The
objects are sampled from the overlapping sources depicted in Figure 3(a). To evaluate the solutions
of the SAC variants in a fair way, we compare the estimated sources against all combinations of the
true sources.

5.2.7 INFLUENCE OF SIGNAL MODEL AND NOISE MODEL

As observed in Figure 5, the source parameter estimators are much more accurate when a noise
model is employed. For a low fraction of noisy bits (< 50%), the estimators with a noise model
are perfect, but are already wrong for 10% noise when not using a noise model. When inference is
carried out using a model that lacks the ability to explain individual bits by noise, the entire data set
must be explained with the source estimates. Therefore, the solutions tend to overfit the data set.
With a noise model, a distinction between the structure and the irregularities in the data is possible
and allows one to obtain more accurate estimates for the model parameters.

Multi-Assignment Clustering (MAC) provides more accurate estimates than SAC and the accu-
racy of MAC breaks down at a higher noise level than the accuracy of SAC. The reason is twofold.
First, the ratio of the number of observations per model parameter differs for both model variants.
MAC explains the observations with combinations of sources whereas SAC assigns each object to
a single source only. SAC therefore uses only those objects for inference that are exclusively as-
signed to a source, while MAC also uses objects that are simultaneously assigned to other sources.
Second, using the same source in different combinations with other sources implicitly provides a
consistency check for the source parameter estimates. SAC lacks this effect as all source parameters
are independent. The difference between MAC and SAC becomes apparent when the data set is
noisy. For low fractions of noise, the accuracy is the same for both models.
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Figure 5: Average Hamming distance between true and estimated source prototypes for MAC and
SAC with and without noise models respectively.

We conducted the same experiments on data sets that are ten times larger and observed the same
effects as the ones described above. The sharp decrease in accuracy is shifted to higher noise levels
and appears in a smaller noise window when more data is available.

5.3 Experiments on Role Mining Data

To evaluate the performance of our algorithm on real data, we apply MAC to mining RBAC roles
from access control configurations. We first specify the problem setting and then report on our
experimental results.

5.3.1 SETTING AND TASK DESCRIPTION

As explained in Section 2, role mining must find a suitable RBAC configuration based on a binary
user-permission assignment matrix x. An RBAC configuration is the assignment of K roles to
permissions and assignments of users to these roles. A user can have multiple roles, and the bit-
vectors representing the roles can overlap. The inferred RBAC configuration is encoded by the
Boolean assignment matrices (ẑ, û).

We emphasize the importance of the generalization ability of the RBAC configuration: The goal
is not primarily to compress the existing user-permission matrix x, but rather to infer a set of roles
that generalizes well to new users. An RBAC system’s security and maintainability improve when
the roles do not need to be redefined whenever there is a small change in the enterprise, such as a
new user being added to the system or users changing positions within the enterprise. Moreover,
as previously explained, it is desirable that the role mining step identifies exceptional permission
assignments. Such exceptional assignments are represented by the noise component of the mixture
model. In practice, one must check whether the suspected erroneous bits are really errors or if they
were (and still are!) intended. Without additional input, one can at most distinguish between reg-
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Figure 6: A 2400×500 part of the data matrix used for model-order selection. Black dots indicate
a 1 at the corresponding matrix element and white dots indicate a 0. The full data matrix
has size 4900×1300. Rows and columns of the right matrix are reordered such that users
with the same role set and permissions of the same role are adjacent to each other, if
possible. Note that there does not exist a permutation that satisfies this condition for all
users and permissions simultaneously.

ularities and irregularities. This is a problem for all role mining algorithms: The interpretation of
the irregularities and any subsequent corrections must be performed by a domain expert. However,
minimizing the number of suspicious bits and finding a decomposition that generalizes well is al-
ready a highly significant advantage over manual role engineering. See Frank et al. (2010) for an
extended discussion of this point.

In our experiments, we use a data set from our collaborator containing the user-permission
assignment matrix of N = 4900 users and D = 1300 permissions. We will call this data set Corig
in subsequent sections. A part of this data matrix is depicted in Figure 6. Additionally, we use the
publicly available access control configurations from HP labs published by Ene et al. (2008).

To evaluate the different methods on more complex data with a higher noise level, we gener-
ate another data set x̄ as follows: For the original user-permission assignment matrix of Corig we
combine the first 500 columns and the second 500 columns by an element-wise OR operation to
give the structure part x̄S. Afterwards, we replace 33% of the matrix entries by random bits to yield
the modified matrix x̄. This matrix exhibits both a higher structural complexity and a substantially
increased noise level than the original matrix x. We will call this modified data setCmod. We explain
the individual steps of the experiments based on Corig as a running example. All other experiments,
those onCmod and on the HP data, are carried out in the same way.
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(a) Generalization Error (b) run-time

Figure 7: Left: Generalization error on the hold-out validation set in terms of wrongly predicted
bits versus the number of roles. The other external parameters for BICA and DBPS are
determined by exhaustive search. Right: Run-time versus number of roles on a 2400×
500 access-control matrix. The selected number of roles is highlighted by vertical lines.

5.3.2 MODEL-ORDER SELECTION

INO is a non-parametric model that can compute probabilities over the infinite space of all possible
binary assignment matrices. It is therefore able to select the number of roles K during inference
and needs no external input. For DBPS, BICA, and MAC, the number of roles must be externally
selected and for DBPS and BICA, also rounding thresholds and approximation weights must be
tuned. The number of roles K is the most critical parameter.

As a principle for guiding these model selection tasks, we employ the generalization error as
defined in Section 5.1. Out of the total of 4900 users from Corig, we use five-fold cross-validation
on a subset of 3000 users. In each step, we split them into 2400 users for training the model
parameters and 600 users for validating them, such that each user occurs once in the validation set
and four times in the training set. The number of permissions used in this experiment is 500. We
increase the number of roles until the generalization error increases. For a given number of roles,
we optimize the remaining parameters (of DBPS and BICA) on the training sets and validation sets.
For continuous parameters, we quantize the parameter search-space into 50 equally spaced values
spanning the entire range of possible parameter values.

To restrict the cardinality of the assignment sets (for MAC), we make one trial run with a large
number of roles and observe how many of the roles are involved in role combinations. A role that is
involved in role combinations is at least once assigned to a user together with at least one other role.
In our experiments on Corig, for instance, 10% of K = 100 roles are used in role combinations and
no roles appear in combinations with more than two roles. Therefore, for subsequent runs of the
algorithm, we set M = 2 and limit the number of roles that can belong to a multiple assignment set
to 10% of K. For large K, such a restriction drastically reduces the run-time as the solution space
is much smaller than the space of all possible role combinations. See Section 5.4 for an analysis of
the run-time complexity of all investigated methods.
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Restricting the number of roles that can belong to a multiple assignment set risks having too
few role combinations available to fit the data at hand. However, such circumstances cannot lead
to underfitting when K is still to be computed in the cross-validation phase. In the worst case, an
unavailable role combination would be substituted by an extra single role.

The performance of the three methods MAC, DBPS, and BICA as a function of the number of
roles is depicted in Figure 7(a), left. The different models favor a substantially different number
of roles on this data set (and also on other data sets, see Table 1). For MAC, there is a very clear
indication of overfitting for K > 248. For DBPS, the generalization error monotonically decreases
for K < 150. As K further increases, the error remains constant. In the cross-validation phase, the
internal threshold parameter of DPBS is adapted to minimize the generalization error. This prevents
excessive roles from being used as, with the optimal threshold, they are left empty. We select
K = 200 for DBPS, where more roles provide no improvement. INO selects 50 roles on average.
BICA favors a considerably smaller number of roles, even though the signal is not as clear. We
select K = 95 for BICA, which is the value that minimizes the median generalization error on the
validation sets.

5.3.3 RESULTS OF DIFFERENT METHODS

The results of the generalization experiments for the four methods MAC, DBPS, BICA, and INO
are depicted in Figure 8. Overall, all methods have a very low generalization error on the original
data set. The error spans from 1% to 3% of the predicted bits. This result indicates that, on a global
scale,Corig has a rather clean structure. It should be stressed that most permissions in the input data
set are only rarely assigned to users, whereas some are assigned to almost everyone, thereby making
up most of the 1s in the matrix (see a part of the data set in Figure 6). Therefore, the most trivial
role set where roles are assigned no permissions already yields a generalization error of 13.5%.
Assigning everyone to a single role that contains all permissions that more than 50% percent of the
users have, achieves 7.1%. One should keep this baseline in mind when interpreting the results.

INO, DBPS, and BICA span a range from 2.2% generalization error to approximately 3% with
significant distance to each other. MAC achieves the lowest generalization error with slightly more
than 1%. It appears that INO is misled by its noisy-OR noise model, which seems to be inappropriate
in this case. MAC estimates the fraction of noisy bits by ε̂ ≈ 2.8% and the probability for a noisy
bit to be 1 by r̂ ≈ 20%. This estimate clearly differs from a noisy-OR noise process (which would
have r = 1). With more than 3% generalization error, BICA performs worst. As all other methods
estimate a considerable centroid overlap, the assumption of orthogonal (non-overlapping) centroids
made by BICA seems to be inappropriate here and might be responsible for the higher error.

In our experiments on the modified data set with more structure and a higher noise level, Fig-
ure 8(b), all methods have significantly higher generalization errors, varying between approximately
10% to 21%. The trivial solution of providing each user all those permissions assigned to more than
50% of the users, leads to an error of 23.3%. Again, MAC with 10% generalization error yields
significantly lower generalization error than all the other methods. INO, DBPS, and BICA perform
almost equally well each with a median error of 20% to 21%. A generalization error of 10% is still
very good as this data set contains at least 33% random bits, even though a random bit can take the
correct value by chance.

The lower row of Figure 8 shows the average role overlap between the roles obtained by the
different methods. This overlap measures the average number of permissions that the inferred roles
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(a) Generalization Error on Original Data (b) Generalization Error on Modified Data

(c) MAC variants on Original Data (d) MAC variants on Modified Data

(e) Average Role Overlap (%) (f) Average Role Overlap (%)

Figure 8: Generalization experiment on real data. Graphs (a)-(d) show the generalization error
obtained with the inferred roles, and graphs (e)-(f) display the average overlap between
roles.

have in common. For BICA, the roles never overlap, by the definition of the method. For all
other methods, the increased overlap of the data’s structure is reflected in the estimated roles. The
decrease in the difference in performance between BICA and the other models after processing the
modified data set indicates that the main difficulty for models that can represent overlapping roles
is the increased noise level rather than the overlapping structure. We will return to the influence of
the data set in our discussion of the results of the MAC model variants in the next section.
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5.3.4 RESULTS OF MAC MODEL VARIANTS

To investigate the influence of the various model variants of MAC, we compare the performance
reported above for MAC with i) the results obtained by the single-assignment clustering variant
(SAC) of the model and ii) with the model variants without a noise part. The middle row of Figure 8
shows the generalization error of SAC and MAC, both with and without a noise model. On the
original data set, Figure 8(c), all model variants perform almost equally well. The noise model
seems to have little or no impact, whereas the multi-assignments slightly influence the generalization
error. Taking MAC’s estimated fraction of noisy bits ε̂≈ 2.8% into account, we interpret this result
by referring to the experiments with synthetic data. There the particular model variant has no
influence on the parameter accuracy when the noise level is below 5% (see Figure 5.2.7). As we
seem to operate with such low noise levels here, it is not surprising that the model variants do
not exhibit a large difference on that data set. On the modified data with more complex structure
and with a higher noise level than the original data (Figure 8(d)), the difference between multi-
assignments and single-assignments becomes more apparent. Both MAC and SAC benefit from a
noise part in the model, but the multi-assignments have a higher influence.

5.3.5 RESULTS ON HP DATA

With all methods described above, we learn RBAC configurations on the publicly available data
sets from HP labs (first presented by Ene et al., 2008). The data set ‘customer’ is the access control
matrix of an HP customer. ‘americas small’ is the configuration of Cisco firewalls that provide
users limited access to HP network resources. The data set ‘emea’ is created in a similar way and
‘firewall 1’ and ‘firewall 2’ are created by Ene et al. (2008) by analyzing Checkpoint firewalls.
Finally, ‘domino’ is the access profiles of a Lotus Domino server.

We run the same analysis as onCorig. For the data sets ‘customer’, ‘americas small’, and ‘firewall
1’, we first make a trial run with many roles to identify the maximum cardinality of assignment sets
M that MAC uses. We then restrict the hypothesis space of the model accordingly. For ‘customer’
and ‘firewall 1’, we use M = 3, for ‘americas small’ we use M = 2. For the smaller data sets, we
simply offered MAC all possible role configurations, although the model does not populate all of
them.

In the cross-validation phase we select the number of roles for each of the methods (except
for INO), and the thresholds for BICA and DBPS in the previously described way. Afterwards we
compute the generalization error on hold-out test data.

Our experimental findings are summarized in Table 1. We report the favored number of roles,
the median generalization error and its average difference to the 25% and 75%-percentiles, and the
run-time of one run, respectively. Overall, the MAC variants achieve the lowest generalization error
within the variance of this measure. For ‘americas small’ and ‘emea’ all methods generalize equally
well (note the high variance for ‘emea’, which is an effect of the small sample size and the high
dimensionality of that data set). Here differences between the methods are dominated by run-time
and the number of roles that have been found. For ‘dominos’, INO and BICA are almost as good
as MAC, although with a significantly higher variance. Visual inspection of the ‘dominos’ matrix
indicates that this data set has a sparse and simple structure. Differences between the methods
are most pronounced on the two ’firewall’ data sets. Remarkably, INO finds 80 roles for ‘emea’,
although this data set has only 35 users.
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Given the overall good generalization performance of MAC, we conclude that this model is a
good ‘allrounder’. This also confirms our findings in the experiments with synthetic data. Each of
the other methods shows a good performance on individual data sets but not as reliably as MAC.
Comparison with the results on synthetic data suggests that their differing performance on different
data sets is either due to different fractions of random noise or to true underlying sources with
different overlap.

customer americas small
10,021 users × 277 perms. 3,477 users × 1,587 perms.

k gen. error [%] run-time [min] k gen. error [%] run-time [min]
MAC 187 2.40±0.03 49 139 1.03±0.01 80
DBPS 178 2.54±0.05 43 105 1.00±0.03 187
INO 20 7.8±1.6 996 65.6 1.05±0.01 3691
BICA 82 2.66±0.02 200 63 1.00±0.01 64

firewall1 firewall2
365 users × 709 perms. 325 users × 590 perms.

k gen. error [%] run-time [min] k gen. error [%] run-time [min]
MAC 49 4.57±0.01 10 10 3.40±0.00 1.8
DBPS 21 13.6±3.1 5 4 19.5±4.4 2
INO 38.2 8.04±0.00 96 6.2 11.15±0.00 14
BICA 18 12.8±3.0 2.1 4 19.9±4.5 0.9

dominos emea
79 users × 231 perms. 35 users × 3,046 perms.

k gen. error [%] run-time [min] k gen. error [%] run-time [min]
MAC 7 1.73±0.00 1.1 3 8.7±1.2 0.7
DBPS 9 2.3±0.5 0.2 8 7.3±2.6 1.1
INO 26 1.7±0.1 9.0 80.4 10.1±2.4 204
BICA 3 1.9±0.3 0.1 5 8.6±2.8 1.0

Table 1: Results on HP labs data for different methods. We report the number of roles, the median
run-time of one run, as well as the median generalization error and the half inter-percentile
distance between 25% and 75%.

5.4 Complexity and Runtime

The complexity of the optimization problem is determined by the number of objects and features
and by the number of possible assignment sets L := | |. As L can be large for even a small number
of clusters, the complexity is dominated by that number. Let the number of clusters that a data
item can simultaneously belong to be limited by the degree M, i.e. maxL∈ |L | = M. Then the
size of the assignment set is limited by L = ∑M

m=0
(K
m
)

≤ 2K . Even for moderately sized K and M,
this dependence results in computationally demanding optimization problems both for the inference
step as well as for assigning new data items to previously obtained clusters. However, if the data
at hand truly exhibits such a high complexity (high K and M) then also a single assignment model
needs such a high complexity (to prevent the model from underfitting). In this case, a SAC model
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must learn L sources, while the MAC variant learns the L possible combinations out of K sources.
The number of responsibilities γiL (Equation 8) to be computed in the E-step is the same for both
models. However, in the M-step, MAC shares the source parameters while SAC must estimate them
separately. We will shortly elaborate on the relationship between MAC and SAC from the inference
perspective. Coming back to the complexity, the high number of responsibilities γiL to be computed
for MAC appears to be a model-order selection issue. One can drastically reduce its complexity by
limiting the number of assignment sets as described in Section 5.3.2.

In our experiments on real-world data in Section 5.3, we monitored the run-time, which is
depicted in Figure 7(b). Each point represents the runtime for a single run of the different algorithms
on an access-control matrix with N = 2400 users and D = 500 permissions. The number of roles
chosen by the respective method is indicated by a vertical line. For INO we report the median
number of roles selected. Note that in one run of INO, the model-order selection task is solved ‘on-
the-fly’ while the other methods require multiple runs and an external validation. This overhead is
reflected in the runtime. Considerable care is required in interpreting these results since the different
methods were implemented by different authors in different languages (Matlab for INO, BICA and
MAC, and C++ for DBPS). The DBPS implementation in C++ is impressively fast while the trend
of the generalization error over the number of roles is roughly comparable to MAC and BICA.
Thus, for large and demanding data sets, one could employ DBPS as a fast ‘scout’ to obtain an
educated guess of the model-order. In conclusion, for all the investigated algorithms the runtime is
not a limiting factor in role mining. This computation is only performed once when migrating an
access-control system to another one. It is therefore not a problem if the computation takes hours.

5.5 Relationship Between SAC and MAC

In the following, we show that MAC can be interpreted as a SAC model with a parameter sharing
rule. In the limit of many observations, MAC is equivalent to SAC with proxy-sources substituting
MAC’s source combinations. In order to understand the parameter sharing underlying MAC, we
write the set of admissible assignment sets as a Boolean matrix z ∈ {0,1}L×K . Assuming an
arbitrary but fixed numbering of assignment sets in , zlk = 1 means that the lth assignment set
contains source k, and zlk = 0 otherwise. Hence, the assignment matrix z decomposes into z =
zL ∗ z , where zL ∈ {0,1}N×L denotes the exclusive assignment of objects to assignment sets (zLil
iff object i has assignment set l, and ∑l zLil = 1 for all i). Using this notation, the decomposition
x≈ z∗u can be extended to

x≈
(

zL ∗ z
)

∗u= zL ∗
(

z ∗u
)

= zL ∗uSAC ,

where we have defined uSAC := z ∗u as the proxy-source parameters of the single-assignment clus-
tering model. The same notion of proxy-sources, substituting the disjunction of individual sources,
is used in Equation 2 for the probabilistic source parameters. Asymptotically, the two models are
equivalent. However, SACmust estimate L ·D parameters, while the MACmodel only uses K ·D pa-
rameters. By sharing the parameters of the assignment sets, MAC reduces the number of parameters
to be estimated and thereby increases the number of data items available per parameter. Moreover,
the sharing rule provides a mutual inconsistency check for the involved parameter estimates. This
check is not available if parameters are estimated independently. These two points explain the higher
accuracy in the parameter estimators, which we observe in the experiments reported in Section 5.2.
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6. Conclusion and Outlook

We have presented a probabilistic method to cluster vectors of Boolean data. In contrast to the
conventional approach of mutually exclusive cluster assignments, our method enables a data item
to belong to multiple clusters. In our generative model, the clusters are the sources that generate
the structure in the data and irregularities are explained by an independent noise process. In a
detailed analysis of our model variants, we demonstrate that the proposed method outperforms
state-of-the-art techniques with respect to parameter estimation accuracy and generalization ability.
In experiments on a real world data set from the domain of role-based access control, our model
achieves significantly lower generalization error than state-of-the-art techniques.

Throughout this paper, the Boolean OR combines the emissions of multiple sources. However,
the proposed concept is neither limited to the Boolean OR nor to Boolean data. Further work
will address the combination of other kinds of data and other combination rules such as additive
combinations of real numbers.
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Abstract
With the advent of crowdsourcing services it has become quite cheap and reasonably effective to
get a data set labeled by multiple annotators in a short amount of time. Various methods have been
proposed to estimate the consensus labels by correcting for the bias of annotators with different
kinds of expertise. Since we do not have control over the quality of the annotators, very often
the annotations can be dominated by spammers, defined as annotators who assign labels randomly
without actually looking at the instance. Spammers can make the cost of acquiring labels very
expensive and can potentially degrade the quality of the final consensus labels. In this paper we
propose an empirical Bayesian algorithm called SpEM that iteratively eliminates the spammers and
estimates the consensus labels based only on the good annotators. The algorithm is motivated by
defining a spammer score that can be used to rank the annotators. Experiments on simulated and
real data show that the proposed approach is better than (or as good as) the earlier approaches in
terms of the accuracy and uses a significantly smaller number of annotators.
Keywords: crowdsourcing, multiple annotators, ranking annotators, spammers

1. Introduction

Annotating a data set is one of the major bottlenecks in using supervised learning to build good
predictive models. Getting a data set labeled by experts can be expensive and time consuming.
With the advent of crowdsourcing services (Amazon’s Mechanical Turk1 being a prime example)
it has become quite easy and inexpensive to acquire labels from a large number of annotators in
a short amount of time (see Sheng et al. 2008, Snow et al. 2008, and Sorokin and Forsyth 2008
for some natural language processing and computer vision case studies). For example in AMT
the requesters are able to pose tasks known as HITs (Human Intelligence Tasks). Workers (called
providers) can then browse among existing tasks and complete them for a small monetary payment
set by the requester.

A major drawback of most crowdsourcing services is that we do not have control over the qual-
ity of the annotators. The annotators usually come from a diverse pool including genuine experts,
novices, biased annotators, malicious annotators, and spammers. Hence in order to get good quality
labels requestors typically get each instance labeled by multiple annotators and these multiple an-
notations are then consolidated either using a simple majority voting or more sophisticated methods

1. Amazon’s Mechanical Turk can be found at https://www.mturk.com.

c©2012 Vikas C. Raykar and Shipeng Yu.
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that model and correct for the annotator biases (Dawid and Skene, 1979; Smyth et al., 1995; Raykar
et al., 2009, 2010; Yan et al., 2010) and/or task complexity (Carpenter, 2008; Whitehill et al., 2009;
Welinder et al., 2010).

In this paper we are interested in the situation where the annotations are dominated by spam-
mers. In our context a spammer is a low quality annotator who assigns random labels (maybe
because the annotator does not understand the labeling criteria, does not look at the instances when
labeling, or maybe a bot pretending to be a human annotator). Spammers can significantly increase
the cost of acquiring annotations (since they need to be paid) and at the same time decrease the ac-
curacy of the final consensus labels. A mechanism to detect and eliminate spammers is a desirable
feature for any crowdsourcing market place. For example one can give monetary bonuses to good
annotators and deny payments to spammers. This paper makes two novel contributions:2

1. Spammer score to rank annotators The first contribution of this paper is to formalize the
notion of a spammer for binary and categorical labels. More specifically we define a scalar
metric which can be used to rank the annotators, with the spammers having a score close
to zero and the good annotators having a score close to one. We summarize the multiple
parameters corresponding to each annotator into a single score indicative of how spammer like
the annotator is. While this metric was implicit for binary labels in earlier works (Dawid and
Skene, 1979; Smyth et al., 1995; Carpenter, 2008; Raykar et al., 2009; Donmez et al., 2009)
the extension to categorical labels is novel and is quite different for the error rate computed
from the confusion rate matrix. An attempt to quantify the quality of the workers based on
the confusion matrix was recently made by Ipeirotis et al. (2010) where they transformed
the observed labels into posterior soft labels based on the estimated confusion matrix. While
we obtain somewhat similar annotator rankings, we differ from this work in that our score
is directly defined in terms of the annotator parameters. Having the score defined only in
terms of the annotator parameters makes it easy to specify a prior for Bayesian approaches to
eliminate spammers and consolidate annotations.

2. Algorithm to eliminate spammers The second contribution is that we propose an algorithm to
consolidate annotations that eliminates spammers automatically. One of the commonly used
strategy is to inject some items into the annotations with known labels (gold standard) and
use them to evaluate the annotators and thus eliminate the spammers.3 Typically we would
like to detect the spammers with as few instances as possible and eliminate them from further
annotations. In this work we propose an algorithm called SpEM that eliminates the spammers
without using any gold standard and estimates the consensus ground truth based only on the
good annotators. The same algorithm can also be used if some labels are also known.
We build on the earlier works of Dawid and Skene (1979), Smyth et al. (1995), and Raykar
et al. (2009, 2010) who proposed algorithms that correct for the annotator biases by estimat-
ing the annotator accuracy and the actual true label jointly. A simple strategy would be to
use these algorithms to estimate the annotator parameters, detect and eliminate the spammers
(as defined by our proposed spammer score) and refit the model with only the good annota-
tors. However this approach is not a principled approach and might be hard to control (for
example, how to define spammers and how many to remove, etc). The algorithm we pro-
pose is essentially a formalization of this strategy. Our final algorithm essentially repeats

2. A preliminary version of this paper (Raykar and Yu, 2011) mainly discussed the score to rank annotators.
3. This is the strategy used by CrowdFlower (http://crowdflower.com/docs/gold).
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this, it iteratively eliminates the spammers and re-estimates the labels based only on the good
annotators. A crucial element of our proposed algorithm is that we eliminate spammers by
thresholding on a hyperparameter of the prior (automatically estimated from the data) rather
than directly thresholding on the estimated spammer score.

The rest of the paper is organized as follows. In Section 2 we model the annotators in terms of
the sensitivity and specificity for binary labels and extend it to categorical labels. Based on this
model the notion of a spammer is formalized in Section 3. In Section 4 we propose a Bayesian
point estimate by using a prior (Section 4.2) derived from the proposed spammer score designed to
favor spammer detection. This is essentially a modification of the Expectation Maximization (EM)
algorithm proposed by Dawid and Skene (1979), Smyth et al. (1995), and Raykar et al. (2009, 2010).
The hyperparameters of this prior are estimated via an empirical Bayesian method in Section 5
leading to the proposed SpEM algorithm (Algorithm 1) that iteratively eliminates the spammers
and re-estimates the ground truth based only on the good annotators. In Section 6 we discuss this
algorithm in context of other methods and also propose a few extensions. in Section 7 we extend
the same ideas to categorical labels. In Section 8 we extensively validate our approach using both
simulated data and real data collected using AMT and other sources from different domains.

2. Annotator Model

An annotator provides a noisy version of the true label. Let y ji ∈ {0,1} be the label assigned to the
ith instance by the jth annotator, and let yi be the actual (unobserved) label. Following the approach
of Raykar et al. (2009, 2010) we model the accuracy of the annotator separately on the positive and
the negative examples. If the true label is one, the sensitivity (true positive rate) for the jth annotator
is defined as the probability that the annotator labels it as one.

α j := Pr[y ji = 1|yi = 1].

On the other hand, if the true label is zero, the specificity (1−false positive rate) is defined as the
probability that the annotator labels it as zero.

β j := Pr[y ji = 0|yi = 0].

With this model we have implicitly assumed that α j and β j do not depend on the instance. Ex-
tensions of this basic model have been proposed to include item level difficulty (Carpenter, 2008;
Whitehill et al., 2009) and also to explicitly model the annotator performance based on the instance
feature vector (Yan et al., 2010). In principle the proposed algorithm can be extended to these
kind of complicated models (with more parameters), however for simplicity we use the basic model
proposed in Raykar et al. (2009, 2010) in our formulation.

The same model can be extended to categorical labels. Suppose there are C ≥ 2 categories. We
introduce a multinomial parameter α j

c = (α j
c1, . . . ,α

j
cC) for each annotator, where

α j
ck := Pr[y

j
i = k|yi = c],

C

∑
k=1

α j
ck = 1.

The term α j
ck denotes the probability that annotator j assigns class k to an instance given the true

class is c. WhenC = 2, α j
11 and α

j
00 are sensitivity and specificity, respectively.
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3. Who is a Spammer? Score to Rank Annotators

Intuitively, a spammer assigns labels randomly, maybe because the annotator does not understand
the labeling criteria, does not look at the instances when labeling, or maybe a bot pretending to be a
human annotator. More precisely an annotator is a spammer if the probability of observed label y ji
being one given the true label yi is independent of the true label, that is,

Pr[y ji = 1|yi] = Pr[y
j
i = 1]. (1)

This means that the annotator is assigning labels randomly by flipping a coin with bias Pr[y ji = 1]
without actually looking at the data. Equivalently (1) can be written as

Pr[y ji = 1|yi = 1] = Pr[y ji = 1|yi = 0],
α j = 1−β j. (2)

Hence in the context of the annotator model defined in Section 2, a spammer is an annotator for
whom

α j+β j−1= 0.

This corresponds to the diagonal line on the Receiver Operating Characteristic (ROC) plot (see
Figure 1).4 If α j+ β j − 1 < 0 then the annotator lies below the diagonal line and is a malicious
annotator who flips the labels. Note that a malicious annotator has discriminatory power if we can
detect them and flip their labels. In fact the methods proposed in Dawid and Skene (1979) and
Raykar et al. (2010) can automatically flip the labels for the malicious annotators. Hence we define
the spammer score for an annotator as

S j = (α j+β j−1)2. (3)

An annotator is a spammer if S j is close to zero. Good annotators have S j > 0 while a perfect
annotator has S j = 1.

Another interpretation of a spammer can be seen from the log odds. Using Bayes’ rule the
posterior log-odds can be written as

log
Pr[yi = 1|y ji ]
Pr[yi = 0|y ji ]

= log
Pr[y ji |yi = 1]
Pr[y ji |yi = 0]

+ log
p

1− p
,

where p := Pr[yi = 1] is the prevalence of the positive class. If an annotator is a spammer (that is
(2) holds) then

log
Pr[yi = 1|y ji ]
Pr[yi = 0|y ji ]

= log
p

1− p
.

Essentially the annotator provides no information in updating the posterior log-odds and hence does
not contribute to the estimation of the actual true label.
4. Note that (α j+β j)/2 is equal to the area shown in the plot and can be considered as a non-parametric approximation
to the area under the ROC curve (AUC) based on one observed point (1−β j,α j). It is also equal to the Balanced
Classification Rate (BCR). So a spammer can also be defined as having BCR or AUC equal to 0.5. Another way to
think about this is that instead of using sensitivity and specificity we can re-parameterize an annotator in terms of
an accuracy parameter ((α j+β j)/2) and a bias parameter ((α j−β j)/2). A spammer is an annotator with accuracy
equal to 0.5. The biased (α j−β j is large) or malicious annotators (α j+β j < 1) (see Figure 1) are also sometimes
called the spammers since they can potentially degrade the consensus labels, but in this paper we do not focus on
them, since their annotations can be calibrated or reversed by the EM algorithm.

494



ELIMINATING SPAMMERS AND RANKING ANNOTATORS FOR CROWDSOURCING

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Specificity ( βj )

Se
ns

itiv
ity

 ( 
α

j  )

Malicious
Annotators

Biased
Annotators

Biased
Annotators

Good
Annotators

Spammers

Area = (αj+βj)/2

[ 1−βj, αj ]

Figure 1: For binary labels each annotator is modeled by his/her sensitivity and specificity. A spam-
mer lies on the diagonal line (that is, α j = 1−β j) on this ROC plot.

3.1 Accuracy

This notion of a spammer is quite different from that of the accuracy of an annotator. An annotator
with high accuracy is a good annotator but one with low accuracy is not necessarily a spammer. The
accuracy of the jth annotator is computed as

Accuracy j = Pr[y ji = yi] =
1

∑
k=0
Pr[y ji = 1|yi = k]Pr[yi = k] = α j p+β j(1− p), (4)

where p := Pr[yi = 1] is the prevalence of the positive class. Note that accuracy depends on preva-
lence. Our proposed spammer score does not depend on prevalence and essentially quantifies the
annotator’s inherent discriminatory power. Figure 2(a) shows the contours of equal accuracy on the
ROC plot. Note that annotators below the diagonal line (malicious annotators) have low accuracy.
The malicious annotators flip their labels and as such are not spammers if we can detect them and
then correct for the flipping. In fact the EM algorithms (Dawid and Skene, 1979; Raykar et al.,
2010) can correctly flip the labels for the malicious annotators and hence they should not be treated
as spammers. Figure 2(b) also shows the contours of equal score for our proposed score and it can
be seen that the malicious annotators have a high score and only annotators along the diagonal have
a low score (spammers).

3.2 Categorical Labels

We now extend the notion of spammers to categorial labels. As earlier a spammer assigns labels
randomly, that is,

Pr[y ji = k|yi] = Pr[y ji = k],∀k.
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Figure 2: (a) Contours of equal accuracy (4) and (b) equal spammer score (3).

This is equivalent to Pr[y ji = k|yi = c] = Pr[y ji = k|yi = c′],∀c,c′,k= 1, . . . ,C, which means knowing
the true class label being c or c′ does not change the probability of the annotator’s assigned label.
This indicates that the annotator j is a spammer if

α j
ck = α j

c′k,∀c,c
′,k = 1, . . . ,C. (5)

Let A j be the C×C confusion rate matrix with entries [A j]ck = αck, a spammer would have all
the rows of A j equal to one another, for example, an annotator with a confusion matrix A j =[ 0.50 0.25 0.25
0.50 0.25 0.25
0.50 0.25 0.25

]

, is a spammer for a three class categorical annotation problem. Essentially

A j is a rank one matrix of the formA j = ev(j , for some column vector v j ∈RC that satisfies v(j e= 1,
where e is column vector of ones. In the binary case we had this natural notion of spammer as an an-
notator for whom α j+β j−1 was close to zero. One natural way to summarize (5) would be in terms
of the distance (Frobenius norm) of the confusion matrix to the closest rank one approximation, that
is,

S j := ‖A j− ev̂(j ‖2F , (6)

where v̂ j solves

v̂ j = argminv j
‖A j− ev(j ‖2F subject to v(j e= 1. (7)

Solving (7) yields v̂ j = (1/C)A j(e, which is the mean of the rows of A j. Then from (6) we have

S j =

∥∥∥∥

(
I−

1
C
ee(
)
A j
∥∥∥∥
2

F
=
1
C ∑c<c′

∑
k
(α j

ck−α
j
c′k)

2.

This is equivalent to subtracting the mean row from each row of the confusion matrix and then
summing up the squares of all the entries. So a spammer is an annotator for whom S j is close to
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zero. A perfect annotator has S j =C−1. We normalize this score to lie between 0 and 1.

S j =
1

C(C−1) ∑c<c′
∑
k
(α j

ck−α
j
c′k)

2

When C = 2 this is equivalent to the score proposed earlier for binary labels.

4. Algorithm to Consolidate Multiple Annotations

Using the spammer score proposed in the earlier section to define a prior we describe an empirical
Bayesian algorithm to consolidate the multiple annotations and eliminate the spammers simultane-
ously. For ease of exposition we first start with binary labels and later extend it to categorical labels
in Section 7.

4.1 Likelihood

Let N be the number of instances and M be the number annotators. Let D = {y1i , . . . ,yMi }Ni=1
be the observed annotations from the M annotators, and let p = Pr[yi = 1] be the prevalence of
the positive class. Assuming the instances are independent, the likelihood of the parameters θ =
[α1,β1, . . . ,αM,βM, p] given the observationsD can be factored as Pr[D|θ] =∏N

i=1 Pr[y1i , . . . ,yMi |θ].
Under the assumption that the annotation labels y1i , . . . ,yMi are independent given the true label yi,
the log likelihood can be written as

logPr[D|θ] =
N

∑
i=1
log

1

∑
yi=0

M

∏
j=1
Pr[y ji |yi,θ] ·Pr[yi|θ] =

N

∑
i=1
log
[
aip+bi(1− p)

]
, (8)

where we denote

ai =
M

∏
j=1
Pr[y ji |yi = 1,α

j] =
M

∏
j=1

[α j]y
j
i [1−α j]1−y

j
i ,

bi =
M

∏
j=1
Pr[y ji |yi = 0,β

j] =
M

∏
j=1

[β j]1−y
j
i [1−β j]y

j
i .

This log likelihood can be efficiently maximized by the Expectation Maximization (EM) algorithm
(Dempster et al., 1977) leading to the iterative algorithm proposed in the earlier works (Dawid and
Skene, 1979; Smyth et al., 1995; Raykar et al., 2010).

4.2 Automatic Spammer Detection Prior

Several authors have proposed a Bayesian approach by imposing a prior on the parameters (Raykar
et al., 2009; Carpenter, 2008). For example, Raykar et al. (2009) assigned a beta prior for each
α j and β j independently. Since we are interested in the situation when the annotations are mostly
dominated by spammers, based on the score S j (3) derived earlier we propose a prior called Au-
tomatic Spammer Detection (ASD) prior which favors the spammers. Specifically we assign the
following prior to the pair {α j,β j} with a separate precision parameter λ j > 0 (hyperparameter) for
each annotator:

Pr[α j,β j|λ j] =
1

N(λ j)
exp
(
−
λ j(α j+β j−1)2

2

)
. (9)
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Figure 3: The proposed Automatic Spammer Detection prior (9) for different values of λ j.

where the normalization term N is given by (see Appendix A)

N(λ j) =
∫ 1

0

∫ 1

0
exp
(
−
λ j(α j+β j−1)2

2

)
dα jdβ j =

√
2π
λ j

(
2√
λ j

∫ √λ j
0

Φ(t)dt−1

)

,

where Φ is the Gaussian cumulative distribution function. This prior is effectively a truncated
Gaussian on α j+β j−1 with mean zero and variance 1/λ j. Figure 3 illustrates the prior for two
different values of the precision parameter. When λ j is large the prior is sharply peaked along the
diagonal corresponding to the spammers on the ROC plot.

We also assume that the ASD priors for each annotator are independent. For sake of com-
pleteness we further assume a beta prior for the prevalence, that is, Beta(p|p1, p2). Denote λ =
[λ1, . . . ,λM, p1, p2], we have

Pr[θ|λ] = Beta(p|p1, p2)
M

∏
j=1
Pr[α j,β j|λ j]. (10)

4.3 Maximum-a-posteriori Estimate Via EM Algorithm

Given the log likelihood (8) and the prior (10), the task is to estimate the parameters θ =
[α1,β1, . . . ,αM,βM, p]. The maximum-a-posteriori (MAP) estimator is found by maximizing the
log-posterior, that is,

θ̂MAP = argmax
θ

{lnPr[D|θ]+ lnPr[θ]}.

An EM algorithm can be derived for MAP estimation by relying on the interpretation of Neal and
Hinton (1998) which is an efficient iterative procedure to compute the solution in presence of miss-
ing/hidden data. We will use the unknown hidden true label y = [y1, . . . ,yN ] as the missing data.
The complete data log-likelihood can be written as

logPr[D,y|θ] =
N

∑
i=1

[
yi log pai+(1− yi) log(1− p)bi

]
.
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Each iteration of the EM algorithm consists of two steps: an Expectation(E)-step and a
Maximization(M)-step. The M-step involves maximization of a lower bound on the log-posterior
that is refined in each iteration by the E-step.
E-step: Given the observation D and the current estimate of the model parameters θ, the con-

ditional expectation (which is a lower bound on the true likelihood) is computed as

E{logPr[D,y|θ]}=
N

∑
i=1

[
µi log pai+(1−µi) log(1− p)bi

]
,

where the expectation is with respect to Pr[y|D,θ], and µi = Pr[yi = 1|y1i , . . . ,yMi ,θ] is the expected
label for yi conditioned on the observed annotations and the model parameters. Using Bayes theo-
rem we can compute

µi ∝ Pr[y1i , . . . ,yMi |yi = 1,θ] ·Pr[yi = 1|θ] =
aip

aip+bi(1− p)
. (11)

M-step: Based on the current estimate µi and the observations D , we can estimate p by maxi-
mizing the lower bound on the log posterior, θ̂MAP = argmaxθLθ, where

Lθ = E{logPr[D,y|θ]}+ logPr[θ|λ]

=
N

∑
i=1

[
µi log pai+(1−µi) log(1− p)bi

]
+ logBeta(p|p1, p2)

−
M

∑
j=1

λ j

2
(α j+β j−1)2−

M

∑
j=1
logN(λ j). (12)

Equating the derivative of Lθ with respect to p to zero, we estimate p as

p=
p1−1+∑N

i=1µi
p1+ p2−2+N

. (13)

The derivative with respect to α j and β j can be computed as follows:

∂Lθ

∂α j =
∑N
i=1µiy

j
i −α j∑N

i=1µi
α j(1−α j)

−λ j(α j+β j−1), (14)

∂Lθ

∂β j
=
∑N
i=1(1−µi)(1− y

j
i )−β j∑

N
i=1(1−µi)

β j(1−β j)
−λ j(α j+β j−1). (15)

Equating these derivatives to zero we obtain two cubic equations5 involving α j and β j, respectively.
We can iteratively solve one cubic equation (for example, for α j) by fixing the counterpart (for

5. The pair of cubic equations are given by

λ j(α j)3+(β jλ j−2λ j)(α j)2− (λ j−β jλ j−
N

∑
i=1

µi)α j+(
N

∑
i=1

µiy
j
i ) = 0

λ j(β j)3+(α jλ j−2λ j)(β j)2− (λ j−α jλ j−
N

∑
i=1

µi)β j+(
N

∑
i=1

µiy
j
i ) = 0

For each equation we retain only the root that lies in the range [0,1].
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example, β j) till convergence. Also note that when λ j = 0 we get the standard EM algorithm
proposed by Dawid and Skene (1979). These two steps (the E- and M-step) can be iterated till
convergence. We use majority voting µi = 1/M∑M

j=1 y
j
i as the initialization for µi to start the EM-

algorithm.

5. Algorithm to Eliminate Spammers

For each annotator we imposed the Automatic Spammer Detection prior of the form Pr[α j,β j|λ j]∝
exp
(
−λ j(α j+β j−1)2/2

)
, parameterized by precision hyperparameter λ j. If we know the hyper-

parameters λ = [λ1, . . . ,λM] we can compute the MAP estimate efficiently via the EM algorithm
as described in the previous section. However it is crucial that we use the right λ j for each anno-
tator for two reasons: (1) For the good annotators we want the precision term to be small so that
we do not over penalize the good annotators. (2) We can use the estimated λ j to detect spammers.
Clearly, as the precision λ j increases, that is, the variance tends to zero, thus concentrating the prior
sharply around the random diagonal line in the ROC plot. Hence, regardless of the evidence of the
training data, the posterior will also be sharply concentrated around α j+β j = 1, thus that annotator
will not affect the ground truth and hence, it can be effectively removed. Therefore, the discrete
optimization problem corresponding to spammer detection (should each annotator be included or
not?), can be more easily solved via an easier continuous optimization over hyperparameters. In
this section we adopt an empirical Bayesian strategy (specifically the type-II maximum likelihood)
to automatically learn the hyperparameters from the data itself. This is in the spirit of the commonly
used automatic relevance determination (ARD) prior used for feature selection by relevance vector
machine (Tipping, 2001) and Gaussian process classification (Rasmussen and Williams, 2006).

5.1 Evidence Maximization

In type-II maximum likelihood approach, the hyperparametersλ are chosen to maximize the marginal
likelihood (or equivalently the log marginal likelihood), that is,

λ̂= argmax
λ
Pr[D|λ] = argmax

λ
logPr[D|λ],

where the marginal likelihood Pr[D|λ] is essentially the evidence for λ with the parameters θ
marginalized or integrated out.

Pr[D|λ] =
∫
θ

Pr[D|θ]Pr[θ|λ]dθ.

Since this integral is analytically intractable we use the Laplace method which involves a second
order Taylor series approximation around the MAP estimate.

5.2 Laplace Approximation

The marginal likelihood can be rewritten as follows, Pr[D|λ] =
∫
θ
exp[Ψ(θ)]dθ where

Ψ(θ) = logPr[D|θ]+ logPr[θ|λ].

We approximate Ψ using a second order Taylor series around the MAP estimate θ̂MAP,

Ψ(θ)≈Ψ(θ̂MAP)+
1
2
(θ− θ̂MAP)H(θ̂MAP,λ)(θ− θ̂MAP)

(,
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where H is the Hessian matrix. We have made use of the fact that the gradient of Ψ evaluated at
the MAP estimate θ̂MAP is zero. Hence we have the following approximation to the log-marginal
likelihood.

logPr[D|λ]≈ logPr[D|θ̂MAP]+ logPr[θ̂MAP|λ]−
1
2
logdet[−H(θ̂MAP,λ)]+

d
2
log2π.

The hyperparameters λ are found by maximizing this approximation to the log marginal likelihood.
We use a simple iterative re-estimation method by setting the first derivative to zero. The derivative
can be written as (see Appendix B for more details)

∂
∂λ j

logPr[D|λ]≈−
1
2
(α̂ j+ β̂ j−1)2+

1
2λ j

δ(λ j)−
1
2
σ(λ j),

where we have defined

δ(λ j) = 2−
√
2πλ j erf(

√
λ j/2)√

2πλ j erf(
√
λ j/2)+2exp(−λ j/2)−2

, (16)

in which erf(x) = (2/
√
π)

∫ x
0 exp(−t2)dt is the error function, and

σ(λ j) = Tr
[
H−1(θ̂MAP,λ)

∂
∂λ j
H(θ̂MAP,λ)

]
.

See Appendix B for more details on computation of σ(λ j). Assuming δ j = δ(λ j) and σ j = σ(λ j)
does not depend on λ j, a simple update rule for the hyperparameters can be written by equating the
first derivative to zero.6

λ j =
δ j

(α̂ j+ β̂ j−1)2+σ j
. (17)

One way to think of this is that the penalization is inversely proportional to (α̂ j + β̂ j − 1)2, that
is, good annotators get penalized less while the spammers suffer a large penalization. Figure 4(b)
plots the estimated hyperparameter λ̂ j for each annotator as a function of the iteration number for a
simulation setup shown in Figure 4(a). The simulation has 5 good annotators and 20 spammers. It
can be seen that as expected for the good annotators λ̂ j starts decreasing7 while for the spammers λ̂ j
starts increasing with iterations.8 By using a suitable pruning threshold we can detect and eliminate
the spammers.

The final algorithm has two levels of iterations (see Algorithm 1): in an outer loop we update the
hyper-parameters λ̂ j and in an inner loop we find the MAP estimator for sensitivity and specificity
given the hyper-parameters. At each iteration we eliminate all the annotators for whom the estimated
λ̂ j is greater than a certain pruning threshold T .9

6. In practice, one can iterate (17) and (16) several times to get better estimate for λ j.
7. For numerical stability we do not let the hyper parameter go below 10−6.
8. We have different rates of convergence for the good annotators and the spammers. This is because of our assumption
that δ (16) does not depend on λ. This is almost true for large λ and is not a good approximation for small λ.

9. For all our experiments for each annotator we set the pruning threshold to 0.1 times the number of instances labeled
by him.
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Figure 4: Illustration of spammer elimination via evidence maximization (a) The black cross plots
the actual sensitivity and specificity of each annotator. The simulation has 5 good annota-
tors and 20 spammers and 500 instances. The red dot plots the sensitivity and specificity
as estimated by the SpEM algorithm. The green squares show the annotators eliminated
as spammers. (b) The estimated hyperparameter λ j for each annotator as a function of
the iteration number. The pruning threshold is also shown on the plot.
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Algorithm 1 SpEM
Require: Annotations y ji ∈ {0,1}, j = 1, . . . ,M, i= 1, . . . ,N fromM annotators on N instances.
1: Initialize λ j = 1/N, for j = 1, . . . ,M.
2: Initialize A = {1, . . . ,M} the set of good annotators.
3: Initialize µi = 1/M∑M

j=1 y
j
i using soft majority voting.

4: repeat {Outer loop with evidence maximization}
5: repeat {EM loop}
6: {M-step}
7: Update p based on (13).
8: Update α j, β j based on (14)-(15), ∀ j ∈ A .
9: {E-step}
10: Estimate µi using (11), ∀i= 1, . . . ,N.
11: until Change of expected posterior (12) < ε1.
12: {Evidence Maximization}
13: for all j ∈ A do
14: Update λ j based on (17).
15: if λ j > T (the pruning threshold) then
16: A ← A\{ j}
17: end if
18: end for
19: until Change of expected posterior (12) < ε2.
Ensure: Detected spammers in set {1, . . . ,M}\A .
Ensure: Non-spammers in A with sensitivity α j and specificity β j, for j ∈ A .
Ensure: Prevalence factor p and expected hidden label µi, ∀i= 1, . . . ,N.
In all our experiments we set the convergence tolerance ε1 = ε2 = 10−3. The pruning threshold was set to T = 0.1N.

6. Discussions

1. Can we use the EM algorithm directly to eliminate spammers? Majority Voting and
EM algorithm do not have a mechanism to explicitly detect spammers. However we could
define an annotator as a spammer if the estimated |α̂ j+ β̂ j− 1| ≤ ε. However it is not clear
what is the right ε to use. Also the spammers influence the estimation of α̂ j and β̂ j for the
good annotators. A fix to this would be to eliminate the spammers and get an improved
estimate of the ground truth. In principle this process could be repeated till convergence,
which essentially boils down to a discrete version of our proposed SpEM algorithm.

2. What is the advantage of different shrinkage for each annotator ? We could have imposed
a common shrinkage prior (that is, same λ j ≡ λ for all annotators) and then estimated one λ
as shown earlier. While this is a valid approach, the advantage of our ASD prior is that the
amount of shrinkage for each annotator is different and depends on how good the annotator
is, that is, good annotators suffer less shrinkage while spammers suffer severe shrinkage.

3. Missing annotations The proposed SpEM algorithm can be easily extended to handle missing
annotations (which is more realistic scenario in crowdsourcing marketplaces). Let Mi be the
number of annotators labeling the ith instance, and let Nj be the number of instances labeled

503



RAYKAR AND YU

by the jth annotator. Then in the EM loop, we just need to replace N by Nj for estimating α j

and β j in (14) and (15), and replace M byMi for updating µi in (11).

4. Training a classifier directly The proposed algorithm can be readily extended to learn a
classifier along with the ground truth (Raykar et al., 2009). Let instance i have features
xi ∈Rd , and define the classification problem as learningw ∈Rd such that Pr[yi = 1|xi,w] =
pi = f (w(xi), with f a mapping function (for example, logistic function). To learn w in
SpEM we just need to replace (13) with a Newton-Raphson step to update w, and replace p
with pi in (11).

5. Partially known gold standard If the actual ground truth is available for some instances,
SpEM can readily incorporate them into the learning loop. The only change we need to make
is to estimate µi in (11) only for the instances for which the ground truth is not available,
and fix µi = yi if the ground truth yi is available. Therefore, the gold standard instances and
unlabeled instances will be used together to estimate the sensitivity and specificity of each
annotator (and also to estimate the labels).

7. Extension to Categorical Annotations

We now extend the proposed algorithm to handle categorical annotations. A simple solution for
categorical outcomes is to use a one-against-all strategy and run the binary SpEM C times, each
time obtaining a spammer indicator λ j for each annotator. One might then identify an annotator j as
a spammer if all of the λ j in the C runs indicate that this is a spammer. However in this section we
provide a more principled solution in line with the framework proposed for binary labels. Following
the same motivation as before, we define the ASD prior as follows

Pr[A j|λ j] =
1

N(λ j)
exp

(

−
λ j

2C ∑c<c′
C

∑
k=1

(
α j
ck−α

j
c′k
)2
)

,

which gives more probability mass to a spammer. A similar EM algorithm can be developed under
this prior, and evidence maximization follows naturally with Laplace approximation. Under the
same assumptions as earlier, the log-likelihood of the parameters θ = [A1, . . . ,AM, p1, . . . , pC] is

logPr[D|θ] =
N

∑
i=1
log

[
C

∑
c=1
Pr(yi = c)

M

∏
j=1
Pr(y ji |yi = c)

]

=
N

∑
i=1
log

[
C

∑
c=1

pc
M

∏
j=1

C

∏
k=1

(α j
ck)

δ(y ji ,k)

]

,

where pc = Pr(yi = c) and δ(u,v) = 1 if u= v and 0 otherwise. If we know the missing labels y the
complete log likelihood can be written as

logPr[D,y|θ] =
N

∑
i=1

C

∑
c=1

δ(yi,c) log

[

pc
M

∏
j=1

C

∏
k=1

(α j
ck)

δ(y ji ,k)

]

.

In the E-step we compute the conditional expectation as

E{logPr[D,y|θ]}=
N

∑
i=1

C

∑
c=1

µic log

[

pc
M

∏
j=1

C

∏
k=1

(α j
ck)

δ(y ji ,k)

]
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where µic = Pr[yi = c|y1i , . . . ,yMi ,θ] and is computed as µic ∝ pc∏M
j=1∏

C
k=1(α

j
ck)

δ(y ji ,k). Based on the
current estimate µic in the M-step we can estimate the parameters by maximizing the lower bound
on the log posterior (along with the Lagrange multipliers γ), θ̂MAP = argmaxθL , where

L =
N

∑
i=1

C

∑
c=1

µic

[

log pc+
M

∑
j=1

C

∑
k=1

δ(y ji ,k) logα
j
ck

]

−
M

∑
j=1

λ j

2C ∑c<c′
C

∑
k=1

(
α j
ck−α

j
c′k
)2−

M

∑
j=1
logN(λ j)+

M

∑
j=1

C

∑
c=1

γ jc

(

1−
C

∑
k=1

α j
ck

)

.

We update the prevalence as pc = (1/N)∑N
i=1µic and for the α

j
ck we have

∂L

∂α j
ck

=
∑N
i=1µicδ(y

j
i ,k)

α j
ck

−
λ j

C ∑
c′ /=c

(
α j
ck−α

j
c′k

)
− γ jc = 0, (18)

∂L

∂γ jc
=

C

∑
k=1

α j
ck−1= 0.

The practical solution to solve10 this for every α j
ck is to fix the α

j
c′k for c

′ /= c, solve the equation
array with a fixed γ jc, and then update γ jc as

γ jc =
1
C

C

∑
k=1

∑N
i=1µicδ(y

j
i ,k)

α j
ck

,

which follows by summing (18) for all k. As earlier in order to determine the hyperparameters we
obtain a simple iterative update by setting the derivative of the approximate log-marginal likelihood
to zero.

∂
∂λ j

logPr[D|λ] ≈ −
1
2C ∑c<c′

C

∑
k=1

(
α j
ck−α

j
c′k
)2−

1
N(λ j)

∂
∂λ j

N(λ j)−
1
2
σ(λ j),

where we have defined

σ(λ) = Tr
[
H−1(θ̂MAP,λ)

∂
∂λ
H(θ̂MAP,λ)

]
.

and
−

1
N(λ j)

∂
∂λ j

N(λ j) =
1
2λ j

δ(λ j).

See Appendix C for more details on computation of σ and δ. Then the update is given by

λ̂ j =
δ(λ j)

(1/C)∑c<c′∑
C
k=1
(
α j
ck−α

j
c′k
)2

+σ(λ j)
.

10. Keeping all terms except α j
ck fixed this is a quadratic equation A(α

j
ck)

2+B(α j
ck)+C = 0 where A = λ j(C−1)

C , B =

γ jc− λ j
C ∑c′ /=cα

j
c′k, and C =−∑Ni=1µicδ(y

j
i ,k). We keep the root which lies between 0 and 1.
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8. Experimental Validation

We first experimentally validate the proposed algorithm on simulated data. Figure 5(a) shows the
simulation setup consisting of 5 good annotators (shown as red squares) and 100 spammers (shown
as black crosses). The good annotators have sensitivity and specificity between 0.65 and 0.85.
All the spammers lie around the diagonal. We compare our proposed SpEM algorithm against the
commonly usedMajority Voting and the EM algorithm (Dawid and Skene, 1979; Smyth et al., 1995;
Raykar et al., 2009, 2010). All these methods estimate a probabilistic version ([0 1]) of the binary
ground truth ({0,1}). Since we simulate the instances we know the actual binary ground truth and
hence can compute the area under the ROC curve (AUC) of the estimated probabilistic ground truth.

8.1 Effect of Increasing Spammers

For the first experiment we deliberately choose 100 instances (with prevalence p = 0.5), since it
is beneficial if we can detect the spammers with fewer instances. Figure 5(b) plots AUC of the
estimated probabilistic ground truth as a function of the fraction of spammers (number of spam-
mers/total number of annotators), for each point we keep all the five good annotators and keep
adding more annotators from the pool of 100 spammers. All plots show the mean and one standard
deviation error bars (over 100 repetitions). The pruning threshold for the SpEM algorithm was set
to 20. Figure 5(d) plots the sensitivity for spammer detection which is essentially the fraction of
spammers correctly detected. The following observations can be made:

1. As the fraction of spammers increases the performance of the Majority Voting degrades dras-
tically as compared to the EM and the SpEM algorithm (refer Figure 5(b)). The proposed
SpEM algorithm has a better AUC than the EM algorithm especially when the spammers
dominate (when the fraction of spammers is greater than 0.7 in Figure 5(b)). The variability
(one standard deviation error bars) for all the methods increases as the number of spammers
increases.

2. The clear advantage of the proposed SpEM algorithm can be seen in Figure 5(d) where it
can identify almost 90% of the spammers correctly as compared the EM algorithm with can
identify about 40% correctly. Majority Voting and EM algorithm do not have a mechanism to
explicitly detect spammers, we define an annotator as a spammer if the estimated |α̂ j+ β̂ j−
1|≤ ε (We have used ε= 0.05 in our experiments.11.)

3. The SpEM algorithm iteratively eliminates the spammers and then re-estimates the ground
truth without the spammers. Figure 5(c) plots the actual number of annotators that were used
in the final model. Note that the EM and the Majority Voting use all the annotators to estimate
the model parameters while the SpEM algorithm uses only a small fraction of the annotators.

To summarize, the proposed SpEM algorithm is slightly more accurate than the EM algorithm and
at the same time uses a small fraction of the annotators thus effectively eliminating most of the
spammers.

506



ELIMINATING SPAMMERS AND RANKING ANNOTATORS FOR CROWDSOURCING

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Se

ns
iti

vi
ty

1−Specificity

5 good annotators 100 spammers 100 instances

(a) Simulation Setup

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 o

f t
he

 e
st

im
at

ed
 g

ro
un

d 
tru

th

Fraction of Spammers

5 good annotators 100 instances

 

 

Majority Voting
EM Algorithm
SpEM Proposed Algorithm

(b) Accuracy

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f A
nn

ot
at

or
s 

us
ed

Actual Number of Annotators

5 good annotators 100 instances

 

 
Majority Voting
EM Algorithm
SpEM Proposed Algorithm

(c) Sparsity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
en

st
iv

ity
 fo

r s
pa

m
m

er
 d

et
ec

tio
n

Fraction of Spammers

5 good annotators 100 instances

 

 

Majority Voting
EM Algorithm
SpEM Proposed Algorithm

(d) Precision

Figure 5: Effect of increasing the number of spammers (Section 8.1) (a) The simulation setup has 5
good annotators (red squares) and 100 spammers (black crosses) and 100 instances. (b)
The AUC of the estimated ground truth as a function of the fraction of spammers. (c) The
actual number of annotators that were used. (d) The fraction of spammers correctly de-
tected. All plots show mean and one standard deviation error bars (over 100 repetitions).

8.2 Effect of Increasing Instances

For the proposed algorithm to be practically useful we would like to detect the spammers with as
few examples as possible so that they can be eliminated early on. Figure 6 plots the performance for
the same setup as earlier as a function of the number of instances. From Figure 6(a) we see that the
AUC for the proposed method is much better than the EM algorithm especially for smaller number
of instances. As the number of instances increases the accuracy of the EM algorithm is as good as the
proposed SpEM algorithm. The EM algorithm (and also the proposed SpEM) automatically gives

11. The 0.05 value is just a heuristic based on a band around the diagonal of the ROC plot.
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(b) Sparsity

Figure 6: Effect of increasing the number of instances (Section 8.2) (a) The AUC of the estimated
ground truth as a function of the number of instances. (b) The fraction of actual spammers
that were eliminated. All plots show the mean and one standard deviation error bars (over
100 repetitions). The simulation setup has 5 good annotators and 100 spammers. The
pruning threshold was set to 0.1N where N is the total number of instances.

less emphasis for annotators with small |α̂ j+ β̂ j−1|. The reason SpEM achieves better accuracy is
that the parameters α̂ j and β̂ j are better estimated because of the ASD prior we imposed. This also
explains the fact that when we have a large number of instances both the EM and SpEM algorithm
estimate the parameters equally well. The main benefit can be seen in Figure 6(b) where the SpEM
algorithm can eliminate most of the spammers. For example with just 50 examples the SpEM
algorithm can detect > 90% of the spammers and at the same time achieve a higher accuracy.

8.3 Effect of Missing Labels

In a realistic scenario an annotator does not label all the instances. Figure 7 plots the behavior of
the different algorithms as a function of the fraction of annotators labeling each instance. When
each annotator labels only a few instances all three algorithms achieve very similar performance in
terms of the AUC. However the proposed SpEM algorithm can still eliminate more spammers then
the EM algorithm.

8.4 Effect of Prevalence

Figure 8 plots the behavior of the different algorithms as a function of the prevalence of the positive
class. Note that when the prevalence is low the majority voting seems superior to other algorithms
in terms of AUC. When the prevalence is small (or large) there are very few examples to reliably
estimate the sensitivity (or specificity).
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(b) Precision

Figure 7: Effect of missing labels (Section 8.3) (a) The AUC of the estimated labels as a function
of the fraction of annotators labeling each instance. (b) The fraction of actual spammers
that were eliminated. All plots show the mean and one standard deviation error bars (over
100 repetitions). The simulation setup has 5 good annotators and 50 spammers.
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Figure 8: Effect of prevalence (Section 8.4) (a) The AUC of the estimated labels as a function of the
prevalence of the positive class. (b) The fraction of actual spammers that were eliminated.
All plots show the mean and one standard deviation error bars (over 100 repetitions). The
simulation setup has 5 good annotators and 50 spammers.

8.5 Effect of Pruning Threshold

The only tunable parameter of the SpEM algorithm is the pruning threshold. For all our experiments
for each annotator we set the pruning threshold to 0.1 times the number of instances labeled by the
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Figure 9: Effect of pruning threshold (Section 8.5) (a) The AUC of the estimated labels as a function
of the pruning threshold. (b) The fraction of actual spammers that were eliminated. All
plots show the mean and one standard deviation error bars (over 100 repetitions). The
simulation setup has 5 good annotators and 50 spammers.

annotator. However we can use this parameter to control the number of annotators we want to use.
Figure 9 plots the performance for the same setup as earlier for different pruning thresholds. From
Figure 9(b) we see that as the pruning threshold decreases the sensitivity for spammer elimination
increases thereby using less annotators. Interestingly the accuracy also increases. If we had imposed
a common shrinkage prior (that is, same λ j for all annotators) then we would expect a drop in
accuracy as the model becomes more sparse. The advantage of our ASD prior is that the amount
of shrinkage for each annotator is different and depends on how accurate the annotator is, more
accurate annotators suffer less shrinkage while spammers suffer severe shrinkage.

8.6 Experiments On Crowdsourced Data

We report results on some publicly available linguistic and image annotation data collected using
the Amazon Mechanical Turk and other sources. Table 1 summarizes the data sets along with a brief
description of the tasks. Table 2 summarizes the results for the binary data sets with known ground
truth. We compare the proposed SpEM, EM (Dawid and Skene, 1979; Raykar et al., 2010), and the
Majority Voting (MV) algorithm in terms of AUC and accuracy. To compute the accuracy we use a
threshold of 0.5 on the estimated probabilities. In terms of the AUC all three algorithms have similar
performance. In terms of accuracy the SpEM and EM were better than the MV algorithm. The table
also shows the number of annotators eliminated as spammers by the proposed algorithm. Figure 10
plots the actual and the estimated annotator performance for the SpEM algorithm for binary data
sets with known ground truth.
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Data Set Type N M M∗ N∗ Brief Description

bluebird binary 108 39 39/39 108/108 bird identification (Welinder et al., 2010) The an-
notator had to identify whether there was a Indigo Bunting or Blue
Grosbeak in the image.

rte binary 800 164 10/10 49/20 recognizing textual entailment (Snow
et al., 2008) The annotator is presented with two sentences and
given a binary choice of whether the second hypothesis sentence
can be inferred from the first.

temp binary 462 76 10/10 61/16 event annotation (Snow et al., 2008) Annotators are
presented with a dialogue and a pair of verbs from the dialogue,
and need to label whether the event described by the first verb
occurs before or after the second.

localview× binary 832 97 5/5 43/14 word sense disambiguation (Parent and Es-
kenazi, 2010) Workers were asked to indicate if two definitions of
a word were related to the same meaning or different meanings.

valence ordinal 100 38 10/10 26/20 affect recognition (Snow et al., 2008) Each annota-
tor is presented with a short headline and asked to rate the overall
positive or negative valence of the emotional content of the head-
line.

sentiment× categorical/3 1660 33 6/6 291/175 Irish economic sentiment analy-
sis (Brew et al., 2010) Articles from three Irish online news
sources were annotated by a group of 33 volunteer users, who
were encouraged to label the articles as positive, negative, or ir-
relevant.

Table 1: Data Sets. N is the number of instances and M is the number of annotators. M∗ is the
mean/median number of annotators per instance. N∗ is the mean/median number of in-
stances labeled by each annotator. All the data sets except those marked × have a known
gold standard. Except sentiment data set all others were collected using Amazons’s Me-
chanical Turk. The valence data set was converted to a binary scale in our experiments.

Data Spammers AUC Accuracy

S SpEM EM MV SpEM EM MV

bluebird 11/39 .96 .95 .88 .91 .90 .76
rte 12/164 .96 .96 .96 .93 .93 .92

temp 3/76 .96 .96 .97 .94 .94 .94
valence 1/38 .90 .91 .94 .86 .86 .80

localview× 12/97 - - - - - -
sentiment× 1/33 - - - - - -

Table 2: Comparison of the various methods for the data sets in Table 1. SpEM is the proposed
algorithm, EM is the algorithm proposed in Dawid and Skene (1979) and Raykar et al.
(2010), and MV is the soft majority voting algorithm. S is the number of annotators
eliminated as spammers by the proposed algorithm. The accuracy and AUC are shown
only for data sets with known gold standard.
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Figure 10: SpEM results for binary datsets shown in Table 2 The black cross plots the actual sensi-
tivity and specificity of each annotator. The red dot plots the sensitivity and specificity
estimated by the SpEM algorithm. The green squares show the annotators eliminated
as spammers. We plot the ROC for the estimated ground truth and the operating point
corresponding to a threshold of 0.5.
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8.7 Ranking Annotators

The proposed spammer score can be used to rank the annotators. Figure 11 plots the spammer scores
and rankings obtained for four data sets. The mean and the 95% CI obtained via bootstrapping are
also shown. The number at the top of the CI bar shows the number of instances annotated by that
annotator. The rankings are based on the lower limit of the 95% CI which factors the number of
instances labeled by the annotator into the ranking. An annotator who labels only a few instances
will have very wide CI. Some annotators who label only a few instances may have a high mean
spammer score but the CI will be wide and hence ranked lower. Ideally we would like to have
annotators with a high score and at the same time label a lot of instances so that we can reliably
identify them. The authors (Brew et al., 2010) for the sentiment data set shared with us some of the
qualitative observations regarding the annotators and they somewhat agree with our rankings. For
example the authors made the following comments about Annotator 7 ”Quirky annotator - had a lot
of debate about what was the meaning of the annotation question. I’d say he changed his labeling
strategy at least once during the process”. Our proposed score gave a low rank to this annotator.

9. Conclusion

In this paper we formalized the notion of a spammer for binary and categorical annotations. Using
the score to define a prior we proposed an empirical Bayesian algorithm called SpEM that simul-
taneously estimates the consensus ground truth and also eliminates the spammers. Experiments on
simulated and real data show that the proposed approach is better than (or as good as) the earlier
approaches in terms of the accuracy and uses a significantly smaller number of annotators.

Appendix A. ASD Prior Normalization

In this appendix we analytically derive the normalization term for the proposed ASD prior. The
normalization term N(λ j) can be computed as

N(λ j) =
∫ 1

0

∫ 1

0
exp
(
−
λ j(α j+β j−1)2

2

)
dα jdβ j

=
∫ 1

0

[∫ 1

0

√
2π
λ j
N

(
β j;1−α j,

1
λ j

)
dβ j
]

dα j

=

√
2π
λ j

[∫ 1

0
Φ(
√
λ jα j)dα j−

∫ 1

0
Φ[
√
λ j(α j−1)]dα j

]
,

where Φ(x) = (1/
√
2π)

∫ x
−∞ exp(−t2/2)dt is the Gaussian cumulative distribution function and

N (x;u,v) the Gaussian distribution of x with mean u and variance v. Using the fact that
∫
Φ(x)dx=

xΦ(x)+ φ(x), where φ is the standard normal and Φ(x) = (1/2)[1+ erf(t/
√
2)] the normalization
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Figure 11: Annotator Rankings The rankings obtained for the data sets in Table 1. The spammer
score ranges from 0 to 1, the lower the score, the more spammy the annotator. The mean
spammer score and the 95% confidence intervals (CI) are shown, obtained from 100
bootstrap replications. The annotators are ranked based on the lower limit of the 95%
CI. The number at the top of the CI bar shows the number of instances annotated by that
annotator. Note that the CIs are wider when the annotator labels only a few instances.

term can be further simplified as follows,

N(λ j) =
√
2π
λ j

(√
λ j(2Φ(

√
λ j)−1)+2φ(

√
λ j)−2φ(0)

)

=

√
2π
λ j

(√
λ jerf(

√
λ j/2)+2φ(

√
λ j)−2φ(0)

)

=
1
λ j

(√
2πλ jerf(

√
λ j/2)+2exp(−λ j/2)−2

)

=

√
2π
λ j

(
2√
λ j

∫ √λ j
0

Φ(t)dt−1

)

.
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Appendix B. Derivatives of the Log-marginal—Binary Case

The derivative of the approximation to the log-marginal likelihood can be written as

∂
∂λ j

logPr[D|λ]≈
∂
∂λ j

logPr[θ̂MAP|λ]−
1
2
Tr
[
H−1(θ̂MAP,λ)

∂
∂λ j
H(θ̂MAP,λ)

]

=
∂
∂λ j

logPr[α̂ j, β̂ j|λ j]−
1
2
σ(λ j)

where we have defined σ(λ) =Tr
[
H−1(θ̂MAP,λ) ∂

∂λH(θ̂MAP,λ)
]
. From the ASD prior we can show

that
∂
∂λ j

logPr[α̂ j, β̂ j|λ j] =−
1
2
(α̂ j+ β̂ j−1)2+

1
2λ j

δ(λ j),

where we have defined

δ(λ) =

[

2−
√
2πλerf(

√
λ/2)√

2πλerf(
√
λ/2)+2exp(−λ/2)−2

]

.

To compute σ(λ j), let us compute the Hessian matrix first. Since logPr[D|θ] is again not tractable,
we use the following lower bound (as used by the EM algorithm earlier) to compute the likelihood
term:

logPr[D|θ]≥
N

∑
i=1

[
µi log pai+(1−µi) log(1− p)bi

]
,

where µi = Pr[ŷi|θ] is the expected class label for item i (calculated in the E-step). Then we have

Ψ(θ) = logPr[D|θ]+ logPr[θ|λ]

≈
N

∑
i=1

[
µi log pai+(1−µi) log(1− p)bi

]
−

M

∑
j=1

λ j

2
(α j+β j−1)2−

M

∑
j=1
logC(λ j).

Note that this is equal to Lθ as defined in (12). The first-order derivatives with respect to α j and β j
are:

∂Ψ(θ)

∂α j =
∑N
i=1µiy

j
i −α j∑N

i=1µi
α j(1−α j)

−λ j(α j+β j−1),

∂Ψ(θ)

∂β j
=
∑N
i=1(1−µi)(1− y

j
i )−β j∑

N
i=1(1−µi)

β j(1−β j)
−λ j(α j+β j−1).

The second-order derivatives are:

∂2Ψ(θ)

∂α j∂α j =
∑i µiy

j
i · (2α j−1)− (α j)2∑i µi

[α j(1−α j)]2
−λ j (19)

∂2Ψ(θ)

∂α j∂β j
=
∂2Ψ(θ)

∂β j∂α j =−λ
j

∂2Ψ(θ)

∂β j∂β j
=
∑i(1−µi)(1− y

j
i ) · (2β j−1)− (β j)2∑i(1−µi)
[β j(1−β j)]2

−λ j (20)

∂2Ψ(θ)

∂α j∂αk
=
∂2Ψ(θ)

∂α j∂βk
=
∂2Ψ(θ)

∂β j∂αk
=
∂2Ψ(θ)

∂β j∂βk
= 0, ∀ j /= k.
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If we arrange all the parameters column-wise as a vector {α1,β1, . . . ,αM,βM}, then the Hessian
matrix can be written in a block diagonal form H(θ̂MAP,λ) = A(α,β)−B(λ), where matrix A (a
diagonal matrix with entries equal to the first terms in (19) and (20)) depends on α and β only, and
matrix B is a block diagonal matrix of the form

B(λ) =





λ1 λ1 0 0 · · · 0 0
λ1 λ1 0 0 · · · 0 0
0 0 λ2 λ2 · · · 0 0
0 0 λ2 λ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · λM λM

0 0 0 0 · · · λM λM





.

It is now easy to take the derivative of H(θ̂MAP,λ) with respect to λ j and compute σ(λ j). Let
Σ=H−1(θ̂MAP,λ), a block diagonal matrix, then we have we have

σ(λ j) = Tr
[
H−1(θ̂MAP,λ)

∂
∂λ j
H(θ̂MAP,λ)

]
=−Σ2 j−1,2 j−1−Σ2 j−1,2 j−Σ2 j,2 j−1−Σ2 j,2 j.

That is, σ(λ j) is computed by taking the negative of the element-wise sum of the sub-matrixΣ(2 j−
1 : 2 j,2 j−1 : 2 j).

Appendix C. Derivatives of the Log Marginal—Categorical Labels

Similarly the second-order derivatives for the categorical case can be written as

∂2L

∂α j
ck∂α

j
ck

=−∑i µicδ(y
j
i ,k)

[α j
ck]
2

−
(C−1)λ j

C
, (21)

∂2L

∂α j
ck∂α

j
c′k

=
λ j

C
,

∂2L

∂α j
ck∂α

j
ck′

=
∂2L

∂α j
ck∂α

j
c′k′

= 0.

If we rearrange all the parameters in the multinomial term α j column-wise as a vector of the form
{α j

11,α
j
21, . . . ,α

j
C1,α

j
12, . . . ,α

j
C2, . . . ,α

j
CC}, then Hessian matrix for the parameters θ= {α1, . . . ,αM}

can be written in a block diagonal form as H = diag(H1, . . . ,HM), with H j = diag(D j
1, . . . ,D

j
C),

where each matrix D j
c is a C×C matrix of the form D j

c = Ac(α j) +B(λ j), where Ac(α j) is a
diagonal matrix with entries equal to the first term in (21) and B(λ j) = λ j

(
(1/C)ee(− IC).

B j
c(λ

j) =
1
C





−(C−1)λ j λ j λ j · · · λ j

λ j −(C−1)λ j λ j · · · λ j

...
...

. . .
...

...
λ j · · · λ j −(C−1)λ j λ j

λ j · · · λ j λ j −(C−1)λ j
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Therefore, ∂
∂λ jH

j is a C2×C2 block diagonal matrix with (1/C)ee( − IC on every diagonal. This
greatly simplifies the computation of σ(λ j).

Since computing the normalization constant N(λ j) is analytically hard we numerically calculate
δ(λ j) by observing that

δ(λ j) =−
2λ j

N(λ j)
∂
∂λ j

N(λ j)

= λ j ·

∫
S exp

(
−λ j
2
∥∥(I− 1

Cee
()A j∥∥2

F

)
·
∥∥(I− 1

Cee
()A j∥∥2

F dA
j

∫
S exp

(
−λ j
2
∥∥(I− 1

Cee(
)
A j∥∥2

F

)
dA j

,

where S = {A j = [α j
ck] ∈ RC×C|αck ∈ [0,1],A je= e}. We compute the integration numerically via

sampling.
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Abstract
Metric and kernel learning arise in several machine learning applications. However, most existing
metric learning algorithms are limited to learning metrics over low-dimensional data, while existing
kernel learning algorithms are often limited to the transductive setting and do not generalize to new
data points. In this paper, we study the connections between metric learning and kernel learning that
arise when studying metric learning as a linear transformation learning problem. In particular, we
propose a general optimization framework for learning metrics via linear transformations, and an-
alyze in detail a special case of our framework—that of minimizing the LogDet divergence subject
to linear constraints. We then propose a general regularized framework for learning a kernel matrix,
and show it to be equivalent to our metric learning framework. Our theoretical connections between
metric and kernel learning have two main consequences: 1) the learned kernel matrix parameterizes
a linear transformation kernel function and can be applied inductively to new data points, 2) our
result yields a constructive method for kernelizing most existing Mahalanobis metric learning for-
mulations. We demonstrate our learning approach by applying it to large-scale real world problems
in computer vision, text mining and semi-supervised kernel dimensionality reduction.
Keywords: metric learning, kernel learning, linear transformation, matrix divergences, logdet
divergence

1. Introduction

One of the basic requirements of many machine learning algorithms (e.g., semi-supervised cluster-
ing algorithms, nearest neighbor classification algorithms) is the ability to compare two objects to
compute a similarity or distance between them. In many cases, off-the-shelf distance or similarity
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functions such as the Euclidean distance or cosine similarity are used; for example, in text retrieval
applications, the cosine similarity is a standard function to compare two text documents. However,
such standard distance or similarity functions are not appropriate for all problems.

Recently, there has been significant effort focused on task-specific learning for comparing data
objects. One prominent approach has been to learn a distance metric between objects given addi-
tional side information such as pairwise similarity and dissimilarity constraints over the data. A
class of distance metrics that has shown excellent generalization properties is the learned Maha-
lanobis distance function (Davis et al., 2007; Xing et al., 2002; Weinberger et al., 2005; Goldberger
et al., 2004; Shalev-Shwartz et al., 2004). The Mahalanobis distance can be viewed as a method
in which data is subject to a linear transformation, and the goal of such metric learning methods
is to learn the linear transformation for a given task. Despite their simplicity and generalization
ability, Mahalanobis distances suffer from two major drawbacks: 1) the number of parameters to
learn grows quadratically with the dimensionality of the data, making it difficult to learn distance
functions over high-dimensional data, 2) learning a linear transformation is inadequate for data sets
with non-linear decision boundaries.

To address the latter shortcoming, kernel learning algorithms typically attempt to learn a ker-
nel matrix over the data. Limitations of linear methods can be overcome by employing a non-linear
input kernel, which implicitly maps the data non-linearly to a high-dimensional feature space. How-
ever, many existing kernel learning methods are still limited in that the learned kernels do not gener-
alize to new points (Kwok and Tsang, 2003; Kulis et al., 2006; Tsuda et al., 2005). These methods
are therefore restricted to learning in the transductive setting where all the data (labeled and unla-
beled) is assumed to be given upfront. There has been some work on learning kernels that generalize
to new points, most notably work on hyperkernels (Ong et al., 2005), but the resulting optimization
problems are expensive and cannot be scaled to large or even medium-sized data sets. Another ap-
proach is multiple kernel learning (Lanckriet et al., 2004), which learns a mixture of base kernels;
this approach is inductive but the class of learnable kernels can be restrictive.

In this paper, we explore metric learning with linear transformations over arbitrarily high-
dimensional spaces; as we will see, this is equivalent to learning a linear transformation kernel
function φ(x)TWφ(y) given an input kernel function φ(x)Tφ(y). In the first part of the paper, we
formulate a metric learning problem that uses a particular loss function called the LogDet diver-
gence, for learning the positive definite matrix W . This loss function is advantageous for several
reasons: it is defined only over positive definite matrices, which makes the optimization simpler, as
we will be able to effectively ignore the positive definiteness constraint onW . Furthermore, the loss
function has precedence in optimization (Fletcher, 1991) and statistics (James and Stein, 1961).
An important advantage of our method is that the proposed optimization algorithm is scalable to
very large data sets of the order of millions of data objects. But perhaps most importantly, the
loss function permits efficient kernelization, allowing efficient learning of a linear transformation in
kernel space. As a result, unlike transductive kernel learning methods, our method easily handles
out-of-sample extensions, that is, it can be applied to unseen data.

We build upon our results of kernelization for the LogDet formulation to develop a general
framework for learning linear transformation kernel functions and show that such kernels can be
efficiently learned over a wide class of convex constraints and loss functions. Our result can be
viewed as a representer theorem, where the optimal parameters can be expressed purely in terms
of the training data. In our case, even though the matrixW may be infinite-dimensional, it can be
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fully represented in terms of the constrained data points, making it possible to compute the learned
kernel function over arbitrary points.

We demonstrate the benefits of a generalized framework for inductive kernel learning by apply-
ing our techniques to the problem of inductive kernelized semi-supervised dimensionality reduction.
By choosing the trace-norm as a loss function, we obtain a novel kernel learning method that learns
low-rank linear transformations; unlike previous kernel dimensionality methods, which are either
unsupervised or cannot easily be applied inductively to new data, our method intrinsically possesses
both desirable properties.

Finally, we apply our metric and kernel learning algorithms to a number of challenging learning
problems, including ones from the domains of computer vision and text mining. Unlike exist-
ing techniques, we can learn linear transformation-based distance or kernel functions over these
domains, and we show that the resulting functions lead to improvements over state-of-the-art tech-
niques for a variety of problems.

2. Related Work

Most of the existing work in metric learning has been done in the Mahalanobis distance (or metric)
learning paradigm, which has been found to be a sufficiently powerful class of metrics for a variety
of data. In one of the earliest papers on metric learning, Xing et al. (2002) propose a semidefinite
programming formulation under similarity and dissimilarity constraints for learning a Mahalanobis
distance, but the resulting formulation is slow to optimize and has been outperformed by more
recent methods. Weinberger et al. (2005) formulate the metric learning problem in a large margin
setting, with a focus on k-NN classification. They also formulate the problem as a semidefinite
programming problem and consequently solve it using a method that combines sub-gradient descent
and alternating projections. Goldberger et al. (2004) proceed to learn a linear transformation in the
fully supervised setting. Their formulation seeks to ‘collapse classes’ by constraining within-class
distances to be zero while maximizing between-class distances. While each of these algorithms was
shown to yield improved classification performance over the baseline metrics, their constraints do
not generalize outside of their particular problem domains; in contrast, our approach allows arbitrary
linear constraints on the Mahalanobis matrix. Furthermore, these algorithms all require eigenvalue
decompositions or semi-definite programming, which is at least cubic in the dimensionality of the
data.

Other notable works for learning Mahalanobis metrics include Pseudo-metric Online Learning
Algorithm (POLA) (Shalev-Shwartz et al., 2004), Relevant Components Analysis (RCA) (Schultz
and Joachims, 2003), Neighborhood Components Analysis (NCA) (Goldberger et al., 2004), and
locally-adaptive discriminative methods (Hastie and Tibshirani, 1996). In particular, Shalev-Shwartz
et al. (2004) provided the first demonstration of Mahalanobis distance learning in kernel space.
Their construction, however, is expensive to compute, requiring cubic time per iteration to update
the parameters. As we will see, our LogDet-based algorithm can be implemented more efficiently.

Non-linear transformation based metric learning methods have also been proposed, though these
methods usually suffer from suboptimal performance, non-convexity, or computational complexity.
Examples include the convolutional neural net based method of Chopra et al. (2005); and a general
Riemannian metric learning method (Lebanon, 2006).

Most of the existing work on kernel learning can be classified into two broad categories. The first
category includes parametric approaches, where the learned kernel function is restricted to be of a
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specific form and then the relevant parameters are learned according to the provided data. Prominent
methods include multiple kernel learning (Lanckriet et al., 2004), hyperkernels (Ong et al., 2005),
and hyper-parameter cross-validation (Seeger, 2006). Most of these methods either lack modeling
flexibility, require non-convex optimization, or are restricted to a supervised learning scenario. The
second category includes non-parametric methods, which explicitly model geometric structure in the
data. Examples include spectral kernel learning (Zhu et al., 2005), manifold-based kernel learning
(Bengio et al., 2004), and kernel target alignment (Cristianini et al., 2001). However, most of these
approaches are limited to the transductive setting and cannot be used to naturally generalize to
new points. In comparison, our kernel learning method combines both of the above approaches.
We propose a general non-parametric kernel matrix learning framework, similar to methods of the
second category. However, based on our choice of regularization and constraints, we show that our
learned kernel matrix corresponds to a linear transformation kernel function parameterized by a PSD
matrix. As a result, our method can be applied to inductive settings without sacrificing significant
modeling power. In addition, our kernel learning method naturally provides kernelization for many
existing metric learning methods. Recently, Chatpatanasiri et al. (2010) showed kernelization for
a class of metric learning algorithms including LMNN and NCA; as we will see, our result is
more general and we can prove kernelization over a larger class of problems and can also reduce
the number of parameters to be learned. Furthermore, our methods can be applied to a variety of
domains and with a variety of forms of side-information. Independent of our work, Argyriou et al.
(2010) recently proved a representer type of theorem for spectral regularization functions. However,
the framework they consider is different than ours in that they are interested in sensing an underlying
high-dimensional matrix using given measurements.

The research in this paper combines and extends work done in Davis et al. (2007), Kulis et al.
(2006), Davis and Dhillon (2008), and Jain et al. (2010). The focus in Davis et al. (2007) and Davis
and Dhillon (2008) was solely on the LogDet divergence, while the main goal in Kulis et al. (2006)
was to demonstrate the computational benefits of using the LogDet and von Neumann divergences
for learning low-rank kernel matrices. In Jain et al. (2010), we showed the equivalence between
a general class of kernel learning problems and metric learning problems. In this paper, we unify
and summarize the work in the existing conference papers and also provide detailed proofs of the
theorems in Jain et al. (2010).

3. LogDet Divergence Based Metric Learning

We begin by studying a particular method, based on the LogDet divergence, for learning metrics
via learning linear transformations given pairwise distance constraints. We discuss kernelization of
this formulation and present efficient optimization algorithms. Finally, we address limitations of the
method when the amount of training data is large, and propose a modified algorithm to efficiently
learn a kernel under such circumstances. In subsequent sections, we will take the ingredients devel-
oped in this section and show how to generalize them to adapt to a much larger class of loss functions
and constraints, which will encompass most of the previously-studied approaches for Mahalanobis
metric learning.

3.1 Mahalanobis Distances and Parameterized Kernels

First we introduce the framework for metric and kernel learning that is employed in this paper.
Given a data set of objects X = [x1, . . . ,xn],xi ∈ Rd0 (when working in kernel space, the data
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matrix will be represented as Φ = [φ(x1), ...,φ(xn)], where φ is the mapping to feature space, that
is, φ : Rd0 → Rd), we are interested in finding an appropriate distance function to compare two
objects. We consider the Mahalanobis distance, parameterized by a positive definite matrixW ; the
squared distance between xi and x j is given by

dW (xi,x j) = (xi−x j)
TW (xi−x j). (1)

This distance function can be viewed as learning a linear transformation of the data and measuring
the squared Euclidean distance in the transformed space. This is seen by factorizing the matrix
W = GTG and observing that dW (xi,x j) = ‖Gxi−Gx j‖22. However, if the data is not linearly
separable in the input space, then the resulting distance function may not be powerful enough for
the desired application. As a result, we are interested in working in kernel space; that is, we will
express the Mahalanobis distance in kernel space using an appropriate mapping φ from input to
feature space:

dW (φ(xi),φ(x j)) = (φ(xi)−φ(x j))
TW (φ(xi)−φ(x j)).

Note that when we choose φ to be the identity, we obtain (1); we will use the more general form
throughout this paper. As is standard with kernel-based algorithms, we require that this distance
be computable given the ability to compute the kernel function κ0(x,y) = φ(x)Tφ(y). We can
therefore equivalently pose the problem as learning a parameterized kernel function κ(x,y) =
φ(x)TWφ(y) given some input kernel function κ0(x,y) = φ(x)Tφ(y).

To learn the resulting metric/kernel, we assume that we are given constraints on the desired
distance function. In this paper, we assume that pairwise similarity and dissimilarity constraints are
given over the data—that is, pairs of points that should be similar under the learned metric/kernel,
and pairs of points that should be dissimilar under the learned metric/kernel. Such constraints
are natural in many settings; for example, given class labels over the data, points in the same class
should be similar to one another and dissimilar to points in different classes. However, our approach
is general and can accommodate other potential constraints over the distance function, such as
relative distance constraints.

The main challenge is in finding an appropriate loss function for learning the matrixW so that 1)
the resulting algorithm is scalable and efficiently computable in kernel space, 2) the resulting met-
ric/kernel yields improved performance on the underlying learning problem, such as classification,
semi-supervised clustering etc. We now move on to the details.

3.2 LogDet Metric Learning

The LogDet divergence between two positive definite matrices1W ,W0 ∈ Rd×d is defined to be

D!d(W,W0) = tr(WW−10 )− logdet(WW−10 )−d.

We are interested in findingW that is closest toW0 as measured by the LogDet divergence but that
satisfies our desired constraints. WhenW0 = I, we can interpret the learning problem as a maximum
entropy problem. Given a set of similarity constraints S and dissimilarity constraintsD , we propose

1. The definition of LogDet divergence can be extended to the case whenW0 andW are rank deficient by appropriate
use of the pseudo-inverse. The interested reader may refer to Kulis et al. (2008).
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the following problem:

min
W'0

D!d(W, I), s.t. dW (φ(xi),φ(x j))≤ u, (i, j) ∈ S ,

dW (φ(xi),φ(x j))≥ !, (i, j) ∈D. (2)

We make a few remarks about this formulation. The above problem was proposed and studied
in Davis et al. (2007). LogDet has many important properties that make it useful for machine
learning and optimization, including scale-invariance and preservation of the range space; see Kulis
et al. (2008) for a detailed discussion on the properties of LogDet. Beyond this, we prefer LogDet
over other loss functions (including the squared Frobenius loss as used in Shalev-Shwartz et al.,
2004 or a linear objective as in Weinberger et al., 2005) due to the fact that the resulting algorithm
turns out to be simple and efficiently kernelizable, as we will see. We note that formulation (2)
minimizes the LogDet divergence to the identity matrix I. This can easily be generalized to arbitrary
positive definite matricesW0. Further, (2) considers simple similarity and dissimilarity constraints
over the learned Mahalanobis distance, but other linear constraints are possible. Finally, the above
formulation assumes that there exists a feasible solution to the proposed optimization problem;
extensions to the infeasible case involving slack variables are discussed later (see Section 3.5).

3.3 Kernelizing the LogDet Metric Learning Problem

We now consider the problem of kernelizing the metric learning problem. Subsequently, we will
present an efficient algorithm and discuss generalization to new points.

Given a set of n constrained data points, let K0 denote the input kernel matrix for the data, that
is, K0(i, j) = κ0(xi,x j) = φ(xi)Tφ(x j). Note that the squared Euclidean distance in kernel space
may be written as K(i, i)+K( j, j)− 2K(i, j), where K is the learned kernel matrix; equivalently,
we may write the distance as tr(K(ei−e j)(ei−e j)T ), where ei is the i-th canonical basis vector.
Consider the following problem to find K:

min
K'0

D!d(K,K0), s.t. tr(K(ei−e j)(ei−e j)
T )≤ u, (i, j) ∈ S ,

tr(K(ei−e j)(ei−e j)
T )≥ !, (i, j) ∈D. (3)

This kernel learning problem was first proposed in the transductive setting in Kulis et al. (2008),
though no extensions to the inductive case were considered. Note that problem (2) optimizes over a
d× d matrixW , while the kernel learning problem (3) optimizes over an n× n matrix K. We now
present our key theorem connecting (2) and (3).

Theorem 1 Let K0 * 0. Let W ∗ be the optimal solution to problem (2) and let K∗ be the optimal
solution to problem (3). Then the optimal solutions are related by the following:

K∗ =ΦTW ∗Φ, W ∗ = I+ΦSΦT ,

where S= K−10 (K∗ −K0)K−10 , K0 =ΦTΦ, Φ= [φ(x1),φ(x2), . . . ,φ(xn)] .

The above theorem shows that the LogDet metric learning problem (2) can be solved implicitly by
solving an equivalent kernel learning problem (3). In fact, in Section 4 we show an equivalence be-
tween metric and kernel learning for a general class of regularization functions. The above theorem
follows as a corollary to our general theorem (see Theorem 4), which will be proven later.
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Next, we generalize the above theorem to regularize against arbitrary positive definite matrices
W0.

Corollary 2 Consider the following problem:

min
W'0

D!d(W,W0), s.t. dW (φ(xi),φ(x j))≤ u, (i, j) ∈ S ,

dW (φ(xi),φ(x j))≥ !, (i, j) ∈D. (4)

Let W ∗ be the optimal solution to problem (4) and let K∗ be the optimal solution to problem (3).
Then the optimal solutions are related by the following:

K∗ =ΦTW ∗Φ, W ∗ =W0+W0ΦSΦTW0,

where S= K−10 (K∗ −K0)K−10 , K0 =ΦTW0Φ, Φ= [φ(x1),φ(x2), . . . ,φ(xn)] .

Proof Note that D!d(W,W0) = D!d(W
−1/2
0 WW−1/20 , I). Let W̃ =W−1/20 WW−1/20 . Problem (4) is

now equivalent to:

min
W̃'0

D!d(W̃ , I), s.t. dW̃ (φ̃(xi), φ̃(x j))≤ u (i, j) ∈ S ,

dW̃ (φ̃(xi), φ̃(x j))≥ ! (i, j) ∈D,
(5)

where W̃ = W−1/20 WW−1/20 , Φ̃ = W 1/2
0 Φ and Φ̃ = [φ̃(x1), φ̃(x2), . . . , φ̃(xn)]. Now using Theo-

rem 1, the optimal solution W̃ ∗ of problem (5) is related to the optimal K∗ of problem (3) by
K∗ = Φ̃TW̃ ∗Φ̃ = ΦTW 1/2

0 W−1/20 W ∗W−1/20 W 1/2
0 Φ = ΦTW ∗Φ. Similarly, W ∗ = W 1/2

0 W̃ ∗W 1/2
0 =

W0+W0ΦSΦTW0 where S= K−10 (K∗ −K0)K−10 .

Since the kernelized version of LogDet metric learning is also a linearly constrained optimization
problem with a LogDet objective, similar algorithms can be used to solve either problem. This
equivalence implies that we can implicitly solve the metric learning problem by instead solving for
the optimal kernel matrix K∗. Note that using LogDet divergence as objective function has two sig-
nificant benefits over many other popular loss functions: 1) the metric and kernel learning problems
(2), (3) are both equivalent and therefore solving the kernel learning formulation directly provides
an out of sample extension (see Section 3.4 for details), 2) projection with respect to the LogDet
divergence onto a single distance constraint has a closed-form solution, thus making it amenable to
an efficient cyclic projection algorithm (refer to Section 3.5).

3.4 Generalizing to New Points

In this section, we see how to generalize to new points using the learned kernel matrix K∗.
Suppose that we have solved the kernel learning problem for K∗ (from now on, we will drop

the ∗ superscript and assume that K and W are at optimality). The distance between two points
φ(xi) and φ(x j) that are in the training set can be computed directly from the learned kernel matrix
as K(i, i) +K( j, j)− 2K(i, j). We now consider the problem of computing the learned distance
between two points φ(z1) and φ(z2) that may not be in the training set.
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In Theorem 1, we showed that the optimal solution to the metric learning problem can be ex-
pressed asW = I+ΦSΦT . To compute the Mahalanobis distance in kernel space, we see that the
inner product φ(z1)TWφ(z2) can be computed entirely via inner products between points:

φ(z1)
TWφ(z2) = φ(z1)

T (I+ΦSΦT )φ(z2) = φ(z1)
Tφ(z2)+φ(z1)

TΦSΦTφ(z2),

= κ0(z1,z2)+kT1 Sk2,where ki = [κ0(zi,x1), ...,κ0(zi,xn)]T . (6)

Thus, the expression above can be used to evaluate kernelized distances with respect to the learned
kernel function between arbitrary data objects.

In summary, the connection between kernel learning and metric learning allows us to generalize
our metrics to new points in kernel space. This is performed by first solving the kernel learning
problem for K, then using the learned kernel matrix and the input kernel function to compute learned
distances using (6).

3.5 Kernel Learning Algorithm

Given the connection between the Mahalanobis metric learning problem for the d×d matrixW and
the kernel learning problem for the n× n kernel matrix K, we develop an algorithm for efficiently
performing metric learning in kernel space. Specifically, we provide an algorithm (see Algorithm 1)
for solving the kernelized LogDet metric learning problem (3).

First, to avoid problems with infeasibility, we incorporate slack variables into our formulation.
These provide a tradeoff between minimizing the divergence between K and K0 and satisfying the
constraints. Note that our earlier results (see Theorem 1) easily generalize to the slack case:

min
K,ξ

D!d(K,K0)+ γ ·D!d(diag(ξ),diag(ξ0))

s.t. tr(K(ei−e j)(ei−e j)
T )≤ ξi j (i, j) ∈ S ,

tr(K(ei−e j)(ei−e j)
T )≥ ξi j (i, j) ∈D.

(7)

The parameter γ above controls the tradeoff between satisfying the constraints and minimizing
D!d(K,K0), and the entries of ξ0 are set to be u for corresponding similarity constraints and ! for
dissimilarity constraints.

To solve problem (7), we employ the technique of Bregman projections, as discussed in the
transductive setting (Kulis et al., 2008). At each iteration, we choose a constraint (i, j) from S orD .
We then apply a Bregman projection such that K satisfies the constraint after projection; note that
the projection is not an orthogonal projection but is rather tailored to the particular function that we
are optimizing. Algorithm 1 details the steps for Bregman’s method on this optimization problem.
Each update is a rank-one update

K← K+βK(ei−e j)(ei−e j)
TK,

where β is a projection parameter that can be computed in closed form (see Algorithm 1).
Algorithm 1 has a number of key properties which make it useful for various kernel learning

tasks. First, the Bregman projections can be computed in closed form, assuring that the projection
updates are efficient (O(n2)). Note that, if the feature space dimensionality d is less than n then
a similar algorithm can be used directly in the feature space (see Davis et al., 2007). Instead of
LogDet, if we use the von Neumann divergence, another potential loss function for this problem,
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Algorithm 1Metric/Kernel Learning with the LogDet Divergence
Input: K0: input n×n kernel matrix, S : set of similar pairs, D: set of dissimilar pairs, u,!: distance
thresholds, γ: slack parameter

Output: K: output kernel matrix

1. K← K0, λi j← 0 ∀ i j
2. ξi j← u for (i, j) ∈ S ; otherwise ξi j← !
3. repeat

3.1. Pick a constraint (i, j) ∈ S or D
3.2. p← (ei−e j)TK(ei−e j)
3.3. δ← 1 if (i, j) ∈ S , −1 otherwise
3.4. α←min

(
λi j,

δγ
γ+1

(
1
p −

1
ξi j

))

3.5. β← δα/(1−δαp)
3.6. ξi j← γξi j/(γ+δαξi j)
3.7. λi j← λi j−α
3.8. K← K+βK(ei−e j)(ei−e j)TK

4. until convergence
return K

O(n2) updates are possible, but are much more complicated and require use of the fast multipole
method, which cannot be employed easily in practice. Secondly, the projections maintain positive
definiteness, which avoids any eigenvector computation or semidefinite programming. This is in
stark contrast with the Frobenius loss, which requires additional computation to maintain positive
definiteness, leading to O(n3) updates.

3.6 Metric/Kernel Learning with Large Data Sets

In Sections 3.1 and 3.3, we proposed a LogDet divergence-based Mahalanobis metric learning prob-
lem (2) and an equivalent kernel learning problem (3). The number of parameters involved in these
problems is O(min(n,d)2), where n is the number of training points and d is the dimensionality
of the data. The quadratic dependence affects not only the running time for training and testing,
but also requires estimating a large number of parameters. For example, a data set with 10,000
dimensions leads to a Mahalanobis matrix with 100 million entries. This represents a fundamental
limitation of existing approaches, as many modern data mining problems possess relatively high
dimensionality.

In this section, we present a heuristic for learning structuredMahalanobis distance (kernel) func-
tions that scale linearly with the dimensionality (or training set size). Instead of representing the
Mahalanobis distance/kernel matrix as a full d×d (or n×n) matrix with O(min(n,d)2) parameters,
our methods use compressed representations, admitting matrices parameterized by O(min(n,d))
values. This enables the Mahalanobis distance/kernel function to be learned, stored, and evaluated
efficiently in the context of high dimensionality and large training set size. In particular, we pro-
pose a method to efficiently learn an identity plus low-rank Mahalanobis distance matrix and its
equivalent kernel function.

Now, we formulate this approach, which we call the high-dimensional identity plus low-rank
(IPLR) metric learning problem. Consider a low-dimensional subspace in Rd and let the columns
ofU form an orthogonal basis of this subspace. We will constrain the learned Mahalanobis distance
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matrix to be of the form:
W = Id+Wl = Id+ULUT ,

where Id is the d× d identity matrix, Wl denotes the low-rank part of W and L ∈ S
k×k
+ with k.

min(n,d). Analogous to (2), we propose the following problem to learn an identity plus low-rank
Mahalanobis distance function:

min
W,L'0

D!d(W, Id) s.t. dW (φ(xi),φ(x j))≤ u (i, j) ∈ S ,

dW (φ(xi),φ(x j))≥ ! (i, j) ∈D, W = Id+ULUT . (8)

Note that the above problem is identical to (2) except for the added constraintW = Id+ULUT . Let
F = Ik+L. Now we have

D!d(W, Id) = tr(Id+ULUT )− logdet(Id+ULUT )−d,

= tr(Ik+L)+d− k− logdet(Ik+L)−d = D!d(F, Ik), (9)

where the second equality follows from the fact that tr(AB) = tr(BA) and Sylvester’s determinant
lemma. Also note that for allC ∈ Rn×n,

tr(WΦCΦT ) = tr((Id+ULUT )ΦCΦT ) = tr(ΦCΦT )+ tr(LUTΦCΦTU),

= tr(ΦCΦT )− tr(Φ′CΦ′T )+ tr(FΦ′CΦ′T ),

where Φ′ =UTΦ is the reduced-dimensional representation of Φ. Therefore,

dW (φ(xi),φ(x j)) = tr(WΦ(ei−e j)(ei−e j)
TΦT ) (10)

= dI(φ(xi),φ(x j))−dI(φ′(xi),φ′(x j))+dF(φ′(xi),φ′(x j)).

Using (9) and (10), problem (8) is equivalent to the following:

min
F'0

D!d(F, Ik),

s.t. dF(φ′(xi),φ′(x j))≤ u−dI(φ(xi),φ(x j))+dI(φ′(xi),φ′(x j)), (i, j) ∈ S ,
dF(φ′(xi),φ′(x j))≥ !−dI(φ(xi),φ(x j))+dI(φ′(xi),φ′(x j)), (i, j) ∈D. (11)

Note that the above formulation is an instance of problem (2) and can be solved using an algorithm
similar to Algorithm 1. Furthermore, the above problem solves for a k×k matrix rather than a d×d
matrix seemingly required by (8). The optimalW ∗ is obtained asW ∗ = Id+U(F∗ − Ik)UT .

Next, we show that problem (11) and equivalently (8) can be solved efficiently in feature space
by selecting an appropriate basis R (U = R(RTR)−1/2). Let R=ΦJ, where J ∈Rn×k. Note thatU =
ΦJ(JTK0J)−1/2 and Φ′ =UTΦ= (JTK0J)−1/2JTK0, that is, Φ′ ∈Rk×n can be computed efficiently
in the feature space (requiring inversion of only a k× k matrix). Hence, problem (11) can be solved
efficiently in feature space using Algorithm 1, and the optimal kernel K∗ is given by

K∗ =ΦTW ∗Φ= K0+K0J(JTK0J)−1/2(F∗ − Ik)(JTK0J)−1/2JTK0.

Note that (11) can be solved via Algorithm 1 using O(k2) computational steps per iteration.
Additionally, O(min(n,d)k) steps are required to prepare the data. Also, the optimal solutionW ∗ (or
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K∗) can be stored implicitly using O(min(n,d)k) memory and similarly, the Mahalanobis distance
between any two points can be computed in O(min(n,d)k) time.

The metric learning problem presented here depends critically on the basis selected. For the case
when d is not significantly larger than n and feature space vectorsΦ are available explicitly, the basis
R can be selected by using one of the following heuristics (see Section 5, Davis and Dhillon, 2008
for more details):

• Using the top k singular vectors of Φ.

• Clustering the columns of Φ and using the mean vectors as the basis R.

• For the fully-supervised case, if the number of classes (c) is greater than the required dimen-
sionality (k) then cluster the class-mean vectors into k clusters and use the obtained cluster
centers for forming the basis R. If c < k then cluster each class into k/c clusters and use the
cluster centers to form R.

For learning the kernel function, the basis R=ΦJ can be selected by: 1) using a randomly sampled
coefficient matrix J, 2) clusteringΦ using kernel k-means or a spectral clustering method, 3) choos-
ing a random subset of Φ, that is, the columns of J are random indicator vectors. A more careful
selection of the basis R should further improve accuracy of our method and is left as a topic for
future research.

4. Kernel Learning with Other Convex Loss Functions

One of the key benefits of our kernel learning formulation using the LogDet divergence (3) is in
the ability to efficiently learn a linear transformation (LT) kernel function (a kernel of the form
φ(x)TWφ(y) for some matrix W ' 0) which allows the learned kernel function to be computed
over new data points. A natural question is whether one can learn similar kernel functions with
other loss functions, such as those considered previously in the literature for Mahalanobis metric
learning.

In this section, we propose and analyze a general kernel matrix learning problem similar to
(3) but using a more general class of loss functions. As in the LogDet loss function case, we
show that our kernel matrix learning problem is equivalent to learning a linear transformation (LT)
kernel function with a specific loss function. This implies that the learned LT kernel function can
be naturally applied to new data. Additionally, since a large class of metric learning methods can
be seen as learning a LT kernel function, our result provides a constructive method for kernelizing
these methods. Our analysis recovers some recent kernelization results for metric learning, but also
implies several new results.

4.1 A General Kernel Learning Framework

Recall that κ0 : Rd0 ×Rd0 → R is the input kernel function. We assume that the data vectors in X
have been mapped via φ, resulting in Φ = [φ(x1),φ(x2), . . . ,φ(xn)]. As before, denote the input
kernel matrix as K0 = ΦTΦ. The goal is to learn a kernel function κ that is regularized against
κ0 but incorporates the provided side-information. As in the LogDet formulation, we will first
consider a transductive scenario, where we learn a kernel matrix K that is regularized against K0
while satisfying the available side-information.
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Recall that the LogDet divergence based loss function in the kernel matrix learning problem (3)
is given by:

D!d(K,K0) = tr(KK−10 )− logdet(KK−10 )−n,

= tr(K−1/20 KK−1/20 )− logdet(K−1/20 KK−1/20 )−n.

The kernel matrix learning problem (3) can be rewritten as:

min
K'0

f (K−1/20 KK−1/20 ), s.t. tr(K(ei−e j)(ei−e j)
T )≤ u, (i, j) ∈ S,

tr(K(ei−e j)(ei−e j)
T )≥ !, (i, j) ∈D,

where f (A) = tr(A)− logdet(A).
In this section, we will generalize our optimization problem to include more general loss func-

tions beyond the LogDet-based loss function f specified above. We also generalize our constraints
to include arbitrary constraints over the kernel matrix K rather than just the pairwise distance con-
straints in the above problem. Using the above specified generalizations, the optimization problem
that we obtain is given by:

min
K'0

f (K−1/20 KK−1/20 ), s.t. gi(K)≤ bi, 1≤ i≤ m, (12)

where f and gi are functions from Rn×n→R. We call f the loss function (or regularizer) and gi the
constraints. Note that if f and constraints gi’s are all convex, then the above problem can be solved
optimally (under mild conditions) using standard convex optimization algorithms (Groschel et al.,
1988). Note that our results also hold for unconstrained variants of the above problem, as well as
variants with slack variables.

In general, such formulations are limited in that the learned kernel cannot readily be applied to
new data points. However, we will show that the above proposed problem is equivalent to learning
linear transformation (LT) kernel functions. Formally, an LT kernel function κW is a kernel function
of the form κ(x,y) = φ(x)TWφ(y), whereW is a positive semi-definite (PSD) matrix. A natural
way to learn an LT kernel function would be to learn the parameterization matrix W using the
provided side-information. To this end, we consider the following generalization of our LogDet
based learning problem (2):

min
W'0

f (W ), s.t. gi(ΦTWΦ)≤ bi, 1≤ i≤ m, (13)

where, as before, the function f is the loss function and the functions gi are the constraints that
encode the side information. The constraints gi are assumed to be a function of the matrix ΦTWΦ
of learned kernel values over the training data. Note that most Mahalanobis metric learning methods
may be viewed as a special case of the above framework (see Section 5). Also, for data mapped
to high-dimensional spaces via kernel functions, this problem is seemingly impossible to optimize
since the size ofW grows quadratically with the dimensionality.

4.2 Analysis

We now analyze the connection between the problems (12) and (13). We will show that the solutions
to the two problems are equivalent, that is, by optimally solving one of the problems, the solution
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to the other can be computed in closed form. Further, this result will yield insight into the type of
kernel that is learned by the kernel learning problem.

We begin by defining the class of loss functions considered in our analysis.

Definition 3 We say that f : Rn×n→ R is a spectral function if f (A) = ∑i fs(λi), where λ1, ...,λn
are the eigenvalues of A and fs : R→ R is a real-valued scalar function. Note that if fs is a convex
scalar function, then f is also convex.

Note that the LogDet based loss function in (3) is a spectral function. Similarly, most of the existing
metric learning formulations have a spectral function as their objective function.

Now we state our main result that for a spectral function f , problems (12) and (13) are equiva-
lent.

Theorem 4 Let K0 = ΦTΦ * 0, f be a spectral function as in Definition 3 and assume that the
global minimum of the corresponding strictly convex scalar function fs is α > 0. Let W ∗ be an
optimal solution to (13) and K∗ be an optimal solution to (12). Then,

W ∗ = αId+ΦSΦT ,

where S= K−10 (K∗ −αK0)K−10 . Furthermore, K∗ =ΦTW ∗Φ.

The first part of the theorem demonstrates that, given an optimal solution K∗ to (12), one can con-
struct the corresponding solution W ∗ to (13), while the second part shows the reverse. Note the
similarities between this theorem and the earlier Theorem 1. We provide the proof of this theorem
below. The main idea behind the proof is to first show that the optimal solution to (13) is always
of the form W = αId +ΦSΦT , and then we obtain the closed form expression for S using simple
algebraic manipulations.

First we introduce and analyze an auxiliary optimization problem that will help in proving the
above theorem. Consider the following problem:

min
W'0,L

f (W ), s.t. gi(ΦTWΦ)≤ bi, 1≤ i≤ m, W = αId+ULUT , (14)

where L ∈ Rk×k, U ∈ Rd×k is a column orthogonal matrix, and Id is the d× d identity matrix. In
general, k can be significantly smaller than min(n,d). Note that the above problem is identical to
(13) except for an added constraint W = αId +ULUT . We now show that (14) is equivalent to a
problem over k× k matrices. In particular, (14) is equivalent to (15) defined below.

Lemma 5 Let f be a spectral function as in Definition 3 and let α> 0 be any scalar. Then, (14) is
equivalent to:

min
L'−αIk

f (αIk+L), s.t. gi(αΦTΦ+ΦTULUTΦ)≤ bi, 1≤ i≤ m. (15)

Proof The last constraint in (14) asserts thatW = αId+ULUT , which implies that there is a one-
to-one mapping between W and L: given W , L can be computed and vice-versa. As a result, we
can eliminate the variableW from (14) by substituting αId+ULUT forW (via the last constraint in
(14)). The resulting optimization problem is:

min
L'−αIk

f (αId+ULUT ), s.t. gi(αΦTΦ+ΦTULUTΦ)≤ bi, 1≤ i≤ m. (16)
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Note that (15) and (16) are the same except for their objective functions. Below, we show that both
the objective functions are equal up to a constant, so they are interchangeable in the optimization
problem. Let U ′ ∈ Rd×d be an orthonormal matrix obtained by completing the basis represented
by U , that is, U ′ = [U U⊥] for some U⊥ ∈ Rd×(d−k) s.t. UTU⊥ = 0 and UT

⊥U⊥ = Id−k. Now,

W = αId+ULUT =U ′
(
αId+

[
L 0
0 0

])
U ′T . It is straightforward to see that for a spectral function

f , f (VWVT ) = f (W ), where V is an orthogonal matrix. Also, ∀A,B ∈ Rd×d , f
([

A 0
0 B

])
=

f (A)+ f (B). Using the above observations, we get:

f (W ) = f (αId+ULUT ) = f
([

αIk+L 0
0 αId−k

])
= f (αIk+L)+(d− k) f (α). (17)

Therefore, the objective functions of (15) and (16) differ by only a constant, that is, they are equiv-
alent with respect to the optimization problem. The lemma follows.

We now show that for strictly convex spectral functions (see Definition 3) the optimal solutionW ∗
to (13) is of the formW ∗ = αId+ΦSΦT , for some S.

Lemma 6 Suppose f , K0 and α satisfy the conditions given in Theorem 4. Then, the optimal solu-
tion to (13) is of the formW ∗ = αId+ΦSΦT , where S is a n×n matrix.

Proof Note that K0 * 0 implies that d ≥ n. Our results can be extended when d < n, that is, K0 ' 0,
by using the pseudo-inverse of K0 instead of the inverse. However, for simplicity we only present
the full-rank case.

Now, letW =UΛUT =∑ j λ ju ju
T
j be the eigenvalue decomposition ofW . Consider a constraint

gi(ΦTWΦ) ≤ bi as specified in (13). Note that if the j-th eigenvector u j ofW is orthogonal to the
range space ofΦ, that is,ΦTu j = 0, then the corresponding eigenvalue λ j is not constrained (except
for the non-negativity constraint imposed by the positive semi-definiteness constraint). Since the
range space of Φ is at most n-dimensional, we can assume that λ j ≥ 0,∀ j > n are not constrained
by the linear inequality constraints in (13).

Since f satisfies the conditions of Theorem 4, f (W ) = ∑ j fs(λ j). Also, fs(α) = minx fs(x).
Hence, to minimize f (W ), we can select λ∗j = α≥ 0,∀ j> n (note that the non-negativity constraint
is also satisfied here). Furthermore, the eigenvectors u j, ∀ j ≤ n, lie in the range space of Φ, that is,
∀ j ≤ n, u j =Φz j for some z j ∈ Rn. Therefore,

W ∗ =
n

∑
j=1

λ∗ju
∗
ju
∗T
j +α

d

∑
j=n+1

u∗ju
∗T
j =

n

∑
j=1

(λ∗j −α)u
∗
ju
∗T
j +α

d

∑
j=1

u∗ju
∗T
j =ΦSΦT +αId,

where S= ∑n
j=1(λ

∗
j −α)z

∗
jz
∗T
j .

Now we use Lemmas 5 and 6 to prove Theorem 4.
Proof [Proof of Theorem 4] Let Φ = UΦΣVT

Φ be the singular value decomposition (SVD) of Φ.
Note that K0 = ΦTΦ=VΦΣ2VT

Φ , so ΣVT
Φ =VT

ΦK
1/2
0 . Also, assuming Φ ∈ Rd×n to be full-rank and

d > n, VΦVT
Φ = I.

Using Lemma 6, the optimal solution to (13) is restricted to be of the formW = αId+ΦSΦT =

αId+UΦΣVT
Φ SVΦΣUT

Φ =αId+UΦVT
ΦK

1/2
0 SK1/20 VΦUT

Φ =αId+UΦVT
ΦLVΦUT

Φ , where L=K1/20 SK1/20 .
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As a result, for spectral functions f , (13) is equivalent to (14), so using Lemma 5, (13) is equivalent
to (15) withU =UΦVT

Φ and L= K1/20 SK1/20 . Also, note that the constraints in (15) can be simplified
to:

gi(αΦTΦ+ΦTULUTΦ)≤ bi ≡ gi(αK0+K1/20 LK1/20 )≤ bi.

Now, let K = αK0+K1/20 LK1/20 = αK0+K0SK0, that is, L = K−1/20 (K−αK0)K
−1/2
0 . Theorem 4

now follows by substituting for L in (15).

As a first consequence of this result, we can achieve induction over the learned kernels, analo-
gous to (6) for the LogDet case. Given that K =ΦTWΦ, we can see that the learned kernel function
is a linear transformation kernel; that is, κ(xi,x j) = φ(xi)TWφ(x j). Given a pair of new data points
z1 and z2, we use the fact that the learned kernel is a linear transformation kernel, along with the
first result of the theorem (W = αId+ΦSΦT ) to compute the learned kernel as:

φ(z1)TWφ(z2) = α ·κ0(z1,z2)+kT1 Sk2,where ki = [κ0(zi,x1), ...,κ0(zi,xn)]T . (18)

Since LogDet divergence is also a spectral function, Theorem 4 is a generalization of Theorem 1
and implies kernelization for our metric learning formulation (2). Moreover, many Mahalanobis
metric learning methods can be viewed as a special case of (13), so a corollary of Theorem 4 is
that we can constructively apply these metric learning methods in kernel space by solving their cor-
responding kernel learning problem, and then compute the learned metrics via (18). Kernelization
of Mahalanobis metric learning has previously been established for some special cases; our results
generalize and extend previous methods, as well as provide simpler techniques in some cases. We
will further elaborate in Section 5 with several special cases.

4.3 Parameter Reduction

As noted in Section 3.6 that the size of the kernel matrices K and the parameter matrices S are n×n,
and thus grow quadratically with the number of data points. Similar to the special case of the LogDet
divergence (see Section 3.6), we would like to have a way to restrict our general optimization prob-
lem (12) over a smaller number of parameters. So, we now discuss a generalization of (13) by
introducing an additional constraint to make it possible to reduce the number of parameters to learn,
permitting scalability to data sets with many training points and with very high dimensionality.

Theorem 4 shows that the optimal K∗ is of the form ΦTW ∗Φ = αK0 +K0SK0. In order to
accommodate fewer parameters to learn, a natural option is to replace the unknown S matrix with
a low-rank matrix JLJT , where J ∈ Rn×k is a pre-specified matrix, L ∈ Rk×k is unknown (we use L
instead of S to emphasize that S is of size n×n whereas L is k× k), and the rank k is a parameter of
the algorithm. Then, we will explicitly enforce that the learned kernel is of this form.

By plugging in K=αK0+K0SK0 into (12) and replacing Swith JLJT , the resulting optimization
problem is given by:

min
L'0

f (αIn+K1/20 JLJTK1/20 ), s.t. gi(αK0+K0JLJTK0)≤ bi, 1≤ i≤ m. (19)

Note that the above problem is a strict generalization of our LogDet function based parameter re-
duction approach (see Section 3.6).

While the above problem involves only k× k variables, the functions f and gi’s are applied to
n×nmatrices and therefore the problemmay still be computationally expensive to optimize. Below,
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we show that for any spectral function f and linear constraints gi(K) = tr(CiK), (19) reduces to a
problem that applies f and gi’s to k× k matrices only, which provides significant scalability.

Theorem 7 Let K0 =ΦTΦ and J be some matrix in Rn×k. Also, let the loss function f be a spectral
function (see Definition 3) such that the corresponding strictly convex scalar function fs has the
global minimum at α > 0. Then problem (19) with gi(K) = tr(CiK) is equivalent to the following
alternative optimization problem:

min
L'−α(KJ)−1

f ((KJ)−1/2(αKJ+KJLKJ)(KJ)−1/2),

s.t. tr(LJTK0CiK0J)≤ bi− tr(αK0Ci), 1≤ i≤ m, (20)

where KJ = JTK0J.

Proof Let U = K1/20 J(JTK0J)−1/2 and let J be a full rank matrix, then U is an orthogonal matrix.
Using (17) we get,

f (αIn+U(JTK0J)1/2L(JTK0J)1/2UT ) = f (αIk+(JTK0J)1/2L(JTK0J)1/2).

Now consider a linear constraint tr(Ci(αK0+K0JLJTK0)) ≤ bi. This can be easily simplified to
tr(LJTK0CiK0J) ≤ bi− tr(αK0Ci). Similar simple algebraic manipulations to the PSD constraint
completes the proof.

Note that (20) is over k× k matrices (after initial pre-processing) and is in fact similar to the kernel
learning problem (12), but with a kernel KJ of smaller size k× k, k. n.

Similar to (12), we can show that (19) is also equivalent to LT kernel function learning. This
enables us to naturally apply the above kernel learning problem in the inductive setting.

Theorem 8 Consider (19) with gi(K) = tr(CiK) and a spectral function f whose corresponding
scalar function fs has a global minimum at α> 0. Let J ∈ Rn×k. Then, (19) and (20) with gi(K) =
tr(CiK) are equivalent to the following linear transformation kernel learning problem (analogous
to the connection between (12) and (13)):

min
W'0,L

f (W ), s.t. tr(ΦTWΦ)≤ bi, 1≤ i≤ m, W = αId+ΦJLJTΦT . (21)

Proof Consider the last constraint in (21):W = αId+ΦJLJTΦT . LetΦ=UΣVT be the SVD ofΦ.
Hence, W = αId +UVTVΣVTJLJTVΣVTVUT = αId +UVTK1/20 JLJTK1/20 VUT , where we used
K1/20 = VΣVT . For dis-ambiguity, rename L as L′ and U as U ′. The result now follows by using
Lemma 5 whereU =U ′VT and L= K1/20 JL′JTK1/20 .

Note that, in contrast to (13), where the last constraint over W is achieved automatically, (21) re-
quires this constraint onW to be satisfied during the optimization process, which leads to a reduced
number of parameters for our kernel learning problem. The above theorem shows that our reduced-
parameter kernel learning method (19) also implicitly learns a linear transformation kernel function,
hence we can generalize the learned kernel to unseen data points using an expression similar to (18).
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5. Special Cases

In the previous section, we proved a general result showing the connections between metric and
kernel learning using a wide class of loss functions and constraints. In this section, we consider a
few special cases of interest: the von Neumann divergence, the squared Frobenius norm and semi-
definite programming. For each of the cases, we derive the required optimization problem and
mention the relevant optimization algorithms that can be used.

5.1 Von Neumann Divergence

The von Neumann divergence is a generalization of the well known KL-divergence to matrices. It
is used extensively in quantum computing to compare density matrices of two different systems
(Nielsen and Chuang, 2000). It is also used in the exponentiated matrix gradient method by Tsuda
et al. (2005), online-PCA method by Warmuth and Kuzmin (2008) and fast SVD solver by Arora
and Kale (2007). The von Neumann divergence between A and A0 is defined to be, DvN(A,A0) =
tr(A logA−A logA0−A+A0), where both A and A0 are positive definite. Computing the von Neu-
mann divergence with respect to the identity matrix, we get: fvN(A) = tr(A logA−A+ I). Note that
fvN is a spectral function with corresponding scalar function fvN(λ) = λ logλ− λ and minima at
λ= 1. Now, the kernel learning problem (12) with loss function fvN and linear constraints is:

min
K'0

fvN(K
−1/2
0 KK−1/20 ), s.t. tr(KCi)≤ bi, ∀1≤ i≤ m. (22)

As fvN is an spectral function, using Theorem 4, the above kernel learning problem is equivalent to
the following metric learning problem:

min
W'0

DvN(W, I), s.t. tr(WΦCiΦT )≤ bi, ∀1≤ i≤ m.

Using elementary linear algebra, we obtain the following simplified version:

min
λ1,λ2,...,λm≥0

F(λ) = tr(exp(−C(λ)K0))+b(λ),

where C(λ) = ∑iλiCi and b(λ) = ∑iλibi. Further, ∂F∂λi = tr(exp(−C(λ)K0)CiK0)+ bi, so any first-
order smooth optimization method can be used to solve the above dual problem. Alternatively,
similar to the method of Kulis et al. (2008), Bregman’s projection method can be used to solve the
primal problem (22).

5.2 Pseudo Online Metric Learning (POLA)

Shalev-Shwartz et al. (2004) proposed the following batch metric learning formulation:

min
W'0
‖W‖2F , s.t. yi j(b−dW (xi,x j))≥ 1, ∀(i, j) ∈ P ,

where yi j = 1 if xi and x j are similar, and yi j =−1 if xi and x j are dissimilar. P is a set of pairs of
points with known distance constraints. POLA is an instantiation of (13) with f (A) = 1

2‖A‖
2
F and

side-information available in the form of pair-wise distance constraints. Note that the regularizer
f (A) = 1

2‖A‖
2 was also employed in Schultz and Joachims (2003) and Kwok and Tsang (2003), and
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these methods also fall under our general formulation. In this case, f is once again a strictly convex
spectral function, and its global minimum is α= 0, so we can use (12) to solve for the learned kernel
K as

min
K'0

‖KK−10 ‖
2
F , s.t. gi(K)≤ bi, 1≤ i≤ m,

The constraints gi for this problem can be easily constructed by re-writing each of POLA’s con-
straints as a function ofΦTWΦ. Note that the above approach for kernelization is much simpler than
the method suggested in Shalev-Shwartz et al. (2004), which involves a kernelized Gram-Schmidt
procedure at each step of the algorithm.

5.3 SDPs

Weinberger et al. (2005) and Globerson and Roweis (2005) proposed metric learning formulations
that can be rewritten as semi-definite programs (SDP), which is a special case of (13) with the loss
function being a linear function. Consider the following general semidefinite program (SDP) to
learn a linear transformationW :

min
W'0

tr(WΦC0ΦT ), s.t. tr(WΦCiΦT )≤ bi, ∀1≤ i≤ m. (23)

Here we show that this problem can be efficiently solved for high dimensional data in its kernel
space, hence kernelizing the metric learning methods introduced by Weinberger et al. (2005) and
Globerson and Roweis (2005).

Theorem 9 Problem (23) is kernelizable.

Proof (23) has a linear objective, that is, it is a non-strict convex problem that may have multiple
solutions. A variety of regularizations can be considered that lead to slightly different solutions.
Here, we consider the LogDet regularization, which seeks the solution with maximum determinant.
To this effect, we add a log-determinant regularization:

min
W'0

tr(WΦC0ΦT )− γ logdetW, s.t. tr(WΦCiΦT )≤ bi, ∀1≤ i≤ m. (24)

The above regularization was also considered by Kulis et al. (2009b), who provided a fast projection
algorithm for the case when each Ci is a one-rank matrix and discussed conditions for which the
optimal solution to the regularized problem is an optimal solution to the original SDP. The above
formulation also generalizes the metric learning formulation of RCA (Bar-Hillel et al., 2005).

Consider the following variational formulation of (24):

min
t
min
W'0

t− γ logdetW, s.t. tr(WΦCiΦT )≤ bi, ∀1≤ i≤ m,

tr(WΦC0ΦT )≤ t. (25)

Note that the objective function of the inner optimization problem of (25) is a spectral function and
hence using Theorem 4, (25), or equivalently (24), is kernelizable.
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5.4 Trace-norm Based Inductive Semi-supervised Kernel Dimensionality Reduction
(Trace-SSIKDR)

Finally, we apply our framework to semi-supervised kernel dimensionality reduction, which pro-
vides a novel and practical application of our framework. While there exists a variety of methods for
kernel dimensionality reduction, most of these methods are unsupervised (e.g., kernel-PCA) or are
restricted to the transductive setting. In contrast, we can use our kernel learning framework to learn
a low-rank transformation of the feature vectors implicitly that in turn provides a low-dimensional
embedding of the data set. Furthermore, our framework permits a variety of side-information such
as pair-wise or relative distance constraints, beyond the class label information allowed by existing
transductive methods.

We describe our method starting from the linear transformation problem. Our goal is to learn
a low-rank linear transformation W whose corresponding low-dimensional mapped embedding of
xi is W 1/2φ(xi). Even when the dimensionality of φ(xi) is very large, if the rank of W is low
enough, then the mapped embedding will have small dimensionality. With that in mind, a possible
regularizer could be the rank, that is, r(A) = rank(A); one can easily show that this satisfies the
definition of a spectral function. Unfortunately, optimization is intractable in general with the non-
convex rank function, so we use the trace-norm relaxation for the matrix rank function, that is, we
set f (A) = tr(A). This function has been extensively studied as a relaxation for the rank function
in Recht et al. (2010), and it satisfies the definition of a spectral function (with α = 0). We also
add a small Frobenius norm regularization for ease of optimization (this does not affect the spectral
property of the regularization function). Then using Theorem 4, the resulting relaxed kernel learning
problem is:

min
K'0

τ tr(K−1/20 KK−1/20 )+‖K−1/20 KK−1/20 ‖2F , s.t. tr(CiK)≤ bi, 1≤ i≤ m, (26)

where τ > 0 is a parameter. The above problem can be solved using a method based on Uzawa’s
inexact algorithm, similar to Cai et al. (2008).

We briefly describe the steps taken by our method at each iteration. For simplicity, denote
K̃ = K−1/20 KK−1/20 ; we will optimize with respect to K̃ instead of K. Let K̃t be the t-th iterate.
Associate variable zti,1≤ i≤ m with each constraint at each iteration t, and let z0i = 0,∀i. Let δt be
the step size at iteration t. The algorithm performs the following updates:

UΣUT ← K1/20 CK1/20 ,

K̃t ←Umax(Σ− τI,0)UT , (27)

zti← zt−1i −δmax(tr(CiK
1/2K̃tK1/2)−bi,0), ∀i, (28)

where C = ∑i zt−1i Ci. The above updates require computation of K1/20 which is expensive for
large high-rank matrices. However, using elementary linear algebra we can show that K̃ and
the learned kernel function can be computed efficiently without computing K1/20 by maintaining
S= K−1/20 K̃K−1/20 from step to step.

We first prove a technical lemma to relate eigenvectors U of K1/20 CK1/20 and V of the matrix
CK0.

Lemma 10 Let K1/20 CK1/20 =UkΣkUT
k , where Uk contains the top-k eigenvectors of K

1/2
0 CK1/20 and

Σk contains the top-k eigenvalues of K
1/2
0 CK1/20 . Similarly, let CK0 = VkΛkV−1k , where Vk contains
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Algorithm 2 Trace-SSIKDR
Input: K0, (Ci,bi),1≤ i≤ m, τ, δ
1: Initialize: z0i = 0, t = 0
2: repeat
3: t = t+1
4: Compute Vk and Σk, the top k eigenvectors and eigenvalues of

(
∑i zt−1i Ci

)
K0, where k =

argmax jσ j > τ
5: Dk(i, i)← 1/vTi K0vi, 1≤ i≤ k
6: zti← zt−1i −δmax(tr(CiK0VkDkΣkDkVT

k K0)−bi,0),∀i.
7: until Convergence
8: Return Σk,Dk,Vk

the top-k right eigenvectors of CK0 and Λk contains the top-k eigenvalues of CK0. Then,

Uk = K1/20 VkDk, Σk = Λk,

where Dk is a diagonal matrix with i-th diagonal element Dk(i, i) = 1/vTi K0vi. Note that eigenvalue
decomposition is unique up to sign, so we assume that the sign has been set correctly.

Proof Let vi be i-th eigenvector ofCK0. Then,CK0vi = λivi. Multiplying both sides with K
1/2
0 , we

get K1/20 CK1/20 K1/20 vi = λiK
1/2
0 vi. After normalization we get:

(K1/20 CK1/20 )
K1/20 vi

vTi K0vi
= λi

K1/20 vi

vTi K0vi
.

Hence, K1/20 vi
vTi K0vi

= K1/20 viDk(i, i) is the i-th eigenvector ui of K
1/2
0 CK1/20 . Also, Σk(i, i) = λi.

Using the above lemma and (27), we get: K̃ = K1/20 VkDkλDkV−1k K1/20 . Therefore, the update for the
z variables (see (28)) reduces to:

zti← zt−1i −δmax(tr(CiK0VkDkλDkV−1k K0)−bi,0),∀i.

Lemma 10 also implies that if k eigenvalues of CK0 are larger than τ then we only need the top k
eigenvalues of CK0. Since k is typically significantly smaller than n, the update should be signifi-
cantly more efficient than computing the whole eigenvalue decomposition.

Algorithm 2 details an efficient method for optimizing (26) and returns matrices Σk, Dk and
Vk, all of which contain only O(nk) parameters, where k is the rank of K̃t , which changes from
iteration to iteration. Note that step 4 of the algorithm computes k singular vectors and requires
only O(nk2) computation. Note also that the learned embedding xi→ K̃1/2K−1/20 ki, where ki is a
vector of input kernel function values between xi and the training data, can be computed efficiently
as xi→ Σ1/2k DkVkki, which does not require K

1/2
0 explicitly.

6. Experimental Results

In Section 3, we presented metric learning as a constrained LogDet optimization problem to learn
a linear transformation, and we showed that the problem can be efficiently kernelized to learn
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linear transformation kernels. Kernel learning yields two fundamental advantages over standard
non-kernelized metric learning. First, a non-linear kernel can be used to learn non-linear decision
boundaries common in applications such as image analysis. Second, in Section 3.6, we showed that
the kernelized problem can be learned with respect to a reduced basis of size k, admitting a learned
kernel parameterized by O(k2) values. When the number of training examples n is large, this rep-
resents a substantial improvement over optimizing over the entire O(n2) matrix, both in terms of
computational efficiency as well as statistical robustness. In Section 4, we generalized kernel func-
tion learning to other loss functions. A special case of our approach is the trace-norm based kernel
function learning problem, which can be applied to the task of semi-supervised inductive kernel
dimensionality reduction.

In this section, we present experiments from several domains: benchmark UCI data, automated
software debugging, text analysis, and object recognition for computer vision. We evaluate perfor-
mance of our learned distance metrics or kernel functions in the context of a) classification accuracy
for the k-nearest neighbor algorithm, b) kernel dimensionality reduction. For the classification task,
our k-nearest neighbor classifier uses k = 10 nearest neighbors (except for Section 6.3 where we
use k = 1), breaking ties arbitrarily. We select the value of k arbitrarily and expect to get slightly
better accuracies using cross-validation. Accuracy is defined as the number of correctly classified
examples divided by the total number of classified examples. For the dimensionality reduction task,
we visualize the two dimensional embedding of the data using our trace-norm based method with
pairwise similarity/dissimilarity constraints.

For our proposed algorithms, pairwise constraints are inferred from true class labels. For each
class i, 100 pairs of points are randomly chosen from within class i and are constrained to be similar,
and 100 pairs of points are drawn from classes other than i to form dissimilarity constraints. Given
c classes, this results in 100c similarity constraints, and 100c dissimilarity constraints, for a total
of 200c constraints. The upper and lower bounds for the similarity and dissimilarity constraints
are determined empirically as the 1st and 99th percentiles of the distribution of distances computed
using a baseline Mahalanobis distance parameterized byW0. Finally, the slack penalty parameter γ
used by our algorithms is cross-validated using values {.01, .1,1,10,100,1000}.

All metrics/kernels are trained using data only in the training set. Test instances are drawn from
the test set and are compared to examples in the training set using the learned distance/kernel func-
tion. The test and training sets are established using a standard two-fold cross validation approach.
For experiments in which a baseline distance metric/kernel is evaluated (for example, the squared
Euclidean distance), nearest neighbor searches are again computed from test instances to only those
instances in the training set.

For additional large-scale results, see Kulis et al. (2009a), which uses our parameter-reduction
strategy to learn kernels over a data set containing nearly half a million images in 24,000 dimen-
sional space for the problem of human-body pose estimation; we also applied our algorithms on the
MNIST data set of 60,000 digits in Kulis et al. (2008).

6.1 Low-Dimensional Data Sets

First we evaluate our LogDet divergence based metric learning method (see Algorithm 1) on the
standard UCI data sets in the low-dimensional (non-kernelized) setting, to directly compare with
several existing metric learning methods. In Figure 1 (a), we compare LogDet Linear (K0 equals
the linear kernel) and the LogDet Gaussian (K0 equals Gaussian kernel in kernel space) algorithms
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Figure 1: (a): Results over benchmark UCI data sets. LogDet metric learning was run with in
input space (LogDet Linear) as well as in kernel space with a Gaussian kernel (LogDet
Gaussian). (b), (c): Classification error rates for k-nearest neighbor software support via
different learned metrics. We see in figure (b) that LogDet Linear is the only algorithm to
be optimal (within the 95% confidence intervals) across all data sets. In (c), we see that
the error rate for the Latex data set stays relatively constant for LogDet Linear.

against existing metric learning methods for k-NN classification. We also show results of a recently-
proposed online metric learning algorithm based on the LogDet divergence over this data (Jain et al.,
2008), called LogDet Online. We use the squared Euclidean distance, d(x,y) = (x−y)T (x−y) as
a baseline method (i.e.,W0= I). We also use a Mahalanobis distance parameterized by the inverse of
the sample covariance matrix (i.e.,W0 = Σ−1, where Σ is the sample covariance matrix of the data).
This method is equivalent to first performing a standard PCA whitening transform over the feature
space and then computing distances using the squared Euclidean distance. We compare our method
to two recently proposed algorithms: Maximally Collapsing Metric Learning by Globerson and
Roweis (2005) (MCML), and metric learning via Large Margin Nearest Neighbor by Weinberger
et al. (2005) (LMNN). Consistent with existing work such as Globerson and Roweis (2005), we
found the method of Xing et al. (2002) to be very slow and inaccurate, so the latter was not included
in our experiments. As seen in Figure 1 (a), LogDet Linear and LogDet Gaussian algorithms obtain
somewhat higher accuracy for most of the data sets. In addition to our evaluations on standard
UCI data sets, we also apply our algorithm to the recently proposed problem of nearest neighbor
software support for the Clarify system (Ha et al., 2007). The basis of the Clarify system lies in the
fact that modern software design promotes modularity and abstraction. When a program terminates
abnormally, it is often unclear which component should be responsible or capable of providing an
error report. The system works by monitoring a set of predefined program features (the data sets
presented use function counts) during program runtime which are then used by a classifier in the
event of abnormal program termination. Nearest neighbor searches are particularly relevant to this
problem. Ideally, the neighbors returned should not only have the correct class label, but should also
represent similar program configurations or program inputs. Such a matching can be a powerful tool
to help users diagnose the root cause of their problem. The four data sets we use correspond to the
following software: Latex (the document compiler, 9 classes), Mpg321 (an mp3 player, 4 classes),
Foxpro (a database manager, 4 classes), and Iptables (a Linux kernel application, 5 classes).
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Data Set n d Unsupervised LogDet Linear HMRF-KMeans
Ionosphere 351 34 0.314 0.113 0.256
Digits-389 317 16 0.226 0.175 0.286

Table 1: Unsupervised k-means clustering error using the baseline squared Euclidean distance,
along with semi-supervised clustering error with 50 constraints.

Our experiments on the Clarify system, like the UCI data, are over fairly low-dimensional data.
Ha et al. (2007) showed that high classification accuracy can be obtained by using a relatively small
subset of available features. Thus, for each data set, we use a standard information gain feature
selection test to obtain a reduced feature set of size 20. From this, we learn metrics for k-NN clas-
sification using the methods developed in this paper. Results are given in Figure 1(b). The LogDet
Linear algorithm yields significant gains for the Latex benchmark. Note that for data sets where
Euclidean distance performs better than the inverse covariance metric, the LogDet Linear algorithm
that normalizes to the standard Euclidean distance yields higher accuracy than that regularized to
inverse covariance (LogDet-Inverse Covariance). In general, for the Mpg321, Foxpro, and Iptables
data sets, learned metrics yield only marginal gains over the baseline Euclidean distance measure.

Figure 1(c) shows the error rate for the Latex data sets with a varying number of features (the
feature sets are again chosen using the information gain criteria). We see here that LogDet Linear
is surprisingly robust. Euclidean distance, MCML, and LMNN all achieve their best error rates for
five dimensions. LogDet Linear, however, attains its lowest error rate of .15 at d = 20 dimensions.

We also briefly present some semi-supervised clustering results for two of the UCI data sets.
Note that both MCML and LMNN are not amenable to optimization subject to pairwise distance
constraints. Instead, we compare our method to the semi-supervised clustering algorithm HMRF-
KMeans (Basu et al., 2004). We use a standard 2-fold cross validation approach for evaluating semi-
supervised clustering results. Distances are constrained to be either similar or dissimilar, based on
class values, and are drawn only from the training set. The entire data set is then clustered into c
clusters using k-means (where c is the number of classes) and error is computed using only the test
set. Table 1 provides results for the baseline k-means error, as well as semi-supervised clustering
results with 50 constraints.

6.2 Metric Learning for Text Classification

Next we present results in the text domain. Our text data sets are created by standard bag-of-
words Tf-Idf representations. Words are stemmed using a standard Porter stemmer and common
stop words are removed, and the text models are limited to the 5,000 words with the largest docu-
ment frequency counts. We provide experiments for two data sets: CMU 20-Newsgroups Data Set
(2008), and Classic3 Data Set (2008). Classic3 is a relatively small 3 class problem with 3,891 in-
stances. The newsgroup data set is much larger, having 20 different classes from various newsgroup
categories and 20,000 instances.

Our text experiments employ a linear kernel, and we use a set of basis vectors that is constructed
from the class labels via the following procedure. Let c be the number of distinct classes and let
k be the size of the desired basis. If k = c, then each class mean ri is computed to form the basis
R = [r1 . . .rc]. If k < c a similar process is used but restricted to a randomly selected subset of
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Figure 2: (a), (b): Classification accuracy for our Mahalanobis metrics learned over basis of dif-
ferent dimensionality. Overall, our method (LogDet Linear) significantly outperforms
existing methods. (c): Two-dimensional embedding of 2000 USPS digits obtained using
our method Trace-SSIKDR for a training set of just 100 USPS digits. Note that we use
the inductive setting here and the embedding is color coded according to the underlying
digit. (d): Embedding of the USPS digits data set obtained using kernel-PCA.

k classes. If k > c, instances within each class are clustered into approximately k
c clusters. Each

cluster’s mean vector is then computed to form the set of low-rank basis vectors R. Figure 2 shows
classification accuracy across bases of varying sizes for the Classic3 data set, along with the news-
group data set. As baseline measures, the standard squared Euclidean distance is shown, along with
Latent Semantic Analysis (LSA) (Deerwester et al., 1990), which works by projecting the data via
principal components analysis (PCA), and computing distances in this projected space. Comparing
our algorithm to the baseline Euclidean measure, we can see that for smaller bases, the accuracy of
our algorithm is similar to the Euclidean measure. As the size of the basis increases, our method
obtains significantly higher accuracy compared to the baseline Euclidean measure.

6.3 Kernel Learning for Visual Object Recognition

Next we evaluate our method over high-dimensional data applied to the object-recognition task
using Caltech-101 Data Set (2004), a common benchmark for this task. The goal is to predict the
category of the object in the given image using a k-NN classifier.

We compute distances between images using learning kernels with three different base image
kernels: 1) PMK: Grauman and Darrell’s pyramid match kernel (Grauman and Darrell, 2007) ap-
plied to SIFT features, 2) CORR: the kernel designed by Zhang et al. (2006) applied to geometric
blur features , and 3) SUM: the average of four image kernels, namely, PMK (Grauman and Dar-
rell, 2007), Spatial PMK (Lazebnik et al., 2006), and two kernels obtained via geometric blur (Berg
and Malik, 2001). Note that the underlying dimensionality of these embeddings is typically in the
millions of dimensions.

We evaluate the effectiveness of metric/kernel learning on this data set. We pose a k-NN classifi-
cation task, and evaluate both the original (SUM, PMK or CORR) and learned kernels. We set k= 1
for our experiments; this value was chosen arbitrarily. We vary the number of training examples T
per class for the database, using the remainder as test examples, and measure accuracy in terms of
the mean recognition rate per class, as is standard practice for this data set.

Figure 3 (a) shows our results relative to several other existing techniques that have been applied
to this data set. Our approach outperforms all existing single-kernel classifier methods when using
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Figure 3: Results on Caltech-101. LogDet+SUM refers to our learned kernel when the base kernel
is the average of four kernels (PMK, SPMK, Geoblur-1, Geoblur-2), LogDet+PMK refers
to the learned kernel when the base kernel is pyramid match kernel, and LogDet+CORR
refers to the learned kernel when the base kernel is correspondence kernel of Zhang et al.
(2006). (a): Comparison of LogDet based metric learning method with other state-of-the-
art object recognition methods. Our method outperforms all other single metric/kernel
approaches. (b): Our learned kernels significantly improve NN recognition accuracy
relative to their non-learned counterparts, the SUM (average of four kernels), the CORR
and PMK kernels.

the learned CORR kernel: we achieve 61.0% accuracy for T = 15 and 69.6% accuracy for T = 30.
Our learned PMK achieves 52.2% accuracy for T = 15 and 62.1% accuracy for T = 30. Similarly,
our learned SUM kernel achieves 73.7% accuracy for T = 15. Figure 3 (b) specifically shows the
comparison of the original baseline kernels for NN classification. The plot reveals gains in 1-NN
classification accuracy; notably, our learned kernels with simple NN classification also outperform
the baseline kernels when used with SVMs (Zhang et al., 2006; Grauman and Darrell, 2007).

6.4 USPS Digits

Finally, we qualitatively evaluate our dimensionality reduction method (see Section 5.4) on the
USPS digits data set. Here, we train our method using 100 examples to learn a mapping to two
dimensions, that is, a rank-2 matrixW . For the baseline kernel, we use the data-dependent kernel
function proposed by Sindhwani et al. (2005) that also accounts for the manifold structure of the data
within the kernel function. We then embed 2000 (unseen) test examples into two dimensions using
our learned low-rank transformation. Figure 2 (c) shows the embedding obtained by our Trace-
SSIKDR method, while Figure 2 (d) shows the embedding obtained by the kernel-PCA algorithm.
Each point is color coded according to the underlying digit. Note that our method is able to separate
out seven of the digits reasonably well, while kernel-PCA is able to separate out only three of the
digits.
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7. Conclusions

In this paper, we considered the general problem of learning a linear transformation of the input data
and applied it to the problems of metric and kernel learning, with a focus on establishing connec-
tions between the two problems. We showed that the LogDet divergence is a useful loss for learning
a linear transformation over very high-dimensional data, as the algorithm can easily be generalized
to work in kernel space, and proposed an algorithm based on Bregman projections to learn a kernel
function over the data points efficiently under this loss. We also showed that our learned metric can
be restricted to a small dimensional basis efficiently, thereby permitting scalability of our method
to large data sets with high-dimensional feature spaces. Then we considered how to generalize this
result to a larger class of convex loss functions for learning the metric/kernel using a linear transfor-
mation of the data. We proved that many loss functions can lead to efficient kernel function learning,
though the resulting optimizations may be more expensive to solve than the simpler LogDet formu-
lation. A key consequence of our analysis is that a number of existing approaches for Mahalanobis
metric learning may be applied in kernel space using our kernel learning formulation. Finally, we
presented several experiments on benchmark data, high-dimensional vision, and text classification
problems as well as a semi-supervised kernel dimensionality reduction problem, demonstrating our
method compared to several existing state-of-the-art techniques.

There are several potential directions for future work. To facilitate even larger data sets than
the ones considered in this paper, online learning methods are one promising research direction;
in Jain et al. (2008), an online learning algorithm was proposed based on LogDet regularization,
and this remains a part of our ongoing efforts. Recently, there has been some interest in learning
multiple local metrics over the data; Weinberger and Saul (2008) considered this problem. We plan
to explore this setting with the LogDet divergence, with a focus on scalability to very large data sets.
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Abstract
The MULTIBOOST package provides a fast C++ implementation of multi-class/multi-label/multi-
task boosting algorithms. It is based on ADABOOST.MH but it also implements popular cascade
classifiers and FILTERBOOST. The package contains common multi-class base learners (stumps,
trees, products, Haar filters). Further base learners and strong learners following the boosting
paradigm can be easily implemented in a flexible framework.
Keywords: boosting, ADABOOST.MH, FILTERBOOST, cascade classifier

1. Introduction

ADABOOST (Freund and Schapire, 1997) is one of the best off-the-shelf learning methods devel-
oped in the last fifteen years. It constructs a classifier in an incremental fashion by adding simple
classifiers to a pool, and uses their weighted “vote” to determine the final classification. ADABOOST
was later extended to multi-class classification problems (Schapire and Singer, 1999). Although var-
ious other attempts have been made handle the multi-class setting, ADABOOST.MH has become the
gold standard of multi-class boosting due to its simplicity and versatility.

Despite the simplicity and the practical success of the ADABOOST, there are relatively few
off-the-shelf implementations available in the free software market. Whereas binary ADABOOST
with decision stumps is easy to code, multi-class ADABOOST.MH and complex base learners are
not straightforward to implement efficiently. The MULTIBOOST software package is intended to
fill this gap. Its main boosting engine is based on the ADABOOST.MH algorithm of Schapire and

∗. R. Busa-Fekete is on leave from the Research Group on Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged.
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Figure 1: The architecture of MULTIBOOST

Singer (1999), but popular cascade classifiers (VJCASCADE (Viola and Jones, 2004), SOFTCAS-
CADE (Bourdev and Brandt, 2005)) and FILTERBOOST (Bradley and Schapire, 2008) have also
been implemented. The package includes common multi-class base learners (real and nominal val-
ued decision stumps, trees, products (Kégl and Busa-Fekete, 2009), and Haar filters), but the flexible
architecture makes it simple to add new base learners without interfering with the main boosting en-
gine. MULTIBOOST was designed in the object-oriented paradigm and coded in C++, so it is fast
and it provides a flexible base for implementing further modules.

The rest of this paper is organized as follows. Section 2 describes the general architecture
and the modules of MULTIBOOST. Section 3 deals with practical issues (website, documentation,
licence), and Section 4 describes some of our results obtained on benchmark data sets and in data
mining challenges.

2. The Architecture

MULTIBOOST was implemented within the object-oriented paradigm using some design patterns.
It consists of several modules which can be changed or extended more or less independently (Fig-
ure 1). For instance, an advanced user can implement a data-type/base-learner pair without any need
to modify the other modules.

2.1 Strong Learners

The strong learner1 calls the base learners iteratively, stores the learned base classifiers and their
coefficients, and manages the weights of the training instances. The resulting classifier is serialized

1. The name originally comes from the boosting (PAC learning) literature. Here, we use it in a broader sense to mean
the “outer” loop of the boosting iteration.
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in a human-readable XML format that allows one to resume a run after it was stopped or crashed.
MULTIBOOST implements the following strong learners:

• ADABOOST.MH (Schapire and Singer, 1999): a multi-class/multi-label/multi-task version of
ADABOOST that learns a “flat” linear combination of vector-valued base classifiers.

• FILTERBOOST (Bradley and Schapire, 2008): an online “filtering” booster.

• VJCASCADE (Viola and Jones, 2004): an algorithm that learns a cascade classifier tree by
running ADABOOST at each node.

• SOFTCASCADE (Bourdev and Brandt, 2005): another cascade learner that starts with a set of
base classifiers, reorders them, and augments them with rejection thresholds.

2.2 Base Learners

MULTIBOOST implements the following base learners.

• The STUMP learner is a one-decision two-leaf tree learned on real-valued features. It is in-
dexed by the feature it cuts and the threshold where it cuts the feature.

• SELECTOR is a one-decision two-leaf tree learned on nominal features. It is indexed by the
feature it cuts and the value of the feature it selects.

• INDICATOR is similar to SELECTOR but it can select several values for a given feature (that
is, it can indicate a subset of the values).

• HAARSTUMP is a STUMP learned over a feature space generated using rectangular filters on
images.

• TREE is a meta base learner that takes any base learner as input and learns a vector-valued
multi-class decision tree using the input base learner as the basic cut.

• PRODUCT is another meta base learner that takes any base learner as input and learns a vector-
valued multi-class decision product (Kégl and Busa-Fekete, 2009) using the input base learner
as terms of the product.

2.3 The Data Representation

The multi-class data structure is a set of observation-label pairs, where each observation is a vector
of feature values, and each label is a vector of binary class indicators. In binary classification, we
also allow one single label that indicates the class dichotomy. In single-label multi-class classifica-
tion, only one of the K labels is 1 and the others are −1, but the framework also allows multi-label
classification with several positive classes per instance. In addition, multi-task classification can
be encoded by letting each label column represent a different task. We implement a sparse data
representation for both the observation matrix and the label matrix. In general, base learners were
implemented to work with their own data representation. For example, SPARSESTUMP works on
sparse observation matrices and HAARSTUMP works on an integral image data representation.
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2.4 The Data Parser and the Output Information

The training and test sets can be input in the attribute-relation file format (ARFF),2 in the SVM-
LIGHT format,3 or using a comma separated text file. We augmented the first two formats with
initial label weighting, which is an important feature in the boosting framework (especially in the
multi-class/multi-label setup).

In each iteration, MULTIBOOST can output several metrics (specified by the user), such as the 0-
1 error, the Hamming loss, or the area under the ROC curve. New metrics can also be implemented
without modifying other parts of the code.

2.5 LAZYBOOST and BANDITBOOST

When the number of features is large, featurewise learners (STUMP, SELECTOR, and INDICATOR)
can be accelerated by searching only a subset of the features in each iteration. MULTIBOOST
implements two options, namely, LAZYBOOST (Escudero et al., 2000), where features are sampled
randomly, and BANDITBOOST (Busa-Fekete and Kégl, 2010), where the sampling is biased towards
“good” features learned using a multi-armed bandit algorithm.

3. Documentation and License

The code of MULTIBOOST has been fully documented in Doxygen.4 It is available under the GPL
licence at multiboost.org. The website also provides documentation that contains detailed in-
structions and examples for using the package along with tutorials explaining how to implement
new features. The documentation also contains the pseudo-code of the multi-class base learners
implemented in MULTIBOOST.

4. Challenges and Benchmarks

Wemake available reproducible test results (validated test errors, learning curves) of MULTIBOOST
on the web site as we produce them. Among other results, the boosted decision product is one of
the best reported no-domain-knowledge algorithms on MNIST.5 An early version of the program
(Bergstra et al., 2006) was the best genre classifier out of 15 submissions and the second-best out of
10 submissions at recognizing artists in the MIREX 2005 international contest on music information
extraction. More recently, we participated in the Yahoo! Learning to Rank Challenge6 using a
pointwise ranking approach based on hundreds of MULTIBOOST classifiers. We finished 6th in
Track 1 and 11th in Track 2 out of several hundred participating teams (Busa-Fekete et al., 2011).
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Abstract
Motivated by a need to classify high-dimensional, heterogeneous data from the bioinformatics do-
main, we developed ML-Flex, a machine-learning toolbox that enables users to perform two-class
and multi-class classification analyses in a systematic yet flexible manner. ML-Flex was writ-
ten in Java but is capable of interfacing with third-party packages written in other programming
languages. It can handle multiple input-data formats and supports a variety of customizations. ML-
Flex provides implementations of various validation strategies, which can be executed in parallel
across multiple computing cores, processors, and nodes. Additionally, ML-Flex supports aggre-
gating evidence across multiple algorithms and data sets via ensemble learning. This open-source
software package is freely available from http://mlflex.sourceforge.net.
Keywords: toolbox, classification, parallel, ensemble, reproducible research

1. Introduction

The machine-learning community has developed a wide array of classification algorithms, but they
are implemented in diverse programming languages, have heterogeneous interfaces, and require
disparate file formats. Also, because input data come in assorted formats, custom transformations
often must precede classification. To address these challenges, we developed ML-Flex, a general-
purpose toolbox for performing two-class and multi-class classification analyses. Via command-line
interfaces, ML-Flex can invoke algorithms implemented in any programming language. Currently,
ML-Flex can interface with several popular third-party packages, includingWeka (Hall et al., 2009),
Orange (Demsar et al., 2004), C5.0 Decision Trees (RuleQuest Research, 2011), and R (R Develop-
ment Core Team, 2011). In many cases, new packages can be integrated with ML-Flex through only
minor modifications to configuration files. However, via a simple extension mechanism, ML-Flex
also supports a great amount of flexibility for custom integrations. ML-Flex can parse input data in
delimited and ARFF formats, and it can easily be extended to parse data from custom sources.

ML-Flex can perform systematic evaluations across multiple algorithms and data sets. Fur-
thermore, it can aggregate evidence across algorithms and data sets via ensemble learning. The

c©2012 Stephen R. Piccolo and Lewis J. Frey.
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following ensemble learners currently are supported: majority vote (Boland, 1989), weighted ma-
jority vote (Littlestone and Warmuth, 1994), mean probability rule, weighted mean probability rule,
maximum probability rule, select-best rule, and stacked generalization (Wolpert, 1992). (When en-
semble learners are applied, predictions from individual classifiers are reused from prior execution
steps, thus decreasing computational overhead.)

ML-Flex provides implementations of various validation strategies, including simple train-test
validation, K-fold cross validation, repeated random sampling validation, and leave-one-out cross
validation. For each validation strategy, ML-Flex can also apply feature selection/ranking algo-
rithms and perform nested cross-validation within respective training sets. To enable shorter execu-
tion times for computationally intensive validation strategies, ML-Flex can be executed in parallel
across multiple computing cores/processors and multiple nodes on a network. Individual computing
nodes may have heterogeneous hardware configurations so long as each node can access a shared file
system. In a recent analysis of a large biomedical data set, ML-Flex was executed simultaneously
across hundreds of cluster-computing cores (Piccolo, 2011).

Upon completing classification tasks, ML-Flex produces parsable text files that report perfor-
mance metrics, confusion matrices, outputs from individual algorithms, and a record of all configu-
ration settings used. A formatted HTML report with the same information is also provided. These
features enable reproducibility and transparency about how a given set of results was obtained.

Available from http://mlflex.sourceforge.net, ML-Flex is licensed under the GNU Gen-
eral Public License Version 3.0. The distribution contains extensive documentation, including tuto-
rials and sample experiments.

2. Architecture

Execution of ML-Flex revolves around the concept of an “experiment.” For a given experiment, the
user specifies one or more sets of independent (predictor) variables and a dependent variable (class)
as well as any algorithm(s) that should be applied to the data. Various other settings (for example,
number of cross-validation folds, number of iterations, random seed) can be altered optionally.

To configure an experiment, users can specify three types of settings: 1) learner templates, 2)
algorithm parameters, and 3) experiment-specific preferences. For example, if a user wanted to
apply the Weka implementation of the One Rule classification algorithm, with a minimum bucket
size of 6, to the classic Iris data set, she would first create a learner template such as the following
(simplified for brevity):

wekac;mlflex.learners.WekaLearner;java -classpath lib/weka.jar {ALGORITHM}
-t {INPUT_TRAINING_FILE} -T {INPUT_TEST_FILE} -p 0 -distribution

The above template contains three items, separated by semicolons: 1) a unique key, 2) the
name of a Java class that supports interfacing with Weka, and 3) a templated shell command for
invoking Weka on that system. (When ML-Flex executes a command, placeholders—for example,
“{ALGORITHM}”—are replaced with relevant values.) Having specified this template, the user
would specify the following in an algorithm-parameters file:

one_r;wekac;weka.classifiers.rules.OneR -B 6

This entry indicates 1) a unique key, 2) a reference to the learner template, and 3) the parameters
that should be passed to Weka. Finally, the user would include the following in an experiment file:
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CLASSIFICATION_ALGORITHMS=one_r
DATA_PROCESSORS=mlflex.dataprocessors.ArffDataProcessor("iris.arff")

The first line references the algorithm-parameters entry, and the second line indicates the name
of a Java class that can parse the input data. (Example files and detailed explanations of all config-
uration settings are provided.)

At each stage of an experiment, ML-Flex can execute in parallel, using a simple, coarse-grained
architecture. Independent computing tasks—for example, parsing a given input file, classifying
a given combination of data set and algorithm and cross-validation fold, or outputting results—
are packaged by each computing node into uniquely defined Java objects. Then thread(s) on each
computing node compete to execute each task via a locking mechanism. Initially, each thread checks
for a status file that would indicate whether a given task has been executed and the corresponding
result has been stored. If the task has not yet been processed, the thread checks the file system for
a correspondingly named “lock file” that indicates whether the task is currently being processed
by another thread. If no lock file exists, the thread attempts to create the file atomically. Having
successfully created the lock file, the thread executes the task, stores the result on the file system,
and deletes the lock file. If a system error or outage occurs, the lock file will persist for a user-
configurable period of time, after which it will be deleted and the task reattempted.

Because this parallel-processing approach requires many input/output operations and because
individual computing nodes do not communicate with each other directly, minor inefficiencies may
arise. However, the simplicity of the approach offers many advantages: 1) no third-party software
package is necessary for interprocess communication, 2) individual computing nodes may run dif-
ferent operating systems and/or have different hardware configurations, 3) the number of computing
nodes that can be employed simultaneously is scalable, 4) if an individual computing node goes of-
fline, remaining nodes are unaffected, 5) additional computing nodes may be assigned after a job has
already begun processing, and 6) experiments are restartable. The latter three features are particu-
larly desirable in cluster-computing environments where server reliability may be less than optimal
and where computing nodes may become available incrementally.

3. Related Work

Machine-learning toolboxes like caret,Weka,Orange, and KNIME implement a broad range of clas-
sification algorithms, but many useful algorithms are not included in these packages, perhaps due to
licensing restrictions, resource constraints, or programming-language preferences. Like SHOGUN
(Sonnenburg et al., 2010), ML-Flex provides a harness that allows developers to implement algo-
rithms natively in the language of their choice. Because no language-specific interfaces are nec-
essary in ML-Flex, integration can often occur with no change to the ML-Flex source code. This
approach also empowers algorithm developers to take the lead in integrating with ML-Flex and thus
benefit from its other features, including model evaluation and parallelization.

KNIME and RapidMiner (Mierswa et al., 2006) support various input-file formats, transforma-
tion procedures, and data-filtering modules. In an alternative approach, ML-Flex provides an ex-
tension mechanism, which allows users to preprocess data using custom Java code. (Weka supports
similar functionality.) This approach may be especially useful in research settings where unusual
data formats are prevalent, advanced transformations are desired, or data must be accessed remotely
(for example, via Web services, including those that require authentication).
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Other toolboxes support the ability to distribute workloads across multiple computers. For ex-
ample, a client machine executing the Weka Experimenter module can distribute its workload via
Java Remote Method Invocation. The caret R package (Kuhn, 2008) uses the NetWorkSpacesTM
technology to distribute workloads. The commercial version of KNIME (Berthold et al., 2007) can
distribute its workload to cluster servers running Oracle R© Grid Engine. And Apache MahoutTM
(Ingersol, 2009) uses the map/reduce paradigm to enable execution on cluster-computing environ-
ments. ML-Flex differentiates itself from these tools by 1) supporting heterogeneous configurations
among computing nodes, 2) allowing recovery from system outages due to no single point of failure
(assuming redundant disk storage), and 3) supporting restartability and incremental node alloca-
tions.

Many toolboxes—including Weka, Orange, KNIME, caret, SHOGUN, and Waffles (Gashler,
2011)—support experimental reproducibility via application programming interfaces (API),
command-line interfaces (CLI), and/or visual workflow pipelines. Users can write client tools that
invoke APIs and that can later be re-executed. Scripts that invoke CLIs can be repeated; and visual
pipelines typically encapsulate execution logic. In ML-Flex, users encode all configuration settings
in text files. With this approach, users are not required to write code nor extensive scripts. How-
ever, with a modest scripting effort, it is possible to generate configuration files dynamically, an
approach that may not be feasible with visual workflows. Because a copy of relevant configura-
tion files accompany the results of each experiment, subsequent replication of results is straightfor-
ward. Additionally, in experiments that use repeated random sampling validation, ML-Flex encap-
sulates sampling and summarization logic, which may be burdensome to replicate with alternative
approaches.
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Abstract
Boosting combines weak learners into a predictor with low empirical risk. Its dual constructs a high
entropy distribution upon which weak learners and training labels are uncorrelated. This manuscript
studies this primal-dual relationship under a broad family of losses, including the exponential loss
of AdaBoost and the logistic loss, revealing:

• Weak learnability aids the whole loss family: for any ε> 0, O(ln(1/ε)) iterations suffice to produce a
predictor with empirical risk ε-close to the infimum;

• The circumstances granting the existence of an empirical risk minimizer may be characterized in terms
of the primal and dual problems, yielding a new proof of the known rate O(ln(1/ε));

• Arbitrary instances may be decomposed into the above two, granting rate O(1/ε), with a matching
lower bound provided for the logistic loss.

Keywords: boosting, convex analysis, weak learnability, coordinate descent, maximum entropy

1. Introduction

Boosting is the task of converting inaccurate weak learners into a single accurate predictor. The
existence of any such method was unknown until the breakthrough result of Schapire (1990): under
a weak learning assumption, it is possible to combine many carefully chosen weak learners into
a majority of majorities with arbitrarily low training error. Soon after, Freund (1995) noted that a
single majority is enough, and that Θ(ln(1/ε)) iterations are both necessary and sufficient to attain
accuracy ε. Finally, their combined effort produced AdaBoost, which exhibits this optimal conver-
gence rate (under the weak learning assumption), and has an astonishingly simple implementation
(Freund and Schapire, 1997).

It was eventually revealed that AdaBoost was minimizing a risk functional, specifically the
exponential loss (Breiman, 1999). Aiming to alleviate perceived deficiencies in the algorithm, other
loss functions were proposed, foremost amongst these being the logistic loss (Friedman et al., 2000).
Given the wide practical success of boosting with the logistic loss, it is perhaps surprising that no
convergence rate better than O(exp(1/ε2)) was known, even under the weak learning assumption
(Bickel et al., 2006). The reason for this deficiency is simple: unlike SVM, least squares, and
basically any other optimization problem considered in machine learning, there might not exist a
choice which attains the minimal risk! This reliance is carried over from convex optimization, where
the assumption of attainability is generally made, either directly, or through stronger conditions like
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compact level sets or strong convexity (Luo and Tseng, 1992). But this limitation seems artificial:
a function like exp(−x) has no minimizer but decays rapidly.

Convergence rate analysis provides a valuable mechanism to compare and improve of minimiza-
tion algorithms. But there is a deeper significance with boosting: a convergence rate of O(ln(1/ε))
means that, with a combination of just O(ln(1/ε)) predictors, one can construct an ε-optimal clas-
sifier, which is crucial to both the computational efficiency and statistical stability of this predictor.

The main contribution of this manuscript is to provide a tight convergence theory for a large
family of losses, including the exponential and logistic losses, which has heretofore resisted anal-
ysis. In particular, it is shown that the (disjoint) scenarios of weak learnability (Section 6.1) and
attainability (Section 6.2) both exhibit the rate O(ln(1/ε)). These two scenarios are in a strong
sense extremal, and general instances are shown to decompose into them; but their conflicting be-
havior yields a degraded rate O(1/ε) (Section 6.3). A matching lower bound for the logistic loss
demonstrates this is no artifact.

1.1 Outline

Beyond providing these rates, this manuscript will study the rich ecology within the primal-dual
interplay of boosting.

Starting with necessary background, Section 2 provides the standard view of boosting as co-
ordinate descent of an empirical risk. This primal formulation of boosting obscures a key internal
mechanism: boosting iteratively constructs distributions where the previously selected weak learner
fails. This view is recovered in the dual problem; specifically, Section 3 reveals that the dual feasible
set is the collection of distributions where all weak learners have no correlation to the target, and
the dual objective is a max entropy rule.

The dual optimum is always attainable; since a standard mechanism in convergence analysis to
control the distance to the optimum, why not overcome the unattainability of the primal optimum
by working in the dual? It turns out that the classical weak learning rate was a mechanism to control
distances in the dual all along; by developing a suitable generalization (Section 4), it is possible to
convert the improvement due to a single step of coordinate descent into a relevant distance in the
dual (Section 6). Crucially, this holds for general instances, without any assumptions.

The final puzzle piece is to relate these dual distances to the optimality gap. Section 5 lays the
foundation, taking a close look at the structure of the optimization problem. The classical scenarios
of attainability and weak learnability are identifiable directly from the weak learning class and
training sample; moreover, they can be entirely characterized by properties of the primal and dual
problems.

Section 5 will also reveal another structure: there is a subset of the training set, the hard core,
which is the maximal support of any distribution upon which every weak learner and the training
labels are uncorrelated. This set is central—for instance, the dual optimum (regardless of the loss
function) places positive weight on exactly the hard core. Weak learnability corresponds to the
hard core being empty, and attainability corresponds to it being the whole training set. For those
instances where the hard core is a nonempty proper subset of the training set, the behavior on and
off the hard core mimics attainability and weak learnability, and Section 6.3 will leverage this to
produce rates using facts derived for the two constituent scenarios.

Much of the technical material is relegated to the appendices. For convenience, Section A sum-
marizes notation, and Section B contains some important supporting results. Of perhaps practical

562



A PRIMAL-DUAL CONVERGENCE ANALYSIS OF BOOSTING

interest, Section D provides methods to select the step size, meaning the weight with which new
weak learners are included in the full predictor. These methods are sufficiently powerful to grant
the convergence rates in this manuscript.

1.2 Related Work

The development of general convergence rates has a number of important milestones in the past
decade. Collins et al. (2002) proved convergence for a large family of losses, albeit without any
rates. Interestingly, the step size only partially modified the choice from AdaBoost to accommodate
arbitrary losses, whereas the choice here follows standard optimization principles based purely on
the particular loss. Next, Bickel et al. (2006) showed a general rate of O(exp(1/ε2)) for a slightly
smaller family of functions: every loss has positive lower and upper bounds on its second deriva-
tive within any compact interval. This is a larger family than what is considered in the present
manuscript, but Section 6.2 will discuss the role of the extra assumptions when producing fast rates.

Many extremely important cases have also been handled. The first is the original rate of
O(ln(1/ε)) for the exponential loss under the weak learning assumption (Freund and Schapire,
1997). Next, under the assumption that the empirical risk minimizer is attainable, Rätsch et al.
(2001) demonstrated the rate O(ln(1/ε)). The loss functions in that work must satisfy lower and
upper bounds on the Hessian within the initial level set; equivalently, the existence of lower and
upper bounding quadratic functions within this level set. This assumption may be slightly relaxed
to needing just lower and upper second derivative bounds on the univariate loss function within an
initial bounding interval (cf. discussion within Section 5.2), which is the same set of assumptions
used by Bickel et al. (2006), and as discussed in Section 6.2, is all that is really needed by the
analysis in the present manuscript under attainability.

Parallel to the present work, Mukherjee et al. (2011) established general convergence under the
exponential loss, with a rate of Θ(1/ε). That work also presented bounds comparing the AdaBoost
suboptimality to any l1 bounded solution, which can be used to succinctly prove consistency prop-
erties of AdaBoost (Schapire and Freund, in preparation). In this case, the rate degrades to O(ε−5),
which although presented without lower bound, is not terribly surprising since the optimization
problem minimized by boosting has no norm penalization. Finally, mirroring the development here,
Mukherjee et al. (2011) used the same boosting instance (due to Schapire 2010) to produce lower
bounds, and also decomposed the boosting problem into finite and infinite margin pieces (cf. Sec-
tion 5.3).

It is interesting to mention that, for many variants of boosting, general convergence rates were
known. Specifically, once it was revealed that boosting is trying to be not only correct but also have
large margins (Schapire et al., 1997), much work was invested into methods which explicitly max-
imized the margin (Rätsch and Warmuth, 2002), or penalized variants focused on the inseparable
case (Warmuth et al., 2007; Shalev-Shwartz and Singer, 2008). These methods generally impose
some form of regularization (Shalev-Shwartz and Singer, 2008), which grants attainability of the
risk minimizer, and allows standard techniques to grant general convergence rates. Interestingly,
the guarantees in those works cited in this paragraph are O(1/ε2).

Hints of the dual problem may be found in many works, most notably those of Kivinen and
Warmuth (1999) and Collins et al. (2002), which demonstrated that boosting is seeking a difficult
distribution over training examples via iterated Bregman projections.
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The notion of hard core sets is due to Impagliazzo (1995). A crucial difference is that in the
present work, the hard core is unique, maximal, and every weak learner does no better than random
guessing upon a family of distributions supported on this set; in this cited work, the hard core is
relaxed to allow some small but constant fraction correlation to the target. This relaxation is central
to the work, which provides a correspondence between the complexity (circuit size) of the weak
learners, the difficulty of the target function, the size of the hard core, and the correlation permitted
in the hard core.

2. Setup

A view of boosting, which pervades this manuscript, is that the action of the weak learning class
upon the sample can be encoded as a matrix (Rätsch et al., 2001; Shalev-Shwartz and Singer, 2008).
Let a sample S := {(xi,yi)}m1 ⊆ (X ×Y )m and a weak learning class H be given. For every h ∈H ,
let S |h denote the negated projection onto S induced by h; that is, S |h is a vector of length m, with
coordinates (S |h)i=−yih(xi). If the set of all such columns {S |h : h∈H } is finite, collect them into
the matrix A ∈ Rm×n. Let ai denote the ith row of A, corresponding to the example (xi,yi), and let
{h j}n1 index the set of weak learners corresponding to columns of A. It is assumed, for convenience,
that entries of A are within [−1,+1]; relaxing this assumption merely scales the presented rates by
a constant.

The setting considered here is that this finite matrix can be constructed. Note that this can
encode infinite classes, so long as they map to only k < ∞ values (in which case A has at most km
columns). As another example, if the weak learners are binary, and H has VC dimension d, then
Sauer’s lemma grants that A has at most (m+ 1)d columns. This matrix view of boosting is thus
similar to the interpretation of boosting performing descent in functional space (Mason et al., 2000;
Friedman et al., 2000), but the class complexity and finite sample have been used to reduce the
function class to a finite object.

To make the connection to boosting, the missing ingredient is the loss function.

Definition 1 G0 is the set of loss functions g : R→ R satisfying: g is twice continuously differen-
tiable, g′′ > 0, and limx→−∞ g(x) = 0.

For convenience, whenever g ∈ G0 and sample size m are provided, let f : Rm → R denote the
empirical risk function f (x) := ∑m

i=1 g((x)i). For more properties of g and f , please see Section C.

The convergence rates of Section 6 will require a few more conditions, but G0 suffices for all
earlier results.

Example 1 The exponential loss exp(·) (AdaBoost) and logistic loss ln(1+ exp(·)) are both within
G0 (and the eventual G). These two losses appear in Figure 1, where the log-scale plot aims to
convey their similarity for negative values.

This definition provides a notational break from most boosting literature, which instead requires
limx→∞ g(x)= 0 (i.e., the exponential loss becomes exp(−x)); note that the usage here simply pushes
the negation into the definition of the matrix A. The significance of this modification is that the gradi-
ent of the empirical risk, which corresponds to distributions produced by boosting, is a nonnegative
measure. (Otherwise, it would be necessary to negate this (nonpositive) distribution everywhere to
match the boosting literature.) Note that there is no consensus on this choice, and the form followed
here can be found elsewhere (Boucheron et al., 2005).
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Figure 1: Exponential and logistic losses, plotted with linear and log-scale range.

Boosting determines some weighting λ ∈ Rn of the columns of A, which correspond to weak
learners in H . The (unnormalized) margin of example i is thus 〈−ai,λ〉 = −e*i Aλ, where ei is an
indicator vector. (This negation is one notational inconvenience of making losses increasing.) Since
the prediction on xi is 1[∑ j λ jh j(xi)≥ 0] = 1[yi 〈ai,λ〉 ≤ 0], it follows that Aλ< 0m (where 0m is the
zero vector) implies a training error of zero. As such, boosting solves the minimization problem

inf
λ∈Rn

m

∑
i=1

g(〈ai,λ〉) = inf
λ∈Rn

m

∑
i=1

g(e*i Aλ) = inf
λ∈Rn

f (Aλ) = inf
λ∈Rn

( f ◦A)(λ) =: f̄A; (1)

recall f :Rm →R is the convenience function f (x) =∑i g((x)i), and in the present problem denotes
the (unnormalized) empirical risk. f̄A will denote the optimal objective value.

The infimum in Equation 1 may well not be attainable. Suppose there exists λ′ such that Aλ′ <
0m (Theorem 11 will show that this is equivalent to the weak learning assumption). Then

0≤ inf
λ∈Rn

f (Aλ)≤ inf
c>0

f (A(cλ′)) = 0.

On the other hand, for any λ ∈ Rn, f (Aλ) > 0. Thus the infimum is never attainable when weak
learnability holds.

The template boosting algorithm appears in Figure 2, formulated in terms of f ◦A to make the
connection to coordinate descent as clear as possible. To interpret the gradient terms, note that

(∇( f ◦A)(λ)) j = (A*∇ f (Aλ)) j =−
m

∑
i=1

g′(〈ai,λ〉)h j(xi)yi,

which is the expected negative correlation of h j with the target labels according to an unnormalized
distribution with weights g′(〈ai,λ〉). The stopping condition ∇( f ◦A)(λ) = 0m means: either the
distribution is degenerate (it is exactly zero), or every weak learner is uncorrelated with the target.

As such, BOOST in Figure 2 represents an equivalent formulation of boosting, with one minor
modification: the column (weak learner) selection has an absolute value. But note that this is
the same as closing H under complementation (i.e., for any h ∈ H , there exists h(−) with h(x) =
−h(−)(x)), which is assumed in many theoretical treatments of boosting.

In the case of the exponential loss and binary weak learners, the line search (when attainable)
has a convenient closed form; but for other losses, and even with the exponential loss but with
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Routine BOOST.
Input Convex function f ◦A.
Output Approximate primal optimum λ.

1. Initialize λ0 := 0n.

2. For t = 1,2, . . ., while ∇( f ◦A)(λt−1) .= 0n:

(a) Choose column (weak learner)

jt := argmax
j

|∇( f ◦A)(λt−1)*e j|.

(b) Correspondingly, set descent direction vt ∈ {±e jt}; note

v*t ∇( f ◦A)(λt−1) =−‖∇( f ◦A)(λt−1)‖∞.

(c) Find αt via approximate solution to the line search

inf
α>0

( f ◦A)(λt−1+αvt).

(d) Update λt := λt−1+αtvt .

3. Return λt−1.

Figure 2: l1 steepest descent (Boyd and Vandenberghe, 2004, Algorithm 9.4) of f ◦A.

confidence-rated predictors, there may not be a closed form. As such, BOOST only requires an
approximate line search method. Section D details two mechanisms for this: an iterative method,
which requires no knowledge of the loss function, and a closed form choice, which unfortunately
requires some properties of the loss, which may be difficult to bound tightly. The iterative method
provides a slightly worse guarantee, but is potentially more effective in practice; thus it will be used
to produce all convergence rates in Section 6.

For simplicity, it is supposed that the best weak learner jt (or the approximation thereof encoded
in A) can always be selected. Relaxing this condition is not without subtleties, but as discussed in
Section E, there are ways to allow approximate selection without degrading the presented conver-
gence rates.

As a final remark, consider the rows {−ai}m1 of −A as a collection of m points in Rn. Due to
the form of g, BOOST is therefore searching for a halfspace, parameterized by a vector λ, which
contains all of these points. Sometimes such a halfspace may not exist, and g applies a smoothly
increasing penalty to points that are farther and farther outside it.

3. Dual Problem

Applying coordinate descent to Equation 1 represents a valid interpretation of boosting, in the sense
that the resulting algorithm BOOST is equivalent to the original. However this representation loses
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Figure 3: Fenchel conjugates of exponential and logistic losses.

the intuitive operation of boosting as generating distributions where the current predictor is highly
erroneous, and requesting weak learners accurate on these tricky distributions. The dual problem
will capture this.

In addition to illuminating the structure of boosting, the dual problem also possesses a major
concrete contribution to the optimization behavior, and specifically the convergence rates: the dual
optimum is always attainable.

The dual problem will make use of Fenchel conjugates (Hiriart-Urruty and Lemaréchal, 2001;
Borwein and Lewis, 2000); for any function h, the conjugate is

h∗(φ) = sup
x∈dom(h)

〈x,φ〉−h(x).

Example 2 The exponential loss exp(·) has Fenchel conjugate

(exp(·))∗(φ) =











φ ln(φ)−φ when φ> 0,
0 when φ= 0,
∞ otherwise.

The logistic loss ln(1+ exp(·)) has Fenchel conjugate

(ln(1+ exp(·)))∗(φ) =











(1−φ) ln(1−φ)+φ ln(φ) when φ ∈ (0,1),
0 when φ ∈ {0,1},
∞ otherwise.

These conjugates are known respectively as the Boltzmann-Shannon and Fermi-Dirac entropies
(Borwein and Lewis, 2000, Commentary, Section 3.3). Please see Figure 3 for a depiction.

It further turns out that general members of G0 have a shape reminiscent of these two standard
notions of entropy.
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Lemma 2 Let g ∈ G0 be given. Then g∗ is continuously differentiable on int(dom(g∗)), strictly
convex, and either dom(g∗) = [0,∞) or dom(g∗) = [0,b] where b > 0. Furthermore, g∗ has the
following form:

g∗(φ) ∈































∞ when φ< 0,
0 when φ= 0,
(−g(0),0) when φ ∈ (0,g′(0)),
−g(0) when φ= g′(0),
(−g(0),∞] when φ> g′(0).

(The proof is in Section C.) There is one more object to present, the dual feasible set ΦA.

Definition 3 For any A ∈ Rm×n, define the dual feasible set

ΦA := Ker(A*)∩R
m
+

Consider any ψ ∈ ΦA. Since ψ ∈ Ker(A*), this is a weighting of examples which decorrelates
all weak learners from the target: in particular, for any primal weighting λ ∈Rn over weak learners,
ψ*Aλ = 0. And since ψ ∈ Rm

+, all coordinates are nonnegative, so in the case that ψ .= {0m}, this
vector may be renormalized into a distribution over examples. The case ΦA = {0m} is an extremely
special degeneracy: it will be shown to encode the scenario of weak learnability.

Theorem 4 For any A ∈ Rm×n and g ∈G0 with f (x) = ∑i g((x)i),

inf{ f (Aλ) : λ ∈ R
n}= sup{− f ∗(ψ) : ψ ∈ΦA} , (2)

where f ∗(φ) = ∑m
i=1 g∗((φ)i). The right hand side is the dual problem, and moreover the dual

optimum, denoted ψ f
A, is unique and attainable.

(The proof uses routine techniques from convex analysis, and is deferred to Section G.2.)
The definition of ΦA does not depend on any specific g ∈ G0; this choice was made to provide

general intuition on the structure of the problem for the entire family of losses. Note however that
this will cause some problems later. For instance, with the logistic loss, the vector with every value
two, that is, 2 ·1m, has objective value − f ∗(2 ·1m) = −∞. In a sense, there are points in ΦA which
are not really candidates for certain losses, and this fact will need adjustment in some convergence
rate proofs.

Remark 5 Finishing the connection to maximum entropy, for any g∈G0, by Lemma 2, the optimum
of the unconstrained problem is g′(0)1m, a rescaling of the uniform distribution. But note that
∇ f (Aλ0) = ∇ f (0m) = g′(0)1m: that is, the initial dual iterate is the unconstrained optimum! Let
φt := ∇ f (Aλt) denote the t th dual iterate; since ∇ f ∗(∇ f (x)) = x (cf. Section B.2), then for any
ψ ∈ΦA ⊆ Ker(A*),

〈∇ f ∗(φt),ψ〉= 〈Aλt ,ψ〉=
〈

λt ,A*ψ
〉

= 0.

This allows the dual optimum to be rewritten as

ψ f
A = argmin

ψ∈ΦA

f ∗(ψ)

= argmin
ψ∈ΦA

f ∗(ψ)− f ∗(φt)−〈∇ f ∗(φt),ψ−φt〉 ;
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that is, the dual optimum ψ f
A is the Bregman projection (according to f

∗) ontoΦA of any dual iterate
φt =∇ f (Aλt). In particular, ψ

f
A is the Bregman projection onto the feasible set of the unconstrained

optimum φ0 = ∇ f (Aλ0)!

The connection to Bregman divergences runs deep; in fact, mirroring the development of BOOST
as “compiling out” the dual variables in the classical boosting presentation, it is possible to compile
out the primal variables, producing an algorithm using only dual variables, meaning distributions
over examples. This connection has been explored extensively (Kivinen andWarmuth, 1999; Collins
et al., 2002).

Remark 6 It may be tempting to use Theorem 4 to produce a stopping condition; that is, if for
a supplied ε > 0, a primal iterate λ′ and dual feasible ψ′ ∈ ΦA can be found satisfying f (Aλ′)+
f ∗(ψ′)≤ ε, BOOST may terminate with the guarantee f (Aλ′)− f̄A ≤ ε.

Unfortunately, it is unclear how to produce dual iterates (excepting the trivial 0m). If Ker(A*)
can be computed, it suffices to l2 project ∇ f (Aλt) onto this subspace. In general however, not only
is Ker(A*) painfully expensive to compute, this computation does not at all fit the oracle model of
boosting, where access to A is obscured. (What is Ker(A*) when the weak learning oracle learns a
size-bounded decision tree?)

In fact, noting that the primal-dual relationship from Equation 2 can be written

inf{ f (Λ) : Λ ∈ Im(A)}= sup
{

− f ∗(Ψ) :Ψ ∈ Ker(A*) = Im(A)⊥
}

(since dom( f ∗)⊆ Rm
+ encodes the orthant constraint), the standard oracle model gives elements of

Im(A), but what is needed in the dual is an oracle for Ker(A*) = Im(A)⊥.

4. Generalized Weak Learning Rate

The weak learning rate was critical to the original convergence analysis of AdaBoost, providing a
handle on the progress of the algorithm. But to be useful, this value must be positive, which was
precisely the condition granted by the weak learning assumption. This section will generalize the
weak learning rate into a quantity which can be made positive for any boosting instance.

Note briefly that this manuscript will differ slightly from the norm in that weak learning will be
a purely sample-specific concept. That is, the concern here is convergence in empirical risk, and all
that matters is the sample S = {(xi,yi)}m1 , as encoded in A; it doesn’t matter if there are wild points
outside this sample, because the algorithm has no access to them.

This distinction has the following implication. The usual weak learning assumption states that
there exists no uncorrelating distribution over the input space. This of course implies that any
training sample S used by the algorithm will also have this property; however, it suffices that there
is no distribution over the input sample S which uncorrelates the weak learners from the target.

Returning to task, the weak learning assumption posits the existence of a positive constant, the
weak learning rate γ, which lower bounds the correlation of the best weak learner with the target for
any distribution. Stated in terms of the matrix A,

0< γ= inf
φ∈Rm

+
‖φ‖=1

max
j∈[n]

∣

∣

∣

∣

∣

m

∑
i=1

(φ)iyih j(xi)

∣

∣

∣

∣

∣

= inf
φ∈Rm

+\{0m}

‖A*φ‖∞
‖φ‖1

= inf
φ∈Rm

+\{0m}

‖A*φ‖∞
‖φ−0m‖1

. (3)

569



TELGARSKY

Proposition 7 A boosting instance is weak learnable iff ΦA = {0m}.

Proof Suppose ΦA = {0m}; since the first infimum in Equation 3 is of a continuous function over a
compact set, it has some minimizer φ′. But ‖φ′‖1 = 1, meaning φ′ .∈ ΦA, and so ‖A*φ′‖∞ > 0. On
the other hand, if ΦA .= {0m}, take any φ′′ ∈ΦA \{0m}; then

0≤ γ= inf
φ∈Rm

+\{0m}

‖A*φ‖∞
‖φ‖1

≤
‖A*φ′′‖∞
‖φ′′‖1

= 0.

Following this connection, the first way in which the weak learning rate is modified is to replace
{0m} with the dual feasible set ΦA = Ker(A*)∩Rm

+. For reasons that will be sketched shortly, but
fully dealt with only in Section 6, it is necessary to replace Rm

+ with a more refined choice S.

Definition 8 Given a matrix A ∈ Rm×n and a set S⊆ Rm, define

γ(A,S) := inf

{

‖A*φ‖∞
infψ∈S∩Ker(A*) ‖φ−ψ‖1

: φ ∈ S\Ker(A*)

}

.

First note that in the scenario of weak learnability (i.e., ΦA = {0m} by Theorem 7), the choice
S= Rm

+ allows the new notion to exactly cover the old one: γ(A,Rm
+) = γ.

To get a better handle on the meaning of S, first define the following projection and distance
notation to a closed convex nonempty set C, where in the case of non-uniqueness (l1 and l∞), some
arbitrary choice is made:

P
p
C(x) ∈ Argmin

y∈C
‖y− x‖p, D

p
C(x) = ‖x−P

p
C(x)‖p.

Suppose, for some t, that ∇ f (Aλt) ∈ S \Ker(A*); then the infimum within γ(A,S) may be instanti-
ated with ∇ f (Aλt), yielding

γ(A,S) = inf
φ∈S\Ker(A*)

‖A*φ‖∞
‖φ−P1S∩Ker(A*)(φ)‖1

≤
‖A*∇ f (Aλt)‖∞

‖∇ f (Aλt)−P1S∩Ker(A*)(∇ f (Aλt))‖1
. (4)

Rearranging this,

γ(A,S)
∥

∥

∥
∇ f (Aλt)−P

1
S∩Ker(A*)(∇ f (Aλt))

∥

∥

∥

1
≤ ‖A*∇ f (Aλt)‖∞. (5)

This is helpful because the right hand side appears in standard guarantees for single-step progress in
descent methods. Meanwhile, the left hand side has reduced the influence of A to a single number,
and the normed expression is the distance to a restriction of dual feasible set, which will converge
to zero if the infimum is to be approached, so long as this restriction contains the dual optimum.

This will be exactly the approach taken in this manuscript; indeed, the first step towards conver-
gence rates, Proposition 20, will use exactly the upper bound in Equation 5. The detailed work that
remains is then dealing with the distance to the dual feasible set. The choice of S will be made to
facilitate the production of these bounds, and will depend on the optimization structure revealed in
Section 5.

In order for these expressions to mean anything, γ(A,S) must be positive.
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Theorem 9 Let matrix A ∈ Rm×n and polyhedron S ⊆ Rm be given with S \Ker(A*) .= /0 and S∩
Ker(A*) .= /0. Then γ(A,S)> 0.

The proof, material on other generalizations of γ, and discussion on the polyhedrality of S can all be
found in Section F.

As a final connection, since A*P1S∩Ker(A*)(φ) = 0n, note that

γ(A,S) = inf
φ∈S\Ker(A*)

‖A*φ‖∞
‖φ−P1S∩Ker(A*)(φ)‖1

= inf
φ∈S\Ker(A*)

‖A*(φ−P1S∩Ker(A*)(φ))‖∞
‖φ−P1S∩Ker(A*)(φ)‖1

.

In this way, γ(A,S) resembles a Lipschitz constant, reflecting the effect of A on elements of the dual,
relative to the dual feasible set.

5. Optimization Structure

The scenario of weak learnability translates into a simple condition on the dual feasible set: the dual
feasible set is the origin (in symbols,ΦA=Ker(A*)∩Rm

+ = {0m}). And how about attainability—is
there a simple way to encode this problem in terms of the optimization problem?

This section will identify the structure of the boosting optimization problem both in terms of
the primal and dual problems, first studying the scenarios of weak learnability and attainability, and
then showing that general instances can be decomposed into these two.

There is another behavior which will emerge through this study, motivated by the following
question. The dual feasible setΦA=Ker(A*)∩Rm

+ is the set of nonnegative weightings of examples
under which every weak learner (every column of A) has zero correlation; what is the support of
these weightings?

Definition 10 H(A) denotes the hard core of A: the collection of examples which receive positive
weight under some dual feasible point, a distribution upon which no weak learner is correlated with
the target. Symbolically,

H(A) := {i ∈ [m] : ∃ψ ∈ΦA,(ψ)i > 0}.

One case has already been considered; as established in Theorem 7, weak learnability is equiv-
alent to ΦA = {0m}, which in turn is equivalent to |H(A)| = 0. But it will turn out that other
possibilities for H(A) also have direct relevance to the behavior of BOOST. Indeed, contrasted with
the primal and dual problems and feasible sets, H(A) will provide a conceptually simple, discrete
object with which to comprehend the behavior of boosting.

5.1 Weak Learnability

The following theorem establishes four equivalent formulations of weak learnability.

Theorem 11 For any A ∈ Rm×n and g ∈G0 the following conditions are equivalent:

∃λ ∈ R
n
!Aλ ∈ R

m
−−, (6)

inf
λ∈Rn

f (Aλ) = 0, (7)

ψ f
A = 0m, (8)

ΦA = {0m}. (9)
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Figure 4: Geometric view of the primal and dual problem, under weak learnability. The vertices of
the pentagon denote the points {−ai}m1 . The arrow, denoting λ in Equation 6, defines a
homogeneous halfspace containing these points; on the other hand, their convex hull does
not contain the origin. Please see Theorem 11 and its discussion.

First note that Equation 9 indicates (via Theorem 7) this is indeed the weak learnability setting,
equivalently |H(A)|= 0.

Recall the earlier discussion of boosting as searching for a halfspace containing the points
{−ai}m1 = {−e*i A}m1 ; Equation 6 encodes precisely this statement, and moreover that there exists
such a halfspace with these points interior to it. Note that this statement also encodes the margin
separability equivalence of weak learnability due to Shalev-Shwartz and Singer (2008); specifically,
if labels are bounded away from 0 and each point −ai (row of −A) is replaced with −yiai, the
definition of A grants that positive examples will land on one side of the hyperplane, and negative
examples on the other.

Equation 9 and Equation 6 can be interpreted geometrically, as depicted in Figure 4: the dual
feasibility statement is that no convex combination of {−ai}m1 will contain the origin.

Next, Equation 7 is the (error part of the) usual strong PAC guarantee (Schapire, 1990): weak
learnability entails that the training error will go to zero. And, as must be the case whenΦA = {0m},
Equation 8 provides that ψ f

A = 0m.
Proof of Theorem 11 (Equation 6 =⇒ Equation 7.) Let λ̄ ∈ Rn be given with Aλ̄ ∈ Rm

−−, and let
any increasing sequence {ci}∞1 ↑ ∞ be given. Then, since f > 0 and limx→−∞ g(x) = 0,

inf
λ
f (Aλ)≤ lim

i→∞
f (ciAλ̄) = 0≤ inf

λ
f (Aλ).

(Equation 7 =⇒ Equation 8.) The point 0m is always dual feasible, and

inf
λ
f (Aλ) = 0=− f ∗(0m).

Since the dual optimum is unique (Theorem 4), ψ f
A = 0m.

(Equation 8 =⇒ Equation 9.) Suppose there exists ψ ∈ΦA with ψ .= 0m. Since − f ∗ is contin-
uous and increasing along every positive direction at 0m = ψ f

A (see Lemma 2 and Lemma 36), there
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must exist some tiny τ> 0 such that − f ∗(τψ)>− f ∗(ψ f
A), contradicting the selection of ψ

f
A as the

unique optimum.
(Equation 9 =⇒ Equation 6.) This case is directly handled by Gordan’s theorem (cf. Theo-

rem 29).

5.2 Attainability

For strictly convex functions, there is a nice characterization of attainability, which will require the
following definition.

Definition 12 (Hiriart-Urruty and Lemaréchal 2001, Section B.3.2) A closed convex function h
is called 0-coercive when all level sets are compact. (That is, for any α ∈ R, the set {x : f (x)≤ α}
is compact.)

Proposition 13 Suppose h is differentiable, strictly convex, and dom(h) = Rm. Then infx h(x) is
attainable iff h is 0-coercive.

Note that 0-coercivity means the domain of the infimum in Equation 1 can be restricted to a compact
set, and attainability in turn follows just from properties of minimization of continuous functions on
compact sets. It is the converse which requires some structure; the proof however is unilluminating
and deferred to Section G.3.

Armed with this notion, it is now possible to build an attainability theory for f ◦A. Some care
must be taken with the above concepts, however; note that while f is strictly convex, f ◦A need not
be (for instance, if there exist nonzero elements of Ker(A), then moving along these directions does
not change the objective value). Therefore, 0-coercivity statements will refer to the function

( f + ιIm(A))(x) =

{

f (x) when x ∈ Im(A),
∞ otherwise.

This function is effectively taking the epigraph of f , and intersecting it with a slice representing
Im(A) = {Aλ : λ ∈ Rn}, the set of points considered by the algorithm. As such, it is merely a
convenient way of dealing with Ker(A) as discussed above.

Theorem 14 For any A ∈ Rm×n and g ∈G0, the following conditions are equivalent:

∀λ ∈ R
n
!Aλ .∈ R

m
− \{0m}, (10)

f + ιIm(A) is 0-coercive, (11)

ψ f
A ∈ R

m
++, (12)

ΦA∩R
m
++ .= /0. (13)

Following the discussion above, Equation 11 is the desired attainability statement.
Next, note that Equation 13 is equivalent to the expression |H(A)| = m, that is, there exists a

distribution with positive weight on all examples, upon which every weak learner is uncorrelated.
The forward direction is direct from the existence of a single ψ ∈ΦA∩Rm

++. For the converse, note
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Figure 5: Geometric view of the primal and dual problem, under attainability. Once again, the
{−ai}m1 are the vertices of the pentagon. This time, no (closed) homogeneous halfspace
containing all the points will contain one strictly, and the relative interior of the pentagon
contains the origin. Please see Theorem 14 and its discussion.

that the ψi corresponding to each i∈H(A) can be combined into ψ=∑iψi ∈Ker(A*)∩Rm
++ (since

Ker(A*) is a subspace).
For a geometric interpretation, consider Equation 10 and Equation 13. The first says that any

halfspace containing some −ai within its interior must also fail to contain some −a j (with i .= j).
(Equation 10 also allows for the scenario that no valid enclosing halfspace exists, that is, λ = 0n.)
The latter states that the origin 0m is contained within a positive convex combination of {−ai}m1
(alternatively, the origin is within the relative interior of these points). These two scenarios appear
in Figure 5.

Finally, note Equation 12: it is not only the case that there are dual feasible points fully interior
to Rm

+, but furthermore the dual optimum is also interior. This will be crucial in the convergence
rate analysis, since it will allow the dual iterates to never be too small.
Proof of Theorem 14 (Equation 10 =⇒ Equation 11.) Let d ∈Rm \{0m} and λ ∈Rn be arbitrary.
To show 0-coercivity, it suffices (Hiriart-Urruty and Lemaréchal, 2001, Proposition B.3.2.4.iii) to
show

lim
t→∞

f (Aλ+ td)+ ιIm(A)(Aλ+ td)− f (Aλ)
t

> 0. (14)

If d .∈ Im(A) (and t > 0), then ιIm(A)(Aλ+ td) = ∞. Suppose d ∈ Im(A); by Equation 10, since
d .= 0m, then d .∈ Rm

−, meaning there is at least one positive coordinate j. But then, since g> 0 and
g is convex,

Eq. 14≥ lim
t→∞

g(e*j (Aλ+ td))− f (Aλ)
t

≥ lim
t→∞

g(e*j Aλ)+ td jg′(e*j Aλ)− f (Aλ)
t

= d jg′(e*j Aλ),
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which is positive by the selection of d j and since g′ > 0.
(Equation 11 =⇒ Equation 12.) Since the infimum is attainable, designate any λ̄ satisfy-

ing infλ f (Aλ) = f (Aλ̄) (note, although f is strictly convex, f ◦A need not be, thus uniqueness
is not guaranteed!). The optimality conditions of Fenchel problems may be applied, meaning
ψ f
A = ∇ f (Aλ̄), which is interior to Rm

+ since ∇ f ∈ Rm
++ everywhere (cf. Lemma 36). (For the

optimality conditions, see Borwein and Lewis 2000, Exercise 3.3.9.f, with a negation inserted to
match the negation inserted within the proof of Theorem 4.)

(Equation 12 =⇒ Equation 13.) This holds since ΦA ⊇ {ψ f
A} and ψ

f
A ∈ Rm

++.
(Equation 13 =⇒ Equation 10.) This case is directly handled by Stiemke’s Theorem (cf. The-

orem 30).

5.3 General Setting

So far, the scenarios of weak learnability and attainability corresponded to the extremal hard core
cases of |H(A)| ∈ {0,m}. The situation in the general setting 1 ≤ |H(A)| ≤ m− 1 is basically as
good as one could hope for: it interpolates between the two extremal cases.

As a first step, partition A into two submatrices according to H(A).

Definition 15 Partition A ∈ Rm×n by rows into two matrices A0 ∈ Rm0×n and A+ ∈ Rm+×n, where
A+ has rows corresponding to H(A), and m+ = |H(A)|. For convenience, permute the examples so
that

A=
[

A0
A+

]

.

(This merely relabels the coordinate axes, and does not change the optimization problem.) Note that
this decomposition is unique, since H(A) is uniquely specified.

As a first consequence, this partition cleanly decomposes the dual feasible set ΦA into ΦA0 and
ΦA+ .

Proposition 16 For any A ∈ Rm×n, ΦA0 = {0m0}, ΦA+ ∩R
m+
++ .= /0, and

ΦA =ΦA0 ×ΦA+ .

Furthermore, no other partition of A into B0 ∈ Rz×n and B+ ∈ Rp×n satisfies these properties.

Proof It must hold that ΦA0 = {0m0}, since otherwise there would exist ψ ∈ Ker(A*
0 )∩R

m0
+ with

ψ .= 0m0 , which could be extended to ψ′ = ψ×0m+ ∈ΦA and the positive coordinate of ψ could be
added to H(A), contradicting the construction of H(A) as including all such rows.

The propertyΦA+ ∩R
m+
++ .= /0 was proved in the discussion of Theorem 14: simply add together,

for each i ∈ H(A), the ψi’s corresponding to positive weight on i.
For the decomposition, note first that certainly every ψ ∈ ΦA0 ×ΦA+ satisfies ψ ∈ ΦA. Now

suppose contradictorily that there exists ψ′ ∈ ΦA \ (ΦA0 ×ΦA+). There must exist j ∈ [m] \H(A)
with (ψ′) j > 0, since otherwise ψ′ ∈ {0z}×ΦA+ ; but that means j should have been included in
H(A), a contradiction.

For the uniqueness property, suppose some other B0,B+ is given, satisfying the desired prop-
erties. It is impossible that some ai ∈ B+ is not in H(A), since any ψ ∈ ΦB+ can be extended to
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ψ′ ∈ ΦA with positive weight on i, and thus is included in H(A) by definition. But the other case
with i ∈H(A) but ai ∈ B0 is equally untenable, since the corresponding measure ψi is in ΦA but not
in ΦB0 ×ΦB+ .

The main result of this section will have the same two main ingredients as Proposition 16:

• The full boosting instance may be uniquely decomposed into two pieces, A0 and A+, each of
which individually behave like the weak learnability and attainability scenarios.

• The subinstances have a somewhat independent effect on the full instance.

Theorem 17 Let g ∈ G0 and A ∈ Rm×n be given. Let B0 ∈ Rz×n, B+ ∈ Rp×n be any partition of A
by rows. The following conditions are equivalent:

∃λ ∈ R
n
!B0λ ∈ R

z
−−∧B+λ= 0p and ∀λ ∈ R

n
!B+λ .∈ R

p
− \{0p}, (15)

{

infλ∈Rn f (Aλ) = infλ∈Rn f (B+λ), and infλ∈Rn f (B0λ) = 0,
and f + ιIm(B+) is 0-coercive,

}

(16)

ψ f
A =

[

ψ f
B0

ψ f
B+

]

with ψ f
B0 = 0z and ψ f

B+ ∈ R
p
++, (17)

ΦB0 = {0z}, and ΦB+ ∩R
p
++ .= /0, and ΦA =ΦB0 ×ΦB+ . (18)

Stepping through these properties, notice that Equation 18 mirrors the expression in Proposi-
tion 16. But that Theorem also granted that this representation was unique, thus only one partition
of A satisfies the above properties, namely A0,A+. Since this Theorem is stated as a series of equiv-
alences, any one of these properties can in turn be used to identify the hard core set H(A).

To continue with geometric interpretations, notice that Equation 15 states that there exists a
halfspace strictly containing those points in [m] \H(A), with all points of H(A) on its boundary;
furthermore, trying to adjust this halfspace to contain elements of H(A) will place others outside
it. With regards to the geometry of the dual feasible set as provided by Equation 18, the origin
is within the relative interior of the points corresponding to H(A), however the convex hull of
the other m− |H(A)| points can not contain the origin. Furthermore, if the origin is written as
a convex combination of all points, this combination must place zero weight on the points with
indices [m]\H(A). This scenario is depicted in Figure 6.

In Equation 16 and Equation 17, B0 mirrors the behavior of weakly learnable instances in The-
orem 11, and analogously B+ follows instances with minimizers from Theorem 14. The interesting
addition, as discussed above, is the independence of these components: Equation 16 provides that
the infimum of the combined problem is the sum of the infima of the subproblems, while Equa-
tion 17 provides that the full dual optimum may be obtained by concatenating the subproblems’
dual optima.
Proof of Theorem 17 (Equation 15 =⇒ Equation 16.) Let λ̄ be given with B0λ̄ ∈ R

z
−− and

B+λ̄ = 0p, and let {ci}∞1 ↑ ∞ be an arbitrary sequence increasing without bound. Lastly, let {λi}∞1
be a minimizing sequence for infλ f (B+λ). Then

inf
λ
f (B+λ) = lim

i→∞

(

f (B+λi)+ f (ciB0λ̄)
)

≥ inf
λ
f (Aλ)

= inf
λ
( f (B+λ)+ f (B0λ))≥ inf

λ
f (B+λ),
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Figure 6: Geometric view of the primal and dual problem in the general case. There is a closed
homogeneous halfspace containing the points {−ai}m1 , where the hard core lies on the
halfspace boundary, and the other points are within its interior; moreover, there does not
exist a closed homogeneous halfspace containing all points but with strict containment
on a point in the hard core. Finally, although the origin is in the convex hull of {−ai}m1 ,
any such convex combination places zero weight on points outside the hard core. Please
see Theorem 17 and its discussion.

which used the fact that f (B0λ)≥ 0 since f ≥ 0. And since the chain of inequalities starts and ends
the same, it must be a chain of equalities, which means infλ f (B0λ) = 0. To show 0-coercivity of
f + ιIm(B+), note the second part of Equation 15 is one of the conditions of Theorem 14.
(Equation 16 =⇒ Equation 17.) First, by Theorem 11, infλ f (B0λ) = 0 means ψ f

B0 = 0z and
ΦB0 = {0z}. Thus

− f ∗(ψ f
A) = sup

ψ∈ΦA

− f ∗(ψ)

= sup
ψz∈Rz

+

ψp∈Rp
+

B*0 ψz+B
*
+ψp=0n

− f ∗(ψz)− f ∗(ψp)

≥ sup
ψz∈ΦB0

− f ∗(ψz)+ sup
ψp∈ΦB+

− f ∗(ψp)

= 0− f ∗(ψ f
B+) = inf

λ∈Rn
f (B+λ) = inf

λ∈Rn
f (Aλ) =− f ∗(ψ f

A).

Combining this with f ∗(x) = ∑i g((x)i) and g∗(0) = 0 (cf. Lemma 2, Theorem 4), f ∗(ψ f
A) =

f ∗(ψ f
B+) = f ∗(

[

ψ f
B0

ψ f
B+

]

). But Theorem 4 shows ψ f
A was unique, which gives the result. And to

obtain ψ f
B+ ∈ R

p
++, use Theorem 14 with the 0-coercivity of f + ιIm(B+).

(Equation 17 =⇒ Equation 18.) Since ψ f
B0 = 0z, it follows by Theorem 11 that ΦB0 = {0z}.

Furthermore, since ψ f
B+ ∈ R

p
++, it follows that ΦB+ ∩R

p
++ .= /0. Now suppose contradictorily that

ΦA .= ΦB0 ×ΦB+ ; since it always holds that ΦA ⊇ ΦB0 ×ΦB+ , this supposition grants the existence
of ψ=

[ ψz
ψp

]

∈ΦA where ψz ∈ R
z
+ \{0z}.

577



TELGARSKY

Consider the element q := ψ+ψ f
A, which has more nonzero entries than ψ

f
A, but still q ∈ ΦA

since ΦA is a convex cone. Let Iq index the nonzero entries of q, and let Aq be the restriction of
A to the rows Iq. Since q ∈ ΦA, meaning q is nonnegative and q ∈ Ker(A*), it follows that the
restriction of q to its positive entries is within Ker(A*

q ) (because only zeros of q and matching rows
of A are removed, dot products between q with rows of A* are the same as dot products between the
restriction of q and rows of A*

q ), and so q∈ΦAq , meaningΦAq∩R
|Iq|
++ is nonempty. Correspondingly,

by Theorem 14, the dual optimum ψ f
Aq of this restricted problem will have only positive entries. But

by the same reasoning granting that q restricted to Iq is within ΦAq , it follows that the full optimum
ψ f
A, restricted to Iq, must also be within ΦAq (since, by q’s construction, ψ

f
A’s zero entries are a

superset of the zero entries of q). Therefore this restriction ψ̂ f
A of ψ

f
A to Iq will have at least one zero

entry, meaning it can not be equal to ψ f
Aq ; but Theorem 4 provided that the dual optimum is unique,

thus − f ∗(ψ f
Aq)>− f ∗(ψ̂ f

A). Finally, produce ψ̄
f
Aq from ψ f

Aq by inserting a zero for each entry of Iq;
the same reasoning that allows feasibility to be maintained while removing zeros allows them to be
added, and thus ψ̄ f

Aq ∈ΦA. But this is a contradiction: since g∗(0) = 0 (cf. Lemma 2), both ψ̄ f
Aq and

the optimum ψ f
A have zero contribution to the objective along the entries outside of Iq, and thus

− f ∗(ψ̄ f
Aq) =− f ∗(ψ f

Aq)>− f ∗(ψ̂ f
A) =− f ∗(ψ f

A),

meaning ψ̄ f
Aq is feasible and has strictly greater objective value than the optimum ψ f

A, a contradic-
tion.

(Equation 18 =⇒ Equation 15.) Unwrapping the definition of ΦA, the assumed statements
imply

(∀φ0 ∈ R
z
+ \{0z},φ+ ∈ R

p
+ !B*

0 φ0+B*
+φ+ .= 0n)∧ (∃φ+ ∈ R

p
++ !B*

+φ+ = 0n).

Applying Motzkin’s transposition theorem (cf. Theorem 31) to the left statement and Stiemke’s
theorem (cf. Theorem 30, which is implied by Motzkin’s theorem) to the right yields

(∃λ ∈ R
n
!B0λ ∈ R

z
−−∧B+λ ∈ R

p
−)∧ (∀λ ∈ R

n
!B+λ .∈ R

p
− \{0p}),

which implies the desired statement.

Remark 18 Notice the dominant role A plays in the structure of the solution found by boosting.
For every i ∈ [m] \H(A), the corresponding dual weights go to zero (i.e., (∇ f (Aλt))i ↓ 0), and the
corresponding primal margins grow unboundedly (i.e., −e*i Aλt ↑ ∞, since otherwise infλ f (A0λ)>
0). This is completely unaffected by the choice of g ∈ G0. Furthermore, whether this instance is
weak learnable, attainable, or neither is dictated purely by A (respectively |H(A)|= 0, |H(A)|=m,
or |H(A)| ∈ [1,m−1]).

Where different loss functions disagree is how they assign dual weight to the points in H(A).
In particular, each g ∈ G0 (and corresponding f ) defines a notion of entropy via f ∗. The dual
optimization in Theorem 4 can then be interpreted as selecting the max entropy choice (per f ∗)
amongst those convex combinations of H(A) equal to the origin.
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6. Convergence Rates

Convergence rates will be proved for the following family of loss functions.

Definition 19 G contains all functions g satisfying the following properties. First, g ∈G0. Second,
for any x ∈Rm satisfying f (x)≤ f (Aλ0) =mg(0), and for any coordinate (x)i, there exist constants
η> 0 and β> 0 such that g′′((x)i)≤ ηg((x)i) and g((x)i)≤ βg′((x)i).

The exponential loss is in this family with η= β= 1 since exp(·) is a fixed point with respect to
the differentiation operator. Furthermore, as is verified in Remark 46, the logistic loss is also in this
family, with η = 2m/(m ln(2)) and β = 1+ 2m (which may be loose). In a sense, η and β encode
how similar some g ∈G is to the exponential loss, and thus these parameters can degrade radically.
However, outside the weak learnability case, the other terms in the bounds here can also incur a
large penalty with the exponential loss, and there is some evidence that this is unavoidable (see the
lower bounds in Mukherjee et al. 2011 or the upper bounds in Rätsch et al. 2001).

The first step towards proving convergence rates will be to lower bound the improvement due to
one iteration. As discussed previously, standard techniques for analyzing descent methods provide
such bounds in terms of gradients, however to overcome the difficulty of unattainability in the primal
space, the key will be to convert this into distances in the dual via γ(A,S), as in Equation 5.

Proposition 20 For any t, g ∈G, A ∈ Rm×n, and S⊇ {∇ f (Aλt)} with γ(A,S)> 0,

f (Aλt+1)− f̄A ≤ f (Aλt)− f̄A−
γ(A,S)2D1S∩Ker(A*)(∇ f (Aλt))

2

6η f (Aλt)
.

Proof The stopping condition grants ∇ f (Aλt) .∈ Ker(A*). Proceeding as in Equation 4,

γ(A,S) = inf
φ∈S\Ker(A*)

‖A*φ‖∞
D1S∩Ker(A*)(φ)

≤
‖A*∇ f (Aλt)‖∞

D1S∩Ker(A*)(∇ f (Aλt))
.

Combined with the approximate line search guarantee from Proposition 38,

f (Aλt)− f (Aλt+1)≥
‖A*∇ f (Aλt)‖2∞
6η f (Aλt)

≥
γ(A,S)2D1S∩Ker(A*)(∇ f (Aλt))

2

6η f (Aλt)
.

Subtracting f̄A from both sides and rearranging yields the statement.

The task now is to manage the dual distance D1S∩Ker(A*)(∇ f (Aλt)), specifically to produce a re-
lation to f (Aλt)− f̄A, the total suboptimality in the preceding iteration; from there, standard tools in
convex optimization will yield convergence rates. Matching the problem structure revealed in Sec-
tion 5, first the extremal cases of weak learnability and attainability will be handled, and only then
the general case. The significance of this division is that the extremal cases have rate O(ln(1/ε)),
whereas the general case has rate O(1/ε) (with a matching lower bound provided for the logistic
loss). The reason, which will be elaborated in further sections, is straightforward: the extremal
cases are fast for essentially opposing regions, and this conflict will degrade the rate in the general
case.
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6.1 Weak Learnability

Theorem 21 Suppose |H(A)|= 0 and g ∈G; then γ(A,Rm
+)> 0, and for any t ≥ 0,

f (Aλt)≤ f (Aλ0)
(

1−
γ(A,Rm

+)
2

6β2η

)t

.

Proof By Theorem 11, ΦA = {0m}, meaning

D
1
ΦA
(∇ f (Aλt)) = inf

ψ∈ΦA
‖∇ f (Aλt)−ψ‖1 = ‖∇ f (Aλt)‖1 ≥ f (Aλt)/β.

Next, Rm
+ is polyhedral, and Theorem 11 grants Rm

+ ∩Ker(A*) .= /0 and Rm
+ \Ker(A*) .= /0, so

Theorem 9 provides γ(A,Rm
+) > 0. Since ∇ f (Aλt) ∈ Rm

+, all conditions of Proposition 20 are met,
and using f̄A = 0 (again by Theorem 11),

f (Aλt+1)≤ f (Aλt)−
γ(A,Rm

+)
2 f (Aλt)2

6β2η f (Aλt)
= f (Aλt)

(

1−
γ(A,Rm

+)
2

6β2η

)

, (19)

and recursively applying this inequality yields the result.

As discussed in Section 4, γ(A,Rm
+) = γ, the latter quantity being the classical weak learning

rate.
Specializing this analysis to the exponential loss (where η = β = 1), the bound becomes (1−

γ2/6)t , which recovers the bound of Schapire and Singer (1999), although with vastly different
analysis. (The exact expression has denominator 2 rather than 6, which can be recovered with the
closed form line search; cf. Section D.)

In general, solving for t in the expression

ε=
f (Aλt)− f̄A
f (Aλ0)− f̄A

≤
(

1−
γ2

6β2η

)t

≤ exp
(

−
tγ2

6β2η

)

reveals that t ≤ 6β2η
γ2 ln(1/ε) iterations suffice to reach suboptimality ε. Recall that β and η, in

the case of the logistic loss, have only been bounded by quantities like 2m. While it is unclear if
this analysis of β and η was tight, note that it is plausible that the logistic loss is slower than the
exponential loss in this scenario, as it works less in initial phases to correct minor margin violations.

Remark 22 The rate O(ln(1/ε)) depended crucially on both g ≤ βg′ and g′′ ≤ ηg. If for in-
stance the second inequality were replaced with g′′ ≤ C, then Equation 19 would instead have
form f (Aλt+1)≤ f (Aλt)− f (Aλt)2O(1), which by an application of Lemma 33 would grant a rate
O(1/ε). For functions which asymptote to zero (i.e., everything inG0), satisfying this milder second
order condition is quite easy. The real mechanism behind producing a fast rate is g ≤ βg′, which
guarantees that the flattening of the objective function is concomitant with low objective values.

6.2 Attainability

Consider now the case of attainability. Recall from Theorem 14 and Proposition 13 that attainability
occurred along with a stronger property, the 0-coercivity (compact level sets) of f + ιIm(A) (it was
not possible to work with f ◦A directly, which will have unbounded level sets when Ker(A) .= 0n).
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This has an immediate consequence to the task of relating f (Aλt)− f̄A to the dual distance
D1S∩Ker(A*)(∇ f (Aλt)). f is a strictly convex function, which means it is strongly convex over any
compact set. Strong convexity in the primal corresponds to upper bounds on second derivatives
(occasionally termed strong smoothness) in the dual, which in turn can be used to relate distance
and objective values. This also provides the choice of polyhedron S in γ(A,S): unlike the case of
weak learnability, where the unbounded set Rm

+ was used, a compact set containing the initial level
set will be chosen.

Theorem 23 Suppose |H(A)| = m and g ∈ G. Then there exists a (compact) tightest axis-aligned
rectangle C containing the initial level set {x ∈ Rm : ( f + ιIm(A))(x) ≤ f (Aλ0)}, and f is strongly
convex with modulus c> 0 over C . Finally, either λ0 is optimal, or γ(A,∇ f (C ))> 0, and for all t,

f (Aλt)− f̄A ≤ ( f (Aλ0)− f̄A)
(

1−
cγ(A,∇ f (C ))2

3η f (Aλ0)

)t

.

As in Section 6.1, when λ0 is suboptimal, this bound may be rearranged to say that
t ≤ 3η f (Aλ0)

cγ(A,∇ f (C ))2 ln(1/ε) iterations suffice to reach suboptimality ε.
To make sense of this bound and its proof, the essential object is C , whose properties are cap-

tured in the following Theorem, which is stated with some slight generality in order to allow reuse
in Section 6.3.

Lemma 24 Let g ∈ G, A ∈ Rm×n with |H(A)| = m, and any d ≥ infλ f (Aλ) be given. Then there
exists a (compact nonempty) tightest axis-aligned rectangle C ⊇ {x ∈ Rm : ( f + ιIm(A))(x) ≤ d}.
Furthermore, the dual image ∇ f (C ) ⊂ Rm is also a (compact nonempty) axis-aligned rectangle,
and moreover it is strictly contained within dom( f ∗) ⊆ Rm

+. Finally, ∇ f (C ) contains dual feasible
points (i.e., ∇ f (C )∩ΦA .= /0).

A full proof may be found in Section G.4; the principle is that |H(A)| = m provides 0-coercivity
of f + ιIm(A), and thus the initial level set is compact. To later show γ(A,S) > 0 via Theorem 9, S
must be polyhedral, and to apply Proposition 20, it must contain the dual iterates {∇ f (Aλt)}∞t=1;
the easiest choice then is to take the bounding box C of the initial level set, and use its dual map
∇ f (C ). To exhibit dual feasible points within ∇ f (C ), note that C will contain a primal minimizer,
and optimality conditions grant that ∇ f (C ) contains the dual optimum.

With the polyhedron in place, Proposition 20 may be applied, so what remains is to control the
dual distance. Again, this result will be stated with some extra generality in order to allow reuse in
Section 6.3.

Lemma 25 Let A ∈ Rm×n, g ∈ G, and any compact set S with ∇ f (S)∩Ker(A*) .= /0 be given.
Then f is strongly convex over S, and taking c > 0 to be the modulus of strong convexity, for any
x ∈ S∩ Im(A),

f (x)− f̄A ≤
1
2c

inf
ψ∈∇ f (S)∩Ker(A*)

‖∇ f (x)−ψ‖21.

Before presenting the proof, it can be sketched quite easily. Using the Fenchel-Young inequality
(cf. Proposition 32) and the form of the dual optimization problem (cf. Theorem 4), primal sub-
optimality can be converted into a Bregman divergence in the dual. If there is strong convexity in
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the primal, it allows this Bregman divergence to be converted into a distance via standard tools in
convex optimization (cf. Lemma 34). Although f lacks strong convexity in general, it is strongly
convex over any compact set.
Proof of Lemma 25 Consider the optimization problem

inf
x∈S

inf
φ∈Rm

‖φ‖2=1

〈

∇2 f (x)φ,φ
〉

= inf
x∈S

inf
φ∈Rm

‖φ‖2=1

m

∑
i=1

g′′(xi)φ2i ;

since S is compact and g′′ and (·)2 are continuous, the infimum is attainable. But g′′ > 0 and φ .= 0m,
meaning the infimum c is nonzero, and moreover it is the modulus of strong convexity of f over S
(Hiriart-Urruty and Lemaréchal, 2001, Theorem B.4.3.1.iii).

Now let any x ∈ S∩ Im(A) be given, define D = ∇ f (S) ⊂ Rm
+, and for convenience set K :=

Ker(A*). Consider the dual element P2D∩K(∇ f (x)) (which exists since D∩K .= /0); due to the
projection, it is dual feasible, and thus it must follow from Theorem 4 that

f̄A = sup{− f ∗(ψ) : ψ ∈ΦA}≥− f ∗
(

P
2
D∩K(∇ f (x))

)

.

Furthermore, since x ∈ Im(A),
〈

x,P2D∩K(∇ f (x))
〉

= 0.

Combined with the Fenchel-Young inequality (cf. Proposition 32) and x= ∇ f ∗(∇ f (x)),

f (x)− f̄A ≤ f (x)+ f ∗
(

P
2
D∩K(∇ f (x))

)

= f ∗
(

P
2
D∩K(∇ f (x))

)

+ 〈∇ f (x),x〉− f ∗(∇ f (x))

= f ∗
(

P
2
D∩K(∇ f (x))

)

− f ∗(∇ f (x))−
〈

∇ f ∗(∇ f (x)),P2D∩K(∇ f (x))−∇ f (x)
〉

(20)

≤
1
2c

‖∇ f (x)−P
2
D∩K(∇ f (x))‖22, (21)

where the last step follows by an application of Lemma 34, noting that both∇ f (x) and P2D∩K(∇ f (x))
are in ∇ f (S) = D, and f is strongly convex with modulus c over S. To finish, rewrite P as an infi-
mum and use ‖ ·‖2 ≤ ‖ ·‖1.

The desired result now follows readily.
Proof of Theorem 23 Invoking Lemma 24 with d = f (Aλ0) immediately provides a compact tight-
est axis-aligned rectangle C containing the initial level set S := {x∈Rm : ( f + ιIm(A))(x)≤ f (Aλ0)}.
Crucially, since the objective values never increase, S and C contain every iterate {Aλt}∞t=1.

Applying Lemma 25 to the set C (by Lemma 24, ∇ f (C )∩Ker(A*) .= /0), then for any t,

f (Aλt)− f̄A ≤
1
2c

‖∇ f (Aλt)−P
1
∇ f (C )∩Ker(A*)(∇ f (Aλt))‖

2
1,

where c> 0 is the modulus of strong convexity of f over C .
Finally, if there are suboptimal iterates, then ∇ f (C ) ⊇ ∇ f (S) contains points that are not dual

feasible, meaning∇ f (C )\Ker(A*) .= /0; since Lemma 24 also provided∇ f (C )∩ΦA .= /0 and∇ f (C )
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is a hypercube, it follows by Theorem 9 that γ(A,∇ f (C )) > 0. Plugging this into Proposition 20
and using f (Aλt)≤ f (Aλ0) gives

f (Aλt+1)− f̄A ≤ f (Aλt)− f̄A−
γ(A,∇ f (C ))2D1∇ f (C )∩Ker(A*)(∇ f (Aλt))

2

6η f (Aλt)

≤ ( f (Aλt)− f̄A)
(

1−
cγ(A,∇ f (C ))2

3η f (Aλ0)

)

,

and the result again follows by recursively applying this inequality.

Remark 26 The key conditions on g ∈ G, namely the existence of constants granting g ≤ βg′ and
g′′ ≤ ηg within the initial level set, are much more than are needed in this setting. Inspecting the
presented proofs, it entirely suffices that on any compact set in Rm, f has quadratic upper and
lower bounds (equivalently, bounds on the smallest and largest eigenvalues of the Hessian), which
are precisely the weaker conditions used in previous treatments (Bickel et al., 2006; Rätsch et al.,
2001).

These quantities are therefore necessary for controlling convergence under weak learnability.
To see how the proofs of this section break down in that setting, consider the central Bregman
divergence expression in Equation 20. What is really granted by attainability is that every iterate
lies well within the interior of dom( f ∗), and therefore these Bregman divergences, which depend on
∇ f ∗, can not become too wild. On the other hand, with weak learnability, all dual weights go to
zero (cf. Theorem 11), which means that ∇g∗ ↑ ∞, and thus the upper bound in Equation 21 ceases
to be valid. As such, another mechanism is required to control this scenario, which is precisely the
role of g≤ βg′ and g′′ ≤ ηg.

6.3 General Setting

The key development of Section 5.3 was that general instances may be decomposed uniquely into
two smaller pieces, one satisfying attainability and the other satisfying weak learnability, and that
these smaller problems behave somewhat independently. This independence is leveraged here to
produce convergence rates relying upon the existing rate analysis for the attainable and weak learn-
able cases. The mechanism of the proof is as straightforward as one could hope for: decompose the
dual distance into the two pieces, handle them separately using preceding results, and then stitch
them back together.

Theorem 27 Suppose g ∈ G and 1 ≤ |H(A)| ≤ m− 1. Recall from Section 5.3 the partition of
the rows of A into A0 ∈ Rm0×n and A+ ∈ Rm+×n, and suppose the axes of Rm are ordered so that
A =

[

A0
A+

]

. Set C+ to be the tightest axis-aligned rectangle C+ ⊇ {x ∈ Rm+ : ( f + ιIm(A+))(x) ≤
f (Aλ0)}, and w := supt ‖∇ f (A+λt)−P1

∇ f (C+)∩Ker(A*+)
(∇ f (A+λt))‖1. Then C+ is compact, w < ∞,

f has modulus of strong convexity c> 0 over C+, and γ(A,Rm0 ×∇ f (C+))> 0. Using these terms,
for all t,

f (Aλt)− f̄A ≤
2 f (Aλ0)

(t+1)min{1,γ(A,Rm0
+ ×∇ f (C+))2/(3η(β+w/(2c))2)}

.
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The new term, w, appears when stitching together the two subproblems. For choices of g ∈
G where dom(g∗) is a compact set, this value is easy to bound; for instance, the logistic loss,
where dom(g∗) = [0,1], has w ≤ supφ∈dom( f ∗) ‖φ− 0m‖1 = m (since 0m ∈ dom( f ∗)). And with the
exponential loss, taking S := {λ ∈ Rn : f (Aλ) ≤ f (Aλ0)} to denote the initial level set, since 0m is
always dual feasible,

w≤ sup
λ∈S

‖∇ f (Aλ)‖1 = sup
λ∈S

f (Aλ) = f (Aλ0) = m.

Note that rearranging the rate from Theorem 27 will provide that O(1/ε) iterations suffice to
reach suboptimality ε, whereas the earlier scenarios needed only O(ln(1/ε)) iterations. The exact
location of the degradation will be pinpointed after the proof, and is related to the introduction of w.
Proof of Theorem 27 By Theorem 17, f̄A+ = f̄A, and the form of f gives f (Aλt) = f (A0λt)+
f (A+λt), thus

f (Aλt)− f̄A = f (A0λt)+ f (A+λt)− f̄A+ . (22)

For the left term, since g(x)≤ β|g′(x)|,

f (A0λt)≤ β‖∇ f (A0λt)‖1 = β‖∇ f (A0λt)−P
1
ΦA0

(∇ f (A0λt))‖1, (23)

which used the fact (from Theorem 17) that ΦA0 = {0m0}.
For the right term of Equation 22, recall from Theorem 17 that f + ιIm(A+) is 0-coercive, thus

the level set S+ := {x ∈ Rm+ : ( f + ιIm(A+))(x)≤ f (Aλ0)} is compact. For all t, since f ≥ 0 and the
objective values never increase,

f (Aλ0)≥ f (Aλt) = f (A0λt)+ f (A+λt)≥ f (A+λt);

in particular, A+λt ∈ S+. It is crucial that the level set compares against f (Aλ0) and not f (A+λ0).
Continuing, Lemma 24 may be applied to A+ with value d = f (Aλ0), which grants a tightest

axis-aligned rectangle C+ ⊆ Rm+ containing S+, and moreover ∇ f (C+)∩Ker(A*
+) .= /0. Applying

Lemma 25 to A+ and C+, f is strongly convex with modulus c> 0 over C+, and for any t,

f (A+λt)− f̄A+ ≤
1
2c

‖∇ f (A+λt)−P
1
∇ f (C+)∩Ker(A*+)

(∇ f (A+λt))‖21. (24)

Next, set w := supt ‖∇ f (A+λt)−P1∇ f (C+)∩Ker(A*)
(∇ f (A+λt))‖1; w < ∞ since S+ is compact and

∇ f (C+)∩Ker(A*) is nonempty. By the definition of w,

D
1
∇ f (C+)∩Ker(A*+)

(∇ f (A+λt))
2 ≤ wD1∇ f (C+)∩Ker(A*+)(∇ f (A+λt)),

which combined with Equation 24 yields

f (A+λt)− f̄A+ ≤
w
2c

D
1
∇ f (C+)∩Ker(A*+)

(∇ f (A+λt)). (25)

Tomerge the subproblem dual distance upper bounds Equation 23 and Equation 25 via Lemma 47,
it must be shown that (Rm0

+ ×∇ f (C+))∩ΦA .= /0. But this follows by construction and Theorem 17,
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since {0m}=ΦA0 ⊆Rm
+,∇ f (C+)∩ΦA+ .= /0 by Lemma 24, and the decompositionΦA=ΦA0×ΦA+ .

Returning to the total suboptimality expression Equation 22, these dual distance bounds yield

f (Aλt)− f̄A ≤ βD1ΦA0
(∇ f (A0λt))+w/(2c)D1∇ f (C+)∩Ker(A*+)(∇ f (A+λt))

≤ (β+w/(2c))D1
(R

m0
+ ×∇ f (C+))∩Ker(A*)

(∇ f (Aλt)),

the second step using Lemma 47.
To finish, note Rm0

+ ×∇ f (C+) is polyhedral, and

(Rm0
+ ×∇ f (C+))\Ker(A*) ⊇ {∇ f (Aλt)}∞t=1 \Ker(A*) .= /0

since no primal iterate is optimal and thus ∇ f (Aλt) is not dual feasible by optimality conditions;
combined with the above derivation (Rm0

+ ×∇ f (C+))∩ΦA .= /0, Theorem 9 may be applied, meaning
γ(A,Rm0

+ ×∇ f (C+)) > 0. As such, all conditions of Proposition 20 are met, and making use of
f (Aλt)≤ f (Aλ0),

f (Aλt+1)− f̄A ≤ f (Aλt)− f̄A−
γ(A,Rm0

+ ×∇ f (C+))2D1(Rm0
+ ×∇ f (C+))∩Ker(A*)

(∇ f (Aλt))2

6η f (Aλt)

≤ f (Aλt)− f̄A−
γ(A,Rm0

+ ×∇ f (C+))2( f (Aλt)− f̄A)2

6η f (Aλ0)(β+w/(2c))2
.

Applying Lemma 33 with

εt :=
f (Aλt)− f̄A
f (Aλ0)

and r :=
1
2
min

{

1,
γ(A,Rm0

+ ×∇ f (C+))2

3η(β+w/(2c))2

}

gives the result.

In order to produce a rate O(ln(1/ε)) under attainability, strong convexity related the subopti-
mality to a squared dual distance ‖ · ‖21 (cf. Equation 21). On the other hand, the rate O(ln(1/ε))
under weak learnability came from a fortuitous cancellation with the denominator f (Aλt) (cf. Equa-
tion 19), which is equal to the total suboptimality since Theorem 11 provides f̄A = 0. But in order
to merge the subproblem dual distances via Lemma 47, the differing properties granting fast rates
must be ignored. (In the case of attainability, this process introduces w.)

This incompatibility is not merely an artifact of the analysis. Intuitively, the finite and infinite
margins sought by the two pieces A0,A+ are in conflict. For a beautifully simple, concrete case of
this, consider the following matrix, due to Schapire (2010):

S :=





−1 +1
+1 −1
−1 −1



 .

The optimal solution here is to push both coordinates of λ unboundedly positive, with margins
approaching (0,0,∞). But pushing any coordinate (λ)i too quickly will increase the objective value,
rather than decreasing it. In fact, this instance will provide a lower bound, and the mechanism of
the proof shows that the primal weights grow extremely slowly, as O(ln(t)).
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Theorem 28 Fix g = ln(1+ exp(·)) ∈ G, the logistic loss, and suppose the line search is exact.
Then for any t ≥ 1, f (Sλt)− f̄S ≥ 1/(8t).

(The proof, in Section G.6, is by brute force.)
Finally, note that this third setting does not always entail slow convergence. Again taking the

view of the rows of S being points {−si}31, consider the effect of rotating the entire instance around
the origin by π/4. The optimization scenario is unchanged, however coordinate descent can now be
arbitrarily close to the optimum in one iteration by pushing a single primal weight extremely high.
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Appendix A. Common Notation

Symbol Comment
Rm m-dimensional vector space over the reals.
Rm
+ Non-negative m-dimensional real vectors.

int(S) The interior of set S.
Rm
++ Positive m-dimensional real vectors, that is, int(Rm

+).
Rm
−,R

m
−− Respectively −Rm

+,−Rm
++.

0m,1m m-dimensional vectors of all zeros and all ones, respectively.
ei Indicator vector: 1 at coordinate i, 0 elsewhere. Context will provide the ambient

dimension.
Im(A) Image of linear operator A.
Ker(A) Kernel of linear operator A.
ιS Indicator function on a set S:

ιS(x) :=
{

0 x ∈ S,
∞ x .∈ S.

dom(h) Domain of convex function h, that is, the set {x ∈ Rm : h(x)< ∞}.
h∗ The Fenchel conjugate of h:

h∗(φ) = sup
x∈dom(h)

〈φ,x〉−h(x).

(Cf. Section 3 and Section B.2.)
0-coercive A convex function with all level sets compact is called 0-coercive (cf. Section 5.2).

G0 Basic loss family under consideration (cf. Section 2).
G Refined loss family for which convergence rates are established (cf. Section 6).
η,β Parameters corresponding to some g ∈G (cf. Section 6).
ΦA The general dual feasibility set: ΦA := Ker(A*)∩Rm

+ (cf. Section 3).
γ(A,S) Generalization of classical weak learning rate (cf. Section 4).
f̄A The minimal objective value of f ◦A: f̄A := infλ f (Aλ) (cf. Section 2).
ψ f
A Dual optimum (cf. Section 3).

P
p
S l p projection onto closed nonempty convex set S, with ties broken in some consis-

tent manner (cf. Section 4).
D
p
S l p distance to closed nonempty convex set S: Dp

S(φ) := ‖φ−P
p
S(φ)‖p.

Appendix B. Supporting Results from Convex Analysis, Optimization, and Linear
Programming

This appendix collects various supporting results from the literature.

B.1 Theorems of the Alternative

Theorems of the alternative consider the interplay between a matrix (or a few matrices) and its
transpose; they are typically stated as two alternative scenarios, exactly one of which must hold.
These results usually appear in connection with linear programming, where Farkas’s lemma is used
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to certify (or not) the existence of solutions. In the present manuscript, they are used to establish
the relationship between Im(A) and Ker(A*), appearing as the first and fourth clauses of the various
characterization theorems in Section 5.

The first such theorem, used in the setting of weak learnability, is perhaps the oldest theorem of
alternatives (Dantzig and Thapa, 2003, Bibliographic Notes, Section 5 of Chapter 2). Interestingly,
a streamlined presentation, using a related optimization problem (which can nearly be written as
f ◦A from this manuscript), can be found in Borwein and Lewis (2000, Theorem 2.2.6).

Theorem 29 (Gordan, Borwein and Lewis, 2000, Theorem 2.2.1) For any A∈Rm×n, exactly one
of the following situations holds:

∃λ ∈ R
n
!Aλ ∈ R

m
−−;

∃φ ∈ R
m
+ \{0m} !A*φ= 0n.

A geometric interpretation is as follows. Take the rows of A to be m points in Rn. Then there are
two possibilities: either there exists an open homogeneous halfspace containing all points, or their
convex hull contains the origin.

Next is Stiemke’s Theorem of the Alternative, used in connection with attainability.

Theorem 30 (Stiemke, Borwein and Lewis, 2000, Exercise 2.2.8) For any A∈Rm×n, exactly one
of the following situations holds:

∃λ ∈ R
n
!Aλ ∈ R

m
− \{0m};

∃φ ∈ R
m
++ !A*φ= 0n.

The geometric interpretation here is that either there exists a closed homogeneous halfspace con-
taining all m points, with at least one point interior to the halfspace, or the relative interior of the
convex hull of the points contains the origin (for the connection to relative interiors, see for instance
Hiriart-Urruty and Lemaréchal 2001, Remark A.2.1.4).

Finally, a version of Motzkin’s Transposition Theorem, which can encode the theorems of alter-
natives due to Farkas, Stiemke, and Gordan (Ben-Israel, 2002).

Theorem 31 (Motzkin, Dantzig and Thapa, 2003, Theorem 2.16) For any B∈Rz×n andC∈Rp×n,
exactly one of the following situations holds:

∃λ ∈ R
n
!Bλ ∈ R

z
−−∧Cλ ∈ R

p
−,

∃φB ∈ R
z
+ \{0z},φC ∈ R

p
+ !B*φB+C*φC = 0n.

For this geometric interpretation, take any matrix A ∈ Rm×n, broken into two submatrices B ∈ Rz×n

andC ∈Rp×n, with z+ p=m; again, consider the rows of A asm points inRn. The first possibility is
that there exists a closed homogeneous halfspace containing all m points, the z points corresponding
to B being interior to the halfspace. Otherwise, the origin can be written as a convex combination
of these m points, with positive weight on at least one element of B.
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B.2 Fenchel Conjugacy

The Fenchel conjugate of a function h, defined in Section 3, is

h∗(φ) = sup
x∈dom(h)

〈x,φ〉−h(x),

where dom(h) = {x : h(x) < ∞}. The main property of the conjugate, indeed what motivated its
definition, is that ∇h∗(∇h(x)) = x (Hiriart-Urruty and Lemaréchal, 2001, Corollary E.1.4.4). To
demystify this, differentiate and set to zero the contents of the above sup: the Fenchel conjugate
acts as an inverse gradient map. For a beautiful description of Fenchel conjugacy, please see Hiriart-
Urruty and Lemaréchal (2001, Section E.1.2).

Another crucial property of Fenchel conjugates is the Fenchel-Young inequality, simplified here
for differentiability (the “if” can be strengthened to “iff” via subgradients).

Proposition 32 (Fenchel-Young, Borwein and Lewis, 2000, Proposition 3.3.4) For any convex func-
tion h and x ∈ dom(h), φ ∈ dom(h∗),

h(x)+h∗(φ)≥ 〈x,φ〉 ,

with equality if φ= ∇h(x).

B.3 Convex Optimization

Two standard results from convex optimization will help produce convergence rates; note that these
results can be found in many sources.

First, a lemma to convert single-step convergence results into general convergence results.

Lemma 33 (Lemma 20 from Shalev-Shwartz and Singer 2008) Let 1 ≥ ε1 ≥ ε2 ≥ . . . be given
with εt+1 ≤ εt − rε2t for some r ∈ (0,1/2]. Then εt ≤ (r(t+1))−1.

Although strong convexity in the primal grants the existence of a lower bounding quadratic, it
grants upper bounds in the dual. The following result is also standard in convex analysis, see for
instance Hiriart-Urruty and Lemaréchal (2001, proof of Theorem E.4.2.2).

Lemma 34 (Lemma 18 from Shalev-Shwartz and Singer 2008) Let h be strongly convex over com-
pact convex set S with modulus c. Then for any φ1,φ1+φ2 ∈ ∇h(S),

h∗(φ1+φ2)−h∗(φ1)≤ 〈∇h∗(φ1),φ2〉+
1
2c

‖φ2‖22.

Appendix C. Basic Properties of g ∈G0

Lemma 35 Let any g ∈G0 be given. Then g is strictly convex, g> 0, g strictly increases (g′ > 0),
and g′ strictly increases. Lastly, limx→∞ g(x) = ∞.

Proof (Strict convexity and g′ strictly increases.) For any x< y,

g′(y) = g′(x)+
∫ y

x
g′′(t)dt ≥ g′(x)+(y− x) inf

t∈[x,y]
g′′(t)> g′(x),
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thus g′ strictly increases, granting strict convexity (Hiriart-Urruty and Lemaréchal, 2001, Theorem
B.4.1.4).

(g strictly increases, that is, g′ > 0.) Suppose there exists y with g′(y)≤ 0, and choose any x< y.
Since g′ strictly increases, g′(x)< 0. But that means

lim
z→−∞

g(z)≥ lim
z→−∞

g(x)+(z− x)g′(x) = ∞,

a contradiction.
(g > 0.) If there existed y with g(y) ≤ 0, then the strict increasing property would invalidate

limx→−∞ g(x) = 0.
(limx→∞ g(x) = ∞.) Let any sequence {ci}∞1 ↑ ∞ be given; the result follows by convexity and

g′ > 0, since

lim
i→∞

g(ci)≥ lim
i→∞

g(c1)+g′(c1)(ci− c1) = ∞.

Next, a deferred proof regarding properties of g∗ for g ∈G0.
Proof of Lemma 2 g∗ is strictly convex because g is differentiable, and g∗ is continuously differen-
tiable on int(dom(g∗)) because g is strictly convex (Hiriart-Urruty and Lemaréchal, 2001, Theorems
E.4.1.1, E.4.1.2).

Next, when φ< 0: limx→−∞ g(x) = 0 grants the existence of y such that for any x≤ y, g(x)≤ 1,
thus

g∗(φ) = sup
x
φx−g(x)≥ sup

x≤y
φx−1= ∞.

(g> 0 precludes the possibility of ∞−∞.)
Take φ= 0; then

g∗(φ) = sup
x
−g(x) =− inf

x
g(x) = 0.

When φ= g′(0), by the Fenchel-Young inequality (Proposition 32),

g∗(φ) = g∗(g′(0)) = 0 ·g′(0)−g(0) =−g(0).

Moreover ∇g∗(g′(0)) = 0 (Hiriart-Urruty and Lemaréchal, 2001, Corollary E.1.4.3), which com-
bined with strict convexity of g∗ means g′(0) minimizes g∗. g∗ is closed (Hiriart-Urruty and
Lemaréchal, 2001, Theorem E.1.1.2), which combined with the above gives that dom(g∗) = [0,∞)
or dom(g∗) = [0,b] for some b> 0, and the rest of the form of g∗.

Finally, properties of the empirical risk function f and its conjugate f ∗.

Lemma 36 Let any g ∈ G0 be given. Then the corresponding f is strictly convex, twice con-
tinuously differentiable, and ∇ f > 0m. Furthermore, dom( f ∗) = dom(g∗)m ⊆ Rm

+, f ∗(0m) = 0,
f ∗ is strictly convex, f ∗ is continuously differentiable on the interior of its domain, and finally
f ∗(φ) = ∑m

i=1 g∗(φi).
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Proof First,

f ∗(φ) = sup
x∈Rm

〈φ,x〉− f (x) = sup
x∈Rm

m

∑
i=1

xiφi−g(xi) =
m

∑
i=1

g∗(φi).

Next, strict convexity of g∗ (cf. Lemma 2) means, for x .= y, 〈∇g∗(x)−∇g∗(y),x− y〉> 0 (Hiriart-
Urruty and Lemaréchal, 2001, Theorem E.4.1.4); thus, given φ1,φ2 ∈ Rm with φ1 .= φ2, strict con-
vexity of f ∗ follows from

〈∇ f ∗(φ1)−∇ f ∗(φ2),φ1−φ2〉=
m

∑
i=1

〈∇g∗((φ1)i)−∇g∗((φ2)i),(φ1)i− (φ2)i〉> 0.

The remaining properties follow from properties of g and g∗ (cf. Lemma 35 and Lemma 2).

Appendix D. Approximate Line Search

This section provides two approximate line search methods for BOOST: an iterative approach, out-
lined in Section D.1 and analyzed in Section D.2, and a closed form choice, outlined in Section D.3.

The iterative approach follows standard line search principles from nonlinear optimization (Bert-
sekas, 1999; Nocedal and Wright, 2006). It requires no parameters, only the ability to evaluate
objective values and their gradients, and as such is perhaps of greater practical interest. Due to
this, and the fact that its guarantee is just a constant factor worse than the closed form method, all
convergence analysis will use this choice.

The closed form step size is provided for the sake of comparison to other choices from the
boosting literature. The drawback, as mentioned above, is the need to know certain parameters,
specifically a second derivative bound, which may be loose.

Before proceeding, note briefly that this section is the only place where boundedness of the
entries of A is used. Without this assumption, the second derivative upper bounds would contain the
term maxi, j A2i j, which in turn would appear in the various convergence rates of Section 6.

D.1 The Wolfe Conditions

Consider any convex differentiable function h, a current iterate x, and a descent direction v (that is,
∇h(x)*v< 0). By convexity, the linearization of h at x in direction v, symbolically h(x)+α∇h(x)*v,
will lie below the function. But, by continuity, it must be the case that, for any c1 ∈ (0,1), the ray
h(x)+αc1∇h(x)*v, depicted in Figure 8, must lie above h for some small region around x; this
gives the first Wolfe condition, also known as the Armijo condition (cf. Nocedal and Wright 2006,
Equation 3.4 and Bertsekas 1999, Exercise 1.2.16):

h(x+αv)≤ h(x)+αc1∇h(x)*v. (26)

Unfortunately, this rule may grant only very limited decrease in objective value, since α > 0 can
be chosen arbitrarily small and still satisfy the rule; thus, the second Wolfe condition, also called a
curvature condition, which depends on c2 ∈ (c1,1), forces the step to be farther away:

∇h(x+αv)*v≥ c2∇h(x)*v. (27)
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RoutineWOLFE.
Input Convex function h, iterate x, descent direction v.
Output Step size α> 0 satisfying Equation 26 and Equation 27.

1. Bracketing step.

(a) Set αmax := 1.
(b) While αmax satisfies Equation 26:

• Set αmax := 2αmax.

2. Bisection step.

(a) Set αmin := 0 and α := αmax/2.
(b) While α does not satisfy Equation 26 and Equation 27:

i. If α violates Equation 26:
• Set αmax := α.

ii. Else, α must violate Equation 27:
• Set αmin := α.

iii. Set α := (αmin+αmax)/2.
(c) Return α.

Figure 7: Bracketing and bisecting search for step size satisfying Wolfe conditions.

This requires the new gradient (in direction v) to be closer to 0, mimicking first order optimality
conditions for the exact line search. Note that the new gradient (in direction v) may in fact be
positive; this does not affect the analysis.

In the case of boosting, with function f ◦A, current iterate λt , direction vt+1 ∈ {±e jt+1} satisfying
∇( f ◦A)(λt)*vt+1 =−‖∇( f ◦A)(λt)‖∞, these conditions become

( f ◦A)(λt +αvt+1)≤ ( f ◦A)(λt)−αc1‖∇( f ◦A)(λt)‖∞, (28)

∇( f ◦A)(λt +αvt+1)*vt+1 ≥−c2‖∇( f ◦A)(λt)‖∞. (29)

An algorithm to find a point satisfying these conditions, presented in Figure 7, is simple enough:
grow α as quickly as possible, and then bisect backwards for a satisfactory point. As compared
with the presentation in Nocedal and Wright (2006, Algorithm 3.5), αmax is searched for rather than
provided, and convexity removes the need for interpolation.

Proposition 37 Given a continuously differentiable convex bounded below function h, iterate x,
and direction v,WOLFE terminates with an α> 0 satisfying Equation 26 and Equation 27.

Proof The bracketing search must terminate: v is a descent direction, so the linearization at λt−1
with slope c1∇h(x)*v will eventually intersect h (since h it is bounded below).

The remainder of this proof is illustrated in Figure 8. Let α1 be the greatest positive real sat-
isfying Equation 26; due to convexity, every α ≥ 0 satisfying this first condition must also satisfy
α ∈ [0,α1]. Crucially, α1 < αmax.
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∇h(x)!v

c1∇h(x)!v

c2∇h(x)!vc2∇h(x)!v

α2 α1

Wolfe condition 2

Wolfe condition 1

h(x+ αv)

Figure 8: The mechanism behind WOLFE: the set of points satisfying Equation 26 and Equation 27
is a closed interval, and bisection will find interior points. In this figure, dashed lines
denote various relevant slopes.

Next, let α2 be the smallest positive real satisfying Equation 27; existence of such a point follows
from the existence of points satisfying both Wolfe conditions (Nocedal and Wright, 2006, Lemma
3.1). By convexity,

〈∇h(x+αv)−∇h(x),v〉 ≥ 0,
and therefore every α≥ 0 satisfying Equation 27 must satisfy α≥ α2.

Finally, α1 .= α2, since c1 < c2, meaning

∇h(x+α1v)*v= c2∇h(x)*v< c1∇h(x)*v< ∇h(x+α2v)*v.

Combining these facts, the interval [α2,α1] is precisely the set of points which satisfy Equa-
tion 28 and Equation 27. The bisection search maintains the invariants αmin ≤ α2 and αmax ≥ α1,
meaning no valid solution is ever thrown out: [α2,α1] ⊆ [αmin,αmax]. [α2,α1] has nonzero width
(since α1 .= α2), and every bisection step halves the width of [αmin,αmax], thus the procedure termi-
nates.

D.2 Improvement Guaranteed by WOLFE Search

The following proof, adapted from Nocedal and Wright (2006, Lemma 3.1), provides the improve-
ment gained by a single line search step. The usual proof depends on a Lipschitz parameter on the
gradient, which is furnished here by g′′(x)≤ ηg(x).

Proposition 38 (See Nocedal and Wright 2006, Lemma 3.1) Fix any g ∈G. If αt+1 is chosen by
WOLFE applied to function f ◦A at iterate λt in direction vt+1 with c1 = 1/3 and c2 = 1/2, then

f (A(λt+αt+1vt+1))≤ f (Aλt)−
‖A*∇ f (Aλt)‖2∞
6η f (Aλt)

.
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Proof First note that every α ∈ [0,αt+1] satisfies

f (A(λt+αvt+1))≤ f (Aλt).

By the fundamental theorem of calculus,

(∇( f ◦A)(λt +αt+1vt+1)−∇( f ◦A)(λt))*vt+1

=
∫ αt+1

0
v*t+1∇

2( f ◦A)(λt +αvt+1)vt+1dα

≤ αt+1 sup
α∈[0,αt+1]

m

∑
i=1

g′′(e*i A(λt +αvt+1))(Ai jt+1)
2

≤ ηαt+1 sup
α∈[0,αt+1]

m

∑
i=1

g(e*i A(λt +αvt+1))

≤ ηαt+1 f (Aλt),

which used boundedness of the entries in A.
The rest of the proof continues as in Nocedal and Wright (2006, Theorem 3.2). Specifically,

subtracting ∇( f ◦A)(λt)*vt+1 from both sides of Equation 29 yields

(∇( f ◦A)(λt +αt+1vt+1)−∇( f ◦A)(λt))*vt+1 ≥ (c2−1)∇( f ◦A)(λt)*vt+1.

Combining these two gives

αt+1 ≥
(c2−1)∇( f ◦A)(λt)*vt+1

η f (Aλt)
=

(1− c2)‖∇( f ◦A)(λt)‖∞
η f (Aλt)

.

Plugging this into Equation 28 yields

( f ◦A)(λt +αt+1vt+1)≤ ( f ◦A)(λt)−
c1(1− c2)‖∇( f ◦A)(λt)‖2∞

η f (Aλt)
.

Note briefly that the simpler iterative strategy of backtracking line search is doomed to require
knowledge of the sorts of parameters appearing in the closed form choice.

D.3 Non-iterative Step Selection

The same techniques from the proof of Proposition 38 can provide a closed form choice of αt . In
particular, it follows that any α ∈ {α ≥ 0 : f (Aλt) ≥ f (A(λt +αvt+1))} is upper bounded by the
quadratic

f (A(λt +αvt+1))≤ f (Aλt)−α‖A*∇ f (Aλt)‖∞+
α2η f (Aλt)

2
.

This quadratic is minimized at

α′ :=
‖A*∇ f (Aλt)‖∞

η f (Aλt)
;
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moreover, this minimum is attained within the interval above, which in particular implies

f (A(λt+α′vt+1))≤ f (Aλt)−
‖A*∇ f (Aλt)‖2∞
2η f (Aλt)

.

When η is simple and tight, this yields a pleasing expression (for instance, η= 1 when g= exp(·)).
In general, however, η might be hard to calculate, or simply very loose, in which case performing a
line search like WOLFE is preferable.

Appendix E. Approximate Coordinate Selection

Selecting a coordinate jt translates into selecting some hypothesis ht ∈ H ; this is in fact a key
strength of boosting, since A need not be written down, and a weak learning oracle can select
ht ∈H . But for certain hypothesis classes H , it may be impossible to guarantee ht is truly the best
choice.

Observe how these statements translate into gradient descent. Specifically, the choice vt+1 made
by boosting satisfies

v*t+1∇( f ◦A)(λt) = v*t+1A
*∇ f (Aλt) =−‖A*∇ f (Aλt)‖∞.

On the other hand, the usual choice v = −∇( f ◦ A)(λt)/‖A*∇ f (Aλt)‖2 of gradient descent (l2
steepest descent) grants

v*∇( f ◦A)(λt) =−‖A*∇ f (Aλt)‖2;

note that this choice of v is potentially a dense vector.

Remark 39 Suppose the relaxed condition that the weak learner need merely have any correlation
over the provided distribution; in optimization terms, the returned direction v satisfies

v*∇( f ◦A)(λt)< 0.

This choice is not sufficient to guarantee convergence, let alone any reasonable convergence rate.
As an example boosting instance, consider either of the matrices

A1 :=









−1 +1 0
+1 −1 0
−1 −1 0
0 0 −1









, A2 :=





−1 +1 −1
+1 −1 −1
−1 −1 −1



 ,

the first of which uses confidence-rated predictors, the second of which is weak learnable; note that
both instances embed the matrix S due to Schapire (2010), used for lower bounds in Section 6.3.

For either instance, e1,e2,e1,e2,e1, . . . is a sequence of descent directions. But, for either matrix,
to approach optimality, the weight on the third column must go to infinity.

A first candidate fix is to choose some appropriate c0 > 0, and require

v*∇( f ◦A)(λt)≤−c0‖∇ f (Aλt)‖1;
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but note, by Theorem 7 and Theorem 11, that this is only possible under weak learnability. (Drop-
ping the term ‖∇ f (Aλt)‖1 also fails; suppose A grants a minimizer λ̄: plugging this in makes the
left hand side exactly zero, and continuity thus grants arbitrarily small values.)

Instead consider requiring the weak learning oracle to return some hypothesis at least a fraction
c0 ∈ (0,1] as good as the best weak learner in the class; written in the present framework, the
direction v must satisfy

v*∇( f ◦A)(λt)≤−c0‖A*∇ f (Aλt)‖∞.

Inspecting the proof of Proposition 20, it follows that this approximate selection would simply intro-
duce the constant c20 in all rates, but would not degrade their asymptotic relationship to suboptimality
ε.

Appendix F. Generalizing the Weak Learning Rate

This appendix develops the generalization γ(A,S) of the classical weak learning rate.

F.1 Choosing a Generalization to γ

Any generalization γ′ of γ should satisfy the following properties.

• When weak learnability holds, γ′ = γ.

• For any boosting instance, γ′ ∈ (0,∞).

• γ′ provides an expression similar to Equation 5, which allows the full gradient to be converted
into a notion of suboptimality in the dual.

Taking the form of the classical weak learning rate from Equation 3 as a model, the template
generalized weak learning rate is

γ′(A,S,C,D) := inf
φ∈S\C

‖A*φ‖∞
infψ∈S∩D ‖φ−ψ‖1

,

for some sets S, C, and D (for instance, the classical weak learning rate uses S = Rm
+ and C = D =

{0m}). In order to provide an expression similar to Equation 5, the domain of the infimum must
include every suboptimal dual iterate ∇ f (Aλt).

Any choice C which does not include all of Ker(A*) is immediately problematic: this allows
φ ∈ S∩Ker(A*) to be selected, whereby A*φ= 0m and γ′ = 0. But note that without being careful
about D, it is still possible to force the value 0.

Remark 40 Another generalization is to define

γ′′(A) := γ′(A,Rm
+,Ker(A*),{ψ f

A}) = inf
φ∈Rm

+\ΦA

‖A*φ‖∞
‖φ−ψ f

A‖1
.

This form agrees with the original γ when weak learnability holds, and will lead to a very convenient
analog to Equation 5.

Unfortunately, γ′′ may be zero. Specifically, take the matrix S defined in Section 6.3, due to
Schapire (2010), where

ψ f
S = g′(0)

[ 1
1
0

]

.
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Furthermore, for any α ∈ (0,1), define

φa := α
[ 0
0
1

]

∈ Im(S); ψα := (1−α)

[

1/2
1/2
0

]

+ψ f
S ∈ Ker(S

*).

Then

inf
φ∈Rm

+\Ker(S*)

‖S*φ‖∞
‖φ−ψ f

S‖1
≤ inf

α∈(0,1)

‖S*(φα+ψα)‖∞
‖φα+ψα−ψ f

S‖1
= inf

α∈(0,1)

∥

∥

[−α
−α

]
∥

∥

∞

1
= 0.

The natural correction to these worries is to set C = D = Ker(A*). But there is still sensitivity
due to S.

Remark 41 Set A := 12, meaning Ker(A*) = {z(1,−1) : z ∈ R}, and S = B(12,
√
2), the ball of

radius
√
2 around 12; note that S∩Ker(A*) = 02. Consider γ′(A,S,Ker(A*),Ker(A*)), and the

sequence {φi}∞i=1 where

φi = 12−
1√
i2+1

[

i+1
i−1

]

.

Note that ‖φi−12‖2 =
√
2, thus φi ∈ S. Furthermore, A*φi .= 0, so φi .∈ S∩Ker(A*). As such,

γ′(A,S,Ker(A*),Ker(A*))≤ inf
i

‖A*φi‖∞
‖φi−P1S∩Ker(A*)(φi)‖1

=
‖1*2

(

12
√
i2+1−

[ i+1
i−1

]

)

‖∞

‖12
√
i2+1−

[ i+1
i−1

]

‖1
. (30)

Using√y≤ (1+ y)/2, the numerator has upper bound

‖1*2
(

12
√

i2+1−
[ i+1
i−1

]

)

‖∞ = |2
√

i2+1−2i|

= 2i(
√

1+ i−2−1)
≤ 2i((2+ i−2)/2−1) = 1/i.

The denominator is

‖12
√

i2+1−
[ i+1
i−1

]

‖1 = |
√

i2+1− (i+1)|+ |
√

i2+1− (i−1)|

= ((i+1)−
√

i2+1)+(
√

i2+1− (i−1))
= 2.

Thus Equation 30 is bounded above by infi(2i)−1 = 0.

The difficulty here was the curvature of S, which allowed elements arbitrarily close to Ker(A*)
without actually being inside this subspace. This possibility is averted in this manuscript by re-
quiring polyhedrality of S. This choice is sufficiently rich to allow the various dual-distance upper
bounds of Section 6.
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F.2 Proof of Theorem 9

The proof of Theorem 9 requires a few steps, but the strategy is straightforward. First note that
γ(A,S) can be rewritten as

γ(A,S) = inf
φ∈S\Ker(A*)

‖A*φ‖∞
‖φ−P1S∩Ker(A*)(φ)‖1

= inf
φ∈S\Ker(A*)

‖A*(φ−P1S∩Ker(A*)(φ))‖∞
‖φ−P1S∩Ker(A*)(φ)‖1

= inf
{

‖A*v‖∞
‖v‖1

: v ∈ R
m \{0m},∃φ ∈ S ! v= φ−P

1
S∩Ker(A*)(φ)

}

= inf
{

‖A*v‖∞ : ‖v‖1 = 1,∃φ ∈ S,∃c> 0 ! cv= φ−P
1
S∩Ker(A*)(φ)

}

, (31)

where the second equivalence used A*P1S∩Ker(A*)(φ) = 0n.
In the final form, v .∈Ker(A*), and so A*v .= 0n; that is to say, the infimand is positive for every

element of its domain. The difficulty is that the domain of the infimum, written in this way, is not
obviously closed; thus one can not simply assert the infimum is attainable and positive.

The goal then will be to reparameterize the infimum to have a compact domain. For technical
convenience, the result will be mainly proved for the l2 norm (where projections behave nicely),
and norm equivalence will provide the final result.

Lemma 42 Given A ∈Rm×n and a polyhedron S⊆Rm with S∩Ker(A*) .= /0 and S\Ker(A*) .= /0,

inf

{

‖A*(φ−P2S∩Ker(A*)(φ))‖2
‖φ−P2S∩Ker(A*)(φ)‖2

: φ ∈ S\Ker(A*)

}

> 0. (32)

To produce the desired reparameterization of this infimum, the following characterization of poly-
hedral sets will be used.

Definition 43 For any nonempty polyhedral set S ⊆ Rm, let HS index a finite (but possibly empty)
collection of affine functions gα : Rm → R so that S = ∩α∈HS{x ∈ Rm : gα(x) ≤ 0} (with the con-
vention that S = Rm when HS = /0). For any x ∈ S, let IS(x) denote the active set for x: α ∈ IS(x)
iff gα(x) = 0. Lastly, define a relation ∼S over points in S: given x,y ∈ S, x ∼S y iff IS(x) = IS(y).
Observe that∼S is an equivalence relation over points within S, and let CS be the set of equivalence
classes.

The equivalence relation ∼S thus partitions S into the members of CS, each of which has a very
convenient structure.

Lemma 44 Let a polyhedral set S ⊆ Rm be given, and fix a nonempty F ∈ CS. Then F is convex,
and F is equal to its relative interior (i.e., F = ri(F)). Finally, fixing an arbitrary z0 ∈ F, the
normal cone at any point z ∈ F is orthogonal to the vector space parallel to the affine hull of F (i.e.,
NF(z) = (aff(F)−{z})⊥ = (aff(F)−{z0})⊥).
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Throughout the remainder of this section, normal and tangent cones will be considered at points
within a set F ∈ CS. As Lemma 44 establishes, any set F ∈ CS is relatively open (F = ri(F)),
however, the required properties of normal and tangent cones, as developed by Hiriart-Urruty and
Lemaréchal (2001, Sections A.5.2 and A.5.3), suppose closed convex sets. But it is always the
case that ri(F) = ri(cl(F)) (Hiriart-Urruty and Lemaréchal, 2001, Proposition A.2.1.8); as such,
the normal and tangent cones at the desired relative interior points may just as well be constructed
against cl(F), and thus the aforementioned properties safely hold.
Proof If S = Rm (meaning HS is empty) or dim(F) = 0 (F is a single point), everything follows
directly, thus suppose S .= Rm, and fix a nonempty F ∈ CS with dim(F)> 0.

Let any x0,x1 ∈ F and β ∈ [0,1] be given, and define xβ := (1− β)x0+ βx1. Since each gα
defining S is affine,

gα(xβ) = (1−β)gα(x0)+βgα(x1). (33)

By construction of CS, gα(x0) = 0 iff gα(x1) = 0 and otherwise both are negative, thus gα(xβ) = 0
iff gα(x0) = gα(x1) = 0, meaning IS(xβ) = IS(x0) = IS(x1), so xβ ∈ F and F is convex.

Now let any y0 ∈ F be given; y0 ∈ ri(F) when there exists a δ> 0 so that

B(y0,δ)∩ aff(F)⊆ F (34)

(Hiriart-Urruty and Lemaréchal, 2001, Definition A.2.1.1). To this end, first define δ to be half the
distance to the closest hyperplane defining S which is not active for y0:

δ :=
1
2

min
α∈HS\IS(y)

min{‖y′ − y0‖2 : y′ ∈ R
m,gα(y′) = 0}.

Since there are only finitely many such hyperplanes, and the distance to each is nonzero, δ> 0. Let
any yβ ∈ B(y,δ)∩aff(F) be given; by definition of aff(F), there must exist β ∈R and y1 ∈ F so that
yβ = (1−β)y0+βy1. By Equation 33, for any α ∈ IS(y0) = IS(y1),

gα(yβ) = (1−β)gα(y0)+βgα(y1) = 0.

On the other hand, for any α ∈HS \ IS(y0), it must be the case that gα(yβ)< 0, since yβ ∈ B(y0,δ),
and due to the choice of δ. Returning to the definition of relative interior in Equation 34, it follows
that y0 ∈ ri(F), and ri(F) = F since y0 ∈ F was arbitrary.

For the final property, for any z0,z ∈ ri(F) = F , the tangent cone TF(z) has form (aff(F)−{z})
(Hiriart-Urruty and Lemaréchal, 2001, see Proposition A.5.2.1 and discussion within Section A.5.3),
and note aff(F)−{z}= aff(F)+{z0− z}−{z0}= aff(F)−{z0}. Lastly, NF(z) = TF(z)⊥ (Hiriart-
Urruty and Lemaréchal, 2001, Proposition A.5.2.4).

The relevance to Equation 32 and Equation 31 is that projections from polyhedron S onto
S∩Ker(A*) (itself a polyhedron, as is verified in the proof of Lemma 42) must land on some
equivalence class of CS∩Ker(A*), and these projections are easily characterized.

Lemma 45 Let any nonempty polyhedra S ⊆ Rm and K ⊆ Rm be given, and fix any nonempty
F ∈ CS∩K and xF ∈ F. Define

PF := {c(φ−P
2
S∩K(φ)) : c> 0,φ ∈ S,P2S∩K(φ) ∈ F},

DF := NF(xF)∩{y− xF : y ∈ R
m,∀α ∈ IS(xF) !gα(y)≤ 0},

where NF(xF) is the normal cone of F at xF . Then PF = DF.
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Note that the final active set IS(xF) is with respect to S, not S∩K.
Proof (⊆) Let any φ∈ Swithψ :=P2S∩K(φ)∈F be given, where the latter is well-defined since F and
hence S∩K are nonempty. By Lemma 44,ψ∈ ri(F), andNF(ψ)=NF(xF), meaning φ−ψ∈NF(xF)
(Hiriart-Urruty and Lemaréchal, 2001, Proposition A.5.3.3). Since φ ∈ S, for any α ∈ IS(ψ) =
IS(xF)⊆HS, gα(φ)≤ 0, so

φ−ψ ∈ {y ∈ R
m : gα(y)≤ 0}−{ψ}=

(

{y ∈ R
m : gα(y)≤ 0}−{ψ− xF}

)

−{xF}
= {y ∈ R

m : gα(y)≤ 0}−{xF},

the final equality following since gα(xF) = gα(ψ) = 0 and gα defines an affine hyperplane, meaning
the corresponding affine halfspace is closed under translations by ψ− xF . This holds for all α ∈
IS(xF), thus φ−ψ ∈ DF , and since DF is a convex cone, for any c> 0, c(φ−ψ) ∈ DF .

(⊇) Define
δ :=min{‖xF − z‖2 : α ∈HS \ IS(xF),z ∈ R

m,gα(z) = 0} .

For any fixed α, this minimum is positive since gα(xF) < 0, while polyhedrality of S grants that
α ranges over a finite set, together meaning δ > 0. Now let any v ∈ DF be given, and set φ :=
xF + δv/(2‖v‖2). The form of DF immediately grants gα(φ) ≤ 0 for α ∈ IS(xF), but notice for
α ∈ HS \ IS(xF), it still holds that gα(φ) ≤ 0, since gα(xF) < 0 and ‖φ− xF‖2 < δ. So v =
(2‖v‖2/δ)(φ−P2S∩K(φ)) where φ ∈ S and P2S∩K(φ) = xF ∈ F , meaning v ∈ PF .

The result now follows by considering all elements of CS∩Ker(A*).
Proof of Lemma 42 For convenience, set K := Ker(A*). Note that K (and hence S∩K) is a
polyhedron; indeed, it has the form

K = Ker(A*) = {φ ∈ R
m : A*φ= 0n}

=
n⋂
i=1

(

{φ ∈ R
m : e*i A*φ≤ 0}∩{φ ∈ R

m : e*i A*φ≥ 0}
)

.

Next, note CS∩K has at least one nonempty equivalence class, since S∩K is nonempty by assump-
tion. Rewriting Equation 32 as in Equation 31, and fixing an xF within each nonempty F ∈ CS∩K ,
Lemma 45 grants

Eq. 32= inf
{

‖A*v‖2 : ‖v‖2 = 1,∃c> 0,∃φ ∈ S !φ−P
2
S∩K(φ) = cv

}

= min
F∈CS∩K
F .= /0

inf
{

‖A*v‖2 : ‖v‖2 = 1,∃c> 0,∃φ ∈ S !φ−P
2
S∩K(φ) = cv,P2S∩K(φ) ∈ F

}

= min
F∈CS∩K
F .= /0

inf
{

‖A*v‖2 : ‖v‖2 = 1,v ∈ NF(xF),∀α ∈ IS(xF) !gα(xF + v)≤ 0
}

.

Since S\Ker(A*) .= /0 and S∩Ker(A*), at least one infimum has a nonempty domain (for the others,
take the convention that their value is +∞). Each infimum with a nonempty domain in this final
expression is of a continuous function over a compact set (in fact, a polyhedral cone intersected
with the boundary of the unit l2 ball), and thus it has a minimizer v̄, which corresponds to some
c(φ̄−P2S∩K(φ̄)) .∈ Ker(A*), where c> 0. It follows that

A*v̄= cA*(φ̄−P
2
S∩K(φ̄)) .= 0,
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meaning each of these infima is positive. But since S is polyhedral, CS has finitely many equivalence
classes (|CS|≤ 2|HS|), meaning the outer minimum is attained and positive.

Finally, as mentioned above, the desired result follows by norm equivalence.
Proof of Theorem 9 For the upper bound, note as in the proof of Lemma 42 that S∩Ker(A*) .= /0
and the infimand is positive for every element of the domain, so the infimum is finite. For the lower
bound, by Lemma 42 and norm equivalence,

γ(A,S) = inf
φ∈S\Ker(A*)

‖A*φ‖∞
infψ∈S∩Ker(A*) ‖φ−ψ‖1

≥
(

1√
mn

)

inf
φ∈S\Ker(A*)

‖A*φ‖2
infψ∈S∩Ker(A*) ‖φ−ψ‖2

> 0.

Appendix G. Miscellaneous Technical Material

This appendix collects remaining technical material.

G.1 The Logistic Loss is within G

Remark 46 This remark develops bounds on the quantities η,β for the logistic loss g = ln(1+
exp(·)). First note that the initial level set S0 := {x∈Rm : f (x)≤ f (Aλ0)} is contained within a cube
(−∞,b]m, where b ≤ m ln(2); this follows since f (Aλ0) = f (0m) = m ln(2), whereas g(m ln(2)) =
ln(1+ exp(m ln(2)))≥ m ln(2).

For convenience, the analysis will be mainly written with respect to b = m ln(2). Let any x ∈
(−∞,b] be given, and note g′ = exp(·)/(1+ exp(·)), and g′′ = exp(·)/(1+ exp(·))2.

To determine η, note 1 ≤ 1+ exp(x) ≤ 1+ exp(b). Since ln is concave, it follows for all z ∈
[1,1+exp(b)] that the secant line through (1,0) and (1+exp(b), ln(1+exp(b))) is a lower bound:

ln(z)≥
(

ln(1+ exp(b))−0
1+ exp(b)−1

)

z−
ln(1+ exp(b))−0
1+ exp(b)−1

= ln(1+ exp(b))exp(−b)(z−1).

As such, for x ∈ (−∞,b], ln(1+ exp(x))≥ exp(x) ln(1+ exp(b))exp(−b), so

g′′(x)
g(x)

=
exp(x)

(1+ exp(x))2 ln(1+ exp(x))
≤

exp(b)
(1+ exp(x))2 ln(1+ exp(b))

≤
exp(b)

ln(1+ exp(b))
.

Consequently, a sufficient choice is η := exp(b)/ ln(1+ exp(b))≤ 2m/(m ln(2)).
For g(x)≤ βg′(x), using ln(x)≤ x−1,

g(x)
g′(x)

=
ln(1+ exp(x))

exp(x)
1+exp(x)

≤
exp(x)
exp(x)
1+exp(x)

≤ 1+ exp(b).

That is, it suffices to set β := 1+ exp(b) = 1+2m.
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G.2 Proof of Theorem 4

Proof of Theorem 4 Writing the objective as two Fenchel problems,

f̄A = inf
λ
f (Aλ)+ ιRn(λ),

d :=sup
φ
− f ∗(−φ)− ι∗Rn(A*φ).

Since cont( f ) = Rm (set of points where f is continuous) and dom(ιRn) = Rn, it follows that
Adom(ιRn)∩ cont( f ) = Im(A) .= /0, thus d = f̄A (Borwein and Lewis, 2000, Theorem 3.3.5). More-
over, since f̄A ≤ f (0m) and d ≥ − f ∗(0m) = 0, the optimum is finite, and thus the same theorem
grants that it is attainable in the dual.

To complete the dual problem, note for any λ ∈ Rn that

ι∗Rn(λ) = sup
µ∈Rn

〈λ,µ〉− ιRn(µ) = ι{0n}(λ).

From this, the term −ι∗
Rn(A*φ) allows the search in the dual to be restricted to φ ∈ Ker(A*). Next,

replace φ ∈ Ker(A*) with −ψ ∈ Ker(A*), which combined with dom( f ∗)⊆ Rm
+ (from Lemma 36)

means it suffices to consider ψ ∈ Ker(A*)∩Rm
+ = ΦA. (Note that the negation was simply to be

able to interpret feasible dual variables as nonnegative measures.)
Next, f ∗(φ) = ∑i g∗((φ)i) was proved in Lemma 36.
Finally, the uniqueness of ψ f

A was established by Collins et al. (2002, Theorem 1), however a
direct argument is as follows by the strict convexity of f ∗ (cf. Lemma 36). Specifically, if there were
some other optimal ψ′ .= ψ, the point (ψ+ψ′)/2 is dual feasible and has strictly larger objective
value, a contradiction.

G.3 Proof of Proposition 13

Proof of Proposition 13 It holds in general that 0-coercivity grants attainable minima (cf. Hiriart-
Urruty and Lemaréchal 2001, Proposition B.3.2.4 and Borwein and Lewis 2000, Proposition 1.1.3).
Conversely, let x̄ with h(x̄) = infx h(x) and any direction d ∈Rm with ‖d‖2 = 1 be given. To demon-
strate 0-coercivity, it suffices to show

lim
t→∞

h(x̄+ td)−h(x̄)
t

> 0

(Hiriart-Urruty and Lemaréchal, 2001, Proposition B.3.2.4.iii). To this end, first note, for any t ∈R,
that convexity grants

h(x̄+ td)≥ h(x̄+d)+(t−1)〈∇h(x̄+d),d〉 .

By strict monotonicity of gradients (Hiriart-Urruty and Lemaréchal, 2001, Section B.4.1.4) and
first-order necessary conditions (∇h(x̄) = 0m),

〈∇h(x̄+d),d〉= 〈∇h(x̄+d)−∇h(x̄), x̄+d− x̄〉=: c> 0,

Combining these,

lim
t→∞

h(x̄+ td)−h(x̄)
t

≥ lim
t→∞

h(x̄+d)+(t−1)c−h(x̄)
t

= c> 0.
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G.4 Proof of Lemma 24

Proof of Lemma 24 Since d ≥ infλ f (Aλ), the level set Sd := {x ∈ Rm : ( f + ιIm(A))(x) ≤ d} is
nonempty. Since |H(A)|=m, Theorem 14 provides f + ιIm(A) is 0-coercive, meaning Sd is compact.

Now consider the rectangle C defined as a product of intervals C =⊗m
i=1[ai,bi], where

ai := inf{xi : x ∈ Sd}, bi := sup{xi : x ∈ Sd}.

By construction, C ⊇ Sd , and furthermore any smaller axis-aligned rectangle must violate some
infimum or supremum above, and so must fail to include a piece of Sd . In particular, the tightest
rectangle exists, and it is C .

Next, note that ∇ f (x) = (g′(x1),g′(x2), . . . ,g′(xm)), thus D = ⊗m
i=1g

′([ai,bi]), an axis-aligned
rectangle in the dual. Since g is strictly convex and dom(g) = R, both g′(ai) and g′(bi) are within
int(dom(g∗)) (for all i), and so ∇ f (C )⊂ int(dom( f ∗)).

Finally, Proposition 13 grants that f + ιIm(A) has a minimizer; thus choose any λ̄ ∈ Rn so that
f (Aλ̄) = infλ f (Aλ). By optimality conditions of Fenchel problems, ψ

f
A =∇ f (Aλ̄) (cf. the optimal-

ity conditions in Borwein and Lewis (2000, Exercise 3.3.9.f), and the proof of Theorem 4, where a
negation was inserted into the dual to allow dual points to be interpreted as nonnegative measures).
But the dual optimum is dual feasible, and Aλ̄ ∈ Sd , so

∇ f (C )∩ΦA ⊇ {∇ f (Aλ̄)}∩ΦA = {ψ f
A}∩ΦA .= /0.

G.5 Splitting Distances along A0,A+

Lemma 47 Let A =
[

A0
A+

]

be given as in Theorem 27, and let a set S = S0× S+ be given with

S0 ⊆ Rm0 and S+ ⊆ Rm+ and S∩ΦA .= /0. Then, for any φ=
[

φ0
φ+

]

with φ0 ∈ Rm0 and φ+ ∈ Rm+ ,

D
1
S∩ΦA

(φ) = D
1
S0∩ΦA0

(φ0)+D
1
S+∩ΦA+

(φ+).

Proof Recall from Theorem 17 that ΦA =ΦA0 ×ΦA+ , thus

S∩ΦA = (S0∩ΦA0)× (S+∩ΦA+),

and S∩ΦA .= /0 grants that S0∩ΦA0 .= /0 and S+∩ΦA+ .= /0. Define now the notation [·]0 :Rm →Rm0

and [·]+ : Rm → Rm+ , which respectively select the coordinates corresponding to the rows of A0,
and the rows of A+.

Let φ =
[

φ0
φ+

]

∈ Rm be given; in the above notation, φ0 = [φ]0 and φ+ = [φ]+. By the above
Cartesian product and intersection properties,

[

P1S0∩ΦA0
(φ0)

P1S+∩ΦA+
(φ+)

]

∈ S∩ΦA,
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and so

D
1
S∩ΦA

(φ)≤
∥

∥

∥

∥

[

φ0
φ+

]

−
[

P1S0∩ΦA0
(φ0)

P1S+∩ΦA+
(φ+)

]
∥

∥

∥

∥

1
= D

1
S0∩ΦA0

(φ0)+D
1
S+∩ΦA+

(φ+).

On the other hand, since P1S∩ΦA
(φ) ∈ (S0∩φA0)× (S+∩φA+),

D
1
S0∩ΦA0

(φ0)+D
1
S+∩ΦA+

(φ+)≤
∥

∥φ0− [P1S∩ΦA
(φ)]0

∥

∥

1+
∥

∥φ+− [P1S∩ΦA
(φ)]+

∥

∥

1 = D
1
S∩ΦA

(φ).

G.6 Proof of Theorem 28

Proof of Theorem 28 This proof proceeds in two stages: first the gap between any solution with
l1 norm B is shown to be large, and then it is shown that the l1 norm of the BOOST solution (under
logistic loss) grows slowly.

To start, Ker(S*) = {z(1,1,0) : z ∈ R}, and −g∗ is maximized at g′(0) with value −g(0) (cf.
Lemma 2). Thus ψ f

S = (g′(0),g′(0),0), and f̄S =− f ∗(ψ f
S) = 2g(0) = 2ln(2).

Next, by calculus, given any B,

inf
‖λ‖1≤B

f (Sλ)− f̄S = f
(

S
[

B/2
B/2

])

−2ln(2)

= (2ln(2)+ ln(1+ exp(−B)))−2ln(2)
= ln(1+ exp(−B)).

Now to bound the l1 norm of the iterates. By the nature of exact line search, the coordinates
of λ are updated in alternation (with arbitrary initial choice); thus let ut denote the value of the
coordinate updated in iteration t, and vt be the one which is held fixed. (In particular, vt = ut−1.)

The objective function, written in terms of (ut ,vt), is

ln
(

1+ exp(vt −ut)
)

+ ln
(

1+ exp(ut − vt)
)

+ ln
(

1+ exp(−ut− vt)
)

= ln
(

2+ exp(vt −ut)+ exp(ut − vt)+2exp(−ut− vt)+ exp(−2ut)+ exp(−2vt)
)

.

Due to the use of exact line search, and the fact that ut is the new value of the updated variable, the
derivative with respect to ut of the above expression must equal zero. In particular, producing this
equality and multiplying both sides by the (nonzero) denominator yields

−exp(vt −ut)+ exp(ut − vt)−2exp(−ut− vt)−2exp(−2ut) = 0.

Multiplying by exp(ut + vt) and rearranging, it follows that, after line search, ut and vt must satisfy

exp(2ut) = exp(2vt)+2exp(vt −ut)+2. (35)

First it will be shown for t ≥ 1, by induction, that ut ≥ vt . The base case follows by inspection
(since u0 = v0 = 0 and so u1 = ln(2)). Now the inductive hypothesis grants ut ≥ vt ; the case ut = vt
can be directly handled by Equation 35, thus suppose ut > vt . But previously, it was shown that the
optimal l1 bounded choice has both coordinates equal; as such, the current iterate, with coordinates
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(ut ,vt), is worse than the iterate (ut ,ut), and thus the line search will move in a positive direction,
giving ut+1 ≥ vt+1.

It will now be shown by induction that, for t ≥ 1, ut ≤ 1
2 ln(4t). The base case follows by the

direct inspection above. Applying the inductive hypothesis to the update rule above, and recalling
vt+1 = ut and that the weights increase (i.e., ut+1 ≥ vt+1 = ut),

exp(2ut+1) = exp(2ut)+2exp(ut −ut+1)+2≤ exp(2ut)+2exp(ut −ut)+2≤ 4t+4≤ 4(t+1).

To finish, recall by Taylor expansion that ln(1+q)≥ q− q2
2 ; consequently for t ≥ 1

f (Sλt)− f̄S ≥ inf
‖λ‖1≤ln(4t)

f (Sλ)− f̄S ≥ ln
(

1+
1
4t

)

≥
1
4t

−
1
2

(

1
4t

)2
≥
1
8t
.
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Abstract
Sparsity-inducing multiple kernel Fisher discriminant analysis (MK-FDA) has been studied in the
literature. Building on recent advances in non-sparse multiple kernel learning (MKL), we propose
a non-sparse version of MK-FDA, which imposes a general !p norm regularisation on the kernel
weights. We formulate the associated optimisation problem as a semi-infinite program (SIP), and
adapt an iterative wrapper algorithm to solve it. We then discuss, in light of latest advances in MKL
optimisation techniques, several reformulations and optimisation strategies that can potentially lead
to significant improvements in the efficiency and scalability of MK-FDA. We carry out extensive
experiments on six datasets from various application areas, and compare closely the performance
of !p MK-FDA, fixed norm MK-FDA, and several variants of SVM-based MKL (MK-SVM). Our
results demonstrate that !p MK-FDA improves upon sparse MK-FDA in many practical situations.
The results also show that on image categorisation problems, !p MK-FDA tends to outperform its
SVM counterpart. Finally, we also discuss the connection between (MK-)FDA and (MK-)SVM,
under the unified framework of regularised kernel machines.
Keywords: multiple kernel learning, kernel fisher discriminant analysis, regularised least squares,
support vector machines

1. Introduction

Since their introduction in the mid-1990s, kernel methods (Schölkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004) have proven successful for many machine learning problems, for
example, classification, regression, dimensionality reduction, clustering. Representative methods
such as support vector machine (SVM) (Vapnik, 1999; Shawe-Taylor and Cristianini, 2004), kernel
Fisher discriminant analysis (kernel FDA) (Mika et al., 1999; Baudat and Anouar, 2000), kernel
principal component analysis (kernel PCA) (Schölkopf et al., 1999) have been reported to produce
state-of-the-art performance in numerous applications. Kernel methods work by embedding data
items in an input space (vector, graph, string, etc.) into a feature space, and applying linear methods
in the feature space. This embedding is defined implicitly by specifying an inner product for the
feature space via a symmetric positive semidefinite (PSD) kernel function.

It is well recognised that in kernel methods, the choice of kernel function is critically important,
since it completely determines the embedding of the data in the feature space. Ideally, this em-
bedding should be learnt from training data. In practice, a relaxed version of this very challenging
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problem is often considered: given multiple kernels capturing different “views” of the problem, how
to learn an “optimal” combination of them. Among several others (Cristianini et al., 2002; Chapelle
et al., 2002; Bousquet and Herrmann, 2003; Ong et al., 2003), Lanckriet et al. (2002, 2004) are one
of the pioneering works for this multiple kernel learning (MKL) problem.

Lanckriet et al. (2002, 2004) study a binary classification problem, and their key idea is to
learn a linear combination of a given set of base kernels by maximising the margin between the
two classes or by maximising kernel alignment. More specifically, suppose one is given n m×m
symmetric PSD kernel matrices Kj, j = 1, · · · ,n, and m class labels yi ∈ {1,−1}, i = 1, · · · ,m. A
linear combination of the n kernels under an !1 norm constraint is considered:

K =
n

∑
j=1

β jKj, β ≥ 0, ‖β‖1 = 1,

where β= (β1, · · · ,βn)T ∈Rn, and 0 is them dimensional vector of zeros. Geometrically, taking the
sum of kernels can be interpreted as taking the Cartesian product of the associated feature spaces.
Different scalings of the feature spaces lead to different embeddings of the data in the composite
feature space. The goal of MKL is then to learn the optimal scaling of the feature spaces, such that
the “separability” of the two classes in the composite feature space is maximised.

Lanckriet et al. (2002, 2004) propose to use the soft margin of SVM as a measure of separa-
bility, that is, to learn β by maximising the soft margin between the two classes. One of the most
commonly used formulations of the resulting MKL problem is the following saddle point problem:

max
β
min
α

−yTα+
1
2

n

∑
j=1

αTβ jKjα (1)

s.t. 1Tα= 0, 0≤ yTα≤C1, β ≥ 0, ‖β‖1 ≤ 1,

where α ∈ Rm, 1 is the m dimensional vector of ones, y is the m dimensional vector of class labels,
C is a parameter controlling the trade-off between regularisation and empirical error, and Kj(xi,xi′)
is the dot product of the ith and the i′th training examples in the jth feature space. Note that in
Equation (1), we have replaced the constraint ‖β‖1 = 1 by ‖β‖1 ≤ 1, which can be shown to have
no effect on the solution of the problem, but allows for an easier generalisation.

Several alternative MKL formulations have been proposed (Lanckriet et al., 2004; Bach and
Lanckriet, 2004; Sonnenburg et al., 2006; Zien and Ong, 2007; Rakotomamonjy et al., 2008). These
formulations essentially solve the same problem as Equation (1), and differ only in the optimisa-
tion techniques used. The original semi-definite programming (SDP) formulation (Lanckriet et al.,
2004) becomes intractable when m is in the order of thousands, while the semi-infinite linear pro-
gramming (SILP) formulation (Sonnenburg et al., 2006) and the reduced gradient descent algorithm
(Rakotomamonjy et al., 2008) can deal with much larger problems.

Of particular interest to this article is the SILP formulation in Sonnenburg et al. (2006). The
authors propose to use a technique called column generation to solve the SILP, which involves
dividing a SILP into an inner subproblem and an outer subproblem, and alternating between solving
the two subproblems until convergence. A straightforward implementation of column generation
leads to a conceptually very simple wrapper algorithm, where finding the optimal α in the inner
subproblem corresponds to solving a standard binary SVM. This means the wrapper algorithm can
take advantage of existing efficient SVM solvers, and can be reasonably fast for medium-sized
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problems already. However, as pointed out by Sonnenburg et al. (2006), solving the whole SVM
problem to a high precision is unnecessary and therefore wasteful when the variable β in the outer
subproblem is still far from the global optimum.

To remedy this, Sonnenburg et al. (2006) propose to optimiseα and β in an interleaved manner,
by incorporating chunking (Joachims, 1988) into the inner subproblem. The key idea of chunking,
and more generally decomposition techniques for SVM, is to freeze all but a small subset of α, and
solve only a small-sized subproblems of the SVM dual in each iteration. The resulting interleaved
algorithm in Sonnenburg et al. (2006) avoids the wasteful computation of the whole SVM dual, and
as a result has an improved efficiency over the wrapper algorithm. Moreover, with the interleaved
algorithm, only columns of the kernel matrices that correspond to the “active” dual variables need
to be loaded into memory, extending MKL’s applicability to large scale problems.

The learning problem in Equation (1) imposes an !1 regularisation on the kernel weights. It has
been known that !1 norm regularisation tends to produce sparse solutions (Rätsch, 2001), which
means during the learning most kernels are assigned zero weights. Conventionally, sparsity is
favoured mainly for two reasons: it offers a better interpretability, and the test process is more
efficient with sparse kernel weights. However, sparsity is not always desirable, since the informa-
tion carried in the zero-weighted kernels is lost. In Kloft et al. (2008) and Cortes et al. (2009),
non-sparse versions of MKL are proposed, where an !2 norm regularisation is imposed instead of
!1 norm. Kloft et al. (2009, 2011) later extended their work to use a general !p (p≥ 1) norm regu-
larisation. To solve the associated optimisation problem, Kloft et al. (2011) propose extensions of
the wrapper and the interleaved algorithms in Sonnenburg et al. (2006) respectively. Experiments in
Kloft et al. (2008, 2009, 2011) show that the regularisation norm contributes significantly to the per-
formance of MKL, and confirm that in general a smaller regularisation norm produces more sparse
kernel weights.

Although many of the above references discuss general loss functions (Lanckriet et al., 2004;
Sonnenburg et al., 2006; Kloft et al., 2011), they have mainly been focusing on the binary hinge
loss. In this sense, the corresponding MKL algorithms are essentially binary multiple kernel sup-
port vector machines (MK-SVMs). In contrast to SVM, which maximises the soft margin, Fisher
discriminant analysis (FDA) (Fisher, 1936) maximises the ratio of projected between and within
class scatters. Since its introduction in the 1930s, FDA has stood the test of time. Equipped recently
with kernelisation (Mika et al., 1999; Baudat and Anouar, 2000) and efficient implementation (Cai
et al., 2007), FDA has established itself as a strong competitor of SVM. In many comparative stud-
ies, FDA is reported to offer comparable or even better performance than SVM (Mika, 2002; Cai
et al., 2007; Ye et al., 2008).

In Kim et al. (2006) and Ye et al. (2008), a multiple kernel FDA (MK-FDA) is introduced, where
an !1 norm is used to regularise the kernel weights. As in the case of !1 MK-SVM, !1 MK-FDA
tends to produce sparse selection results, which may lead to a loss of information. In this paper,
we extend the work of Kim et al. (2006) and Ye et al. (2008) to a general !p norm regularisation by
bringing latest advances in non-sparse MKL to MK-FDA. Our contribution can be summarised as
follows:

• We provide a SIP formulation of !p MK-FDA for both binary and multiclass problems, and
adapt the wrapper algorithm in Sonnenburg et al. (2006) to solve it. By considering recent
advances in large scale MKL techniques, we also discuss several strategies that could signifi-
cantly improve the efficiency and scalability of the wrapper-based !p MK-FDA. (Section 2)
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• We carry out extensive experiments on six datasets, including one synthetic dataset, four
object and image categorisation benchmarks, and one computational biology dataset. We
confirm that as in the case of !p MK-SVM, in !p MK-FDA, a smaller regularisation norm in
general leads to more sparse kernel weights. We also show that by selecting the regularisation
norm p on an independent validation set, the “intrinsic sparsity” of the given set of base
kernels can be learnt. As a result, using the learnt optimal norm p in !p MK-FDA offers
better performance than fixed norm MK-FDAs. (Section 3)

• We compare closely the performance of !p MK-FDA and that of several variants of !p MK-
SVM, and show that on object and image categorisation datasets, !p MK-FDA has a small
but consistent edge. In terms of efficiency, our wrapper-based !p MK-FDA is comparable
to the interleaved !p MK-SVM on small/medium sized binary problems, but can be sig-
nificantly faster on multiclass problems. When compared against recently proposed MKL
techniques that define the state-of-the-art, such as SMO-MKL (Vishwanathan et al., 2010)
and OBSCURE (Orabona et al., 2010), our MK-FDA also compares favourably or similarly.
(Section 3)

• Finally, we discuss the connection between (MK-)FDA and (MK-)SVM, from the perspec-
tives of both loss function and version space, under the unified framework of regularised
kernel machines. (Section 4)

Essentially, our work builds on Sonnenburg et al. (2006), Ye et al. (2008) and Kloft et al. (2011).
However, we believe the empirical findings of this paper, especially the one that (MK-)FDA tends
to outperform (MK-)SVM on image categorisation datasets, is important, given that SVM and SVM
based MKL are widely accepted as the state-of-the-art classifier in most image categorisation sys-
tems. Finally, note that preliminary work to this article has been published previously as conference
papers (Yan et al., 2009b,a, 2010). The aim of this article is to consolidate the results into an in-
tegrated and comprehensive account and to provide more experimental results in support of the
proposed methodology.

2. !p Norm Multiple Kernel FDA

In this section we first present our !p regularised MK-FDA for binary problems and then for multi-
class problems. In both cases, we first give problem formulation, then solve the associated optimi-
sation problem using a wrapper algorithm. Towards the end of this section, we also discuss several
possible improvements over the wrapper algorithm in terms of time and memory complexity, in
light of recent advances in MKL optimisation techniques.

2.1 Binary Classification

Given a binary classification problem with m training examples, our goal is to learn the optimal
kernel weights β ∈ Rn for a linear combination of n base kernels under the !p (p≥ 1) constraint:

K =
n

∑
j=1

β jKj, β j ≥ 0, ‖β‖pp ≤ 1,

where the p≥ 1 requirement is to ensure that the triangle inequality is satisfied and ‖ ·‖p is a norm.
We define optimality in terms of the class separation criterion of FDA, that is, the learnt kernel
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weights β are optimal, if the ratio of the projected between and within class scatters is maximised.
In this paper we assume each kernel is centred in its feature space. Centring can be performed
implicitly (Schölkopf et al., 1999) by Kj = PK̃jP, where P is the m×m centring matrix defined as
P= I− 1

m1 ·1
T , K̃ j is the uncentred kernel matrix, and I is the m×m identity matrix.

Let m+ be the number of positive training examples, and m− = m−m+ be that of negative
training examples. For a given kernel K, let φ(x+i ) be the ith positive training point in the implicit
feature space associated with K, φ(x−i ) be the ith negative training point in the feature space. Here
x+i and x

−
i can be thought of as training examples in some input space, and φ is the mapping to the

feature space. Also let µ+ and µ− be the centroids of the positive examples and negative examples
in the feature space, respectively:

µ+ =
1
m+

m+

∑
i=1

φ(x+i ), µ− =
1
m−

m−

∑
i=1

φ(x−i ).

The within class covariance matrices of the two classes are:

C+ =
1
m+

m+

∑
i=1

(

φ(x+i )−µ+

)(

φ(x+i )−µ+

)T
,

C− =
1
m−

m−

∑
i=1

(

φ(x−i )−µ−

)(

φ(x−i )−µ−

)T
.

The between class scatter SB and within class scatter Sw are then defined as:

SB =
m+m−

m
(µ+−µ−)(µ+−µ−)T , (2)

SW = m+C++m−C−.

The objective of single kernel FDA is to find the projection direction w in the feature space that
maximises w

T SBw
wT SWw , or equivalently,

wT m
m+m− SBw
wT STw , where ST = SB+ SW is the total scatter matrix. In

practice a regularised objective function

JFDA(w) =
wT m

m+m− SBw
wT (ST +λI)w

(3)

is maximised to improve generalisation and numerical stability (Mika, 2002), where λ is a small
positive number.

From Theorem 2.1 of Ye et al. (2008), for a given kernel K, the maximal value of Equation (3)
is:

J∗FDA = aTa−aT
(

I+
1
λ
K
)−1

a, (4)

where

a=
(

1
m+

, · · · ,
1
m+

,
−1
m−

, · · · ,
−1
m−

)T
∈ R

m

contains the centred labels. On the other hand, Lemma 2.1 of Ye et al. (2008) states that the w that
maximises Equation (3) also minimises the following regularised least squares (RLS):

JRLS(w) = ‖φT (X)w−a‖2+λ‖w‖2, (5)
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and the minimum of Equation (5) is given by:

J∗RLS = aT
(

I+
1
λ
K
)−1

a. (6)

In Equation (5), φ(X) = (φ(x+1 ), · · · ,φ(x
+
m+),φ(x−1 ), · · · ,φ(x

−
m−)) are the (centred) training data in

the feature space such that φ(X)Tφ(X) = K.
Due to strong duality, the minimal value of Equation (5) is equal to the maximal value of its

Lagrangian dual problem, that is,

J∗RLS =max
α
aTα−

1
4
αTα+

1
4λ

αTKα,

or equivalently

J∗RLS =−min
α

(

−aTα+
1
4
αTα+

1
4λ

αTKα
)

, (7)

where α ∈ Rm. By combining Equation (4), Equation (6) and Equation (7), it follows that the
maximal value of the FDA objective in Equation (3) is given by:

J∗FDA = aTa+min
α

(

−aTα+
1
4
αTα+

1
4λ

αTKα
)

. (8)

Now instead of a fixed single kernel, consider the case where the kernel K can be chosen from
linear combinations of a set of base kernels. The kernel weights must be regularised somehow to
make sure Equation (8) remains meaningful and does not become arbitrarily large. In this paper, we
propose to impose an !p regularisation on the kernel weights for any p ≥ 1, following Kloft et al.
(2009, 2011):

K̃ =

{

K =
n

∑
j=1

β jKj : β ≥ 0,‖β‖pp ≤ 1
}

. (9)

Combining Equation (9) and Equation (8), and dropping the unimportant constant aTa, it can be
shown that the optimal K ∈ K̃ maximising Equation (4) is found by solving:

max
β
min
α

−aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ jKjα (10)

s.t. β ≥ 0, ‖β‖pp ≤ 1.

Note that putting an !p constraint on β or penalizing w by an !2,r block norm are equivalent with
p = r/(2− r) (Szafranski et al., 2008). When p = 1, we have the !1 MK-FDA discussed in Ye
et al. (2008); while p= ∞ leads to r = 2, and MK-FDA reduces to standard single kernel FDA with
unweighted concatenation of base feature spaces. In this paper, however, we are interested in the
general case of any p≥ 1.

Equation (10) is an optimisation problem with a quadratic objective and a general pth order
constraint. We borrow the idea from !p MK-SVM (Kloft et al., 2009, 2011) and use second order
Taylor expansion to approximate the norm constraint:

‖β‖pp ≈
p(p−1)
2

n

∑
j=1

β̃p−2j β2j −
n

∑
j=1

p(p−2)β̃p−1j β j+
p(p−3)
2

+1 := ν(β), (11)
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where β̃ j is the current estimate of β j in an iterative process, which will be explained in more detail
shortly. Substituting Equation (11) into Equation (10), we arrive at the binary !p MK-FDA saddle
point problem:

max
β
min
α

−aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ jKjα (12)

s.t. β ≥ 0, ν(β)≤ 1.

In Sonnenburg et al. (2006), the authors propose to transform a saddle point problem similar
to Equation (12) to a semi-infinite program (SIP). A SIP is an optimisation problem with a finite
number of variables x ∈ Rd on a feasible set described by infinitely many constraints (Hettich and
Kortanek, 1993):

min
x

f (x) s.t. g(x,u)≥ 0 ∀u ∈U,

where U is an infinite index set. Following the similar arguments as in Sonnenburg et al. (2006)
and Ye et al. (2008), we show in Theorem 1 that the saddle point problem in Equation (12) can also
be transformed into a SIP.

Theorem 1 Given a set of n kernel matrices K1, · · · ,Kn, the kernel weights β that optimise Equa-
tion (12) are given by solving the following SIP problem:

max
θ,β

θ (13)

s.t. −aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ jKjα≥ θ ∀α ∈ R
m, β ≥ 0, ν(β)≤ 1.

Proof Let α∗ be the optimal solution to the saddle point problem in Equation (12). By defining

θ∗ :=−aTα∗+
1
4
α∗Tα∗+

1
4λ

n

∑
j=1

α∗Tβ jKjα
∗

as the minimum objective value achieved by α∗, we have

−aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ jKjα≥ θ∗

∀α ∈ Rm. Now define

θ=min
α

−aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ jKjα

and substitute it into Equation (12), the theorem is proved.

We adapt the wrapper algorithm in Sonnenburg et al. (2006) to solve the SIP in Equation (13).
This algorithm is based on the column generation technique, where the basic idea is to divide a SIP
into an inner subproblem and an outer subproblem. The algorithm alternates between solving the
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Algorithm 1 A wrapper algorithm for solving the binary !p MK-FDA SIP in Equation (13)

Input: K1, · · · ,Kn, a, θ(1) =−∞, β(1)j = n−1/p∀ j, ε.
Output: Learnt kernel weights β = (β(t)1 , · · · ,β(t)n )T .
1: for t = 1, · · · do
2: Compute α(t) in Equation (15);
3: Compute S(t) =−aTα(t) + 1

4α
(t)Tα(t) + 1

4λ ∑
n
j=1α

(t)Tβ(t)j Kjα
(t);

4: if |1− S(t)
θ(t)

|≤ ε then
5: break;
6: end if
7: Compute {θ(t+1),β(t+1)} in Equation (16), where ν(β) is defined as in Equation (11) with

β̃ = β(t);
8: end for

two subproblems until convergence. At step t, the inner subproblem (α step) identifies the constraint
that maximises the constraint violation for {θ(t),β(t)}:

α(t) := argmin
α

−aTα+
1
4
αTα+

1
4λ

n

∑
j=1

αTβ(t)j Kjα. (14)

Note that the program in Equation (14) is nothing but the single kernel FDA/RLS dual problem
using the current estimate β(t) as kernel weights. Observing that Equation (14) is an unconstrained
quadratic program, α(t) is obtained by solving the following linear system (Ye et al., 2008):

(

1
2
I+

1
2λ

n

∑
j=1

β(t)j Kj

)

α(t) = a. (15)

If α(t) satisfies constraint −aTα(t) + 1
4α

(t)Tα(t) + 1
4λ ∑

n
j=1α

(t)Tβ(t)j Kjα
(t) ≥ θ(t) then {θ(t),β(t)} is

optimal. Otherwise, the constraint is added to the set of constraints and the algorithm proceeds to
the outer subproblem of step t.

The outer subproblem (β step) is also called the restricted master problem. At step t, it computes
the optimal {θ(t+1),β(t+1)} in Equation (13) for a restricted subset of constraints:

{θ(t+1),β(t+1)}= argmax
θ,β

θ (16)

s.t. −aTα(r) +
1
4
α(r)Tα(r) +

1
4λ

n

∑
j=1

α(r)Tβ jKjα
(r) ≥ θ ∀r = 1, · · · , t, β ≥ 0, ν(β)≤ 1.

When p = 1, ν(β) ≤ 1 reduces to a linear constraint. As a result, Equation (16) becomes a linear
program (LP) and the !p MK-FDA reduces to the !1 MK-FDA in Ye et al. (2008). When p > 1,
Equation (16) is a quadratically constrained linear program (QCLP) with one quadratic constraint
ν(β)≤ 1 and t+n linear constraints. This can be solved by off-the-shelf optimisation tools such as
Mosek.1 Note that at time t, ν(β) is defined as in Equation (11) with β̃ = β(t), that is, the current
estimate of β.

1. Mosek optimisation toolbox can be found at http://www.mosek.com.
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Normalised maximal constraint violation is used as a convergence criterion. The algorithm
stops when |1− S(t)

θ(t)
| ≤ ε, where S(t) := −aTα(t) + 1

4α
(t)Tα(t) + 1

4λ ∑
n
j=1α

(t)Tβ(t)j Kjα
(t) and ε is a

pre-defined accuracy parameter. This iterative wrapper algorithm for solving the binary !p MK-
FDA SIP is summarised in Algorithm 1. It is a special case of a set of semi-infinite programming
algorithms known as exchange methods, which are guaranteed to converge (Hettich and Kortanek,
1993). Finally, note that in line 4 of Algorithm 1, β(t+1) can also be solved using the analytical
update in Kloft et al. (2011) that is adapted to FDA. However, in practice we notice that for MK-
FDA, such an analytical update tends to be numerically unstable when p is close to 1.

2.2 Multiclass Classification

In this section we consider the multiclass case. Let c be the number of classes, andmk be the number
of training examples in the kth class. In multiclass FDA, the following objective is commonly
maximised (Ye et al., 2008):

JMC−FDA(W ) = trace
(

(

WT (ST +λI)W
)−1

WTSBW
)

, (17)

where W is the projection matrix, the within class scatter SW is defined in a similar way as in
Equation (2) but with c classes, and the between class scatter is SB = φ(X)HHTφ(X)T , where
φ(X) = (φ(x1),φ(x2), · · · ,φ(xm)) is the set of m training examples in the feature space, and H =
(h1,h2, · · · ,hc) is an m× c matrix with hk = (h1k, · · · ,hmk)T and

hik =

{ √

m
mk −

√mk
m if yi = k

−
√mk

m if yi ,= k.
(18)

Similar to the binary case, using duality theory and the connection between FDA and RLS, Ye
et al. (2008) show that the maximal value of Equation (17) is given by (up to an additive constant
determined by the labels):

J∗MC−FDA ∼min
αk

c

∑
k=1

(

−hTkαk+
1
4
αT
kαk+

1
4λ

αT
k Kαk

)

,

where αk ∈ Rm for k = 1, · · · ,c. When choosing from linear combinations of a set of base kernels
with kernel weights regularised with an !p norm, the optimal kernel weights are given by:

max
β
min
αk

c

∑
k=1

(

−hTkαk+
1
4
αT
kαk+

1
4λ

n

∑
j=1

αT
k β jKjαk

)

(19)

s.t. β ≥ 0, ‖β‖pp ≤ 1.

We use again second order Taylor expansion to approximate the norm constraint and arrive at the
multiclass !p MK-FDA saddle point problem:

max
β
min
αk

c

∑
k=1

(

−hTkαk+
1
4
αT
kαk+

1
4λ

n

∑
j=1

αT
k β jKjαk

)

s.t. β ≥ 0, ν(β)≤ 1,
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Algorithm 2 A wrapper algorithm for solving the multiclass !p MK-FDA SIP in Equation (20)

Input: K1, · · · ,Kn, a, θ(1) =−∞, β(1)j = n−1/p∀ j, ε.
Output: Learnt kernel weights β = (β(t)1 , · · · ,β(t)n )T .
1: for t = 1, · · · do
2: Compute α(t)

k in Equation (21);
3: Compute S(t) = ∑c

k=1
(

−hTkα
(t)
k + 1

4α
(t)T
k α

(t)
k + 1

4λ ∑
n
j=1α

(t)T
k β(t)j Kjα

(t)
k
)

;
4: if |1− S(t)

θ(t)
|≤ ε then

5: break;
6: end if
7: Compute {θ(t+1),β(t+1)} in Equation (22), where ν(β) is defined as in Equation (11) with

β̃ = β(t);
8: end for

where ν(β) is defined as in Equation (11).
Again similar to the binary case, Equation (19) can be reformulated as a SIP:

max
θ,β

θ (20)

s.t.
c

∑
k=1

(

−hTkαk+
1
4
αT
kαk+

1
4λ

n

∑
j=1

αT
k β jKjαk

)

≥ θ ∀αk ∈ R
m, β ≥ 0, ν(β)≤ 1,

and the SIP can be solved using a column generation algorithm that is similar to Algorithm 1. In
the inner subproblem, the only difference is that instead of one linear system, here c linear systems
need to be solved, one for each hk:

(

1
2
I+

1
2λ

n

∑
j=1

β(t)j Kj

)

α
(t)
k = hk. (21)

Accordingly, the outer subproblem for computing the optimal {θ(t+1),β(t+1)} is adapted to work
with multiple classes:

(θ(t+1),β(t+1)) = argmax
θ,β

θ (22)

s.t.
c

∑
k=1

(

−hTkα
(r)
k +

1
4
α

(r)T
k α

(r)
k +

1
4λ

n

∑
j=1

α
(r)T
k β jKjα

(r)
k

)

≥ θ ∀r = 1, · · · , t

β ≥ 0, ν(β)≤ 1.

When p= 1, Equation (22) reduces to an LP and our formulation reduces to that in Ye et al. (2008).
For p > 1, Equation (22) is an QCLP with one quadratic constraint and t+ n linear constraints, as
in the binary case. The iterative wrapper algorithm for solving the multiclass !p MK-FDA SIP is
summarised in Algorithm 2.

2.3 Addressing Efficiency Issues

In this section we discuss several possible improvements over the wrapper-based !p MK-FDA
method proposed in the previous sections. In particular, we address time and memory complex-
ity issues, in light of recent advances in MKL optimisation techniques. We show that by exploiting
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the equivalence between kernel FDA and least squares SVM (LSSVM) (Suykens and Vandewalle,
1999), the interleaved method in Sonnenburg et al. (2006) and Kloft et al. (2011) can be applied
to MK-FDA. Furthermore, we demonstrate that the formulation in Vishwanathan et al. (2010) that
tackles directly the MKL dual problem can also be adapted to work with MK-FDA. Both new for-
mulations discussed in this section are equivalent to previous ones in terms of learnt kernel weights,
but can potentially lead to significant efficiency improvement. However, note that we describe these
new formulations only briefly, and do not show their efficiency in the experiments section and their
implementation details, since these are not in the main scope of this paper. Note also that in the fol-
lowing we focus only on multiclass formulations, as the corresponding binary ones can be derived
in a very similar fashion, or as special cases.

2.3.1 INTERLEAVED OPTIMISATION OF THE SADDLE POINT PROBLEM

We consider the multiclass MKL problem for a general convex loss function V (ξik,hik):

min
w jk,ξik,β

c

∑
k=1

(

1
2

n

∑
j=1

||w jk||2

β j
+C

m

∑
i=1
V (ξik,hik)

)

(23)

s.t.
n

∑
j=1
wTjkφ j(xi) = ξik, ∀i, ∀k; β ≥ 0; ||β||2p ≤ 1,

where hik is as defined in Equation (18), and we have replaced the constraint ||β||pp ≤ 1 equiva-
lently by ||β||2p ≤ 1. When V (ξik,hik) is the square loss V (ξik,hik) = 1

2(ξik− hik)2, Equation (23)
is essentially multiclass multiple kernel regularised least squares (MK-RLS). It can be shown (see
Appendix A for details) that this multiclass MK-RLS can be reformulated as the following saddle
point problem:

min
β
max
αk

c

∑
k=1

(

hTkαk−
1
2C

αT
kαk−

1
2

n

∑
j=1

αT
k β jKjαk

)

(24)

s.t. β ≥ 0; ||β||2p ≤ 1.

Making substitutions αk →
C
2αk and then C → 1

λ , it directly follows that the MK-RLS in Equa-
tion (24) is equivalent to the MK-FDA in Equation(19). In the previous sections, we proposed to
use a conceptually very simple wrapper algorithm to solve it. However, as pointed out in Sonnen-
burg et al. (2006) and Kloft et al. (2011), such an algorithm has two disadvantages: solving the
whole single kernel problem in the α step is unnecessary therefore wasteful, and all kernels need
to be loaded into memory. These problems, especially the second one, significantly limit the scal-
ability of wrapper-based MKL algorithms. For example, 50 kernel matrices of size 20000×20000
would usually not fit into memory since they require approximately 149GB of memory (Kloft et al.,
2011).

Exploiting the fact that LSSVM, RLS and kernel FDA are equivalent (Rifkin, 2002; Gestel et al.,
2002; Keerthi and Shevade, 2003), sequential minimal optimisation (SMO) techniques (Joachims,
1988) developed for LSSVM (Keerthi and Shevade, 2003; Lopez and Suykens, 2011) can be em-
ployed to remedy these problems. This effectively leads to an interleaved algorithm that is similar
to Algorithm 2 in Kloft et al. (2011), but applies to square loss instead of to hinge loss. Such an
interleaved optimisation strategy allows for a very cheap update of a minimal subset of the dual
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variables αk in each α step, without having to have access to the whole kernel matrices, and as a
result extends the applicability of MK-FDA to large scale problems. We omit details of the resulting
interleaved MK-FDA algorithm, the interested reader is referred to Keerthi and Shevade (2003) and
Lopez and Suykens (2011).

2.3.2 WORKING DIRECTLY WITH THE DUAL

The MK-FDA algorithms considered so far, including the wrapper method and the interleaved
method, are all based on the intermediate saddle point formulation Equation (24), or equivalently,
Equation(19). Recently, a “direct” formulation of MKLwas proposed in Vishwanathan et al. (2010),
where the idea is to eliminate β from the saddle point problem, and deal directly with the dual. Con-
sider again MKL with a general convex loss, but following Vishwanathan et al. (2010) this time we
impose the norm constraint in the form of Tikhonov regularisation instead of Ivanov regularisation:

min
w jk,ξik,β

c

∑
k=1

(

1
2

n

∑
j=1

‖w jk‖2

β j
+C

m

∑
i=1
V (ξik,hik)

)

+
µ
2
‖β‖2p (25)

s.t.
n

∑
j=1
wTjkφ j(xi) = ξik, ∀i, ∀k; β ≥ 0.

Note that the two formulations in Equation (25) and Equation (23) are equivalent, in the sense that
for any givenC there exists a µ (and vice versa) such that the optimal solutions to both problems are
identical (Kloft et al., 2011).

It can be shown (see Appendix B for details) that for the special case of square loss, which
corresponds to MK-FDA/MK-RLS, the dual of Equation(25) is:

max
αk
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∑
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q
, (26)

where q= p
p−1 is the dual norm of p, and once the optimal αk are found by solving Equation (26),

the kernel weights are given by:

β j =
1
2µ

( n

∑
j=1

(
c

∑
k=1

αT
k Kjαk)

q
)

1
q−

1
p

(
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∑
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αT
k Kjαk)

q
p .

Equation (26) can be viewed as an extension of Equation (9) in Vishwanathan et al. (2010) to
multiclass problems. Another difference is that Equation (9) in Vishwanathan et al. (2010) considers
a hinge loss, while Equation (26) is for square loss. Similarly as in Vishwanathan et al. (2010), for
any p > 1, Equation (26) can be solved using an SMO type of algorithm, with the update rule for
the minimal subset of dual variables adapted to work with square loss (Keerthi and Shevade, 2003;
Lopez and Suykens, 2011). On the other hand, observing that Equation (26) is an unconstrained op-
timisation problem and the objective function is differentiable everywhere for p> 1, an alternative
approach is the quasi-Newton descent methods, for example, the limited memory variant (Liu and
Nocedal, 1989). In fact, Equation (26) can also be thought of as an extension of the smooth variant
of group Lasso considered in Kloft et al. (2011) to multiclass case. Note however that Equation (26)
has a term of !q norm squared, while the smooth group Lasso formulation in Kloft et al. (2011)
has a term of !q norm. This is a direct result of the fact that the two formulations use Tikhonov
regularisation and Ivanov regularisation over β, respectively.
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3. Experiments

In this section we validate the usefulness of the proposed !p MK-FDA with experimental evidence
on six datasets. The experiments can be divided into four groups:

• We first demonstrate in Section 3.1 and 3.2 the different behaviour of the sparse !1 MK-FDA
and a non-sparse version of MK-FDA (!2 norm) on synthetic data and the Pascal VOC2008
object recognition dataset (Everingham et al., 2008). The goal of these two experiments is
to confirm that !1 and !2 regularisations indeed lead to sparse and non-sparse kernel weights
respectively.

• Next in Section 3.3, 3.4 and 3.5 we carry out experiments on another three object and image
categorisation benchmarks, namely, Pascal VOC2007 (Everingham et al., 2007), Caltech101
(Fei-Fei et al., 2006), and Oxford Flower17 (Nilsback and Zisserman, 2008). We show that
by selecting the regularisation norm p on an independent validation set, the intrinsic sparsity
of the given set of base kernels can be learnt. As a result, using the learnt optimal norm p in
the proposed !p MK-FDA offers better performance than !1 or !∞ MK-FDAs. Moreover, we
compare the performance of !p MK-FDA and that of several variants of !p MK-SVM, and
show that on image categorisation problems !p MK-FDA tends to have a small but consistent
edge over its SVM counterpart.

• In Section 3.6 we further compare !p MK-FDA and !p MK-SVM on the protein subcellular
localisation problem studied in Zien and Ong (2007) and Ong and Zien (2008). On this dataset
!p MK-SVM outperforms !p MK-FDA by a small margin, and the results suggest that given
the same set of base kernels, the two MKL algorithms may favour slightly different norms.

• Finally, in Section 3.7, the training speed of our wrapper-based !p MK-FDA and several !p
MK-SVM implementations is analysed empirically on a few small/medium sized problems,
where MK-FDA compares favourably or similarly against state-of-the-art MKL techniques.

Among the six datasets used in the experiments, three of them (synthetic, VOC08, VOC07) are
binary problems and the rest (Caltech101, Flower17, Protein) are multiclass ones. In our experi-
ments the wrapper-based !p MK-FDA is implemented in Matlab with the outer-subproblem solved
using the Mosek optimisation toolbox. The code of our !pMK-FDA implementation is available on-
line.2 Once the kernel weights have been learnt, we use a spectral regression based efficient kernel
FDA implementation (Cai et al., 2007; Tahir et al., 2009) to compute the optimal projection direc-
tions, the code of which is also available online.3 On binary problems, we compare !p MK-FDA
with two implementations of binary !p MK-SVM, namely, MK-SVM Shogun (Sonnenburg et al.,
2006, 2010),4 and SMO-MKL (Vishwanathan et al., 2010);5 while on multiclass problems, we com-
pare !p MK-FDA with two variants of multiclass !p MK-SVM: MK-SVM Shogun and MK-SVM
OBSCURE (Orabona et al., 2010; Orabona and Jie, 2011).6 In both !p MK-FDA and !p MK-SVM

2. The code of our !p MK-FDA is available at http://www.featurespace.org
3. The code of spectral regression FDA can be found at http://www.zjucadcg.cn/dengcai/SR/index.html.
4. Version 0.10.0 of the Shogun toolbox, the latest version as of the writing of this paper, can be found at http:

//www.shogun-toolbox.org.
5. The code of SMO-MKL is available at http://research.microsoft.com/en-us/um/people/manik/code/

SMO-MKL/download.html.
6. The code of OBSCURE can be found at http://dogma.sourceforge.net.

619



YAN, KITTLER, MIKOLAJCZYK AND TAHIR

Shogun, the stopping threshold ε is set to 10−4 unless stated otherwise. Parameters in MK-SVM
OBSCURE and SMO-MKL are set to default values unless stated otherwise.

All kernels used in the experiments have been normalised. For the first five datasets, due to the
kernel functions used, the kernel matrices are by definition spherically normalised: all data points
lie on the unit hypersphere in the feature space. For the protein localisation dataset, the kernels
are multiplicatively normalised following Ong and Zien (2008) and Kloft et al. (2011) to allow
comparison with Kloft et al. (2011). After normalisation, the kernels are then centred in the feature
spaces, as required by !p MK-FDA. Note that !p MK-SVM is not affected by centring. Kernels
used in the experiments (except for those in the simulation and in training speed experiments) are
also available online.7

3.1 Simulation

We first perform simulation to illustrate the different behaviour of !1 MK-FDA and a special case
of !p MK-FDA, namely, the case of p = 2. We simulate two classes by sampling 100 points from
two 2-dimensional Gaussian distributions, 50 points from each. The means of the two distributions
in both dimensions are drawn from a uniform distribution between 1 and 2, and the covariances
of the two distributions are also randomly generated. A radial basis function (RBF) kernel is then
constructed using these 2-dimensional points. Similarly, 100 test points are sampled from the same
distributions, 50 from each, and an RBF kernel is built for the test points. Kernel FDA is then
applied to find the best projection direction in the feature space and compute the error rate on the
test set. Figure 1 (a) gives 3 examples of the simulated points. It shows that due to the parameters
used in the two Gaussian distributions, the two classes are heavily, but not completely, overlapping.
As a result, the error rate given by single kernel FDA is around 0.43: slightly better than a random
guess.

The above process of mean/covariance generation, sampling, and kernel building is repeated n
times, resulting in n training kernels (and n corresponding test kernels). These n training kernels,
although generated independently, can be thought of as kernels that capture different “views” of a
single binary classification problem. With this interpretation in mind, we apply !1 and !2 MK-FDAs
to learn optimal kernel weights for this classification problem. We vary the number n from 5 to 50
at a step size of 5. For each value of n, !1 and !2 MK-FDAs are applied and the resulting error
rates are recorded. This process is repeated 100 time for each value of n to compute the mean and
standard deviation of error rates. The results for various n values are plotted in Figure 1 (c).

It is clear in Figure 1 (c) that as the number of kernels increases, the error rates of both methods
drop. This is expected, since more kernels bring more discriminative information. Another obser-
vation is that !1 MK-FDA slightly outperforms !2 MK-FDA when the number of kernels is 5, and
vice versa when the number of kernels is 10 or 15. When there are 20 kernels, the advantage of !2
MK-FDA becomes clear. As the number of kernels keeps increasing, its advantage becomes more
and more evident.

The different behaviour of !1 and !2 MK-FDAs can be explained by the different weights learnt
from them. Two typical examples of such weights, learnt using n = 5 kernels and n = 30 kernels
respectively, are plotted in Figure 1 (b). It has been known that !1 norm regularisation tends to
produce sparse solutions (Rätsch, 2001; Kloft et al., 2008). When kernels carry complementary
information, this will lead to a loss of information and hence degraded performance. When the

7. The kernels can be downloaded at http://www.featurespace.org.
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(a)

(b) (c)

Figure 1: Simulation: (a) Three examples of the two Gaussian distributions. (b) Comparing the
kernel weights learnt from !1 MK-FDA and !2 MK-FDA. Left: using 5 kernels. Right:
using 30 kernels. (c) Mean and standard deviation of error rates of !1 MK-FDA and !2
MK-FDA using various number of kernels.

number of kernels is sufficiently small, however, this effect does not occur: as can be seen in the
left plot of Figure 1 (b), when there are only 5 kernels, all of them get non-zero weights in both !1
and !2 MK-FDAs.

As the number of kernels increases, eventually there are enough of them for the over-selectiveness
of !1 regularisation to exhibit itself. As the right plot of Figure 1 (b) shows, when 30 kernels are
used, many of them are assigned zero weights by !1 MK-FDA. This leads to a loss of information.
By contrast, the weights learnt in !2 MK-FDA are non-sparse, hence the better performance. Fi-
nally, it is worth noting that the sparsity of learnt kernel weights, which captures the sparsity of
information in the kernel set, is not to be confused with the numerical sparsity of the kernel matri-
ces. For example, when the RBF kernel function is used, the kernel matrices will not contain any
zero, regardless of the sparsity of kernel weights.

3.2 Pascal VOC2008

In this section, we demonstrate again the different behaviour of !1 and !2 MK-FDAs, but this time
on a real world dataset: the Pascal visual object classes (VOC) challenge 2008 development dataset.
The VOC challenge provides a yearly benchmark for comparison of object classification methods,
with one of the most challenging datasets in the object recognition / image classification community.
The VOC2008 development dataset consists of 4332 images of 20 object classes such as aeroplane,
cat, person, etc. The dataset is divided into a pre-defined training set with 2111 images and a
validation set with 2221 images. In our experiments, the training set is used for training and the
validation set for testing. VOC2008 test set is not used as the class labels are not publicly available.

Pascal VOC2008 is a multilabel dataset in the sense that each image can contain multiple classes
of objects. To tackle this multilabel problem, the classification of the 20 object classes is treated as
20 independent binary problems. In our experiments, average precision (AP) (Snoek et al., 2006) is
used to measure the performance of each binary classifier. Average precision is particularly suitable
for evaluating the performance of a retrieval system, since it emphasises higher ranked relevant
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(a) (b)

Figure 2: VOC2008: (a) Learnt kernel weights in !1 MK-FDA and !2 MK-FDA. “motorbike” class.
(b) MAPs of !1 MK-FDA and !2 MK-FDA with various composition of kernel set.

instances. The mean of the APs of the 20 classes in the dataset, MAP, is used as a measure of the
overall performance.

The SIFT descriptor (Lowe, 2004; Mikolajczyk and Schmid, 2005) and spatial pyramid match
kernel (SPMK) (Grauman and Darrell, 2007; Lazebnik et al., 2006) based on bag-of-words model
(Zhang et al., 2007; Gemert et al., 2008) are used to build base kernels. The combination of two
sampling strategies (dense sampling and Harris-Laplace interest point sampling), 5 colour variants
of SIFT descriptors (Sande et al., 2008), and 3 ways of dividing an image into spatial location grids
results in 2× 5× 3 = 30 “informative” kernels. We also generate 30 sets of random vectors, and
build 30 RBF kernels from them. These random kernels are then mixed with the informative ones,
to study how the properties of kernels affect the performance of !1 and !2 MK-FDAs.

The number of kernels used in each run is fixed to 30. In the first run, only the 30 random
kernels are used. In the following runs the number of informative kernels is increased and that of
random kernels decreased, until the 31st run, where all 30 kernels are informative. In each run, we
apply both !1 and !2 MK-FDAs to the 20 binary problems, compute the MAP for each algorithm,
and record the learnt kernel weights.

Figure 2 (a) plots the kernel weights learnt from !1 MK-FDA and !2 MK-FDA. In each subplot,
the weights of the informative kernels are plotted towards the left end and those of random ones
towards the right. We clearly observe again the “over-selective” behaviour of !1 norm: it sets the
weights of most kernels, including informative kernels, to zero. By contrast, the proposed !2 MK-
FDA always assigns non-zero weights to the informative kernels. However, !2 MK-FDA is “under-
selective”, in the sense that it assigns non-zero weights to the random kernels. It is also worth noting
that the kernels that do get selected by !1 MK-FDA are usually the ones that get highest weights in
!2 MK-FDA.

The MAPs of both !1 and !2 MK-FDAs are shown in Figure 2 (b). In order to improve the
clarity of the interest region, in Figure 2 (b), the MAP of the first run, that is, when all kernels are
random, is not plotted. In such a situation, both versions of MK-FDAs reduce to a chance classifier,
which has an MAP of around 0.007. It can be seen from Figure 2 (b) that, as expected, !1 MK-FDA
outperforms !2 MK-FDA when the noise level is high and vice versa when the noise level is low.
Another interpretation of this observation is that when the “intrinsic” sparsity of the base kernels is
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high then !1 norm regularisation is appropriate, and vice versa. This suggests that if we can learn
this intrinsic sparsity of base kernels on a validation set, we will be able to find the most appropriate
regularisation norm p, and get improved performance over a fix norm MK-FDA. We validate this
idea in the next section.

3.3 Pascal VOC2007

Similar to Pascal VOC2008, Pascal VOC2007 is a multilabel object recognition dataset consisting
of the same 20 object categories. The dataset is divided into training, validation and test sets, with
2501, 2510 and 4952 images respectively. As in the case of VOC2008, the classification of the
20 object classes is treated as 20 independent binary problems, and MAP is used as a measure of
overall performance.

We generate 14 base kernels by combining 7 colour variants of local descriptors (Sande et al.,
2008) and two kernel functions, namely, SPMK (Lazebnik et al., 2006; Grauman and Darrell, 2007)
and RBF kernel with χ2 distance (Zhang et al., 2007). We first perform supervised dimensionality
reduction on the descriptors to improve their discriminability, following Cai et al. (2011). The
descriptors with reduced dimensionality are clustered with k-means to learn codewords (Csurka
et al., 2004). The soft assignment scheme in Gemert et al. (2008) is then employed to generate a
histogram for each image as its representation. Finally, the two kernel functions are applied to the
histograms to build kernel matrices.

We investigate the idea of learning the intrinsic sparsity of the base kernels by tuning the regular-
isation norm p on a validation set, using both !p MK-SVM and !p MK-FDA. For both methods, we
learn the parameter p on the validation set from 12 values: {1,1+2−6,1+2−5,1+2−4,1+2−3,1+
2−2,1+ 2−1,2,3,4,8,106}. For !p MK-SVM, the regularisation parameter C is learnt jointly with
p from 10 values that are logarithmically spaced over 2−2 to 27. Similarly, for !p MK-FDA, the
regularisation parameter λ is learnt jointly with p from a set of 10 values that are logarithmically
spaced over 4−5 to 44. The sets of values of C and λ are chosen to cover the areas in the parameter
spaces that give the best performance for MK-SVM and MK-FDA, respectively.

Plotted in Figure 3 are the weights learnt on the training set in !p MK-FDA and !p MK-SVM
with various p values for the “aeroplane” class. For !p MK-FDA, for each p value, the weights
learnt with the optimal λ value are plotted; while for !p MK-SVM, for each p value, we show the
weights learnt with the optimalC value. It is clear that as p increases, in both MKL algorithms, the
sparsity of the learnt weights decreases. As expected, when p= 106 (practically infinity), the kernel
weights become ones, that is, !∞ MK-FDA/MK-SVM produces uniform kernel weights. Note that
for the same norm p, the weights learnt in !p MK-FDA and !p MK-SVM can be different. This is
especially evident when p is small. Note also that results reported in this section are obtained using
the Shogun implementation of MK-SVM, which is based on the saddle point formulation of the
problem. The recently proposed SMO-MKL works directly with the dual and can be more efficient,
especially on large scale problems. However, as discussed in Section 2.3, these two formulations
are equivalent and produce identical kernel weights. Considering this, we only present the results
of SMO-MKL in terms of training speed in Section 3.7.

Next, we plot in Figure 4 top-left the APs on the validation and test sets for the “bird” class
with various p values, using !p MK-FDA, where again for each p value, the APs with the λ value
that gives the best AP on the validation set are plotted. It is clear that the two curves match well,
which implies that learning p in addition to λ should help. Shown in the middle and right columns
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Figure 3: VOC2007: Kernel weights learnt on the training set in !p MK-FDA and !p MK-SVM
with various p values. “aeroplane” class.

Figure 4: VOC2007: Learning the norm p for MK-FDA on the validation set. Top row: “bird”
class. Bottom row: “pottedplant” class; left column: APs on the validation set and
test set with various p values; middle column: kernel weights learnt on the training set
with the optimal {p,λ} combination; right column: kernel weights learnt on the train-
ing+validation set with the same {p,λ} combination.
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MK-SVM MK-FDA
!1 !∞ !p !1 !∞ !p

aeroplane 78.8 79.6 79.6 79.9 79.5 80.9
bicycle 63.4 65.0 64.7 64.7 67.6 67.8
bird 57.3 61.0 61.0 57.1 62.0 63.7
boat 71.1 70.1 71.1 70.9 70.1 70.8
bottle 29.1 29.9 29.7 27.5 29.7 29.4
bus 62.9 64.9 65.5 63.4 66.1 66.1
car 77.9 78.8 78.8 79.1 79.5 80.9
cat 56.7 56.4 57.1 57.1 56.9 58.3
chair 52.3 53.0 53.0 51.9 52.5 52.9
cow 38.7 41.4 41.4 42.3 41.5 43.4

table continued in the right column.

MK-SVM MK-FDA
!1 !∞ !p !1 !∞ !p

din. table 52.4 57.3 56.6 57.2 59.2 61.4
dog 42.8 45.8 44.6 44.2 46.1 45.1
horse 78.9 80.6 80.6 80.0 81.1 81.0

moterbike 66.3 66.8 66.8 67.8 67.8 68.8
person 86.7 88.0 88.0 86.8 88.1 88.8
pot. plant 31.8 41.0 40.5 32.5 42.6 42.5
sheep 40.2 46.0 46.0 39.0 44.4 43.9
sofa 44.0 43.8 44.0 43.5 43.7 45.9
train 81.3 82.4 82.4 83.2 84.2 85.1

tvmonitor 53.3 53.7 53.7 52.5 54.1 56.9

MAP 58.3 60.3 60.3 59.0 60.8 61.7

Table 1: VOC2007: Average precisions of six MKL methods

of the top row of Figure 4 are the learnt kernel weights with the optimal {p,λ} combination on the
training set and on the training + validation set, respectively. Since for the “bird” class the optimal
p found on the validation set is 1+ 2−1, both sets of weights are non-sparse. For this particular
binary problem, the intrinsic sparsity of the set of base kernels is medium. Similarly, the bottom
row of Figure 4 shows the results for the “pottedplant” class. We again observe that the AP on the
validation set and that on the test set show similar patterns. However, for the “pottedplant” class,
the optimal p on the validation set is found to be 8, which implies that the intrinsic sparsity of the
kernels is low.

When keeping the norm p fixed at 1, 106 and learning only the C/λ parameter, the !p MK-
SVM/MK-FDA reduces to !1 and !∞ MK-SVM/MK-FDA, respectively. The APs and MAPs of
the six MKL methods are shown in Table 1. The results in Table 1 demonstrate that learning the
regularisation norm p indeed improves the performance of MK-FDA. However, it is worth noting
that this improvement is achieved at a computational price of cross validating for an additional
parameter, the regularisation norm p. In the case of MK-SVM, the learnt optimal p yields the same
MAP as !∞ MK-SVM. However, this does not mean learning p is not bringing anything, because
a priori we would not know that !∞ is the most appropriate norm. Instead, the conclusion we can
draw from the MK-SVM results is that the sparsity of the base kernels, according to MK-SVM, is
very low. Another observation from Table 1 is that in all three cases: !1, !∞ and !p tuned, MK-FDA
outperforms MK-SVM on the majority of classes.

The pairwise alignment of the 14 kernel matrices w.r.t. the Frobenius dot product (Golub and
van Loan, 1996), A(i, j) = <Ki,Kj>F

‖Ki‖F‖Kj‖F
, is plotted in Figure 5, where subplot (a) shows the alignment

of uncentred kernels and subplot (b) shows that of centred kernels. Kernel alignment has been
used to analyse the property of a given kernel set (Nakajima et al., 2009; Kloft et al., 2011). We
argue, however, that kernel alignment by itself cannot reveal completely the sparsity of a kernel
set. First of all, as shown in Figure 5 (a) and (b), centring the kernel matrices changes significantly
the alignment of the kernels. On the other hand, it is well known that centring does not change
the effective weights learnt in MKL, since the shape of the data in the feature space is translation
invariant. Second, kernel alignment does not take into account label information. For a multilabel
dataset such as VOC07, all object classes share the same set of images (hence the same kernels),
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(a) (b)

Figure 5: VOC07: Alignment of the 14 kernels. (a) Spherically normalised kernels. (b) Spheri-
cally normalised and centred kernels. Note the scale difference between the two plots as
indicated by the colorbars.

and the labels are different depending on which object class (i.e., which binary problem) is being
considered. It is clear from Table 1 that for both !p MK-FDA and !p MK-SVM, the sparsity of the
kernel set is class dependent. This means kernel alignment, which is class independent, by itself
cannot be expected to identify the kernel set sparsity for all classes. Instead, we hypothesise that
correlation analysis using projected labels (Braun et al., 2008) is probably more appropriate.

Finally, note that due to different parameter sets and different normalisation methods used
(spherical normalisation in this paper while unit trace normalisation in Yan et al., 2010), the re-
sults on VOC07, Caltech101 and Flower17 reported in this paper are slightly different from those
in Yan et al. (2010). However, the trends in the results remain the same, and all conclusions drawn
from the results remain unchanged.

3.4 Caltech101

In the following three sections, we compare the proposed !p MK-FDA with several variants of !p
MK-SVM on multiclass problems. We start in this section with the Caltech101 object recognition
dataset. Caltech101 is a multiclass object recognition benchmark with 101 object categories. We
follow the popular practice of using 15 randomly selected images per class for training, up to 50
randomly selected images per class for testing, and compute the average accuracy over all classes.
This process is repeated 3 times, and we report the mean of the average accuracies on the test set
that is achieved with the optimal parameter (C for MK-SVM and λ for MK-FDA). Validation is
omitted, as the training of multiclass MK-SVM Shogun on this dataset can be very time consuming.

We generate 10 kernels in a similar way as in the VOC2007 experiments. In addition to these
“informative” kernels, we also construct 10 RBF kernels from 10 sets of random vectors. To test
the robustness of the MKL methods, we repeat the experiment 6 times. We start with only the
informative kernels, and add two more random kernels in each subsequent run.
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p= 1 p= 1+2−6 p= 1+2−2

p= 2 p= 4 p= 106

Figure 6: Caltech101: Accuracy comparison of three multiclass MKL methods.

Two multiclass MK-SVM implementations are compared against multiclass MK-FDA, namely,
MK-SVM Shogun, and the recently proposed online MK-SVM algorithm OBSCURE (Orabona
et al., 2010). For OBSCURE, the parameters are set to default values, except for the MKL norm p
and the regularisation parameter C. In our experiments, C and λ are chosen from the same set of
values that are logarithmically spaced over 4−5 to 44. We use the same set of 12 p values as in the
VOC07 experiments. Note however that in OBSCURE, the MKL norm p is specified equivalently
through the block norm r, where r = 2p/(p+ 1). Moreover, OBSCURE requires that r > 1, so
p= r = 1 in the set of p values is not used for OBSCURE.

The performance of the three MKL methods with various numbers of random kernels is il-
lustrated in Figure 6, where we show results for six p values, covering the spectrum from highly
sparsity-inducing norm, to uniform weighting. When p is large, MK-SVM Shogun does not con-
verge within 24 hours, so its performance is not plotted for p = 4 and p = 106. We can see from
Figure 6 that, when p is small, both MK-SVM OBSCURE and MK-FDA are robust to the added
noise, and MK-FDA has a marginal advantage over OBSCURE (e.g., ∼0.003 when p = 1+ 2−6).
When p is large, as expected, the performance of all three methods in general degrades as the num-
ber of random kernels increases. However, MK-FDA does so more gracefully than OBSCURE. On
the other hand, both MK-FDA and MK-SVM OBSCURE outperform MK-SVM Shogun by a large
margin on this multiclass problem.

3.5 Oxford Flower17

Oxford Flower17 is a multiclass dataset consisting of 17 categories of flowers with 80 images per
category. This dataset comes with 3 predefined splits into training (17×40 images), validation (17×
20 images) and test (17×20 images) sets. Moreover, Nilsback and Zisserman (2008) precomputed
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method accuracy and std. dev. parameters tuned on val. set

product 85.5 ± 1.2 C
averaging 84.9 ± 1.9 C
MKL (SILP) 85.2 ± 1.5 C

MKL (Simple) 85.2 ± 1.5 C
CG-Boost 84.8 ± 2.2 C
LP-β 85.5 ± 3.0 Cj, j = 1, · · · ,n and δ ∈ (0,1)
LP-B 85.4 ± 2.4 Cj, j = 1, · · · ,n and δ ∈ (0,1)

!p MK-SVM Shogun 86.0 ± 2.4 p and C jointly
!p MK-SVM OBSCURE 85.6 ± 0.0 p and C jointly

!p MK-FDA 87.2± 1.6 p and λ jointly

Table 2: Flower17: Comparison of ten kernel fusion methods.

7 distance matrices using various features, and the matrices are available online.8 We use these
distance matrices and follow the same procedure as in Gehler and Nowozin (2009) to compute 7
kernels: Kj(xi,xi′) = exp(−Dj(xi,xi′)/η j), where η j is the mean of the pairwise distances for the
jth feature.
Table 2 compares !p MK-SVM Shogun, !p MK-SVM OBSCURE, !p MK-FDA, and 7 kernel

combination techniques discussed in Gehler and Nowozin (2009). Note that these methods are
directly comparable since they share the same kernel matrices and the same splits. For !p MK-SVM
Shogun, !p MK-SVM OBSCURE and !p MK-FDA, the parameters p, C and λ are tuned on the
validation set from the same sets of values as in the Caltech101 experiments. For the other seven
methods, the corresponding entries in the table are taken directly from Gehler and Nowozin (2009),
where: “product” and “sum” refer to the two simplest kernel combination methods, namely, taking
the element-wise geometric mean and arithmetic mean of the kernels, respectively; “MKL (SILP)”
and “MKL (Simple)” are essentially !1 MK-SVM; while “CG-Boost”, “LP-β” and “LP-B” are three
boosting based kernel combination methods.

We can see from Table 2 that the boosting based methods, although performing well on other
datasets in Gehler and Nowozin (2009), fail to outperform the baseline methods “product” and
“averaging”. On the other hand, !p MK-FDA not only shows a considerable improvement over
all the methods discussed in Gehler and Nowozin (2009), but also outperforms both !p MK-SVM
Shogun and !p MK-SVM OBSCURE. Note that the optimal test accuracy over all combinations of
parameters achieved by OBSCURE is comparable to that by MK-FDA. However, the performance
on the validation set and that on the test set do not match as well for OBSCURE as for MK-FDA,9
resulting in the lower test accuracy of OBSCURE. Parameters that need to be tuned on the validation
set in these methods are also compared in Table 2.

3.6 Protein Subsellular Localisation

In the previous three sections, we have shown that on both binary and multiclass object recognition
problems, !p MK-FDA tends to outperform !p MK-SVM by a small margin. In this section, we
further compare !p MK-FDA and !p MK-SVM on a computational biology problem, namely, the
prediction of subcellular localisation of proteins (Zien and Ong, 2007; Ong and Zien, 2008).

8. The distance matrices can be found at http://www.robots.ox.ac.uk/˜vgg/research/flowers/index.html.
9. This is indicated by, for example, a lower Spearman or Kendall rank correlation coefficient.
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norm p 1 32/31 16/15 8/7 4/3 2 4 8 16 ∞

MK-SVM
8.18 8.22 8.20 8.21 8.43 9.47 11.00 11.61 11.91 11.85

plant
± 0.47 ± 0.45 ± 0.43 ± 0.42 ± 0.42 ± 0.43 ± 0.47 ± 0.49 ± 0.55 ± 0.60

MK-FDA
10.86 11.02 10.96 11.07 10.85 10.69 11.28 11.28 11.04 11.35
± 0.42 ± 0.43 ± 0.46 ± 0.43 ± 0.43 ± 0.37 ± 0.45 ± 0.45 ± 0.43 ± 0.46

MK-SVM
8.97 9.01 9.08 9.19 9.24 9.43 9.77 10.05 10.23 10.33

nonpl
± 0.26 ± 0.25 ± 0.26 ± 0.27 ± 0.29 ± 0.32 ± 0.32 ± 0.32 ± 0.32 ± 0.31

MK-FDA
10.93 10.59 10.91 10.89 10.84 11.00 12.12 12.12 11.81 12.15
± 0.31 ± 0.33 ± 0.31 ± 0.32 ± 0.31 ± 0.33 ± 0.41 ± 0.41 ± 0.38 ± 0.41

MK-SVM
9.99 9.91 9.87 10.01 10.13 11.01 12.20 12.73 13.04 13.33

psortNeg
± 0.35 ± 0.34 ± 0.34 ± 0.34 ± 0.33 ± 0.32 ± 0.32 ± 0.34 ± 0.33 ± 0.35

MK-FDA
9.89 10.07 9.95 9.87 9.75 9.74 11.39 11.25 11.27 11.50

± 0.34 ± 0.36 ± 0.35 ± 0.37 ± 0.39 ± 0.37 ± 0.35 ± 0.34 ± 0.35 ± 0.35

MK-SVM
13.07 13.01 13.41 13.17 13.25 14.68 15.55 16.43 17.36 17.63

psortPos
± 0.66 ± 0.63 ± 0.67 ± 0.62 ± 0.61 ± 0.67 ± 0.72 ± 0.81 ± 0.83 ± 0.80

MK-FDA
12.59 13.16 13.07 13.34 13.45 13.63 16.86 16.37 16.56 16.94
± 0.75 ± 0.80 ± 0.80 ± 0.80 ± 0.74 ± 0.70 ± 0.85 ± 0.89 ± 0.87 ± 0.84

Table 3: Protein Subcellular Localisation: comparing !p MK-FDA and !p MK-SVM w.r.t. pre-
diction error and its standard error. Prediction error is measured as 1− average MCC in
percentage.

The protein subcellular localisation problem contains 4 datasets, corresponding to 4 different
sets of organisms: plant (plant), non-plant eukaryotes (nonpl), Gram-positive (psortPos) and Gram-
negative bacteria (psortNeg). Each of the 4 datasets can be considered as a multiclass classification
problem, with the number of classes ranging between 3 and 5. For each dataset, 69 kernels that
capture diverse aspects of protein sequences are available online.10 We download the kernel matri-
ces and follow the experimental setup in Kloft et al. (2011) to enable a direct comparison. More
specifically, for each dataset, we first multiplicatively normalise the kernel matrices. Then for each
of the 30 predefined splits, we use the first 20% of examples for testing and the rest for training.

In Kloft et al. (2011), the multiclass problem associated with each dataset is decomposed
into binary problems using the one-vs-rest strategy. This is not necessary in the case of FDA,
since FDA by its natures handles both binary and multiclass problems in a principled fashion.
For each dataset, we consider the same set of values for the norm p as in Kloft et al. (2011):
{1,32/31,16/15,8/7,4/3,2,4,8,∞}. In Kloft et al. (2011), the regularisation constant C for MK-
SVM is taken from a set of 9 values: {1/32,1/8,1/2,1,2,4,8,32,128}. In our experiments, the
regularisation constant λ for MK-FDA is also taken from a set of 9 values, and the values are loga-
rithmically spaced over 10−8 to 100.

Again following Kloft et al. (2011), for each p/λ combination, we evaluate the performance of
!p MK-FDA w.r.t. average (over the classes) Matthews correlation coefficient (MCC), and report in
Table 3 the average of 1−MCC over 30 splits and its standard error. For ease of comparison, we
also show in Table 3 the performance of !p MK-SVM as reported in Kloft et al. (2011).

10. The kernels can be downloaded at http://www.fml.tuebingen.mpg.de/raetsch/suppl/protsubloc.
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Table 3 demonstrates that overall the performance of !p MK-FDA lags behind that of !p MK-
SVM, except on psortNeg and on psortPos, where it has a small edge. Another observation is
that the optimal norm p identified by MK-SVM does not necessarily agree with that by MK-FDA.
On psortPos they are in close agreement and both methods favour sparsity-inducing norms. On
plant, nonpl and psortNeg, on the other hand, the norms picked by MK-FDA are larger than those
picked by MK-SVM. Note, however, that this observation can be slightly misleading, because on
the latter three datasets, the performance curve of !p MK-FDA is quite “flat” in the area of optimal
performance. As a result, the optimal norm estimated may not be stable.

3.7 Training Speed

In this section we provide an empirical analysis of the efficiency of the wrapper-based !p MK-FDA
and various implementations of !p MK-SVM. We use p = 1 (or in some cases 1+ 2−5, 1+ 2−6)
and p = 2 as examples of sparse/non-sparse MKL respectively,11 and study the scalability of MK-
FDA and MK-SVM w.r.t. the number of examples and the number of kernels, on both binary and
multiclass problems.

3.7.1 BINARY CASE: VOC2007

We first compare on the VOC2007 dataset the training speed of three binary MKL methods: the
wrapper based binary !p MK-FDA in Section 2.1, the binary !p MK-SVM Shogun implementa-
tion (Sonnenburg et al., 2006, 2010), and the SMO-MKL in Vishwanathan et al. (2010). In the
experiments, interleaved optimisation and analytical update of β are used for MK-SVM Shogun.

We first fix the number of training examples to 1000, and vary the number of kernels from 3 to
96. We record the time taken to learn the kernel weights, and average over the 20 binary problems.
Figure 7 (a) shows the training time of the six MKL algorithms as functions of the number of
kernels. Next, we fix the number of kernels to 14, and vary the number of examples from 75 to
4800. Similarly, in Figure 7 (b) we plot the average training time as functions of the number of
examples.

Figure 7 (a) demonstrates that for small/medium sized problems, when a sparsity-inducing norm
is used, SMO-MKL is the most efficient; while when p = 2, MK-FDA can be significantly faster
than the competing methods. On the other hand, when training efficiency is measured as a func-
tion of the number of examples, there is no clear winner, as indicated in Figure 7 (b). However,
the trends in Figure 7 (b) suggest that on large scale problems, SMO-MKL is likely to be more
efficient than MK-FDA and MK-SVM Shogun. In both cases, MK-FDA has a comparable or bet-
ter efficiency than MK-SVM Shogun, despite the fact that MK-SVM Shogun uses the interleaved
algorithm while MK-FDA employs the somewhat wasteful wrapper-based implementation. Again,
this trend is likely to flip over on large scale problems. For such problems, one can adopt either the
square loss counterpart of the interleaved algorithm, or the square loss counterpart of the SMO-MKL
algorithm, or the limited memory quasi-Newton method, to improve the efficiency of !p MK-FDA,
as discussed in Section 2.3.

11. Both SMO-MKL and OBSCURE require that p > 1. Moreover, SMO-MKL is numerically unstable when p =
1+2−6. As a result, we use p= 1+2−5 and p= 1+2−6 as sparsity-inducing norms for SMO-MKL and OBSCURE,
respectively.
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(a) (b)

Figure 7: Training speed on a binary problem: VOC2007. (a) Training time vs. number of kernels,
where number of examples is fixed at 1000. (b) Training time vs. number of examples,
where number of kernels is fixed at 14. λ = 1 for MK-FDA, and C = 1 for MK-SVM
Shogun and MK-SVM OBSCURE.

3.7.2 MULTICLASS CASE: CALTECH101

Next we compare three multiclass !p MKL algorithms on the Caltech101 dataset, namely, the
wrapper-based multiclass !p MK-FDA in Section 2.2, multiclass !p MK-SVM Shogun, and MK-
SVM OBSCURE. We compare the first two methods following similar protocols as in the binary
case. In Figure 8 (a) we show the average training time over the 3 splits as functions of the number
of kernels (from 2 to 31) when the number of examples is fixed to 101 (one example per class);
while plotted in Figure 8 (b) is the average training time as functions of the number of examples
(from 101 to 1515, that is, from one example per class to 15 examples per class) when the number
of kernels is fixed to 10.

Figure 8 shows that on small/medium sized multiclass problems, MK-FDA is in most cases
one or two orders of magnitude faster than MK-SVM Shogun. The only exception is that as the
number of kernels increases, the efficiency of !1 MK-SVM Shogun degrades more gracefully than
!1 MK-FDA, and eventually overtakes. Another observation from both Figure 7 and Figure 8 is
that, !2 MK-FDA tends to be more efficient than !1 MK-FDA, despite the fact that in the outer
subproblem, the LP solver employed in !1 MK-FDA is slightly faster than the QCLP solver in !2
MK-FDA. This is because !1 MK-FDA usually takes a few tens of iterations to converge, while
the !2 version typically takes less than 5. This difference in the number of iterations reverses the
efficiency advantage of LP over QCLP.

Due to its online nature, the efficiency of OBSCURE has to be measured differently to allow
a fair comparison. The OBSCURE algorithm is a two-stage algorithm, and each stage involves
an iterative process with a parameter T1/T2 controlling the number of iterations. In general the
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(a) (b)

Figure 8: Training speed on a multiclass problem: Caltech101. MK-FDA vs. MK-SVM Shogun.
(a) Training time vs. number of kernels, where number of examples is fixed at 101. (b)
Training time vs. number of examples, where number of kernels is fixed at 10. λ= 1 for
MK-FDA, and C = 1 for MK-SVM Shogun.

Figure 9: Training speed on a multiclass problem: Caltech101. MK-FDA vs. MK-SVM OB-
SCURE. Top row: p = 1+ 2−6. Bottom row: p = 2. The three columns correspond
to the three splits. 10 kernels and 101×15= 1515 training examples.
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larger the values of T1 and T2, the longer it takes to train, but the more accurate the learnt model.
We set T1 = T2 = T and vary T in a set of 11 values from 20 to 210. This allows us to plot a
curve of model accuracy against training time. For MK-FDA, the similar curve can be plotted by
varying the convergence threshold ε in a set of 11 values: {20, · · · ,2−6,10−2, · · · ,10−5}. Note that
the regularisation parameters (λ for MK-FDA and C for OBSCURE) are set to values that yield the
highest classification accuracy.

The resulting time-accuracy curves for all 3 splits of the dataset are presented in Figure 9,
where the top row corresponds to the case of p = 1+ 2−6 and the bottom row to p = 2, and each
column corresponds to one split. It is evident that MK-FDA typically reaches its optimum faster
than OBSCURE, especially in the case of p= 2. Moreover, the optimum achieved by MK-FDA is at
least as accurate as that by OBSCURE, confirming our findings in Section 3.4. All the training time
reported in this section is measured on a single core of an Intel Xeon E5520 2.27GHz processor.

4. Discussion: FDA vs. SVM

The empirical observation that MK-FDA tends to outperform MK-SVM on image categorisation
datasets matches well with our experience with single kernel FDA and single kernel SVM on several
other object/image/video classification benchmarks, including VOC2008, VOC2009, VOC2010,12
Trecvid2008, Trecvid2009,13 and ImageCLEF2010.14 In this section, we discuss the connection
between (MK-)SVM and (MK-)FDA from perspectives of both loss function and version space,
and attempt to explain their different performance.

It is well known that many machine learning problems essentially boil down to function learn-
ing. In the supervised scenario, it is intuitive to learn the function by minimising the empirical loss
for the given set of labelled input/output pairs {xi,yi}mi=1, with respect to some loss function. How-
ever, such an empirical risk minimisation principle is ill-posed and therefore does not generalise
(Tikhonov and Arsenin, 1977; Vapnik, 1999). Regularisation tries to restore well-posedness of the
learning problem, by restricting the complexity of the function set over which the empirical loss
is minimised. By (implicitly) mapping the data into a high dimensional feature space, this can be
conveniently done in the form of Tikhonov regularisation:

min
w

1
2
||w||2+C

m

∑
i=1
V ( f (φ(xi)),yi), (27)

where φ(xi) is the mapping to the feature space, f (φ(xi)) = wTφ(xi) is the linear function to be
learnt, the complexity of the function set is regularised by 12 ||w||

2, andV (·, ·)measures the empirical
loss. Learning machines with the form of Equation (27) are collectively termed regularised kernel
machines, a name capturing the two key aspects of them: regularisation, and kernel mapping. Note
that in the formulation above, the unregularised bias term b in standard SVM is absent from the
linear function. As shown in Keerthi and Shevade (2003); Poggio et al. (2004), the two formulations,
with and without b, can be made equivalent by transforming the kernel function.

The setting in Equation (27) is very general, in the sense that many state-of-the-art machine
learning techniques can be realised by plugging in different loss functions. For example, the hinge
loss V ( f (φ(x)),y) = (1− y f (φ(x)))+, where (·)+ = max(·,0), gives rise to the well known SVM,

12. More information on VOC can be found at http://pascallin.ecs.soton.ac.uk/challenges/VOC.
13. More information on Trecvid can be found at http://www-nlpir.nist.gov/projects/trecvid.
14. More information on ImageCLEF can be found at http://www.imageclef.org/2010.
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probably the most popular learning machine in the past ten years. On the other hand, along with the
success of SVM, regularised kernel machines using the square loss V ( f (φ(x)),y) = (y− f (φ(x)))2
have emerged several times under various names, including: regularised networks (RN) (Girosi
et al., 1995; Evgeniou et al., 2000), regularised least squares (RLS) (Rifkin, 2002), kernel ridge
regression (KRR) (Saunders et al., 1998; Hastie et al., 2002), least squares support vector machines
(LSSVM) (Suykens and Vandewalle, 1999; Gestel et al., 2002), proximal support vector machines
(PSVM) (Fung and Mangasarian, 2001). In particular, shortly after the proposal of kernel FDA
(Mika et al., 1999; Baudat and Anouar, 2000), its regularised version was shown to be yet another
equivalent formulation (Duda et al., 2000; Rifkin, 2002; Gestel et al., 2002).

There is a long list of literature which compares the performance of FDA and SVM, for example,
Mika (2002), Rifkin (2002), Cai et al. (2007) and Ye et al. (2008), with most of them reporting both
methods yield virtually identical performance, and the rest claiming there is a small advantage
towards one method or the other. It is speculated in Mika et al. (1999) that the superior performance
of FDA over SVM in their experiments is due to the fact that FDA uses all training examples in the
test stage while SVM uses only the support vectors. However, a more elegant way of explaining the
different performance of SVM and FDA is probably from the perspective of version space. Version
space is the space of all consistent hypotheses, that is, all w’s that correspond to hyperplanes with
zero training error (Rujan, 1997). Note that with a full rank kernel matrix, linear separability in
the feature space and therefore the existence of version space is guaranteed. It is shown in Rujan
(1997) that the optimal hyperplane in the Bayes sense, which requires the knowledge of the joint
distribution on X ×Y thus not obtainable in practice, is arbitrarily close (with increasing training
sample size) to the centre of mass of the version space.

Algorithms that explicitly approximate the Bayes point were later termed Bayes point machine
(BPM) in Herbrich et al. (2001). Herbrich et al. (2001) also prove that the hyperplane found by
SVM corresponds to the centre of the largest inscribed ball of the version space. In this light, SVM
can be viewed as an approximation to BPM. This approximation is reasonable if the version space
is regularly shaped, but can be weak otherwise (Rujan, 1997; Herbrich et al., 2001; Mika, 2002).
For example, experiments in Herbrich et al. (2001) show that BPM consistently outperforms SVM.
Recently, an ellipsoid SVM was proposed (Momma et al., 2010), where the idea is to improve the
approximation to the Bayes point by using the centre of the largest inscribed ellipsoid, instead of
that of the ball. We conjecture that for certain kernels (e.g., kernels generated using local descriptors
and bag-of-words model, as those used in image categorisation problems), due to the different loss
functions used, the hyperplane given by FDA is closer to the Bayes point than that given by SVM,
resulting in the superior performance of (MK-)FDA in our experiments. How to decide without a
validation process whether (MK-)FDA or (MK-SVM) is more suitable for a given kernel (set), and
how to incorporate explicit BPM approximation into MKL, are interesting research directions for
the future.

5. Conclusions

In this paper we have incorporated latest advances in both non-sparse MKL formulation and MKL
optimisation techniques into MK-FDA. We have presented a non-sparse version of MK-FDA based
on an !p norm regularisation of kernel weights, and have discussed several of its reformulations and
associated optimisation strategies, including wrapper and interleaved algorithms for its saddle point
formulation, and an SMO-based scheme for its dual formulation.
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We carried out extensive evaluation on six datasets from various application areas. Our results
indicate that the optimal norm p, and therefore the “intrinsic sparsity” of the base kernels, can be
estimated on an independent validation set. This estimation can be exploited in many practical
applications where there is no prior knowledge on how informative the channels are. We have also
compared closely the performance of !p MK-FDA and that of several variants of !p MK-SVM.
On object and image categorisation problems, MK-FDA tends to have a small advantage. This
observation is consistent with our findings elsewhere regarding the performance of single kernel
FDA/SVM. In terms of training time, the wrapper-based MK-FDA implementation has similar or
favourable efficiency on small to medium sized problems when compared against state-of-the-art
MKL techniques. On large scale problems, alternative optimisation strategies discussed in the paper
should be employed to improve the efficiency and scalability of MK-FDA.

Finally, we have provided a discussion on the connection between (MK-)FDA and (MK-)SVM
from the perspectives of both loss function and version space, under the unified framework of regu-
larised kernel machines.
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Appendix A. Multiclass !p MK-FDA Saddle Point Formulation

In this appendix, we first derive the saddle point formulation of multiclass MKL for a general
convex loss. Multiclass MK-FDA saddle point problem is then derived as a special case of it. Using
the output encoding scheme in Equation (18), multiclass MKL for a general convex loss function
V (ξik,hik) can be stated as:

min
w jk,ξik,β

c

∑
k=1

(

1
2

n

∑
j=1

||w jk||2

β j
+C

m

∑
i=1
V (ξik,hik)

)

(28)

s.t.
n

∑
j=1
wTjkφ j(xi) = ξik, ∀i, ∀k; β ≥ 0; ||β||2p ≤ 1.

We build the Lagrangian of Equation (28):

L =
c

∑
k=1

(

1
2

n

∑
j=1

||w jk||2

β j
+C

m

∑
i=1
V (ξik,hik)

)

+ζ(
1
2
||β||2p−

1
2
)

−
c

∑
k=1

m

∑
i=1

αik

( n

∑
j=1
wTjkφ j(xi)−ξik

)

,
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set to zero the derivatives of the Lagrangian w.r.t. w jk, and substitute back. After some rearrange-
ments we have:

L =
c

∑
k=1

(

C
m

∑
i=1
V (ξik,hik)+

m

∑
i=1

αikξik−
1
2

n

∑
j=1

αT
k β jKjαk

)

+ζ(
1
2
||β||2p−

1
2
),

where αk = (α1k, · · · ,αmk)T . Following Theorem 1 of Kloft et al. (2011) it can be shown that at
the optimum ||β||2p = 1. Using this fact we arrive at the multiclass MKL saddle point problem for a
general loss function:

min
ξik,β

max
αik

c

∑
k=1

(

C
m

∑
i=1
V (ξik,hik)+

m

∑
i=1

αikξik−
1
2

n

∑
j=1

αT
k β jKjαk

)

(29)

s.t. β ≥ 0; ||β||2p ≤ 1.

At this point any convex loss function can be plugged into Equation (29). Take the square loss
V (ξik,hik) = 1

2(ξik− hik)2 as an example. Setting to zero the derivatives of L w.r.t. ξik we have
ξik = hik−αik/C. Plugging this into Equation (29) and rearranging we arrive at the multiclass MKL
saddle point problem for square loss, that is, multiclass multiple kernel regularised least squares
(MK-RLS):

min
β
max
αk

c

∑
k=1

(

hTkαk−
1
2C

αT
kαk−

1
2

n

∑
j=1

αT
k β jKjαk

)

(30)

s.t. β ≥ 0; ||β||2p ≤ 1,

where the c classes are coupled through the common set of kernel weights β. By making substitu-
tionsαk →

C
2αk and thenC→ 1

λ , it directly follows that the MK-RLS in Equation (30) is equivalent
to the MK-FDA in Equation(19).

Appendix B. Multiclass !p MK-FDA Dual Formulation

In this appendix, we derive the dual formulation of multiclass MK-FDA. We again consider mul-
ticlass MKL with a general convex loss, but following Vishwanathan et al. (2010) this time we
impose the norm constraint in the form of Tikhonov regularisation instead of Ivanov regularisation:

min
w jk,ξik,β

c

∑
k=1

(

1
2

n

∑
j=1

‖w jk‖2

β j
+C

m

∑
i=1
V (ξik,hik)

)

+
µ
2
‖β‖2p (31)

s.t.
n

∑
j=1
wTjkφ j(xi) = ξik, ∀i, ∀k; β ≥ 0.

Note however that the switching from Ivanov to Tikhonov regularisation is not essential for the
derivation in the following. The dual program for Ivanov regularisation in Equation (28) can be
derived in a similar way.

Building the Lagrangian of Equation (31):

L =
c

∑
k=1

(

1
2

n

∑
j=1

‖w jk‖2

β j
+C

m

∑
i=1
V (ξik,hik)

)

+
µ
2
‖β‖2p−

n

∑
j=1

γ jβ j

−
c

∑
k=1

m

∑
i=1

αik

( n

∑
j=1
wTjkφ j(xi)−ξik

)

,
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and setting to zero the derivatives w.r.t. β j, we have:

µ(
n

∑
j=1

βpj )
2
p−1βp−1j = γ j+

1
2

c

∑
k=1

αT
k Kjαk. (32)

Multiplying both sides of Equation (32) by β j and then taking summation over j gives us:

µ‖β‖2p =
n

∑
j=1

β j(γ j+
1
2

c

∑
k=1

αT
k Kjαk),

or equivalently:
n

∑
j=1

γ jβ j =−
1
2

n

∑
j=1

c

∑
k=1

αT
k β jKjαk+µ‖β‖2p. (33)

On the other hand, raise both sides of Equation (32) to power p
p−1 and then take summation over

j, we have:

µ‖β‖2p =
1
µ

∥

∥

∥

∥

(

γ j+
1
2

c

∑
k=1

αT
k Kjαk

)n

j=1

∥

∥

∥

∥

2

q
, (34)

where q= p
p−1 is the dual norm of p.

Now let us set the derivatives of L w.r.t. w jk also to zero, and substitute the result and Equa-
tion (33), Equation (34) back into L . Using the fact that γ j = 0 at the optimum (Vishwanathan et al.,
2010), and after some rearrangements we arrive at:

L =
c

∑
k=1

(

C
m

∑
i=1
V (ξik,hik)+

m

∑
i=1

αikξik

)

−
1
8µ

∥

∥

∥

∥

( c

∑
k=1

αT
k Kjαk

)n

j=1

∥

∥

∥

∥

2

q
. (35)

At this point any convex loss function can be plugged into Equation (35) to recover the correspond-
ing multiclass MKL dual. We again take the square loss V (ξik,hik) = 1

2(ξik− hik)2 as an example.
Setting to zero the derivatives of L w.r.t. ξik we have ξik = hik−αik/C. Plugging this into Equa-
tion (35) and rearranging we arrive at the multiclass MK-RLS dual problem:

max
αk

c

∑
k=1

(

hTkαk−
1
2C

αT
kαk

)

−
1
8µ

∥

∥

∥

∥

( c

∑
k=1

αT
k Kjαk

)n

j=1

∥

∥

∥

∥

2

q
. (36)

Unlike the saddle point formulation in Equation (30), the kernel weights β have been eliminated
from Equation (36). Despite this, Equation (30) and Equation (36) are equivalent, in the sense that
for any given C there exist a µ (and vice versa) such that the optimal solutions to both problems are
identical (Kloft et al., 2011).

Finally, substituting Equation (34) and γ j = 0 into Equation (32), we show that once the optimal
αk are found by solving Equation (36), the kernel weights β are given by:

β j =
1
2µ

( n

∑
j=1

(
c

∑
k=1

αT
k Kjαk)

q
)

1
q−

1
p

(
c

∑
k=1

αT
k Kjαk)

q
p .
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Abstract
Recent developments have demonstrated the capacity of restricted Boltzmann machines (RBM) to
be powerful generative models, able to extract useful features from input data or construct deep arti-
ficial neural networks. In such settings, the RBM only yields a preprocessing or an initialization for
some other model, instead of acting as a complete supervised model in its own right. In this paper,
we argue that RBMs can provide a self-contained framework for developing competitive classifiers.
We study the Classification RBM (ClassRBM), a variant on the RBM adapted to the classification
setting. We study different strategies for training the ClassRBM and show that competitive classi-
fication performances can be reached when appropriately combining discriminative and generative
training objectives. Since training according to the generative objective requires the computation of
a generally intractable gradient, we also compare different approaches to estimating this gradient
and address the issue of obtaining such a gradient for problems with very high dimensional inputs.
Finally, we describe how to adapt the ClassRBM to two special cases of classification problems,
namely semi-supervised and multitask learning.
Keywords: restricted Boltzmann machine, classification, discriminative learning, generative learn-
ing

1. Introduction

The restricted Boltzmann machine (RBM) is a probabilistic model that uses a layer of hidden binary
variables or units to model the distribution of a visible layer of variables. It has been successfully ap-
plied to problems involving high dimensional data such as images (Hinton et al., 2006; Larochelle
et al., 2007) and text (Welling et al., 2005; Salakhutdinov and Hinton, 2007; Mnih and Hinton,
2007). In this context, two approaches are usually followed. First, an RBM is trained in an unsuper-
vised manner to model the distribution of the inputs (possibly more than one RBM could be trained,
stacking them on top of each other (Hinton et al., 2006)). Then, the RBM is used in one of two
ways: either its hidden layer is used to preprocess the input data by replacing it with the represen-
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tation given by the hidden layer, or the parameters of the RBM are used to initialize a feedforward
neural network. In both cases, the RBM is paired with some other learning algorithm (the classifier
using the preprocessed inputs or the neural network) to solve the supervised learning problem at
hand. This approach unfortunately requires one to tune both sets of hyper-parameters (those of the
RBM and of the other learning algorithm) at the same time. Moreover, since the RBM is trained in
an unsupervised manner, it is blind to the nature of the supervised task that needs to be solved and
provides no guarantees that the information extracted by its hidden layer will be useful.

In this paper, we argue that RBMs can provide a self-contained and competitive framework for
solving supervised learning problems. Based on the Classification Restricted Boltzmann Machine
(ClassRBM), the proposed approach and learning algorithms address both aforementioned issues.
Indeed, by relying only on the RBM, the number of hyper-parameters that one needs to tune will
be relatively smaller, and by modelling the joint distribution of the input and target, the ClassRBM
will be encouraged to allocate some of its capacity at modelling their relationship as well as the
relationships between the input variables. Using experiments on character recognition and text
classification problems, we show that the classification performance that the ClassRBM can obtain
is competitive with respect to other “black box” classifiers such as standard neural networks and
Support Vector Machines (SVM).We compare different training strategies for the ClassRBM, which
rely on discriminative and/or generative learning objectives. As we will see, the best approach
tends to be an appropriately tuned combination of both learning objectives. Moreover, since the
generative learning objective doesn’t allow for the exact computation of the gradient with respect
to the ClassRBM’s parameters, we compare the use of different approximations of that gradient.
We also address the issue of generative learning on very high dimensional inputs and propose an
approach to reduce the computational cost per example of training. Finally, we describe how the
ClassRBM can be used to tackle semi-supervised and multitask learning problems.

2. Classification Restricted Boltzmann Machines

The Classification Restricted Boltzmann Machine (ClassRBM) (Hinton et al., 2006) models the
joint distribution of an input x= (x1, . . . ,xD) and target class y ∈ {1, . . . ,C} using a hidden layer of
binary stochastic units h= (h1, . . . ,hH). This is done by first defining an energy function

E(y,x,h) =−hTWx−bTx− cTh−dT ey−hTUey

with parameters Θ = (W,b,c,d,U) and where ey = (1i=y)Ci=1 is the “one out of C” representation
of y. From the energy function, we assign probabilities to values of y, x and h as follows:

p(y,x,h) =
exp(−E(y,x,h))

Z
(1)

where Z is a normalization constant (also called partition function) which ensures that Equation 1 is
a valid probability distribution. We will assume that the elements of x are binary, but extensions to
real-valued units on bounded or unbounded intervals are straightforward (Welling et al., 2005). An
illustration of the ClassRBM is given in Figure 1.

Unfortunately, computing p(y,x,h) or p(y,x) is typically intractable. However, it is possible to
sample from the ClassRBM, using Gibbs sampling, that is, alternating between sampling a value
for the hidden layer given the current value of the visible layer (made of variables x and the ey
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representation of y), and vice versa. All the required conditional distributions are very simple.
When conditioning on the visible layer, we have

p(h|y,x) =∏
j
p(h j|y,x), with p(h j = 1|y,x) = sigm(c j+Ujy+∑

i
Wjixi)

where sigm(a) = 1/(1+ exp(−a)) is the logistic sigmoid function. When conditioning on the
hidden layer, we have

p(x|h) =∏
i
p(xi|h), with p(xi = 1|h) = sigm(bi+∑

j
Wjih j) ,

p(y|h) =
exp(dy+∑ jUjyh j)

∑y∗ exp(dy∗+∑ jUjy∗h j)
.

It is also possible to compute p(y|x) exactly and hence perform classification. Indeed, noticing that

∑
h1∈{0,1}

· · · ∑
hH∈{0,1}

exp(hTWx+bTx+ cTh+dT ey+hTUey)

= exp(dy) ∑
h1∈{0,1}

exp(h1(c1+U1y+∑
i
W1ixi)) · · · ∑

hH∈{0,1}
exp(hH(cH +UHy+∑

i
WHixi))

= exp(dy)

(

1+ exp(c1+U1y+∑
i
W1ixi)

)

. . .

(

1+ exp(cn+UHy+∑
i
Wnixi)

)

= exp(dy+∑
j
log(1+ exp(c j+Ujy+∑

i
Wjixi)))

= exp(dy+∑
j
softplus(c j+Ujy+∑

i
Wjixi))

where softplus(a) = log(1+ exp(a)), then we can write

p(y|x) =
∑h1∈{0,1} · · ·∑hH∈{0,1} exp(h

TWx+bTx+ cTh+dT ey+hTUey)
∑y∗∈{1,...,C}∑h1∈{0,1} · · ·∑hH∈{0,1} exp(hTWx+bTx+ cTh+dT ey∗+hTUey∗)

=
exp(dy+∑ j softplus(c j+Ujy+∑iWjixi))

∑y∗∈{1,...,C} exp(d∗y +∑ j softplus(c j+Ujy∗+∑iWjixi))
(2)

=
exp(−F(y,x))

∑y∗∈{1,...,C} exp(−F(y,x))
.

where F(y,x) is referred to as the free energy. Precomputing the terms c j+∑iWjixi and reusing them
when computing softplus(c j+Ujy∗ +∑iWjixi) for all classes y∗ yields a procedure for computing
this conditional distribution in time O(HD+HC).

One way of interpreting Equation 2 is that, when assigning probabilities to a particular class y
for some input x, the ClassRBM looks at how well the input x fits or aligns with the different filters
associated with the rowsW j· ofW. These filters are shared across the different classes, but different
classes will make comparisons with different filters by controlling the class-dependent biases Ujy
in the softplus(c j+Ujy+∑iWjixi) terms. Notice also that two similar classes could share some of
the filters inW, that is, both could simultaneously have large positive values ofUjy for some of the
rowsW j·.
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Figure 1: Illustration of a Classification Restricted Boltzmann Machine

3. Training Objectives

In order to train a ClassRBM to solve a particular classification problem, we can simply define
an objective to minimize for all examples in the training set Dtrain = {(xt ,yt)}. The next sections
describe the different training objectives which will be considered here, starting with the one most
commonly used, that is, the generative training objective.

3.1 Generative Training Objective

Given that we have a model which defines a value for the joint probability p(y,x), a natural choice
for a training objective is the generative training objective

Lgen(Dtrain) =−
|Dtrain|

∑
t=1

log p(yt ,xt) . (3)

This is the most popular training objective for RBMs, for which a lot of effort has been put to obtain
better estimates for its gradient (Hinton, 2002; Tieleman, 2008; Tieleman and Hinton, 2009). In-
deed, as mentioned previously, computing p(yt ,xt) for some example (xt ,yt) is generally intractable,
as is computing log p(yt ,xt) and its gradient with respect to any ClassRBM parameter θ

∂ log p(yt ,xt)
∂θ

=−Eh|yt ,xt

[
∂
∂θ
E(yt ,xt ,h)

]
+Ey,x,h

[
∂
∂θ
E(y,x,h)

]
.

Specifically, though the first expectation is tractable, the second is not. Different approaches have
been proposed to estimate this second expectation. One which is known to work well in practice is
the contrastive divergence estimator (Hinton, 2002). This approximation replaces the expectation
by a point estimate at a sample generated after a limited number of Gibbs sampling steps, with the
sampler’s initial state for the visible variables initialized at the training example (xt ,yt). A single
Gibbs sampling iteration is often used and is usually found to be sufficient to learn a meaningful
representation of the data. Then, this gradient estimate can be used in a stochastic gradient descent
procedure for training. A pseudocode of the procedure is given by Algorithm 1, where the learning
rate is controlled by λ. We will consider this procedure for now and postpone the consideration of
other estimates of the generative gradient to Section 7.3.
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Algorithm 1 Generative training update of the ClassRBM using Contrastive Divergence
Input: training pair (yt ,xt) and learning rate λ
# Notation: a← b means a is set to value b
# a∼ p means a is sampled from p

# Positive phase
y0← yt , x0← xt , ĥ0← sigm(c+Wx0+Uey0)

# Negative phase
h0 ∼ p(h|y0,x0), y1 ∼ p(y|h0), x1 ∼ p(x|h0)
ĥ1← sigm(c+Wx1+Uey1)

# Update
for θ ∈Θ do
θ← θ−λ

(
∂
∂θE(y

0,x0, ĥ0)− ∂
∂θE(y

1,x1, ĥ1)
)

end for

4. Discriminative Training Objective

The generative training objective can be decomposed as follows:

Lgen(Dtrain) =−
|Dtrain|

∑
t=1

(log p(yt |xt)+ log p(xt)) =−
|Dtrain|

∑
t=1

log p(yt |xt)−
|Dtrain|

∑
t=1

log p(xt) (4)

hinting that the ClassRBM will dedicate some of its capacity at modelling the marginal distribution
of the input only. Since we are in a supervised learning setting and are only interested in obtaining
a good prediction of the target given the input, it might be more appropriate to ignore this unsuper-
vised part of the generative objective and focus on the supervised part.

Doing so is referred to as discriminative training, where the following training objective is used:

Ldisc(Dtrain) =−
|Dtrain|

∑
t=1

log p(yt |xt) . (5)

This objective is also similar to the one used by feedforward neural networks whose outputs can
be interpreted as an estimate of p(y|x). Moreover, just like neural networks, ClassRBMs trained
this way are universal approximators for distributions p(y|x) with binary inputs, since RBMs are
universal approximators of distributions over binary inputs (Le Roux and Bengio, 2010).

An important advantage of the discriminative training objective is that it is possible to compute
its gradient with respect to the ClassRBM’s parameters exactly. The general form of the gradient
for a single example (xt ,yt) is

∂ log p(yt |xt)
∂θ

=−Eh|yt ,xt

[
∂
∂θ
E(yt ,xt ,h)

]
+Ey,h|x

[
∂
∂θ
E(y,x,h)

]

and, more specifically, we obtain

∂ log p(yt |xt)
∂dy

= 1y=yt − p(y|xt), ∀y ∈ {1, . . . ,C}
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for the target biases d and

∂ log p(yt |xt)
∂θ

=∑
j
sigm(oyt j(xt))

∂oyt j(xt)
∂θ

−∑
j,y∗
sigm(oy∗ j(xt))p(y∗|xt)

∂oy∗ j(xt)
∂θ

for the other parameters θ∈ {c,U,W}, where oy j(x) = c j+∑kWjkxk+Ujy. Notice that the gradient
with respect to b is 0, since the input biases are not involved in the computation of p(y|x). This
discriminative approach has been used previously for fine-tuning the top RBM of a Deep Belief
Network (Hinton, 2007).

5. Hybrid Training Objective

In order to get an idea of when and why generative training can be better than discriminative training
or vice versa, we can look at some of the known theoretical properties of both approaches.

In Ng and Jordan (2002), an analysis of naive Bayes and logistic regression classifiers (which
can be seen as the same parametrization but trained according to a generative or discriminative
objective respectively) indicates that the generative training objective yields models that can reach
more rapidly (with training set size) their best (asymptotic) generalization performance, than mod-
els trained discriminatively. However, when the model is misspecified, the discriminative training
objective allows the model to reach a better performance for sufficiently large training sets (i.e., has
better asymptotic performance). In Liang and Jordan (2008), it is also shown that for models from
the general exponential family, parameter estimates based on the generative training objective have
smaller variance than discriminative estimates. However, if the model is misspecified, generative
estimates will asymptotically yield models with worse performances. These results suggest inter-
preting the model trained with the generative training objective as being more regularized than the
model trained with the discriminative objective.

When the ultimate task is classification, adding the generative training objective to the discrim-
inative training objective can be seen as a way to regularize the discriminative training objective. It
was already found that unsupervised pre-training of RBMs can be seen as a form of regularization
(Erhan et al., 2010). Since we might want to adapt the amount of regularization to the problem at
hand, we could consider interpolating between the generative and discriminative objectives as in
Bouchard and Triggs (2004) or, similarly, use the following hybrid objective:

Lhybrid(Dtrain) = Ldisc(Dtrain)+αLgen(Dtrain) (6)

where the weight α of the generative criterion can be adjusted based on the performance of the
model on a validation set. As in Equation 4, we can separate the log p(yt ,xt) terms in two and
rewrite Equation 6 as

Lhybrid(Dtrain) =−(1+α)
|Dtrain|

∑
t=1

log p(yt |xt)−α
|Dtrain|

∑
t=1

log p(xt) .

This different expression for Lhybrid(Dtrain) highlights the nature of the regularization that is im-
posed: among all configurations of the parameters of the ClassRBMs that can solve the supervised
problem well, we will favor those that also assign high probability to the inputs and hence have
extracted some of the structure present in the input’s distribution.
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6. Related Work

As mentioned previously, RBMs—sometimes also referred to as harmoniums (Welling et al., 2005),
usually when the hidden layer’s units are not binary—have been popular feature extractors in clas-
sification applications. Most of the time however, the features are learned while ignoring the target
label information (Gehler et al., 2006; Xing et al., 2005). This implies that some label-related infor-
mation may be thrown away and McCallum et al. (2006) have shown that incorporating labels in a
feature learning procedure can be beneficial, in their work on Multi-Conditional Learning (MCL).1
However, this latter work still required that the relationship between the hidden features and the
target be learned a posteriori, by a separate classifier. One of the main points we wish to make in
this paper is that RBMs provide a self-contained framework for classification, which does not need
to rely on the availability of a separate classifier. This approach has two advantages: model selec-
tion is facilitated since no additional hyper-parameters from the separate classifier must be tuned,
and no additional classifier training phase is required, making it possible to employ the ClassRBM
in an online learning setting or to track the discriminative performance of the latent representation
on a validation set. Another frequent use of RBMs is as an initializing or pretraining algorithm for
deep neural networks (Hinton, 2007), but this approach shares the same disadvantages of having
two training phases.

Schmah et al. (2009) proposed a different approach to discriminative training of RBMs, where
each class is associated with its own individual RBM, as in a Bayes classifier. However, this ap-
proach does not rely on a global hidden representation (with shared parameters) for all classes and
hence cannot model directly the latent similarity between classes, which should be advantageous for
classification problems with large number of classes. From this perspective, the ClassRBM can be
seen as a form of multi-task training, since the input to hidden weights are shared across all classes.

Yang et al. (2007) developed variants of harmoniums for video classification that can model
several modalities and class information jointly. One variant uses a separate harmonium for each
class as in Schmah et al. (2009), while a second is based on a shared hidden representation across
classes like in the ClassRBM. However, they proposed training these models generatively, which is
often not the optimal training strategy, as discussed in Section 7.

There are also several similarities between classification RBMs and ordinary multi-layer neural
networks. In particular, the computation of p(y|x) could be implemented by a single layer neural
network with softplus and softmax activation functions in its hidden and output layers respectively,
as well as with a special structure in the output and hidden weights where the value of the output
weights is fixed and many of the hidden layer weights are shared. Glorot et al. (2011) highlight that
softplus hidden activation functions tend to yield better performances than logistic-shaped functions
(including the hyperbolic tangent). This might be one explanation behind the slightly superior
performance of discriminatively trained ClassRBMs, compared to neural networks with hyperbolic
tangent hidden units (see Sections 7.1 and 7.2). However, the main advantage of working in the
framework of RBMs is that it provides a natural way to introduce generative learning, which can
provide data set-dependent regularization and, as we will see, can be used to extend learning in
the semi-supervised setting. As mentioned earlier, a form of generative learning can be introduced
in standard neural networks with unsupervised pre-training, simply by using RBMs to initialize
the hidden layer weights. However, the extent to which the final solution for the parameters of

1. We experimented with a version of MCL for the ClassRBM, however the results did not improve on those of hybrid
training.
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the neural network is influenced by generative learning is not well controlled, while the hybrid
objective provides an explicit handle on the role played by generative learning. One could argue
that the advantage of unsupervised pre-training is that it allows to build deeper models. However,
consider that it is always possible to use the ClassRBM as the top layer of a stack of RBMs, in the
spirit already suggested in Hinton et al. (2006).

7. Evaluation of the Training Objectives

To evaluate the performance of the different training objectives described thus far, we present exper-
iments on two classification problems: character recognition and text classification. Such problems
are particularly interesting as they are known to benefit from the extraction of non-linear features
and hence are well suited for the ClassRBM. In all experiments, for the ClassRBM variants and
for all baselines, we performed model selection based on the validation set performance. For the
different RBM models, model selection was done with a grid-like search over the learning rate λ
(between 0.0005 and 0.1, on a log scale),H (50 to 6000), the generative learning weight α for hybrid
training (0 to 0.5, on a log scale) and the weight β for semi-supervised learning (0, 0.01 or 0.1). In
general, bigger values of H were found to be more appropriate with more generative learning. If no
local minima was apparent, the grid was extended. The biases b, c and d were initialized to 0 and
the initial values for the elements of the weight matrices U and W were each taken from uniform
samples in

[
−m−0.5,m−0.5

]
, where m is the maximum between the number of rows and columns

of the matrix. The number of iterations over the training set was determined using early stopping
according to the validation set classification error, with a look ahead of 15 iterations.

7.1 Character Recognition

We first evaluate the different training objectives for the ClassRBM on the problem of classifying
images of digits. The images were taken from the MNIST data set, where we separated the original
training set into training and validation sets of 50000 and 10000 examples and used the standard
test set of 10000 examples. The results are given in Table 1. The RBM+NNet approach is simply
an unsupervised RBM used to initialize a one-hidden layer supervised neural net (as in Bengio et al.
2007). We give as a comparison the results of a Gaussian kernel SVM, a random forest classifier2
and of a regular neural network (with random initialization, one hidden layer and hyperbolic tangent
hidden activation functions).

First, we observe that discriminative training of the ClassRBM outperforms generative training.
However, hybrid training appears able to make the best out of both worlds and outperforms the other
approaches.

We also experimented with a sparse version of the hybrid ClassRBM, since sparsity is known
to be a good characteristic for features of images. Sparse RBMs were developed by Lee et al.
(2008) in the context of deep neural networks. They suggest to introduce sparsity in the hidden
layer of an RBM by setting the biases c in the hidden layer to a value that maintains the average
of the conditional expected value of these neurons to an arbitrarily small value, and so after each
iteration through the whole training set. This procedure tends to make the biases negative and large.
We followed a different approach by simply subtracting a small constant δ value, considered as an
hyper-parameter, from the biases after each update, which is more appropriate in an online setting

2. We used the implementation provided by the TreeLearn library: https://github.com/capitalk/treelearn.
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Figure 2: Filters learned by the ClassRBM on the MNIST data set. The top row shows filters that
act as spatially localized stroke detectors, and the bottom shows filters more specific to a
particular shape of digit.

or for large data sets. To chose δ, given the selected values for λ and α for the “non sparse” hybrid
ClassRBM, we performed a second grid-search over δ (between 10−5 and 0.1, on a log scale) and
the hidden layer size, testing bigger hidden layer sizes than previously selected.

This sparse version of the hybrid ClassRBM outperforms all the other RBM approaches, and
yields significantly lower classification error than the SVM, the random forest and the standard
neural network classifiers. The performance achieved by the sparse ClassRBM is particularly im-
pressive when compared to reported performances for Deep Belief Networks (1.25% in Hinton et al.
2006) or of a deep neural network initialized using RBMs (around 1.2% in Bengio et al. 2007 and
Hinton 2007) for the MNIST data set with 50000 training examples.

The discriminative power of the hybrid ClassRBM can be better understood by looking a the
rows of the weight matrixW, which act as filter features. Figure 2 displays some of these learned
filters. Some of them are spatially localized stroke detectors which can possibly be active for a wide
variety of digit images, and others are much more specific to a particular shape of digit.

In practice, we find that the most influential hyper-parameters are the learning rate and the
generative learning weight. Conveniently, we also find that that the best learning rate value is the
same for each values of the generative learning weight we tested. In other words, finding a good
learning rate does not require having found the best value for the generative learning weight. Once
these two hyper-parameters are set to good values, we also find that a wide range of hidden layer
sizes (between 750 to 3000) yield a competitive performance, that is, under 1.4% classification error.

7.2 Document Classification

We also evaluated the RBM models on the problem of classifying documents into their correspond-
ing newsgroup topic. We used a version of the 20 Newsgroups data set3 for which the training and
test sets contain documents collected at different times, a setting that is more reflective of a prac-
tical application. The original training set was divided into a smaller training set and a validation
set, with 9578 and 1691 examples respectively. The test set contains 7505 examples. We used the
5000 most frequent words for the binary input features. The results are given in Table 2. Again, we

3. This data set is available in Matlab format here:
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate-matlab.tgz.
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Model Objective Error

ClassRBM

Generative (λ= 0.005, H = 6000) 3.39%
Discriminative (λ= 0.05, H = 500) 1.81%
Hybrid (α= 0.01, λ= 0.05, H = 1500 ) 1.28%
Sparse Hybrid (idem + H = 3000, δ= 10−4) 1.16%

SVM

-

1.40%
Random Forest 2.94%
NNet 1.93%
RBM+NNet 1.41%

Table 1: Comparison of the classification performances on the MNIST data set. SVM results for
MNIST were taken from http://yann.lecun.com/exdb/mnist/. On this data set, dif-
ferences of 0.2% in classification error are statistically significant.

Figure 3: Similarity matrix of the newsgroup weights vectorsU·y.

also provide the results of a Gaussian kernel SVM,4 a random forest classifier and a regular neural
network for comparison.

Once again, hybrid training of the ClassRBM outperforms the other approaches, including the
SVM and neural network classifiers. Notice that here generative training performs better than dis-
criminative training.

4. We used libSVM v2.85 to train the SVM model.
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Model Objective Error

ClassRBM
Generative (λ= 0.0005, H = 1000) 24.9%
Discriminative (λ= 0.0005, H = 50) 27.6%
Hybrid (α= 0.005, λ= 0.1, H = 1000 ) 23.8%

SVM

-

32.8%
Random Forest 29.0%
NNet 28.2%
RBM+NNet 26.8%

Table 2: Classification performances on 20 Newsgroups data set for the different models. The error
differences between the hybrid ClassRBM and other approaches is statistically significant.

Much like for the character recognition experiment of the previous section, we find that the
learning rate and generative learning weight are the most crucial hyper-parameters to tune, and that
the performance is quite stable across hidden layer size as long as it is large enough (500 or greater
for this problem).

In order to get a better understanding of how the hybrid ClassRBM solves this classification
problem, we looked at the weights connecting each of the classes to the hidden neurons. This corre-
sponds to the columns U·y of the weight matrix U. Figure 3 shows a similarity matrixM(U) for the
weights of the different newsgroups, whereM(U)y1y2 = sigm(UT·y1U·y2). We see that the ClassRBM
does not use strictly non-overlapping sets of neurons for different newsgroups, but shares some of
those neurons for newsgroups that are semantically related. We see that the ClassRBM tends to share
neurons for topics such as computer (comp.*), science (sci.*) and politics (talk.politics.*),
or secondary topics such as sports (rec.sports.*) and other recreational activities (rec.autos
and rec.motorcycles).

Table 3 also gives the set of words used by the ClassRBM to recognize some of the newsgroups.
To obtain this table we proceeded as follows: for each newsgroup y, we looked at the 20 neurons
with the largest weight among U·y, aggregated (by summing) the associated input-to-hidden weight
vectors, sorted the words in decreasing order of their associated aggregated weights and picked
the first few words according to that order. This procedure attempts to approximate the positive
contribution of the words to the conditional probability of each newsgroup.

7.3 Variations on the Generative Learning Gradient Estimator

In the previous sections, we considered contrastive divergence for estimating the generative learning
gradient. However, other alternatives have also been proposed. An interesting question is how
much impact does the choice between these different gradient estimators has on the classification
performance of the ClassRBM?

A first alternative is based on the concept of pseudolikelihood (PL) (Besag, 1975), which aims
at replacing the regular likelihood objective with one more tractable, that is, for which gradients can
be computed exactly. The negative log-likelihood objective on a (x,y) pair is then replaced by

− log p(y|x)−
D

∑
k=1
log p(xk|x\k,y) (7)
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Class Words
alt.atheism bible, atheists, benedikt, atheism, religion, scholars, biblical
comp.graphics tiff, ftp, window, gif, images, pixel, rgb, viewer, image, color
comp.os.ms-windows.misc windows, cica, bmp, window, win, installed, toronto, dos, nt
comp.sys.ibm.pc.hardware dos, ide, adaptec, pc, config, irq, vlb, bios, scsi, esdi, dma
comp.sys.mac.hardware apple, mac, quadra, powerbook, lc, pds, centris, fpu, power, lciii
comp.windows.x xlib, man, motif, widget, openwindows, xterm, colormap, xdm
misc.forsale sell, condition, floppy, week, am, obo, shipping, company, wpi
rec.autos cars, ford, autos, sho, toyota, roads, vw, callison, sc, drive
rec.motorcycles bikes, motorcycle, ride, bike, dod, rider, bmw, honda
rec.sport.baseball pitching, braves, hitter, ryan, pitchers, so, rbi, yankees, teams
rec.sport.hockey playoffs, penguins, didn, playoff, game, out, play, cup, stanley
sci.crypt sternlight, bontchev, nsa, escrow, hamburg, encryption, rm
sci.electronics amp, cco, together, voltage, circuits, detector, connectors
sci.med drug, syndrome, dyer, diet, foods, physician, medicine, disease
sci.space orbit, spacecraft, speed, safety, known, lunar, then, rockets
soc.religion.christian rutgers, athos, jesus, christ, geneva, clh, christians, sin, paul
talk.politics.guns firearms, handgun, firearm, gun, rkba, concealed, second, nra
talk.politics.mideast armenia, serdar, turkish, turks, cs, argic, stated, armenians, uci
talk.politics.misc having, laws, clinton, time, koresh, president, federal, choose
talk.religion.misc christians, christian, bible, weiss, religion, she, latter, dwyer

Table 3: Most influential words in the hybrid ClassRBM for predicting some of the document
classes

where x\k is a vector made of all elements of x except xk. Hence, the model is trained to maximize
the likelihood of each observed variable given all other observed variables. Notice that the first term
corresponds to discriminative training. Hence, to obtain hybrid training we can simply weight the
second summation term by α.

Equation 7 as well as its gradient with respect to the ClassRBM’s parameters can be computed
exactly by backpropagation. In the ClassRBM, with a development similar to the one for p(y|x),
we can show that:

p(xk|x\k,y) =
p(x|y)

p(x|y)+ p(x̄k|y)

=
exp(xkbk+∑ j softplus(c j+Ujy+Wjkxk+∑i(=kWjixi))

∑x′k∈{0,1} exp(x
′
kbk+∑ j softplus(c j+Ujy∗+Wjkx′k+∑i(=kWjixi))

where x̄k corresponds to x but where the input’s kth bit has been flipped. So the terms log p(xk|x\k,y)
can be computed in O(HD). A naive computation of Equation 7, which would compute the H terms
log p(xk|x\k,y) separately, would then scale in O(HD2+HC). However, by computing ∑iWjixi for
all j only once and reusing those terms to obtain the terms ∑i(=kWjixi for any k, we can obtain a
procedure that is still linear in D, as is the CD gradient estimator. In practice, pseudolikelihood
training still has some computational overhead compared to CD. Indeed, pseudolikelihood training
requires O(HD) computations of the exponential function, whereas CD only requires O(H +D)
such computations.
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Generative gradient estimator Error
MNIST 20News

Contrastive Divergence - 1 Gibbs sampling step 1.16% 23.8%
Contrastive Divergence - 10 Gibbs sampling step 1.15% 24.8%
Persistent Contrastive Divergence 1.41% 24.9%
Pseudolikelihood 1.21% 24.7%

Table 4: Comparison of the classification performances using different generative gradient estima-
tors.

To perform stochastic gradient descent, a gradient step update is made according to the objective
of Equation 7 every time a training example is visited. Because of the higher computational cost of
PL, we use a sampling trick to estimate the gradient on the second summation term of Equation 7.
Indeed, before every update, we randomly select a subset of the input variables xk and sum only
over those in the second term. This trick was necessary to scale down training to a reasonable time.
We used a subset of size 100 and 500 for the MNIST and 20 Newsgroups data sets respectively.

Another generative gradient estimator for RBMs that has been recently proposed is the Persistent
CD (PCD) estimator (Tieleman, 2008). PCD improves on CD by running a set of Gibbs sampling
chains which persist through training, instead of always being reinitialized at each training example.
Tieleman (2008) has shown that this new estimator can sometimes improve the rate of training as
well as the quality of the solution that is found. As proposed by Tieleman (2008), we used 100
parallel chains for Gibbs sampling. Since we use stochastic gradient descent (instead of mini-batch
gradient descent), only one chain was updated per update. The chains were updated sequentially by
cycling through the set of chains.

Finally, an even simpler way of improving the gradient estimate that CD computes is to in-
crease the number of Gibbs sampling steps that is used in the negative phase. In their experiments,
Tieleman (2008) have found that CD with 10 Gibbs sampling steps often compares quite well to
PCD.

Is the choice of the generative gradient estimator in the hybrid objective crucial for obtaining
good classification performances? To answer this question, we have trained ClassRBMs using the
hybrid objective on the MNIST and 20 Newsgroup data sets, with the different generative gradient
estimators. Hyper-parameters were tuned separately for each variant, as in the previous sections.
For the MNIST data set, we used the sparse training variant. The results of this experiment are
given in Table 4. We see that in general, none of the alternative estimators provided significant
performance improvements. On 20 Newsgroups, the performance even worsened. We notice that
the performance obtained with PCD tends to be the particularly bad. This is explained by the fact
that PCD requires smaller learning rates to work well, so that the model doesn’t change faster than
the rate in which the parallel Gibbs chains mix. However, using a small learning rate does not
correspond to the regime at which the ClassRBM performs best in terms of classification error for
these problems. This is particularly true for MNIST where the optimal learning rate is between 0.05
and 0.1.
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7.4 Scaling Up to Large Input Spaces

Computing the generative gradient is typically much more computationally expensive than the
discriminative gradient. This is particularly true on problems were the input data is very high-
dimensional and sparse, such as the text classification problem. For instance, though we have
restricted its dimensionality to 5000, the 20 Newsgroup data set could be made much more high
dimensional by including more words as input features. While the computations for estimating the
discriminative gradient can take advantage of the sparsity of the input (mainly when multiplying
the input with the filters), estimating the generative gradient for all of the estimators in Section 7.3
requires an explicit loop over all inputs.

It would hence be beneficial to derive a more general generative gradient estimator that would
allow us to control more directly its computational cost, and perhaps let us trade a little bit of ac-
curacy for more computational efficiency. This would particularly be useful in an online learning
setting, where a stream of training examples is available, with examples being presented at some
given rate. In such a setting, we might want to reduce the computational time required by the gen-
erative learning objective so that updating the parameters of the ClassRBM for a training example
can be done before the next sample is given.

As mentioned, the computational expense of training is closely related to the number of vari-
ables who’s distribution is being modelled. At one extreme, discriminative learning is very efficient
since we are only modelling the (conditional) distribution of the target variable while, at the other
extreme, generative learning is much more expensive because the distribution of the target and all
input variables is being modelled. Hence, a good handle over the computational complexity of an
estimator would be the total number of variables involved in the conditional distribution on which
the training objective is based.

Following this idea, let I = {1, . . . ,D} be the set of input variable indices and let P=L(I ) be
all the subsets of I of cardinality L, we could define the following as our new computation-aware
generative training objective

−
|Dtrain|

∑
t=1

ES∈P=L(I )

[
log p(yt ,xS |x\S )

]
=−

|Dtrain|

∑
t=1

∑
S∈P=L(I )

1
|P=L(I )|

log p(yt ,xS |x\S ) (8)

where xS is the vector of input variables with index in S and x\S is the vector of all other variables.
Put briefly, this objective aims at maximizing the conditional likelihood of the target and all subsets
of input variables of size L given the other variables, and with a uniform distribution or weight on all
such possible partitions of the inputs. Since the expectation over S is intractable even for relatively
small values of L, in practice we approximate it by sampling a single value from the associated
uniform distribution over S , and so for every parameter update.

This training objective actually corresponds to a particular type of composite likelihood esti-
mator (Lindsay, 1988; Liang and Jordan, 2008). Here, we in addition propose to approximate the
gradients of the log p(yt ,xS |x\S ) terms

∂ log p(yt ,xS |x\S )
∂θ

=−Eh|yt ,xt

[
∂
∂θ
E(yt ,xt ,h)

]
+Ey,xS ,h|x\S

[
∂
∂θ
E(y,x,h)

]

by using contrastive divergence with one step of Gibbs sampling. This approximation requires that
only the L variables in xS be sampled, making this procedure efficient for small L.
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Model Hybrid training (for varying L) Discriminative
250 500 5000 10000 training

Error 22.9% 22.2% 21.9% 21.9% 26.9%

Table 5: Evaluation of the composite likelihood variant of contrastive divergence on the 20 News-
groups data set, with an input dimensionality of 25247.

We experimentally investigated how varying L impacts the performance of ClassRBMs trained
using a hybrid objective based on the generative objective of Equation 8. We took the 20 News-
groups data set and, instead of only using the 5000 most frequent words as features, we considered
all words appearing at least 5 times, adding up to 25247 words. The results are given in Table 5.
We observe a big improvement on the classification error obtained by restricting the input to only
5000 words, as in Table 2. The performance of purely discriminative training in the large vocabu-
lary setting, which is essentially equivalent to setting L = 0, is also improved on. We see that the
composite likelihood variant still allows for better generalization performance to be achieved, even
for relatively small values of L. Interestingly, we also observe a fairly rapid diminishing return in
the improvement of generalization error as L increases.

The idea of combining composite likelihood objectives and contrastive divergence has also been
combined previously by Asuncion et al. (2010), but in a different way. Asuncion et al. (2010)
focused on models for which standard contrastive divergence with Gibbs sampling corresponds to
sampling only a single randomly selected variable at each step. In this case, contrastive divergence
with one sampling step actually corresponds to a stochastic version of pseudolikelihood (Hyvärinen,
2006). They propose instead to use block-Gibbs sampling on randomly selected blocks of variables
of limited size L at each step. L must be small however since, in general, computing the associated
conditionals is exponential in L. Using a single sampling step then corresponds to a stochastic
version of composite likelihood. They show that increasing L and using a single Gibbs step can be
more advantageous than using L = 1 and increasing the number of iterations. Their work can be
understood as an investigation of how to improve contrastive divergence using ideas from composite
likelihood objectives.

However, for RBMs, block-Gibbs sampling is actually the standard, where we first sample all
hidden units and then all input variables in one iteration. Hence, the approach of Asuncion et al.
(2010) is not directly applicable here. What we propose instead, is to apply contrastive divergence
to a composite likelihood objective, such that we approximate the gradients on the log p(yt ,xS |x\S )
terms. Crucially, this approach is linear in L, as opposed to exponential.

8. Semi-supervised Learning

In certain situations, in addition to a (possibly small) set of labeled training examples Dtrain, even
more data can be obtained in the form of an unlabeled training set Dunlab = {(xt)}. This is par-
ticularly true for data such as images and text documents, for which the Internet is an almost infi-
nite source. Semi-supervised learning algorithms (Chapelle et al., 2006) address this situation by
leveraging the unlabeled data to bias learning towards solutions that are also “consistent” with the
unlabeled data. Different algorithms can then be seen as defining different notions of consistency.

657



LAROCHELLE, MANDEL, PASCANU AND BENGIO

Because a ClassRBM is a proper generative model, a very natural notion of consistency in
this context is that unlabeled training data have high likelihood under it. To achieve this, one can
optimize the following negative log-likelihood

Lunsup(Dunlab) =−
|Dunlab|

∑
t=1

log p(xt) (9)

which requires computing the gradients

∂ log p(xt)
∂θ

=−Ey,h|xt

[
∂
∂θ
E(yt ,xt ,h)

]
+Ey,x,h

[
∂
∂θ
E(y,x,h)

]
.

The contrastive divergence approximation proceeds slightly differently here. The first term can be
computed in time O(HD+HC), by noticing that

Ey,h|xt

[
∂
∂θ
E(yt ,xt ,h)

]
= Ey|xt

[
Eh|y,xt

[
∂
∂θ
E(yt ,xt ,h)

]]

and then either average the usual RBM gradient ∂
∂θE(yt ,xt ,h) for each class y (weighted by p(y|xt)),

or sample from p(y|xt) and only collect the gradient for the sampled value of y. In the latter sampling
version, the online training update for this objective can be described as replacing the statement
y0← yt with y0 ∼ p(y|xt) in Algorithm 1. We used this version in our experiments.

In order to perform semi-supervised learning, we can weight and combine the objective of
Equation 9 with those of Equations 3, 5 or 6 as follows:

Lsemi−sup(Dtrain,Dunlab) = LTYPE(Dtrain)+βLunsup(Dunlab) (10)

where TYPE ∈ {gen,disc,hybrid}. Online training by stochastic gradient descent then corresponds
to applying two gradients updates: one for the objective LTYPE and one for the unlabeled data
objective Lunsup.

We evaluated our semi-supervised learning algorithm for the hybrid ClassRBM on both previous
digit recognition and document classification problems. We also experimented with a version (noted
MNIST-BI) of the MNIST data set proposed by Larochelle et al. (2007) where background images
have been added to MNIST digit images. This version corresponds to a much harder problem and
it will help to illustrate the advantage brought by semi-supervised learning in ClassRBMs. The
ClassRBM trained on this data used truncated exponential input units (see Bengio et al., 2007).

In this semi-supervised setting, we reduced the size of the labeled training set to 800 exam-
ples, and used some of the remaining data to form an unlabeled data set Dunlab. The validation
set was also reduced to 200 labeled examples. Model selection covered all the parameters of the
hybrid ClassRBM as well as the unsupervised objective weight β of Equation 10, with β = 0.1
for MNIST and 20 Newsgroups, and β = 0.01 for MNIST-BI performing best. For comparison
purposes, we also provide the performance of a standard non-parametric semi-supervised learning
algorithm based on function induction (Bengio et al., 2006a), which is very similar to other non-
parametric semi-supervised learning algorithms such as Zhu et al. (2003). We provide results for the
use of a Gaussian kernel (NP-Gauss) and a data-dependent truncated Gaussian kernel (NP-Trunc-
Gauss) used in Bengio et al. (2006a), which essentially outputs zero for pairs of inputs that are not
near neighbors. The experiments on the MNIST and MNIST-BI (with background images) data
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Model Objective MNIST MNIST-BI 20News

ClassRBM Hybrid 9.73% 42.4% 40.5%
Semi-supervised + Hybrid 8.04% 37.5% 31.8%

NP-Gauss - 10.60% 66.5% 85.0%
NP-Trunc-Gauss 7.49% 61.3% 82.6%

Table 6: Comparison of the classification errors in semi-supervised learning setting. The errors in
bold are statistically significantly better.

sets used 5000 unlabeled examples and the experiment on 20 Newsgroups used 8778. The results
are given in Table 6, where we observe that semi-supervised learning consistently improves the
performance of the ClassRBM trained based on the hybrid objective.

The usefulness of non-parametric semi-supervised learning algorithms has been demonstrated
many times in the past, but usually so on problems where the dimensionality of the inputs is low or
the data lies on a much lower dimensional manifold. This is reflected in the result on MNIST for the
non-parametric methods. However, for high dimensional data with many factors of variation, these
methods can quickly suffer from the curse of dimensionality, as argued by Bengio et al. (2006b).
This is also reflected in the results for the MNIST-BI data set which contains many factors of vari-
ation, and for the 20 Newsgroups data set where the input is very high dimensional. Finally, it is
important to notice that semi-supervised learning in ClassRBMs proceeds in an online fashion and
hence could scale to very large data sets, unlike most non-parametric methods.

We mention that, in the context of log-linear models, Druck et al. (2007) introduced semi-
supervised learning in hybrid generative/discriminative models using a similar approach to the one
presented in here. While log-linear models depend much more on the discriminative quality of the
features that are fed as input, the ClassRBM can learn useful features through its hidden layer and
model non-linear decision boundaries.

9. Multitask Learning

The classification problems considered so far had in common that a given input could only belong to
a single class, that is, classes were mutually exclusive. For certain problems, this assumption is too
restrictive and inputs can be simultaneously associated with multiple classes or labels. One example
is online collections of images, documents or music augmented with social tags (see Lamere 2008
for an example), which are short descriptions applied by users to items and can be used by users to
search and browse through a collection. One approach to this problem would be to train a separate
classifier for each tag. However, a better approach is to perform multitask learning (Caruana, 1997),
where a single model is trained to perform all tasks simultaneously. This allows for the model to
leverage the similarity between certain tasks and improve generalization.

We describe here how multitask learning can also be performed within a ClassRBM. In this
context, the target’s representation in the energy function of the ClassRBM does not follow the “one
out ofC” constraint and is an unconstrained binary vector y. The conditional distribution of y given
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h then becomes:

p(y|h) =∏
c
p(yc|h), with p(yc = 1|h) = sigm(dc+∑

i
Ujch j).

Another important implication of this change is that the predictive posterior p(y|x) is no longer
tractable, since y now has 2C possible values. At test time, we are particularly interested in estimat-
ing p(yc = 1|x) for each label, in order to make a prediction of the binary value of each individual
label. Fortunately, there exist several message-passing approximate inference procedures for gen-
eral graphical models that can be employed here. The two most popular are mean field and loopy
belief propagation.

The mean field (MF) approach tries to approximate the joint posterior p(y,h|x) by a factorial
distribution q(y,h) =∏C

c=1µ
yc
c (1−µc)1−yc∏n

j=1 τ
h j
j (1−τ j)1−h j that minimizes the Kullback-Leibler

(KL) divergence with the true posterior. Running the following message passing procedure to con-
vergence

µc ← sigm

(

dc+∑
j
Ujcτ j

)

∀ c ∈ {1, . . . ,C},

τ j ← sigm

(

c j+∑
c
Ujcµc+∑

i
Wjixi

)

∀ j ∈ {1, . . . ,n}

we can reach a saddle point of the KL divergence, at which point µc serves as the estimate for
p(yc = 1|x) and τ j can be used to estimate p(h j = 1|x). In our experiments, we initialized the
messages to 0. Moreover, we treat the number of message passing iterations as an hyper-parameter,
so as to control the computational cost of inference.

Loopy belief propagation (Pearl, 1988) (LBP) also relies on a message passing procedure be-
tween variables. LBP is more complex than MF in that the number of distinct messages to be main-
tained scales in O(HC), that is, the number of connections between y and h, instead of in O(H+C)
as in MF. It also provides a direct estimate of the pair-wise probabilities p(yc = 1,h j = 1|x). LBP
tends to give estimates of the true marginals that are more accurate than the iterative MF procedure
(Weiss, 2001). While not guaranteed to converge it frequently does in practice. One method that has
been shown to be useful in aiding convergence is message damped belief propagation (Pretti, 2005).
In this case the normal updates computed by belief propagation are mixed with the previous updates
in order to smooth them, the damping factor being a parameter of the algorithm. Algorithm 2 details
the procedure.

As for learning, the discriminative gradient expression, which is now

∂ log p(yt |xt)
∂θ

=−Eh|yt ,xt

[
∂
∂θ
E(yt ,xt ,h)

]
+Ey,h|x

[
∂
∂θ
E(y,x,h)

]

must also be approximated, specifically the second expectation over y and h. Contrastive divergence
is a natural approach to estimating this expectation, using K iterations of Gibbs sampling alternating
between sampling h and y.

However, MF or LBP can also be used to approximate the expectation. Because the energy
function decomposes into sums of either unary or pairwise terms, only the marginals p(yc = 1|x),
p(h j = 1|x) and p(yc = 1,h j = 1|x) are required. The assumption of a factorial distribution behind
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Algorithm 2 Loopy Belief Propagation algorithm for inference in the multilabel ClassRBM
Input: training pair (y,x), number of iterations K and damping factor β
m↑jc← 0, m↓jc← 0 ∀ c, j
cdata← c+Wx

# Update downwards (towards y) and upwards (towards h) messages
for K iterations do
m↓jc← βm↓jc+(1−β) log

(
1+(exp(Ujc)−1) sigm(cdataj +∑c∗ (=cm

↑
jc∗)
)
, ∀ c, j

m↑jc← βm↑jc+(1−β) log
(
1+(exp(Ujc)−1) sigm(dc+∑ j∗ (= j m

↓
j∗c)
)
, ∀ c, j

end for

# Compute estimated marginals
pLBP(yc = 1|x)← sigm(dc+∑ j m

↓
jc), ∀ c

pLBP(h j = 1|x)← sigm(cdataj +∑c m
↑
jc), ∀ j

num01jc ← dc+∑ j∗ (= j m
↓
j∗c, num10jc ← cdataj +∑c∗ (=cm

↑
jc∗ , ∀ c, j

num11jc ←Ujc+num10jc +num01jc , ∀ c, j
pLBP(yc = 1,h j = 1|x) = exp(num11jc )/(exp(num11jc )+ exp(num01jc )+ exp(num10jc )), ∀ c, j

MFmeans that p(yc = 1,h j = 1|x) is simply estimated as the product of its estimates for p(yc = 1|x)
and p(h j = 1|x), while LBP provides a more sophisticated estimate. The MF gradient estimates
can also be improved by initializing the µc message to the value of the associated training target
yk. This approach was first described by Welling and Hinton (2002) and is known as mean field
contrastive divergence. It was also extended to general variational approximations in Welling and
Sutton (2005). When making predictions at test time however, we still must initialize µc to 0.

Finally, as in Section 7.3, the intractability of discriminative maximum likelihood training can
be avoided by using a pseudolikelihood objective −∑Cc=1 log p(yc|y\cx) for which exact gradients
can be computed.

Given all of these possible ways of approximating the marginal posteriors p(yc = 1|x) at test
time and of performing discriminative training, we performed an extensive comparison of all pos-
sible combinations of such choices. We used three different music social tags data sets based on
databases of 10-second song clips. The first data set, was collected from Amazon.com’s Mechanical
Turk service and is described in Mandel et al. (2010). The second data set was collected from the
MajorMiner music labeling game and is described in Mandel and Ellis (2008). The final data set
was collected from Last.fm’s website and is described in Schifanella et al. (2010). We will refer to
these data sets as MTurk, MajMin and Last.fm respectively.

All of these data sets were in the form of (user, item, tag) triples, where the items were either
10-second clips of tracks or whole tracks. These data were condensed into (item, tag, count) triples
by summing across users. Converting (item, tag, count) triples to binary matrices for training and
evaluation purposes required some care. In the MajorMiner and Last.fm data, the counts were high
enough that we could require the verification of an (item, tag) pair by at least two people, meaning
that the count had to be at least 2 to be considered as a positive example. The Mechanical Turk
data set did not have high enough counts to allow this, so we had to count every (item, tag) pair.
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Figure 4: Results of the multilabel ClassRBM (discriminative training) on the Mechanical Turk and
MajorMiner data sets, comparing the performance of different approximation combina-
tions for training and testing. The approximations used during training are represented
on the x-axis, while the approximations used during testing are represented through the
color of the bar. The error bars correspond to the standard error across folds.

In the MajorMiner and Last.fm data sets, (item, tag) pairs with only a single count were not used
as negative examples because we assumed that they had higher potential relevance than (item, tag)
pairs that never occurred, which served as stronger negative examples.

The timbral and rhythmic features of Mandel and Ellis (2008) were used to characterize the
audio of 10-second song clips. Each dimension of both sets of features was normalized across
the database to have zero-mean and unit-variance, and then each feature vector was normalized to
be unit norm to reduce the effect of outliers. The timbral features were 189-dimensional and the
rhythmic features were 200-dimensional, making the combined feature vector 389-dimensional.

In order to asses the impact of different approximations (of the gradients or p(y|x)) on the
solution found by the model we only considered discriminative learning. We also augmented the
number of data sets by changing the number of tags, to see how this factor influences the results.
Next to a data set name, the number in parenthesis thus indicates the number of tags considered.
The tags were selected by sorting them by popularity and picking the leading tags. For all data sets
we select the hyper-parameters of the model using a 5-fold cross-validation. In order to increase the
accuracy of our procedure, for each fold we computed the score as an average across 4 sub-folds.
Each run used a different fold (from the remaining 4 folds) as the validation set and the other 3
as the training set. From this validation procedure, 50, 100 and 200 hidden units were selected
respectively for the MTurk, MajMin and Last.fm data sets and a learning rate of 0.01 for all data
sets. We also fixed a priori the number of iterations for approximating the gradients (for CD, MF
or LBP) to 10, and the number of MF or LBP iterations for approximating p(y|x) to 20, to limit
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Figure 5: Comparison of the multilabel ClassRBM and with a multitask neural network (NNet) and
with single task logistic regression classifiers (LOG). Bars show the number of labels
(tags) on which the ClassRBM is significantly better (>) or worse (<) than the baseline
in a two-sided paired t-test.

the hyper-parameter search space.5 Finally, we set to 0.9 the damping factor for LBP inference, but
other values were found to yield similar performances.

Figure 4 provides the performance of all possible combinations of approximations at training
and test time, on two data sets. The performance is evaluated in terms of retrieval performance using
the area under the ROC curve (AROC) (Cortes and Mohri, 2004).6 We measure the AROC for each
tag separately and use the average across tags and folds as an overall measure of performance.
As we see, contrastive divergence tends to outperform other approaches for training the ClassRBM,
either when mean field or loopy belief propagation is used at test time. Using the same deterministic
inference at training and test time hence appears not to be optimal, with mean field being the worst
option.

We also compared the performance of the ClassRBMwith two baselines. The first is a multitask
neural network (Caruana, 1997), which is among the best baselines for multitask learning. More-
over, a neural network makes for an interesting comparison because its prediction for the marginals
p(yc = 1|x) is also non-linear, but feedforward and non-recursive, unlike in the ClassRBM. The
second baseline is a set of single task logistic regression classifiers (one for each task). Though
previous work on these multitask data sets has instead considered single task SVMs as a baseline
(Mandel et al., 2011a), we have found logistic regression classifiers to outperform SVMs, hence we
use those here as the single task baseline.

The same model selection procedure was used to select the baselines’ hyper-parameters, namely
the learning rate (both baselines) and hidden layer size (neural network baseline only). Contrastive
divergence and loopy belief propagation was used in this comparison, for discriminative training.

5. We validated this choice for these hyper-parameters afterwards, based on the best learning rate and hidden layer
size found, and observed that while the performance increases with the number of iterations, the increase is not
considerable, especially when we account for the increase in training time.

6. This metric scores the ability of an algorithm to rank relevant examples in a collection above irrelevant examples. A
random ranking will achieve an AROC of approximately 0.5, while a perfect ranking will achieve an AROC of 1.0.
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Model MTurk (77) MTurk (27) Last.fm (100) Last.fm (70) MajMin (77)
ClassRBM 65.9 68.8 72.4 72.2 76.1
NNet 65.8 65.4 72.4 72.0 75.3
LOG 63.4 65.7 70.2 70.3 70.7

Table 7: Average AROC across labels as a percentage for each model on all multitask data sets.

We compared the ClassRBM in a head to head fashion with each baseline, and computed a two-
sided paired t-test across folds, per tag, to count the number of tags for which either model performs
significantly better than the other. As illustrated in Figure 5, the ClassRBM is a better classifier for
strictly more tags on all data sets when compared to the logistic regression approach and on 4 out
of 5 data sets when compared to the neural network (with a tie on the remaining data set). Finally,
Table 7 gives the absolute performance of the ClassRBM and the baselines.

10. Conclusion

We argued that RBMs can and should be used as stand-alone non-linear classifiers alongside other
standard and more popular classifiers, instead of merely being considered as simple feature extrac-
tors. We considered different training strategies for the Classification RBM and evaluated them.
In particular, we highlighted the importance of combining generative and discriminative training
and we explored the impact of using different generative gradient estimators on the classification
performance of the ClassRBM. We also extended the range of situations where the ClassRBM can
be employed, by presenting learning algorithms tailored to settings where unlabeled data are avail-
able, where the input is sparse and very high-dimensional, as well as when multiple classification
problems must be solved.

By describing and establishing the ClassRBM as a “black box” classifier in its own right, we
hope to make its use more accessible and stimulate research in how to adapt it to even more applica-
tion settings. As an illustration of this potential, we end by mentioning extensions of the ClassRBM
that have already been developed, since the first conference publication of this work (Larochelle
and Bengio, 2008). Gelfand et al. (2010) explored a different way of using the ClassRBM energy
function to perform classification, using a conditional herding learning algorithm. Memisevic et al.
(2010) investigated a variant of the ClassRBM with third-order (as opposed to pair-wise) interac-
tions between the input, target and hidden units. van der Maaten et al. (2011) developed an extension
for sequential classification problems with linear-chain interactions between the sequence of targets,
while Mnih et al. (2011) considered other structured output prediction problems such as denoising.
Finally Louradour and Larochelle (2011) adapted the ClassRBM to problems where the input x is a
set containing an arbitrary number of input vectors.
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Abstract
We present a data dependent generalization bound for a large class of regularized algorithms which
implement structured sparsity constraints. The bound can be applied to standard squared-norm
regularization, the Lasso, the group Lasso, some versions of the group Lasso with overlapping
groups, multiple kernel learning and other regularization schemes. In all these cases competitive
results are obtained. A novel feature of our bound is that it can be applied in an infinite dimensional
setting such as the Lasso in a separable Hilbert space or multiple kernel learning with a countable
number of kernels.

Keywords: empirical processes, Rademacher average, sparse estimation.

1. Introduction

We study a class of regularization methods used to learn a linear function from a finite set of ex-
amples. The regularizer is expressed as an infimum convolution which involves a set M of linear
transformations (see Equation (1) below). As we shall see, this regularizer generalizes, depending
on the choice of the set M , the regularizers used by several learning algorithms, such as ridge re-
gression, the Lasso, the group Lasso (Yuan and Lin, 2006), multiple kernel learning (Lanckriet et al.,
2004; Bach et al., 2004), the group Lasso with overlap (Obozinski et al., 2009), and the regularizers
in Micchelli et al. (2010).

We give a bound on the Rademacher average of the linear function class associated with this
regularizer. The result matches existing bounds in the above mentioned cases but also admits a
novel, dimension free interpretation. In particular, the bound applies to the Lasso in a separable
Hilbert space or to multiple kernel learning with a countable number of kernels, under certain finite
second-moment conditions.

We now introduce some necessary notation and state our main results. Let H be a real Hilbert
space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let M be an at most countable set of sym-
metric bounded linear operators on H such that for every x ∈H, x %= 0, there is some linear operator
M ∈M with Mx %= 0 and that supM∈M |||M||| < ∞, where ||| · ||| is the operator norm. Define the
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function ‖·‖M : H→ R+∪{∞} by

‖β‖M = inf

{

∑
M∈M

‖vM‖ : vM ∈ H, ∑
M∈M

MvM = β

}

. (1)

It is shown in Section 3.2 that the chosen notation is justified, because ‖·‖M is indeed a norm on the
subspace of H where it is finite, and the dual norm is, for every z ∈ H, given by

‖z‖M ∗ = sup
M∈M

‖Mz‖ .

The somewhat complicated definition of ‖·‖M is contrasted by the simple form of the dual norm.
As an example, if H = Rd and M = {P1, . . . ,Pd}, where Pi is the orthogonal projection on the

i-th coordinate, then the function (1) reduces to the !1 norm.
Using well known techniques, as described in Koltchinskii and Panchenko (2002) and Bartlett

and Mendelson (2002), our study of generalization reduces to the search for a good bound on the
empirical Rademacher complexity of a set of linear functionals with ‖·‖M -bounded weight vectors

RM (x) =
2
n
E sup
β: ‖β‖M≤1

n

∑
i=1

εi 〈β,xi〉 , (2)

where x=(x1, . . . ,xn)∈Hn is a sample vector representing observations, and ε1, . . . ,εn are Rademacher
variables, mutually independent and each uniformly distributed on {−1,1}.1 Given a bound on
RM (x) we obtain uniform bounds on the estimation error, for example using the following stan-
dard result (adapted from Bartlett and Mendelson 2002), where the Lipschitz function φ is to be
interpreted as a loss function.

Theorem 1 Let X= (X1, . . . ,Xn) be a vector of iid random variables with values in H, let X be iid
to X1, let φ :R→ [0,1] have Lipschitz constant L and δ ∈ (0,1). Then with probability at least 1−δ
in the draw of X it holds, for every β ∈ Rd with ‖β‖M ≤ 1, that

Eφ(〈β,X〉)≤
1
n

n

∑
i=1

φ(〈β,Xi〉)+L RM (X)+
√

9ln2/δ
2n

.

A similar (slightly better) bound is obtained if RM (X) is replaced by its expectation RM =
ERM (X) (see Bartlett and Mendelson 2002).

The following is the main result of this paper and leads to consistency proofs and finite sample
generalization guarantees for all algorithms which use a regularizer of the form (1). A proof is given
in Section 3.3.

Theorem 2 Let x= (x1, . . . ,xn) ∈ Hn and RM (x) be defined as in (2). Then

RM (x) ≤
23/2

n

√

sup
M∈M

n

∑
i=1
‖Mxi‖2









2+

√

√

√

√

√

√

ln





 ∑
M∈M

∑i ‖Mxi‖
2

sup
N∈M

∑ j
∥

∥Nxj
∥

∥

2















≤
23/2

n

√

n

∑
i=1
‖xi‖2M ∗

(

2+
√

ln
∣

∣M
∣

∣

)

.

1. Our definition coincides with the one in Bartlett and Mendelson (2002), while other authors omit the factor of 2. This
is relevant when comparing the constants in different bounds.

672



STRUCTURED SPARSITY AND GENERALIZATION

The second inequality follows from the first one, the inequality

sup
M∈M

n

∑
i=1
‖Mxi‖2 ≤

n

∑
i=1
‖xi‖2M ∗ ,

a fact which will be tacitly used in the sequel, and the observation that every summand in the
logarithm appearing in the first inequality is bounded by 1. Of course the second inequality is
relevant only if M is finite. In this case we can draw the following conclusion: If we have an a
priori bound on ‖X‖M ∗ for some data distribution, say ‖X‖M ∗ ≤C, and X = (X1, . . . ,Xn), with Xi
iid to X , then

RM (X)≤
23/2C√

n

(

2+
√

ln
∣

∣M
∣

∣

)

,

thus passing from a data-dependent to a distribution dependent bound. In Section 2 we show that
this recovers existing results (Cortes et al., 2010; Kakade et al., 2010; Kloft et al., 2011; Meir and
Zhang, 2003; Ying and Campbell, 2009) for many regularization schemes.2

But the first bound in Theorem 2 can be considerably smaller than the second and may be finite
even if M is infinite. This gives rise to some novel features, even in the well studied case of the
Lasso, when there is a (finite but potentially large) !2-bound on the data.

Corollary 3 Under the conditions of Theorem 2 we have

RM (x)≤
23/2

n

√

sup
M∈M

∑
i
‖Mxi‖2

(

2+
√

ln
1
n∑i ∑

M∈M
‖Mxi‖2

)

+
2√
n
.

A proof is given in Section 3.3. To obtain a distribution dependent bound we retain the condition
‖X‖M ∗ ≤C and replace finiteness ofM by the condition that

R2 := E ∑
M∈M

‖MX‖2 < ∞. (3)

Taking the expectation in Corollary 3 and using Jensen’s inequality then gives a bound on the ex-
pected Rademacher complexity

RM ≤
23/2C√

n

(

2+
√
lnR2

)

+
2√
n
. (4)

The key features of this result are the dimension-independence and the only logarithmic dependence
on R2, which in many applications turns out to be simply R2 = E‖X‖2.

The rest of the paper is organized as follows. In the next section, we specialize our results to
different regularizers. In Section 3, we present the proof of Theorem 2 as well as the proof of other
results mentioned above. In Section 4, we discuss the extension of these results to the !q case.
Finally, in Section 5, we draw our conclusions and comment on future work.

2. We note that the numerical implementation and practical application of specific cases of the regularizer described
here have been addressed in detail in a number of papers. We recommend Baldassarre et al. (2012), Obozinski et al.
(2009) and Jenatton et al. (2011) and references therein for detailed information on such matters. We also refer to
Baraniuk et al. (2010) and Huang et al. (2009) for related work using greedy methods.
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2. Examples

Before giving the examples we mention a great simplification in the definition of the norm ‖·‖M
which occurs when the members ofM have mutually orthogonal ranges. A simple argument, given
in Proposition 8 below shows that in this case

‖β‖M = ∑
M∈M

∥

∥M+β
∥

∥ ,

whereM+ is the pseudoinverse ofM. If, in addition, every member ofM is an orthogonal projection
P, the norm further simplifies to

‖β‖M = ∑
P∈M
‖Pβ‖ ,

and the quantity R2 occurring in the second moment condition (3) simplifies to

R2 = E ∑
P∈M
‖PX‖2 = E‖X‖2 .

For the remainder of this section X = (X1, . . . ,Xn) will be a generic iid random vector of data
points, Xi ∈ H, and X will be a generic data variable, iid to Xi. If H = Rd we write (X)k for the k-th
coordinate of X , not to be confused with Xk, which would be the k-th member of the vector X.

2.1 The Euclidean Regularizer

In this simplest case we setM = {I}, where I is the identity operator on the Hilbert space H. Then
‖β‖M = ‖β‖, ‖z‖M ∗ = ‖z‖, and the bound on the empirical Rademacher complexity becomes

RM (x)≤
25/2

n

√

∑
i
‖xi‖2,

worse by a constant factor of 23/2 than the corresponding result in Bartlett and Mendelson (2002),
a tribute paid to the generality of our result.

2.2 The Lasso

Let us first assume that H = Rd is finite dimensional and set M = {P1, . . . ,Pd} where Pk is the
orthogonal projection onto the 1-dimensional subspace generated by the basis vector ek. All the
above mentioned simplifications apply and we have ‖β‖M = ‖β‖1 and ‖z‖M ∗ = ‖z‖∞. The bound
on RM (x) now reads

RM (x)≤
23/2

n

√

∑
i
‖xi‖2∞

(

2+
√
lnd
)

.

If ‖X‖∞ ≤ 1 almost surely we obtain

RM (X)≤
23/2√
n

(

2+
√
lnd
)

,

which agrees with the bound in Kakade et al. (2010) on the dominant term (see also Bartlett and
Mendelson 2002 and Meir and Zhang 2003).
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Our last bound is useless if d ≥ en or if d is infinite. But whenever the norm of the data has
finite second moments we can use Corollary 3 and inequality (4) to obtain

RM (X)≤
23/2√
n

(

2+
√

lnE‖X‖22

)

+
2√
n
.

For nontrivial results E‖X‖2 only needs to be subexponential in n.
We remark that a similar condition to Equation (3) for the Lasso, replacing the expectation with

the supremum over X , has been considered within the context of elastic net regularization (De Mol
et al., 2009).

2.3 The Weighted Lasso

The Lasso assigns an equal penalty to all regression coefficients, while there may be a priori infor-
mation on the respective significance of the different coordinates. For this reason different weight-
ings have been proposed (see, for example, Shimamura et al. 2007). In our framework an appro-
priate set of operators is M = {α1P1, . . . ,αkPk, . . .}, with αk > 0 where α−1k is the penalty weight
associated with the k-th coordinate. Then

‖β‖M =∑
k
α−1k |βk|

and
‖z‖M ∗ = sup

k
αk |zk| .

To further illustrate the use of Corollary 3 let us assume that the underlying space H is infinite
dimensional (that is,H = !2 (N)), and make the compensating assumption that α∈H, that is∑kα

2
k =

R2 < ∞. For simplicity we also assume that supkαk ≤ 1. Then, if ‖X‖∞ ≤ 1 almost surely, we have
both ‖X‖M ∗ ≤ 1 and ∑kα

2
k (X)

2
k ≤ R2. Again we obtain

RM (X)≤
23/2√
n

(

2+
√
lnR2

)

+
2√
n
.

So in this case the second moment bound is enforced by the weighting sequence.

2.4 The Group Lasso

LetH =Rd and let {J1, . . . ,Jr} be a partition of the index set {1, . . . ,d}. We takeM ={PJ1 , . . . ,PJr}
where PJ! = ∑i∈J! Pi is the projection onto the subspace spanned by the basis vector ei. The ranges
of the PJ! then provide an orthogonal decomposition of Rd and the above mentioned simplifications
also apply. We get

‖β‖M =
r

∑
!=1
‖PJ!β‖

and
‖z‖M ∗ =

rmax
!=1
‖PJ!z‖ .

The algorithm which uses ‖β‖M as a regularizer is called the group Lasso (see, for example, Yuan
and Lin 2006). It encourages vectors β whose support lies the union of a small number of groups J!
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of coordinate indices. If we know that ‖PJ!X‖ ≤ 1 almost surely for all ! ∈ {1, . . . ,r} then we get

RM (X)≤
23/2√
n

(

2+
√
lnr
)

, (5)

in complete symmetry with the Lasso and essentially the same as given in Kakade et al. (2010). If
r is prohibitively large or if different penalties are desired for different groups, the same remarks
apply as in the previous two sections. Just as in the case of the Lasso the second moment condition
(3) translates to the simple form E‖X‖22 < ∞.

2.5 Overlapping Groups

In the previous examples the members of M always had mutually orthogonal ranges, which gave
a simple appearance to the norm ‖β‖M . If the ranges are not mutually orthogonal, the norm has a
more complicated form. For example, in the group Lasso setting, if the groups J! cover {1, . . . ,d},
but are not disjoint, we obtain the regularizer of Obozinski et al. (2009), given by

Ωoverlap (β) = inf

{

r

∑
!=1
‖v!‖ : (v!) jk = 0 if k /∈ J! and

r

∑
!=1

v! = β

}

.

If ‖PJ!Xi‖ ≤ 1 almost surely for all ! ∈ {1, . . . ,r} then the Rademacher complexity of the set of
linear functionals with Ωoverlap (β) ≤ 1 is bounded as in (5), in complete equivalence to the bound
for the group Lasso.

The same bound also holds for the class satisfying Ωgroup (β) ≤ 1, where the function Ωgroup is
defined, for every β ∈ Rd , as

Ωgroup (β) =
r

∑
!=1
‖PJ!β‖

which has been proposed by Jenatton et al. (2011) and Zhao et al. (2009). To see this we only
have to show thatΩoverlap ≤Ωgroup which is accomplished by generating a disjoint partition {J′!}

r
!=1

where J′! ⊆ J!, writing β= ∑r
!=1PJ′!β and realizing that

∥

∥

∥
PJ′!β

∥

∥

∥
≤ ‖PJ!β‖. The bound obtained from

this simple comparison may however be quite loose.

2.6 Regularizers Generated from Cones

Our next example considers structured sparsity regularizers as in Micchelli et al. (2010). Let Λ be a
nonempty subset of the open positive orthant in Rd and define a function ΩΛ : Rd → R by

ΩΛ (β) =
1
2
inf
λ∈Λ

d

∑
j=1

(

β2j
λ j

+λ j

)

.

If Λ is a convex cone, then it is shown in Micchelli et al. (2011) that ΩΛ is a norm and that the dual
norm is given by

‖z‖Λ∗ = sup







(

d

∑
j=1

µjz2j

)1/2

: µj = λ/‖λ‖1 with λ ∈ Λ







.
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The supremum in this formula is evidently attained on the set E (Λ) of extreme points of the closure
of {λ/‖λ‖1 : λ ∈ Λ}. For µ∈ E (Λ) letMµ be the diagonal matrix whose diagonal entries are those
of the vector µj and letMΛ be the collection of matricesMΛ =

{

Mµ : µ∈ E (Λ)
}

. Then

‖z‖Λ∗ = sup
M∈MΛ

‖Mz‖ .

Clearly MΛ is uniformly bounded in the operator norm, so if Λ is a cone and E (Λ) is at most
countable, then ‖·‖Λ∗ = ‖·‖M ∗ , ΩΛ = ‖·‖M ∗ and our bounds apply. If E (Λ) is finite and x is a
sample then the Rademacher complexity of the class with ΩΛ (β)≤ 1 is bounded by

23/2

n

√

n

∑
i=1
‖xi‖2Λ∗

(

2+
√

ln |E (Λ)|
)

.

2.7 Kernel Learning

This is the most general case to which the simplification applies: Suppose that H is the direct sum
H = ⊕ j∈JHj of an at most countable number of Hilbert spaces Hj. We set M =

{

Pj
}

j∈J , where
Pj : H→ H is the projection on Hj. Then

‖β‖M = ∑
j∈J

∥

∥Pjβ
∥

∥

and
‖z‖M ∗ = sup

j∈J

∥

∥Pjz
∥

∥ .

Such a situation arises in multiple kernel learning (Bach et al., 2004; Lanckriet et al., 2004) or the
nonparametric group Lasso (Meier et al., 2009) in the following way: One has an input space X and
a collection

{

Kj
}

j∈J of positive definite kernels Kj : X ×X → R. Let φ j : X → Hj be the feature
map representation associated with kernel Kj, so that, for every x, t ∈ X Kj(x, t) = 〈φ j(x),φ j(t)〉 (for
background on kernel methods see, for example, Shawe-Taylor and Cristianini 2004).

Suppose that x= (x1, . . . ,xn) ∈ X n is a sample. Define the kernel matrix K j = (Kj(xi,xk))ni,k=1.
Using this notation the bound in Theorem 2 reads

R ((φ(x1), . . . ,φ(xn)))≤
23/2

n

√

sup
j∈J
trK j

(

2+

√

ln
∑ j∈J trK j

sup j∈J trK j

)

.

In particular, if J is finite and Kj(x,x)≤ 1 for every x ∈ X and j ∈ J , then the the bound reduces to

23/2√
n

(

2+
√

ln |J |
)

,

essentially in agreement with Cortes et al. (2010), Kakade et al. (2010) and Ying and Campbell
(2009). Our leading constant of 2

√
2 is slightly better than the constant of 2

√

23
22e, given by Cortes

et al. (2010).
For infinite or prohibitively large J the second moment condition now becomes

E∑
j∈J

Kj (X ,X)< ∞.
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We conclude this section by noting that, for every set M we may choose a set of kernels such
that empirical risk minimization with the norm ‖ ·‖M is equivalent to multiple kernel learning with
kernels KM(x, t) = 〈Mx,Mt〉, M ∈M . To see this, choose, for every M ∈M , φM(x) = Mx. Note
however, that this may yield an overparameterization of the problem. For example, the regularizers
in Section 2.6 can be reformulated as a multiple kernel learning problem, but this requires d|E(Λ)|
parameters instead of d.

3. Proofs

We first give some notation and auxiliary results, then we prove the results announced in the intro-
duction.

3.1 Notation and Auxiliary Results

The Hilbert space H and the collection M are fixed throughout the following, as is the sample size
n ∈ N.

Recall that ‖·‖ and 〈·, ·〉 denote the norm and inner product in H, respectively. For a linear
transformationM : Rn→ H the Hilbert-Schmidt norm is defined as

‖M‖HS =

(

n

∑
i=1
‖Mei‖2

)1/2

where {ei : i ∈ N} is the canonical basis of Rn.
We use bold letters (x, X, ε, . . . ) to denote n-tuples of objects, such as vectors or random

variables.
Let X be any space. For x= (x1, . . . ,xn) ∈ X n, 1≤ k ≤ n and y ∈ X we use xk←y to denote the

object obtained from x by replacing the k-th coordinate of x with y. That is

xk←y = (x1, . . . ,xk−1,y,xk+1, . . . ,xn) .

The following concentration inequality, known as the bounded difference inequality (see McDi-
armid 1998), goes back to the work of Hoeffding (1963). We only need it in the weak form stated
below.

Theorem 4 Let F : X n→ R and write

B2 =
n

∑
k=1

sup
y1,y2∈X , x∈X n

(F (xk←y1)−F (xk←y2))
2 .

Let X = (X1, . . . ,Xn) be a vector of independent random variables with values in X , and let X′ be
iid to X. Then for any t > 0

Pr
{

F (X)> EF
(

X′
)

+ t
}

≤ e−2t
2/B2 .

Finally we need a simple lemma on the normal approximation:

Lemma 5 Let a,δ> 0. Then
∫ ∞

δ
exp
(

−t2

2a2

)

dt ≤
a2

δ
exp
(

−δ2

2a2

)

.
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Proof For t ≥ δ/a we have 1≤ at/δ. Thus

∫ ∞

δ
exp
(

−t2

2a2

)

dt = a
∫ ∞

δ/a
e−t

2/2dt ≤
a2

δ

∫ ∞

δ/a
te−t

2/2dt =
a2

δ
exp
(

−δ2

2a2

)

.

3.2 Properties of the Regularizer

In this section, we show that the regularizer in Equation (1) is indeed a norm and we derive the
associated dual norm. In parallel we treat an entire class of regularizers, which relates to ‖·‖M
as the !q-norm relates to the !1-norm. To this end, we fix an exponent q ∈ [1,∞]. The conjugate
exponent is denoted p, with 1/q+1/p= 1.

Recall that ||| · ||| denotes the operator norm. We first state the general conditions on the setM
of operators.

Condition 6 M is an at most countable set of symmetric bounded linear operators on a real sepa-
rable Hilbert space H such that

(a) For every x ∈ H with x %= 0, there exists M ∈M such that Mx %= 0

(b) supM∈M |||M|||< ∞ if q= 1 and ∑M∈M |||M|||p < ∞ if q> 1.

Now we define !q (M ) to be the set of those vectors β ∈ H for which the quantity

‖β‖Mq
= inf







(

∑
M∈M

‖vM‖q
)1/q

: vM ∈ H and ∑
M∈M

MvM = β







is finite. If q = 1 we drop the subscript in ‖ · ‖Mq to lighten notation. Observe that the case q = 1
coincides with the definition given in the introduction.

Theorem 7 !q (M ) is a Banach space with norm ‖·‖Mq
, and !q (M ) is dense in H. IfM is finite or

H is finite-dimensional, then !q (M ) =H. For z∈H the norm of the linear functional β∈ !q (M ) 3→
〈β,z〉 is

‖z‖Mq∗
=















sup
M∈M

‖Mz‖ , if q= 1,
(

∑
M∈M

‖Mz‖p
)1/p

, if q> 1.

Proof Let Vq (M ) = {v : v= (vM)M∈M , vM ∈ H} be the set of those H-valued sequences indexed
byM , for which the function

v 3→ ‖v‖Vq(M ) =

(

∑
M∈M

‖vM‖q
)1/q
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is finite. Then ‖·‖Vq(M ) defines a complete norm on Vq (M ), making Vq (M ) a Banach space. If
w= (wM)M∈M is an H-valued sequence indexed byM , then the linear functional

v ∈ Vq (M ) 3→ ∑
M∈M

〈vM,wM〉

has norm

‖w‖Vq(M )∗ =















sup
M∈M

‖MwM‖ , if q= 1,
(

∑
M∈M

‖vM‖p
)1/p

, if q> 1.

The verification of these claims parallels that of the standard results on Lebesgue spaces.
Now define a map

A : v ∈ Vq (M ) 3→ ∑
M∈M

MvM ∈ H.

We have
‖Av‖ ≤ ∑

M∈M
|||M|||‖vM‖ .

By Condition 6(b) and Hölder’s inequality A is a bounded linear transformation whose kernel K
is therefore closed, making the quotient space Vq (M )/K into a Banach space with quotient norm
‖w+K ‖Q = inf

{

‖v‖Vq(M ) : w− v ∈K
}

. The map A induces an isomorphism

Â : w+K ∈ V q (M )/K 3→Aw ∈ H.

The range of Â is !q (M ) and becomes a Banach space with the norm
∥

∥Â−1 (β)
∥

∥

Q. But
∥

∥Â−1 (β)
∥

∥

Q = inf
{

‖v‖Vq(M ) : Â
−1 (β)− v ∈K

}

= inf
{

‖v‖Vq(M ) : β= Av
}

= ‖β‖Mq
,

so ‖.‖Mq
is a norm making !q (M ) into a Banach space.

Suppose that w ∈ H is orthogonal to !q (M ). Let M0 ∈M be arbitrary and define v = (vM) by
vM0 =M0w and vM = 0 for all other M. Then

0= 〈w,Av〉=
〈

w,M2
0w
〉

= ‖M0w‖2 ,

soM0 = 0. This holds for anyM0 ∈M , so Condition 6(a) implies that w= 0. By the Hahn Banach
Theorem !q (M ) is therefore dense in H. If M is finite or H is finite-dimensional, then !q (M ) is
also finite-dimensional and closed and thus !q (M ) = H.

For the last assertion let z ∈ H. Then

‖z‖M ∗
q

= sup
{

〈z,β〉 : ‖β‖Mq
≤ 1
}

= sup
{

〈z,Av〉 : ‖v‖Vq(M ) ≤ 1
}

= sup
{

〈A∗z,v〉 : ‖v‖Vq(M ) ≤ 1
}

= ‖A∗z‖Vq(M )∗

= sup
M∈M

‖Mz‖ if q= 1 or

(

∑
M∈M

‖Mz‖p
)1/p

if q> 1.
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Proposition 8 If the ranges of the members ofM are mutually orthogonal then for β ∈ !1 (M )

‖β‖M = ∑
M∈M

∥

∥M+β
∥

∥ ,

where M+ is the pseudoinverse of M.

Proof The ranges of the members ofM provide an orthogonal decomposition of H, so

β= ∑
M∈M

M
(

M+β
)

,

where we used the fact that MM+ is the orthogonal projection onto the range of M. Taking vM =
M+β this implies that ‖β‖M ≤∑M∈M ‖M+β‖. On the other hand, if β=∑N∈M NvN , then, applying
M+ to this identity we see that M+MvM =M+β for all M, so

∑
M∈M

‖vM‖ ≥ ∑
M∈M

∥

∥M+MvM
∥

∥= ∑
M∈M

∥

∥M+β
∥

∥ ,

which shows the reverse inequality.

3.3 Bounds for the !1(M )-Norm Regularizer

We use the bounded difference inequality to derive a concentration inequality for linearly trans-
formed random vectors.

Lemma 9 Let ε= (ε1, . . . ,εn) be a vector of independent real random variables with −1≤ εi ≤ 1,
and ε′ iid to ε. Suppose that M is a linear transformation M : Rn→ H.

(i) Then for t > 0 we have

Pr
{

‖Mε‖ ≥ E
∥

∥Mε′
∥

∥+ t
}

≤ exp

(

−t2

2‖M‖2HS

)

.

(ii) If ε is orthonormal (satisfying Eεiε j = δi j), then

E‖Mε‖ ≤ ‖M‖HS . (6)

and, for every r > 0,

Pr{‖Mε‖> t}≤ e1/r exp

(

−t2

(2+ r)‖M‖2HS

)

.
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Proof (i) Define F : [−1,1]n→ R by F (x) = ‖Mx‖. By the triangle inequality

n

∑
k=1

sup
y1,y2∈[−1,1], x∈[−1,1]n

(F (xk←y1)−F (xk←y2))
2

≤
n

∑
k=1

sup
y1,y2∈[−1,1], x∈[−1,1]n

‖M (xk←y1−xk←y2)‖
2

=
n

∑
k=1

sup
y1,y2∈[−1,1]

(y1− y2)2 ‖Mek‖2

≤ 4‖M‖2HS .

The result now follows from the bounded difference inequality (Theorem 4).
(ii) If ε is orthonormal then it follows from Jensen’s inequality that

E‖Mε‖ ≤



E

∥

∥

∥

∥

∥

n

∑
i=1

εiMei

∥

∥

∥

∥

∥

2




1/2

=

(

n

∑
i=1
‖Mei‖2

)1/2

= ‖M‖HS .

For the second assertion of (ii) first note that from calculus we get (t−1)2 /2− t2/(2+ r)≥−1/r
for all t ∈ R. This implies that

e−(t−1)
2/2 ≤ e1/re−t

2/(2+r). (7)

Since 1/r≥ 1/(2+ r) the inequality to be proved is trivial for t ≤ ‖M‖HS. If t > ‖M‖HS then, using
E‖Mε‖ ≤ ‖M‖HS, we have t−E ‖Mε‖ ≥ t−‖M‖HS > 0, so by part (i) and (7) we obtain

Pr{‖Mε‖ ≥ t} = Pr{‖Mε‖ ≥ E ‖Mε‖+(t−E ‖Mε‖)}

≤ exp

(

−(t−E ‖Mε‖)2

2‖M‖2HS

)

≤ exp

(

−(t−‖M‖HS)
2

2‖M‖2HS

)

= exp

(

−(t/‖M‖HS−1)
2

2

)

≤ e1/re−(t/‖M‖HS)
2/(2+r)

= e1/r exp

(

−t2

(2+ r)‖M‖2HS

)

.

We now use integration by parts, a union bound and the above concentration inequality to derive
a bound on the expectation of the supremum of the norms ‖Mε‖. This is the essential step in the
proof of Theorem 2. It is by no means a new technique, in fact it appears many times in the book by
Ledoux and Talagrand (1991), but compared to the combinatorial approach by Cortes et al. (2010)
it seems more suited to the study of the problem at hand, and gives insights into the fine structure of
the logarithmic factor appearing in bounds for Lasso-like methods.
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Lemma 10 Let M be an at most countable set of linear transformations M : Rn → H and ε =
(ε1, . . . ,εn) a vector of orthonormal random variables (satisfying Eεiε j = δi j) with values in [−1,1].
Then

E sup
M∈M

‖Mε‖ ≤
√
2 sup
M∈M

‖M‖HS

(

2+

√

ln ∑M∈M ‖M‖
2
HS

supM∈M ‖M‖
2
HS

)

.

Proof To lighten notation we abbreviateM∞ := supM∈M ‖M‖HS below. We now use integration by
parts

E sup
M∈M

‖Mε‖ =
∫ ∞

0
Pr

{

sup
M∈M

‖Mε‖> t

}

dt

≤ M∞+δ+
∫ ∞

M∞+δ
Pr

{

sup
M∈M

‖Mε‖> t

}

dt

≤ M∞+δ+ ∑
M∈M

∫ ∞

M∞+δ
Pr{‖Mε‖> t}dt,

where we have introduced a parameter δ ≥ 0. The first inequality above follows from the fact that
probabilities never exceed 1, and the second from a union bound. Now for anyM ∈M we can make
a change of variables and use (6), which gives E‖Mε‖ ≤ ‖M‖HS ≤M∞, so that

∫ ∞

M∞+δ
Pr{‖Mε‖> t}dt ≤

∫ ∞

δ
Pr{‖Mε‖> E‖Mε‖+ t}dt

≤
∫ ∞

δ
exp

(

−t2

2‖M‖2HS

)

dt

≤
‖M‖2HS
δ

exp

(

−δ2

2‖M‖2HS

)

,

where the second inequality follows from Lemma 9-(i), and the third from Lemma 5. Substitution
in the previous chain of inequalities and using Hoelder’s inequality (in the !1/!∞-version) give

E sup
M∈M

‖Mε‖ ≤M∞+δ+
1
δ

(

∑
M∈M

‖M‖2HS

)

exp
(

−δ2

2M 2
∞

)

. (8)

We now set

δ=M∞

√

√

√

√2ln

(

e∑M∈M ‖M‖
2
HS

M 2
∞

)

.

Then δ ≥ 0 as required. The substitution makes the last term in (8) smaller thanM∞/
(

e
√
2
)

, and

since 1+1/
(

e
√
2
)

<
√
2, we obtain

E sup
M∈M

‖Mε‖ ≤
√
2M∞



1+

√

√

√

√ln

(

e∑M∈M ‖M‖
2
HS

M 2
∞

)



 .
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Finally we use
√
lnes≤ 1+

√
lns for s≥ 1.

Proof of Theorem 2 Let ε = (ε1, . . . ,εn) be a vector of iid Rademacher variables. For M ∈M we
useMx to denote the linear transformationMx :Rn→H given by (Mx)y=∑n

i=1 (Mxi)yi. We have

RM (x) =
2
n
E sup
β:‖β‖M≤1

〈

β,
n

∑
i=1

εixi

〉

≤
2
n
E

∥

∥

∥

∥

∥

n

∑
i=1

εixi

∥

∥

∥

∥

∥

M ∗

=
2
n
E sup
M∈M

‖Mxε‖ .

Applying Lemma 10 to the set of transformationsM x=
{

Mx :M ∈M
}

gives

RM (x)≤
23/2 supM∈M ‖Mx‖HS

n

(

2+

√

ln ∑M∈M ‖Mx‖
2
HS

supM∈M ‖Mx‖
2
HS

)

.

Substitution of ‖Mx‖2HS = ∑n
i=1 ‖Mxi‖

2 gives the first inequality of Theorem 2 and

sup
M∈M

‖Mx‖2HS ≤
n

∑
i=1

sup
M∈M

‖Mxi‖2 =
n

∑
i=1
‖xi‖2M ∗

gives the second inequality.

Proof of Corollary 3 From calculus we find that t ln t ≥−1/e for all t > 0. For A,B> 0 and n ∈ N

this implies that

A ln
B
A
= n [(A/n) ln(B/n)− (A/n) ln(A/n)]≤ A ln(B/n)+n/e. (9)

Now multiply out the first inequality of Theorem 2 and use (9) with

A= sup
M∈M

n

∑
i=1
‖Mxi‖2 and B= ∑

M∈M

n

∑
i=1
‖Mxi‖2 .

Finally use
√
a+b≤

√
a+
√
b for a,b> 0 and the fact that 23/2/

√
e≤ 2.

4. The !q (M ) Case

In this section we give bounds for the !q(M )-norm regularizers, with q> 1.
We give two results, which can be applied to cases analogous to those in Section 2. The first

result is essentially equivalent to Cortes et al. (2010), Kakade et al. (2010) and Kloft et al. (2011)
and is presented for completeness. The second result is not dimension free, but it approaches the
bound in Theorem 2 for arbitrarily large dimensions. The proofs are analogous to the proof of
Theorem 2.

Theorem 11 Let x be a sample and RMq (x) the empirical Rademacher complexity of the class of
linear functions parameterized by β with ‖β‖Mq

≤ 1. Then for 1< q≤ 2

RMq (x)≤
2
n

(

1+
(π
2

)
1
2p √p

)

√

n

∑
i=1
‖xi‖2M ∗

q
.
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The proof is based on the following

Lemma 12 Let M be an at most countable set of linear transformations M : Rn → H and ε =
(ε1, . . . ,εn) a vector of orthonormal random variables (satisfying Eεiε j = δi j) with values in [−1,1].
Then for p≥ 2

E





(

∑
M∈M

‖Mε‖p
)1/p



≤
(

1+
(π
2

)
1
2p √p

)

(

∑
M∈M

‖M‖pHS

)1/p

.

Proof We first note, by Jensen inequality, that

E





(

∑
M∈M

‖Mε‖p
)1/p



≤

(

E

[

∑
M∈M

‖Mε‖p
])1/p

. (10)

We rewrite the expectation appearing in the right hand side using integration by parts and a change
of variable as

E [‖Mε‖p] =
∫ ∞

0
Pr{‖Mε‖p > t}dt = Ap+ p

∫ ∞

0
Pr{‖Mε‖p > sp+Ap}sp−1ds (11)

where A≥ 0. Next, we use convexity of the function x 3→ xp, x≥ 0, which gives for λ ∈ (0,1)

(

λ
p−1
p s+(1−λ)

p−1
p A
)p
≤ λ

( s
λ1/p

)p
+(1−λ)

(

A
(1−λ)1/p

)p

= sp+Ap.

This allows us to bound

Pr{‖Mε‖p > sp+Ap} ≤ Pr
{

‖Mε‖p >
(

λ
p−1
p s+(1−λ)

p−1
p A
)p}

= Pr
{

‖Mε‖> λ
p−1
p s+(1−λ)

p−1
p A
}

. (12)

Combining Equations (11) and (12), choosing A = (1−λ)
1−p
p ‖M‖HS and making the change of

variable t = λ
p−1
p s, gives

∫ ∞

0
Pr{‖Mε‖p > t}dt ≤ (1−λ)1−p ‖M‖pHS+ pλ1−p

∫ ∞

0
Pr{‖Mε‖> ‖M‖HS+ t} t p−1dt

≤ (1−λ)1−p ‖M‖pHS+ pλ1−p
∫ ∞

0
t1−pe−t

2/2‖M‖2HSdt

≤ (1−λ)1−p ‖M‖pHS+ pλ1−p ‖M‖pHS

√

π
2
pp/2−1

= ‖M‖pHS

(

(1−λ)1−p+λ1−p
√

π
2
pp/2

)

where the second inequality follows by Lemma 9-(i) and the third inequality follows by a standard
result on the moments of the normal distribution, namely

∫ ∞

0
t p−1 exp

(

−t2

2

)

dt ≤
√

π
2
(p−2)!!≤

√

π
2
(1 ·3 · . . . · p−2)≤

√

π
2
pp/2−1.
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Summing both sides of Equation (13) overM we obtain that

E

[

∑
M∈M

‖Mε‖p
]

≤∑
M
‖M‖pHS

(

(1−λ)1−p+λ1−p
√

π
2
pp/2

)

.

A direct computation gives that the right hand side of the above equation attains its minimum at

λ=
(π2 )

1
2p p 12

1+(π2 )
1
2p p 12

.

The result now follows by Equation (10).

Proof of Theorem 11 Let α = 1+
(

π
2
)
1
2p √p. As in the proof of Theorem 2 we proceed using

duality and apply Lemma 12 to the set of transformationsM x=
{

Mx :M ∈M
}

,

RMq (x) ≤
2
n
E

∥

∥

∥

∥

∥

n

∑
i=1

εixi

∥

∥

∥

∥

∥

M ∗
q

=
2
n
E





(

∑
M∈M

‖Mxε‖p
)1/p





≤
2α
n

(

∑
M∈M

‖Mx‖pHS

)1/p

=
2α
n

√

√

√

√

√



 ∑
M∈M

(

n

∑
i=1
‖Mxi‖2

)p/2




2/p

≤
2α
n

√

√

√

√

n

∑
i=1

(

∑
M∈M

(

‖Mxi‖2
)p/2

)2/p

=
2α
n

√

n

∑
i=1
‖xi‖2Mq∗

,

where the last inequality is just the triangle inequality in !p/2.

One can verify that the leading constant in our bound is smaller than the one in Cortes et al.
(2010) for p> 12. Note that the bound in Theorem 11 diverges for q going to 1 since in this case p
grows to infinity.

We conclude this section with a result, which shows that the bound in Theorem 2 has a stability
property in the following sense: IfM is finite, then we can give a bound on the Rademacher com-
plexity of the unit ball in !q (M ) which converges to the bound in Theorem 2 as q→ 1, regardless
of the size ofM . Only the rate of convergence is dimension dependent.

Theorem 13 Under the conditions of Theorem 11

RMq (x)≤
4
∣

∣M
∣

∣

1/p

n

√

sup
M∈M

∑
i
‖Mxi‖2

(

2+

√

ln∑
M

∑i ‖Mxi‖
2

supN∈M ∑i ‖Nxi‖
2

)

.

So, as q goes to 1, p→ ∞ and we recover the bound in Theorem 2 up to a small multiplicative
constant. The key step in the proof of Theorem 13 is the following
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Lemma 14 LetM be a finite set of linear transformations M :Rn→H and ε= (ε1, . . . ,εn) a vector
of orthonormal random variables with values in [−1,1]. Then

E





(

∑
M
‖Mε‖p

)1/p


≤ 2
∣

∣M
∣

∣

1/p sup
M∈M

‖M‖HS

(

2+

√

ln ∑M ‖M‖
2
HS

supN∈M ‖N‖
2
HS

)

.

Proof If t ≥ 0 and ∑M ‖Mε‖
p > t p, then there must exist someM ∈M such that ‖Mε‖p > t p/

∣

∣M
∣

∣,
which in turn implies that ‖Mε‖> t/

∣

∣M
∣

∣

1/p. It then follows from a union bound that

Pr

{

∑
M
‖Mε‖p > t p

}

≤∑
M
Pr
{

‖Mε‖> t/
∣

∣M
∣

∣

1/p
}

≤ exp

(

−t2

4
∣

∣M
∣

∣

2/p ‖M‖2HS

)

,

where we used the subgaussian concentration inequality Lemma 9-(ii) with r= 2. Using integration
by parts we have with δ≥ 0 that

E





(

∑
M
‖Mε‖p

)1/p


 ≤ δ+
∫ ∞

δ
Pr

{

∑
M
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}
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4
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∣
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4
∣

∣M
∣

∣

2/p supM∈M ‖M‖
2
HS

)

,

where the third inequality follows from Lemma 5 and the fourth from Hölder’s inequality. We now
substitute

δ= 2
∣

∣M
∣

∣

1/p sup
M∈M

‖M‖HS

√

ln
e∑M ‖M‖

2
HS

supN∈M ‖N‖
2
HS

and use 1+1/e≤ 2 to arrive at the conclusion.

Proof of Theorem 13 Apply Lemma 12 to the set of transformationsM x=
{

Mx :M ∈M
}

. This
gives

E





(

∑
M
‖Mxε‖p

)1/p


≤ 2
∣

∣M
∣

∣

1/p sup
M∈M

‖Mx‖HS

(

2+

√

ln ∑M ‖Mx‖
2
HS

supN∈M ‖Nx‖
2
HS

)

.

We now proceed as in the proof of Theorem 11 to obtain the result.
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5. Conclusion and Future Work

We have presented a bound on the Rademacher average for linear function classes described by
infimum convolution norms which are associated with a class of bounded linear operators on a
Hilbert space. We highlighted the generality of the approach and its dimension independent features.

When the bound is applied to specific cases (!2, !1, mixed !1/!2 norms) it recovers existing
bounds (up to small changes in the constants). The bound is however more general and allows for
the possibility to remove the “logd” factor which appears in previous bounds. Specifically, we have
shown that the bound can be applied in infinite dimensional settings, provided that the moment
condition (3) is satisfied. We have also applied the bound to multiple kernel learning. While in the
standard case the bound is only slightly worse in the constants, the bound is potentially smaller and
applies to the more general case in which there is a countable set of kernels, provided the expectation
of the sum of the kernels is bounded.

An interesting question is whether the bound presented is tight. As noted in Cortes et al. (2010)
the “logd” is unavoidable in the case of the Lasso. This result immediately implies that our bound
is also tight, since we may choose R2 = d in Equation (3).

A potential future direction of research is the application of our results in the context of spar-
sity oracle inequalities. In particular, it would be interesting to modify the analysis in Lounici et
al. (2011), in order to derive dimension independent bounds. Another interesting scenario is the
combination of our analysis with metric entropy.
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Abstract
We propose a novel model for meta-generalisation, that is, performing prediction on novel tasks
based on information from multiple different but related tasks. The model is based on two cou-
pled Gaussian processes with structured covariance function; one model performs predictions by
learning a constrained covariance function encapsulating the relations between the various training
tasks, while the second model determines the similarity of new tasks to previously seen tasks. We
demonstrate empirically on several real and synthetic data sets both the strengths of the approach
and its limitations due to the distributional assumptions underpinning it.
Keywords: transfer learning, meta-generalising, multi-task learning, Gaussian processes, mixture
of experts

1. Introduction

The central problem of supervised learning is generalisation, learning input/ output relations from
training data that, when applied to unseen test data, will give good performance (in terms of an
appropriate loss function). A common assumption underlying many supervised learning algorithms
is that the training and testing data distribution are the same, which allows them to make predictions
of future instances of the problem at hand. On the other hand, in the complex world that we live
in we are usually faced with unseen but similar problems, situations which human intelligence
handles by adaptively taking decisions on the new tasks using knowledge from similar tasks. In this
direction, Transfer learning (TL) has emerged as a framework to handle situations where there are
multiple but related problems to be solved. The term TL is used here in its broader sense, to cover
more specific areas of research such as domain adaptation, co-variate shift, sample selection bias,
self-taught learning, and multi-task learning. One of the main differences between these subfields
of TL lies in the availability of outputs (labels) for input data in the various tasks, no matter if it
is a regression or classification problem (Arnold et al., 2007). For example, the situation where
labels are available for all tasks is tackled by multi-task learning, which synergistically solves the
learning problem in all tasks simultaneously (Caruana, 1997; Bakker and Heskes, 2003; Ando and
Zhang, 2005). Domain adaptation (Daumé III and Marcu, 2006; Daumé, 2007; Crammer et al.,
2008; Mansour et al., 2009; Pan et al., 2009), co-variate shift (Sugiyama et al., 2007; Storkey and
Sugiyama, 2007; Bickel et al., 2009), and sample selection bias (Huang et al., 2007) are settings
appropriate for problems where labels are only available for a task that is similar to the task that we
wish to make predictions in (target task). Contrary to domain adaptation, and sample selection bias,
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self-taught learning (Raina et al., 2007) is a setting where labeled data are available for the target
task, but the learning algorithm wishes to also use unlabelled data from a source task to improve
performance. In its own right, self-taught learning is distinguishable from semi-supervised learning
(Chapelle et al., 2006), where labelled and unlabelled data are assumed to come from the same
task. The purpose of all these TL approaches is to enhance the generalisation power of a specific
algorithm by leveraging related (but different) knowledge from multiple tasks. In particular, it is
generally assumed that at least the input data for the target task will be available during the learning,
so that a measure of similarity between the training and target tasks can be estimated.

The question that we wish to raise in this work is whether the notion of generalisation can be
extended to the level of tasks as a form of meta-generalisation. Meta-generalisation is a concept
introduced in Baxter (2000), where the author argues whether a transfer learning algorithm can gen-
eralise well on totally unseen tasks after seeing sufficiently many source (or training) tasks. We
emphasize that this is much more than a theoretically interesting question. Our motivating example
is a strongly applied one: we wish to create an automated diagnosis tool that can accommodate
variability among patients, so that, once trained on a sufficient number of patients, it can gener-
alise to new patients. In his work Baxter (2000) derives bounds on the generalisation error of this
problem in terms of a generalised VC-dimension parameter, as well as comments that the number
of source tasks and examples per task required to ensure good performance on novel tasks has to
be sufficiently large. While Baxter (2000) derives an algorithm to select a subset of features to
perform multi-task learning based on Neural Networks (NN), his work is more on the theoretical
side as no experimental results are presented. Besides that, the model proposed in this work needs
to be retrained in case a new target task arrives in order to learn a small number of task dependent
parameters.

One way to approach meta-generalising is through domain adaptation, by training a model on
the data of the source and the target set of tasks (Ben-David et al., 2007). This type of approach,
as well as the model proposed in Baxter (2000), are essentially trained in a transductive way, as the
algorithm is able to make predictions only on the test tasks that is trained on, or needs to be re-
trained in case a new task arrives. Obviously, the performance and the success of domain adaptation
algorithms depends strongly on certain assumptions, with most important the similarity between the
target and the source distribution (Ben-David et al., 2010). Clearly, if these assumptions are violated
then the success of these algorithms is doubtful.

The problem of sampling the space of tasks to make predictions on totally unseen tasks in the
inductive setting, which is the exact analog of generalising in the level of tasks, to the best of our
knowledge has not been specifically addressed. As we mentioned before, TL is separated into dif-
ferent sub-categories based on the level of supervision on the target task. Hence, multi-task learning
can be seen as an Inductive TL algorithm since input data and labels are available for all the tasks
that we wish to make predictions. On the other end, settings like to Domain adaptation, Covariate
shift or Sample selection bias, can be viewed as a form of Transductive TL since the algorithm can
exploit only the input distribution of the target task they want to make predictions (Arnold et al.,
2007). On this basis, meta-generalising can be considered as a form of Unsupervised TL, since the
learning algorithm does not have any exploitable information about the target tasks during training
. Note, that this classification of TL algorithms is different from the one employed in Pan and Yang
(2010), where unsupervised TL encapsulates problems like dimensionality reduction, density esti-
mation, or clustering but in situations where multiple tasks are involved, but is in agreement with
the taxonomy of TL algorithms introduced in Arnold et al. (2007).
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In this paper we investigate the use of coupled Gaussian process models to address this problem.
The model uses a multi-class Gaussian process for assigning probabilistically unseen tasks to source
tasks (determining task responsibilities), and then uses a multi-task Gaussian process (Bonilla et al.,
2008) to perform prediction in individual tasks. Extensive testing on real and simulated data shows
the promise of the model, as well as giving insight on the underlying assumptions.

The rest of the paper is organised as follows: in Section 2 we formally define the meta-
generalising problem, emphasizing the main assumptions and highlighting the important special
case of fully observed tasks. In Section 3 and 4 we present our model and the inference methodol-
ogy used. We present our empirical results in Section 5, and we finish in Section 6 by discussing the
merits of our model in the context of the wider literature in transfer learning and meta-generalisation.

2. Meta-generalising

In this section, we formally state the problem of meta-generalising, while we introduce the notation
that will be used throughout this paper unless specified otherwise. For simplicity, we concentrate
on binary classification problems within each task, while we note that the same formalism applies
to regression and multi-class classification problems.

In a meta-generalising scenario the learner is provided with a set of source tasks TS =
{T s

1 , . . . ,T
s
M} which are used for training the model; testing is then performed on a set of target

tasks TT = {T t
1 , . . . ,T

t
H}. Each of the M source tasks will contain a training set of input/ output

pairs (x,y), while data from any of the H target tasks are hidden. For later convenience, we will
define the whole training set across tasks as a set of triples T s = {xsi ,ysti ,ysxi }N

s

i=1, where xsi ∈ Rd is
the input feature vector, ysxi ∈ {−1,+1} are the class labels, and ysti ∈ {1, . . . ,M} is the source task
label indicating to which task the input/ output pair pertains, and Ns = ∑M

j=1 nsj is the total number
of training pairs where nsj is number of data points from the jth source task. Moreover, we will

write Xsj = {xsi j}
nsj
i=1 to denote the total item set of the jth source task, while ysxj = {ysxi j}

nsj
i=1 and

ystj = {ysti j}
nsj
i=1 will be used to denote all class and task labels from the jth source task. In the rest of

the paper subscript j will be used to refer to tasks, and subscript i to data points.
Each of the H target tasks T t

j will consist of a set Xtj = {xti j}
ntj
i=1 of input points, where ntj is

number of data points from the jth target task and both types of labels are missing. Likewise, the
total number of test points will be denoted by Nt =∑M

j=1 ntj. For reasons that will become clear later
on, it is further assumed that for each target task data point xtj there is information that it comes
from the jth target task, but there is no knowledge with which of the source tasks is more similar.
Note that each source task training input xsi is assigned two types of labels. This implies supervision
in both the levels of the tasks and the data, through yst and ysx respectively; task labels yst indicate
from which of the source task a specific data point comes from, as a form of meta-level information,
and class labels ysx indicate to which class inside the task the data point belongs to, as a form of
inter-task information.

Meta-generalisation, as all machine learning methods, relies on certain assumptions. We con-
centrate on two basic assumptions; the first one is the similarity of the distribution of the target task
with at least one of the source tasks, while the second one is the agreement between the labels of
the distributions termed as low-error joint prediction (Ben-David et al., 2010). Differently from
Ben-David et al. (2010), we will define the low-error joint prediction between a source and a target
task as the error λe between their predictive functions fs and ft respectively, evaluated at the union
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of the source and the target sets X = Xs∪Xt , with N = Ns+Nt . Hence, the error λe will be given
by,

λe =
N

∑
i=1

| ft(xi)− fs(xi)|,

where xi ∈X . Intuitively, if the error λe is large then there is a disagreement between the labels of the
source and target tasks distribution. Also note that, in a multi-task scenario the parameter λe can be
computed by training two separate models under the same learning framework (e.g., NN, GPs, etc)
since labeled data are available for both the source and target task. Thus, the predictive functions
of the source and target task can be estimated separately and λe can also be used as an empirical
measure of the relatedness of the two tasks. Conversely, in the scenarios of meta-generalising and
domain adaptation one has to assume that the error λe will be low, since labels are available only
for the source tasks. If one of these assumptions is not valid, then meta-generalisation can not be
expected to guarantee success.

We now give a formal definition of meta-generalising.

Definition 1 Given a set of source tasks TS and a set of target tasks TT , meta-generalising is an
inductive inference method that aims at making predictions on the set of target tasks by sampling
the space of source tasks .

We further define two possible scenarios: in the fully observed tasks case, we assume that the
similarity of the distribution assumption is perfectly met, so that the data generating distribution of
the target task is the same as that of one of the source tasks (but we do not know which one). This
assumption is relaxed in the partially observed tasks scenario, where we still assume similarity of
the distribution but we do not necessarily have identity.

The meta-generalising setting implies that there is hierarchical structure in the problem. The
data of each task are on the base level and the distribution of the tasks is on the meta level. Hence,
it is intuitive that mechanisms are required to

1. Model the distribution of the data of each task, and the distribution of the source tasks (corre-
lation between tasks).

2. Infer the level of correlation between the target task and the source tasks.

The first prerequisite leads us to multi-task learning, as many approaches offer mechanisms to
model both the data and the task distribution (Bakker and Heskes, 2003; Yu et al., 2005; Ando
and Zhang, 2005; Xue et al., 2007; Argyriou et al., 2008; Bonilla et al., 2008; Daumé III, 2009).
Following the multi-task route, informally speaking, the second prerequisite can be translated as
the problem of which of the M outputs of the multi-task classifier to select to make predictions for
the target task. In some cases, task-descriptor features may be available, giving a direct measure of
task similarity. In this work, we are interested in the general case where no reliable task descriptor
features are available; we will then learn similarities between tasks through a distribution matching
pursuit.

Another way of approaching the problem of meta-generalisation is through the framework of
mixtures of experts (ME) (Jacobs et al., 1991; Waterhouse, 1997), under which a bigger learn-
ing problem is broken down to smaller subproblems that are handled by individual experts. The
underlying assumption of this framework is that the data are generated by different processes (Wa-
terhouse, 1997, Ch. 2), an assumption that can also be made in the multi-task setting about the
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data generating mechanism of each task; under the ME framework each expert is used to model
the data generating process of each subproblem. These experts are then combined through a gating
network that models the responsibilities of the experts on each data partition. Hence, attacking the
meta-generalisation problem through the ME framework can be seen as an unsupervised alternative
method to that problem, that does not use the information about the origins of each task (the source
task labels) but instead allows the algorithm to automatically infer the data partitions and the regions
of expertise of each expert. Therefore the ME approach is in direct connection to multi-task learning
and meta-generalisation in which cases the experts are equivalent to the tasks, and this framework
could be used as a rough lower bound on the performance of a multi-task classifier. Note though
that in principle it would be desirable to be able to automatically infer the number of experts as in
Rasmussen and Ghahramani (2001) which can be seen as a similar mechanism of finding cluster of
tasks, in contrast with the method of ME with GPs in Tresp (2000) where the number of experts had
to be known a priori.

3. A Model for Meta-generalisation

Having identified the nature of the problem, we now propose a model for meta-generalising. The
model builds upon the multi-task learning framework of Bonilla et al. (2008) which is able to capture
the dependencies between the data and the tasks. In addition, we employ a classifier over the tasks
to learn the task labels (from which task each data point comes from). Both of those two learning
mechanisms, multi-task setting and classification of the tasks, are modeled by Gaussian Processes
(GPs), which are coupled by sharing a common hyper-prior. In the rest of this section, we first give
a short introduction to GPs and we review multi-task learning with GPs of Bonilla et al. (2008), we
then present the model for meta-generalising, and finally we describe how to make predictions on
new tasks.

3.1 Multi-task Learning with Gaussian Processes

Gaussian processes (Rasmussen and Williams, 2005) provide a flexible modelling framework for
supervised learning which has become increasingly popular in recent years. A Gaussian Process
is a probability distribution over functions f , where the joint distribution of function evaluations
over a finite set of inputs is a multivariate Gaussian distribution. At core of the GP prediction is the
covariance function or kernel, parameterised by θx, that models the output covariance at different
pairs of input points, and in essence acts as a measure of similarity between different input locations.
In order for a covariance function to be valid it has to be positive semidefinite, and has to satisfy
Mercer’s theorem (Rasmussen and Williams, 2005).

In a multi-task scenario the interest lies in learning M related functions f j, j = 1, . . . ,M, from
training data xi j, yi j, i = 1, . . . ,n j, with x ∈ Rd , and n1+ . . .+ nM = N. In the following of this
section, data points from task j will be denoted by Xj = [x1 j, . . . ,xnj j] and X= [X1, . . . ,XM] will be
used to denote the set of all data points. Focussing on a regression problem for simplicity, the noise
model will be given by

yi j = f j(xi j)+ ε j, with ε j ∼N (0,σ2j), (1)

where yi j (xi j) denotes the ith output (input) of the jth task. We note that each input point hasM func-
tion values associated with it (one per task); this complete set of responses will rarely be observed in
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practice, but function values corresponding to unobserved values can easily be marginalised using
the consistency of GPs

The multi-task model of Bonilla et al. (2008), which has been known in the geo-statistics com-
munity as the “Intrinsic Model of Coregionalization” (IMC) (Cressie, 1993), can be elegantly re-
covered from the theory of matrix variate distributions (Gupta and Nagar, 2000). Define the vector
f by stacking the columns of F= [f1 . . . fM] into a single vector, f= vec(F), where f j ∈ RN×1 is the
column vector of all latent functions evaluations of task j. Then the probability density function of
matrix F will be given by:

(2π)−
1
2NM|Kt |−

1
2N |Kx|−

1
2M exp

{

−
1
2
trace

(

(

Kt)−1F(Kx)−1FT
)

}

, (2)

where Kt ∈ RM×M and Kx ∈ RN×N (Gupta and Nagar, 2000). This configuration implies that the
matrix Kt models the correlations between the vectors f j, that is, the tasks in the multi-task view,
andKx models the correlations between each element of vectors f j. In the GP framework, this corre-
lation between function evaluations at different input points is captured by the covariance function.
Then, by using some matrix algebra involving the vec and Kronecker operator, Equation (2) can be
written in the form Bonilla et al. (2008) proposed,

p(f|X) = GP (0,Kt⊗Kx).

Employing this type of prior for the latent functions f the noise model for the regression problem
stated in equation (1) becomes, p(y|f) =N (f,D⊗ I), where D ∈ RM×M is diagonal with Dj j = σ2j
and I ∈ RN×N is the identity matrix.

The key element of this formulation is the task covariance matrix Kt which reflects the task
correlations. For example, if Kt was fixed to the identity matrix, then all tasks would be indepen-
dent but they would still share the same hyperparameters of the covariance function. Of course,
one of the main goals of multi-task learning is to learn these task dependencies. Bonilla et al.
(2008) approached this problem by parameterizing the task covariance matrix, with parameters θt ,
always retaining positive definite restrictions, and treating these parameters as hyperparameters to
be learned. Positive definite guarantees were achieved, by parameterizing a lower triangular matrix
L to employ the Cholesky factorization Kt = LLT . Most importantly, parameters related to the data
covariance function or the task covariance matrix can be learned in the standard GP formulation, by
maximizing the marginal likelihood p(y|X) =

∫
p(y|f)p(f|X)df.

3.2 Model

In this section we describe the Coupled Multi-Task Multi-Class (CMTMC) model we propose for
meta-generalisation. The objectives of the model are first to model the dependencies between the
tasks, and second to assign unseen tasks to source tasks by finding task similarities. The first ob-
jective is met through the Multi-task part of the model, while the second is achieved through the
Multi-class classifier. Figure 1 shows the graphical model of the CMTMC classifier. In this subsec-
tion we use x, yt , and yx to refer to xs, yst , and ysx to keep the notation light, since in the learning
phase only source tasks are involved. Therefore, notation introduced in Section 3.1 applies here.
Moreover, from Section 2 we have that yt ∈ {1, . . . ,M} and yx ∈ {−1,+1} as the task and class
labels respectively. Since both class and task prediction are effectively classification models, we
choose the probit and multinomial probit models as noise models respectively. Following Albert
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Figure 1: Coupled Multi-Task Multi-Class (CMTMC) model. Variables f and g are the two sets of
GPs for the multi-task and multi-class classifiers respectively, whereas variables hx and
ht denote the auxiliary variables of the two classifiers; (a) graphical representation of the
training phase, (b) graphical representation of Meta-generalising.

and Chib (1993), we define two sets of auxiliary variables ht = vec(Ht), and hx = vec(Hx), which
as shown later on enables the multinomial and the binary probit model respectively. For later con-
venience, we will be using htj and htn to denote the jth column and nth row of matrix Ht .

Figure 1 shows that there are two directed channels of variables. The upper channel, with
variablesCt = {g,ht ,yt}, is responsible for learning the task labels, thus from which task each data
point comes from, while the lower channel, with variables Cx = {f,hx,yx}, learns to classify the
data points inside every task and to find task correlations, through the standard multi-task classifier.

Thus, there are two sets of Gaussian Processes. The first one is responsible for the classification
over the tasks g|X,θx ∼ GP (0,I⊗Kx), where g = vec(G), G = [g1, . . . ,gM], and g j ∈ RN×1. The
second one is responsible for the multi-task classification f|X,θx,θt ∼ GP (0,Kt ⊗Kx), where as
stated before variables θx and θt are used to denote the hyperparameters of the data covariance
function and task matrix respectively. As in the multi-class case we will have that f= vec(F), where
F = [f1, . . . , fM] and f j ∈ RN×1. In the rest of the paper we will write Kx to denote the covariance
matrix between all data points X, unless specified otherwise. Moreover, I and Kt will be M×M,
where the identity matrix in the multi-class case implies independence between the classes, thus
g j|X,θx ∼GP (0,Kx). The key objective is to learnM functions g j for the multi-class classifier and
M related functions f j for the multi-task classifier.

Note that the data covariance matrix Kx is shared by both sets of processes g and f. This is
graphically illustrated by the fact that the node of hyperparameters θx is connected to both latent
functions; thus, the multi-class and the multi-task classifier share the same hyperparameter space
for θx. The multi-class classifier is restricted to have the same covariance function across the classes
in contrast with the standard model for multi-class classification with GPs, which in principle al-
lows you to use different covariance functions across classes. In fact, the CMTMC model could be
decoupled into two separate classifiers with different sets of hyperparameters θx between the two
processes f and g. Seemingly, this decoupling would result in a more flexible model, but prelim-
inary experiments with both models, the CMTMC and the decoupled model, has shown that this
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restriction does not affect the performance. In contrast, it reduces dramatically the computational
cost since the hyperparameters of the data covariance function need to be estimated only one time.

The probit model is enabled in both channels by a standardized normal noise model over the
auxiliary variables, hti j|gi j ∼ N (gi j,1), and hxi | fi ∼ N ( fi,1) (Albert and Chib, 1993; Csató et al.,
2000; Girolami and Rogers, 2006; Skolidis and Sanguinetti, 2011). The relationship between out-
puts yt and yx and auxiliary variables ht , and hx is deterministic and will be given by:

yti = j if htji = max
1≤k≤M

{htki},

p(yxi |h
x
i ) =

{

δ(hxi )δ(yxi ) if yxi =+1
δ(−hxi )δ(−yxi ) if yxi =−1

,

where δ is one if its argument is positive and zero otherwise, which completes the specification of
the model.

3.2.1 INFERENCE

Classification problems imply non-Gaussian noise models, which make inference intractable. To
address this intractability, we adopt a variational approximate treatment to the problem, as it is
computationally more efficient than sampling-based methods while retaining a reasonable accuracy
in empirically approximating posterior marginals.1 For a comprehensive comparison between these
approximations for GP multi-class classification, and on the multinomial probit model the interested
reader in referred to Girolami and Rogers (2006). The dependencies of the random variables Θ =
{g,ht , f,hx} are depicted graphically in Figure 1.a and are summarized in the joint likelihood of the
CMTMC model as:

p(yt ,yx,Θ|θx,θt ,X) = p(yt |ht)p(ht |g)p(g|θx,X)p(yx|hx)p(hx|f)p(f|θx,θt ,X).

Variational methods approach this problem by approximating the joint posterior of the latent
variablesΘ within a family of tractable distributions; in our case, we will approximate the joint pos-
terior as a factored distribution p(Θ|yt ,yx,X,θt ,θx)≈Q(Θ) =∏i=1Q(Θi) =Q(g)Q(ht)Q(f)Q(hx).
Minimizing the Kullback-Leibler divergence between the approximating and the true distribution is
equivalent to maximizing the following lower bound on the marginal likelihood

log p(yt ,yx|X,θx,θt)≥
∫
Q(Θ) log

p(yt ,yx,Θ|X,θx,θt)
Q(Θ)

dΘ, (3)

which is found by applying Jensen’s inequality (MacKay, 2003). Standard results show that the
distributions that maximize the lower bound are given by

Q(Θi) =
exp(EQ(Θ\Θi){log p(yt ,yx,Θ|X,θt ,θx)})∫
exp(EQ(Θ\Θi){log p(yt ,yx,Θ|X,θt ,θx)})dΘi

where Q(Θ\Θi) denotes the factorized distribution with the ith component removed. Inference and
learning are performed in a variational EM algorithm: the E-step computes the variational posteri-
ors on the variables Θ, and the M-step optimizes the hyperparameters θt ,θx given the expectations

1. Another setting for approximate inference producing comparable results with the Variational approach that could
have been employed is the EP approximation (Opper and Winther, 2000; Minka, 2001; Rasmussen and Williams,
2005); this has also been extended to the multi-class classification scenario in Girolami and Zhong (2007).
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computed in the previous step. At each (E or M) iteration the variational lower bound, L(Q) (given
in Appendix B Equation (15)), provably increases (or at worst remains unchanged), and these two
steps are repeated until convergence.2 We now briefly summarize the calculations needed to perform
the E and M steps. The pseudo-algorithm of the training of the CMTMC model is given in Algo-
rithm 3.2.1. We omit any details and emphasize only the occurrence of the special form covariance
function we employ; fuller details can be found in Appendices A, and B.

E-step. The approximate posteriors for the multi-class classifier will be given by,

Q(g) =
M

∏
j=1

Ng j(g̃ j,Σg), (4)

Q(ht) =
N

∏
n=1

N ytn
htn
(g̃n,I), (5)

whereΣg=
(

I+(Kx)−1
)−1

=Kx (I+Kx)−1, g̃ j=Σgh̃tj, andN
ytn
htn
(g̃n,I) denotes anM-dimensional

Gaussian distribution truncated such that jth dimension has the largest value if ytn = j. In the lower
channel, the approximate posteriors for the multi-task classifier will be given by,

Q(f) =Nf(f̃,Σ f ), (6)

Q(hx) =
NM

∏
i=1

(

f̃i+ yxi
N f̃i(0,1)
Φ(yxi f̃i)

)

, (7)

where f̃ = Σ f h̃x, and Σ f = Kt ⊗Kx(I+Kt ⊗Kx)−1 and the tilde notation in the above random
variables denotes posterior expectation, that is, t̃(α) = EQ(α){t(α)}; more details can be found in
Appendix A.

M-step. The M-step optimises the lower bound with respect to the hyperparameters θx and θt .
This is performed by gradient descent; computation of the gradients of the lower bound given in
Equation (3) are somewhat intricate and are given in Appendix B.

Algorithm 1 CMTMC model - Training
1: Inputs : Xsj , ysxj , ystj for j = 1, . . . ,M
2: Sample parameters g,ht , f,hx from prior
3: Initialise hyper-parameters θx,θt
4: repeat
5: E-step
6: Compute Q(g) and Q(ht) for MC-classifier, Equations (4),(5)
7: Compute Q(f) and Q(hx) for MT-classifier, Equations (6),(7)
8: M-step
9: Optimize hyperparameters θx,θt , Equations (16), (16)
10: Compute Lower-bound on log-marginal likelihood, Equation (15)
11: until convergence

2. In practice, estimation of the convergence of the EM algorithm was inferred when the increase between iterations
was zero or smaller than a very small constant.
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3.3 Prediction on Novel Tasks

While in the previous section we described how to train the model on training data from the source
tasks, we now describe how to perform predictions on unseen target tasks. We adopt a mixture of
experts type approach; in these networks, multiple outputs are combined and weighted according
to the responsibilities they have on a certain prediction task. In a similar manner, the multi-task
classifier of the CMTMC model can be seen as a multi-output predictor, and the classifier over the
task labels (multi-class) can be used to infer the responsibilities of the outputs of the multi-task
classifier, since it produces posterior probabilities of task memberships. Then predictions on novel
tasks are computed according to

p(y f∗ =+1|x∗,X,yt ,yx) =
M

∑
j=1

p(yx∗j =+1|x∗,yt∗,X,yx)p(yt∗j |x∗,X,yt), (8)

where p(yx∗j =+1|x∗,yt∗,X,yx) = p(yx∗j =+1|x∗,X,yx) is the posterior of the jth task belonging to
class “+1” from the multi-task classifier, and p(yt∗j |x∗,X,yt) is the posterior of x∗ coming from the
jth task, or the test point task responsibility from the multi-class classifier. A graphical representa-
tion of this process is given in Figure 1.b, where it is shown that nodes yt∗, and yx∗ are combined to
give the final predictions y f∗.

However, the meta-generalisation scenario presents some additional challenges which are not
found in classical mixture of experts models. In many cases, a target task consists of a batch of
input points, and the simple fact that they all come from the same task contains valuable information
about the correlations between the associated outputs. Another closely related issue is that of the
correlation between the target task and the source tasks. In many multi-task problems it is a usual
phenomenon to observe groups of highly correlated tasks (e.g., Figure 3.b), while other times tasks
are correlated but in a more random fashion (e.g., Figure 6.b, 7.b). As we will see in the experimental
sections, this can have important consequences in terms of predictive accuracy, and in terms of
choosing an appropriate prediction model.

In the following, we present two distinct scenarios for inferring the task responsibilities. Given
a target task with nt data points xt∗ = {xt∗1 ,x

t∗
2 , . . . ,x

t∗
nt}, in the first scenario we treat each data point

from the target task individually to infer its task responsibilities, which we will refer to as Point
to Point Gating (P2PGat). This approach neglects the information that all target points come from
the same task, and as we will see in the experimental section, is more appropriate when inter-task
correlations are weaker. In the second scenario we wish to combine the information from all nt test
points to infer the overall task responsibilities for the target task, which we will refer to as Batch
predictions.

3.3.1 POINT TO POINT GATING

Given a new input point which lacks both class and target labels, the CMTMC model combines
the predictions of a multi-task classifier using task responsibilities obtained from the multi-class
classifier channel. Thus, two sets of quantities need to be computed. The first set are the posterior
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probabilities of theM outputs p(yx∗j =+1|x∗,X,yx) of the multi-task classifier, as

p(yx∗j =+1|x∗,X,yx) =
∫
p(yx∗j = 1|hx∗)p(hx∗|x∗,X,yx)dhx∗,

≡
∫ +∞

0
Nhx∗j (λ

∗
j ,υ

∗
j
2)dhx∗ =Φ

(

λ∗j
υ∗j

)

(9)

where we have used that υ∗j
2 = 1+ ktj jkxx∗x∗ −

(

ktj⊗kxx,x∗
)T

(I+Kt ⊗Kx)−1
(

ktj⊗kxx,x∗
)

, and λ∗j =

ktj⊗kxx,x∗ (I+Kt ⊗Kx)−1 h̃x. Additionally, ktj, ktj j are used to denote the jth column and the j jth
element of Kt respectively, kxx,x∗ is used to denote the covariance vector between X and x

∗, and Φ is
the probit function.

The second set of quantities are the task responsibilities which are computed from Girolami and
Rogers (2006)

p(yt∗ = k|x∗,X,yt) =
∫
p(yt∗ = k|ht∗)p(ht∗|x∗,X,yt)dht∗

≡
∫ +∞

−∞
Nht∗k (µ

∗
k ,ν

∗
k)∏

m-=k

∫ ht∗k

−∞
Nht∗m (µ

∗
m,ν

∗
m) dht∗m dht∗k , (10)

which can be evaluated using numerical integration as:

p(yt∗ = k|x∗,X,yt) = Ep(u)

{

∏
j -=k

Φ

(

1
ν∗j

[

uν∗k+µ∗k−µ∗j
]

)}

, (11)

where u∼Nu(0,1), ν∗m = 1+ kxx∗,x∗ −kx
T

x,x∗ (I+Kx)−1kxx,x∗ , and µ∗m = kxTx,x∗ (I+Kx)−1 h̃tm.
In the P2PGat scenario, the novel input points are not assumed to share a common task la-

bel. Therefore, class prediction is performed straightforwardly on every new input by inserting the
posterior probabilities obtained in Equations (9,10) in the gating network given by Equation (8).

3.3.2 BATCH

In a Bayesian way using all test points xt∗ to infer the overall task responsibility is performed
by replacing the univariate distributions from Equation (10) with the appropriate multivariate. As a
result the second integral of Equation (10) becomes the multivariate cumulative distribution function∫ ht∗k
−∞Nht∗m (M

g∗
m ,Υ∗) dht∗m . Specifically the mean and the variance of the auxiliary variables ht∗m on the

batch of test points x∗ will be given by:

Mg∗
m = E[ht∗m |x∗] =KxT

x,x∗
(

I+Kx
x,x
)−1 h̃tm (12)

Υ
∗ = cov[ht∗m |x∗] = I+Kx

x∗,x∗ −KxT
x,x∗
(

I+Kx
x,x
)−1Kx

x,x∗ , (13)

where KxT
x,x∗ is the N×nt covariance matrix of all training points X, and all test task data points x∗,

andKx
x∗,x∗ is the nt×nt full covariance matrix of x∗. Equations (12) and (13), indicate that inferring

the tasks responsibilities on a set of points depends not only on the correlations between the test
points and the train points but also on the correlations between the test points themselves.
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Algorithm 2 CMTMC model - Meta-generalising
1: Inputs : xt∗ = [xt∗1 , . . . ,x

t∗
nt ], Q(g), Q(h

t), Q(f), Q(hx), X
2: for i= 1 to nt do
3: for j = 1 to M do
4: Compute MC posterior probabilities p(yt∗i j = j|xt∗i ,X,yt), Equation (11)
5: Compute MT posterior probabilities p(yx∗i j =+1|xt∗i ,X,yx), Equation (9)
6: end for
7: end for
8: P2PGat predictions
9: for i= 1 to nt do
10: Compute p(y f∗ =+1|x∗,X,yt ,yx), Equation (8) based on steps 4 and 5
11: end for
12: BATCH predictions
13: for j = 1 to M do
14: Compute overall task posterior probabilities p(yt∗ = k|x∗,X,yt), Equation (14)
15: end for
16: for i= 1 to nt do
17: Compute p(y f∗ =+1|x∗,X,yt ,yx), Equation (8) based on steps 5 and 14
18: end for

On the other hand, truncated multivariate Gaussian distributions are hard to deal with, and usu-
ally approximations are applied (Deak, 1980; Genz, 1992; Gassmann et al., 2002). The dimensions
of the multivariate distribution function in the batch prediction problem depend on the number of
data points n∗ of the target task, which can be several thousands depending the application. To the
best of our knowledge no method can tackle very high dimensional c.d.f. , and even approximations
can become extremely computationally intensive when n∗ is more than a few dozens (these esti-
mations would be carried out within the inner loop of a VBEM algorithm, which would obviously
further aggravate the problem). A solution to this problem is to assume that data points from the
test task are i.i.d. from the unknown data generating distribution, and approximate it by:

p(yt∗ = k|x∗,X,yt)≈ ∏n∗
i=1 p(yt∗i = k|x∗i ,X,yt)

∑M
m=1∏

n∗
j=1 p(yt∗j = m|x∗j ,X,yt)

, (14)

where p(yt∗i = k|x∗i ,X,yt) are the task responsibilities computed individually for each test point. We
will adopt this approximation in the experimental section for computational reasons; calculations
using the full covariances in Equation (13) are unfeasible with more than 100 points (test or train-
ing). While this approximation may appear crude, we experimented extensively in medium-scale
problems using a reduced rank approximation for Υ∗ (capturing up to 90% of the total variance),
but this did not appear to yield significant empirical advantages justifying the substantial computa-
tional costs. Note though that although the i.i.d. approximation misses the correlations between the
test samples, it still uses information from all test points to produce overall test task class posterior
probabilities.

The pseudo-algorithm for the stage of Meta-generalisation for both types of predictions, P2PGat
and Batch, is given in algorithm 3.3.1.
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4. Experiments

This section aims at providing insights into the workings of our meta-generalising model through
empirical evidence. Experiments are presented for both the fully observed and partially observed
task scenarios described in Section 2, and in both cases we investigate both the P2P gating and the
Batch mode of predictions on new tasks. The fully observed tasks case, considered in Section 4.1,
investigates the situation where data generating distribution of the target task is actually the same as
that of one of the source tasks. In this case all available tasks are used in the training phase, but in
the testing phase the model has no information from which of the source task the target task comes
from. The second set of experiments, described in Section 4.2, considers the case of the partially
observed tasks. In this case the data generating distribution of the target task does not match the
distribution of one of the source tasks, so that the set of source tasks is strictly a subset of the set
of all tasks. Training is performed on the source tasks, and testing on the totally unseen target
tasks. While both scenarios are plausible applications of meta-generalising, Section 4.2 gives more
insight into the connections between the correlation structure of the tasks and the task prediction
mechanism on totally unseen tasks.

Five different data sets are considered in the experiments. The first two data sets are artificially
generated to demonstrate the strengths and the limitations of the method; the first one satisfies
the assumptions of the model, and the second one, which is only considered in Section 4.1, is
in conflict with them. The third data set is a character classification problem between commonly
confused handwritten letters. The fourth data set is an automated diagnosis problem: annotated
heartbeats from ECG recordings are used to discriminate normal from arrhythmic beats, and each
patient is considered as a task. The last data set, which is considered only in the second set of
experiments, is a landmine detection problem. More details are given in each section separately. We
present results for different training set sizes, and for each training size experiments are repeated
25 times by randomly selecting the data points used for training from each task. Furthermore, in
both scenarios three types of outputs are considered from the CMTMC model; the batch written as
“BatchMCAppr”, the P2P gating written as “P2PMCGat”, and the “MAP” estimate which simply
selects the output of the multi-task classifier that has the highest posterior, something that is usually
considered in classifier fusion techniques (Kuncheva, 2002). As our method essentially relies on
the covariance structure between tasks, two types of baseline comparisons are possible: in the worst
case, results should not be worse than completely ignoring the task structure and pooling together
all training data. We refer to this baseline as Pool. In the best case, our method should not be
statistically better than a method which leverages the same covariance structure and has access to
all the task label information, for example, a standard multi-task learning approach. We refer to this
best-case scenario as MTL; we compare with this only in the fully observed task scenario, as in the
partially observed case the meta-generalising results are generally quite far from this best case.

All methods are compared in terms of the area under the precision-recall curve, also known as
the Average Precision (AP) (Davis and Goadrich, 2006). Simulation results were processed based on
the work of Brodersen et al. (2010), that provides a smooth estimate of the precision-recall curve;3
an equivalent performance measure that could have been used is the Area Under the Curve (AUC)
(Hanley and Mcneil, 1982), which is also appropriate for imbalanced data sets. Note that simulation
results follow the same pattern with both measures. In all experiments the task covariance matrix Kt

3. Code downloaded from: http://people.inf.ethz.ch/bkay/downloads.
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was parameterized as a correlation matrix (Rebonato and Jäckel, 2000), with unit diagonal, while
the data covariance function Kx is set specifically for each data set depending the application.

4.1 Fully Observed Tasks

In this scenario, the data distribution of the target task is the same as that of (at least) one of the
source tasks. This guarantees that the similarity of distribution assumption is met, however, as
we’ll see in the case of Toy data II, the low joint prediction error assumption is not automatically
satisfied. Obviously, the actual input data will be different, due to the stochasticity of the data
generating process. Intuitively, the success of the model depends strongly on whether the model
will be able to infer correctly from which of the source tasks the target task actually comes from.
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Figure 2: Toy data set I distribution; (a) scatter plot and density for the first cluster of tasks (1-3),
(b) scatter plot and density for the second cluster of tasks (4-6).

4.1.1 TOY DATA SET I

The first toy data set is comprised of six binary classification tasks. This toy problem was previously
used in Liu et al. (2009) in the context of semi-supervised multi-task learning. Data for the first
three tasks are generated from a mixture of two partially overlapping Gaussian distributions, and
similarly for the remaining three tasks. Hence, the six tasks cluster in two groups; for each task 600
data points were generated, which were equally divided between the two classes. The scatter plots
of the two clusters are shown in Figures 2.a and 2.b.

This data set is ideal for demonstrating the concept of the meta-generalising for three reasons.
First of all the assumptions of the model are satisfied. Secondly, the tasks group in two clusters.
The third reason is that the densities of the clusters though similar are not exactly the same; this is
illustrated in Figures 2.a and 2.b, which shows the contour plot of the densities of the two clusters.
We use an Automatic Relevance Determination (ARD) data covariance function, which employs a
different characteristic length scale for each feature, and is able to identify which features are more
relevant for classification (Rasmussen and Williams, 2005).
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Figure 3: Toy data set I classification Results; (a) Average AP over the 6 tasks, (b) Hinton Diagram
of the task covariance matrix of the CMTMC model computed by averaging over the 25
repetitions with 50 data points per task.

Classification results are presented in Figure 3.a; the Y axis is the AP, and the X axis is the
number of data points from each task (DPET) used for training. The results show that, in this toy
problem, the Batch mode performs similarly to the ideal MTL case, although it has a high variance
for the case of 10 DPET. The P2PGat and Pooling method perform approximately 10% worse than
the Batch, while the MAP estimate gives roughly 20% less than the Batch. Moreover, Figure 3.b
shown the Hinton diagram4 (Hinton, 1989) of the task covariance matrix of the CMTMC model
which accurately recovers the structure of the tasks.

4.1.2 TOY DATA SET II

The second toy data set consists of four tasks which group into two clusters. The scatter plot as well
as the density of the two clusters are shown in Figures 4.a and 4.b, for the first and second cluster
respectively. The main feature of this data set, evident visually from Figure 4, is the similarity of the
data generating distribution for the two tasks. While the densities are peaked in different locations,
without class labels the tasks are almost identical, meaning that the multi-class classifier cannot
learn to discriminate between the two tasks. As in the previous example, each task consisted of 600
data points equally divided between the two classes, and we used the ARD covariance function.

Figure 5.a shows the results the different methods produced. As expected, the Batch mode fails
to correctly identify the task responsibilities; as a result, it gives a lower average AP than the MTL,
a difference which does not decrease with the number of DPET, indicating statistical inconsistency.
This is reinforced by the Hinton diagram ofKt in Figure 5.b, where it fails to identify the clusters of
the tasks. Even though this difference is small it is significant for this easy problem, where the MTL
algorithm performs close to 100%. Additionally, the P2PGat, the Pooling, and the MAP estimates
perform better that the Batch, but they also fail to reach the performance of MTL.

4. The Hinton diagram is a graphical representation of the values in a data matrix; here, it is used to display the corre-
lations between the tasks.
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Figure 4: Toy data set II distribution;(a) scatter plot and density for the first cluster of tasks(1-2),
(b) scatter plot and density for the second cluster of task(3-4).

4.1.3 CHARACTER CLASSIFICATION

In this data set the task is to learn to classify between commonly confused handwritten letters,
which is included in the “Transfer learning Toolkit” of Berkeley University available at http://
multitask.cs.berkeley.edu/. This data set is comprised of eight binary classification tasks.
The characters that are used and the number of samples are given in Table 1. Each sample is a 16×8
image, which results into a binary 128 feature vector. The covariance function that is employed for
this data set is the Radial Basis Function (RBF).
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Figure 5: Toy data set II classification Results; (a) Average AP over the 4 tasks, (b) Hinton Diagram
of the task covariance matrix.

The classification results for this data set are presented in Figure 6.a. The Batch method follows
closely the ideal MTL performance, and outperforms the P2PGat, Pooling, and the MAP methods
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Task 1 2 3 4 5 6 7 8
Letter c g m a i a f h
Number of data 2017 2460 1596 4016 4895 4016 918 858
Letter e y n g j o t n
Number of data 4928 1218 5004 2460 188 3880 2131 5004

Table 1: Description of the Character data set; each column is a task showing the two letters as well
as the corresponding number of examples per character.

(although there is significant variability for small numbers of labeled data per task). Figure 6.b
shows the Hinton diagram of the task covariance matrix, which indicates a more random structure
between the tasks, but finds that some tasks are more correlated than others, for example ‘a/g’
with ‘a/o’, and ‘i/j’ with ‘f/t’. It should be noted though, that in this data set the “low-error joint
prediction” assumption is partially violated since there is label disagreement between tasks ‘a/g’
and ‘g/y’, where the ‘g’ letter belongs to class “+1” in task ‘a/g’ and to “-1” in task ‘g/y’. This does
not seem to have any adverse effect on the performance of the model, presumably as the difference
between letters ‘a’ and ‘y’ is sufficient to unambiguously assign the target task to the correct source
task.
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Figure 6: Character Classification Results; (a) Average AP over the 8 tasks, (b) Hinton Diagram of
the task covariance matrix.

4.1.4 ARRHYTHMIA CLASSIFICATION

The arrhythmia data set consists of seven ECG recordings from different patients, which were ac-
quired from the MIT-BIH Arrhythmia database (Goldberger et al., 2000). Each recording corre-
sponds to a large number of heart beats, which is summarized in Table 2. Each patient is treated
as a separate task, and the goal is to classify each heart beat into two classes, normal or premature
ventricular contraction (PVC) arrhythmic beats. The same problem was considered in Skolidis et al.
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(2008) using single task GP classifiers. Each recording was sampled at 360Hz, and annotation pro-
vided by the database was used to separate the beats before any preprocessing. Each beat segment,
consisting of 360 data points (one minute), was transformed into the frequency domain using a Fast
Fourier Transform with a Hanning window. Only the first ten harmonics are used as features for
classifying heart beats, as most of the information of the signal is contained in these harmonics.

Recording ID 106 200 203 217 221 223 233
Total number of data 2021 2567 2970 406 2349 2417 3053
Number of Normal heart beats 1503 1740 2526 244 1954 1955 2224
Number of PVC heart beats 518 827 444 162 395 462 829

Table 2: Description of the Arrhythmia data set.

Figure 7.a shows the average AP over the seven tasks. On average, the Batch method performs
better than the P2PMCGat, the MAP, and the Pool, while it presents a small advantage compared
to MTL. Interestingly, the MAP approach is consistently worse than other methods, a situation that
will be reversed in the partially observed tasks scenario. As in the character classification problem
the task covariance matrixKt , shown in Figure 7.b, demonstrates that there are correlations between
the tasks but in more random way.
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Figure 7: Arrhythmia Classification Results; (a) Average AP over the 7 tasks, (b) Hinton Diagram
of the task covariance matrix.

4.1.5 OBSERVATIONS

This set of experiments has demonstrated the effectiveness of the CMTMC model in situations
where the data distribution of the target task comes from one of the source tasks. Several observa-
tions are made:

1. In the fully observed tasks scenario, the space of tasks has been sampled sufficiently (by
definition). In this case the Batch mode should theoretically be the best method, since all data
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points are needed to produce an accurate estimate of the density of the target task. This is
empirically confirmed in our investigation, as Batch closely approaches the MTL results in
all cases.

2. If the “low-error joint prediction” assumption is violated, then meta-generalising becomes a
very hard problem, possible unsolvable. The performance on the second toy example was
not particularly bad, since all methods achieved higher that 90% in terms of AP, but none of
methods reached the performance of the MTL algorithm, and the performance did not appre-
ciably improve when more training data were provided, indicating statistical inconsistency.
This effect could be dramatically increased if for example the classes between the clusters
were anti-correlated, so that similar data generating distributions could be potentially associ-
ated with opposite predictions. Note though that if discriminative task descriptor features are
available then this problem can be overcome, because augmenting the feature space would
result in a different mapping of the latent function f .

3. If the model assumptions are met, the correlation structure of the tasks does not have a strong
influence on the predictions, since the Batch mode outperformed the P2PGat gating and MAP
estimate in all experiments. As we will see, this will be a crucial difference between the fully
and partially observed tasks scenario.

4.2 Partially Observed Tasks

We now consider the harder problem of making predictions on completely unseen tasks. In this
case, a priori we have no guarantee that any of the underlying modelling assumptions (similarity
of distribution and low-error joint prediction) may hold. However, in some situations it is not
unrealistic to assume that inter-task correlations will be structured, for example by the presence of
clusters of similar tasks. These clusters may be evident from the experimental design of the problem
(as in the case of the landmine data set discussed below), or may become evident from the training
phase on the source tasks, if the learned task covariance matrix exhibits a strong block structure.

We are not aware of other methods that has a distribution matching mechanism to perform
predictions on totally unseen tasks. Therefore, in this section we will only compare the different
inference mechanisms of the CMTMC model (Batch and P2PGat) with a GP model trained by
pooling all data together and with the MAP combination of classifiers.

4.2.1 TOY DATA SET I

We consider the toy data set that was used in Section 4.1.1 consisting of two clusters of tasks; in
this section, training tasks are selected by randomly selecting equal number of tasks from each
cluster. The challenge for the model is to correctly classify the task, given the similarity of the
task distributions between the two clusters (see Figure 2). While it could be argued that, as the
tasks in each cluster have the same data generating distribution, this example is very close to the
fully observed case scenario (and it certainly is if we consider the underlying tasks to be two rather
than six), it is still a useful illustrative example as a limiting case where assumptions are perfectly
met. Experimental results are presented for two and four training tasks in Figures 8.a and 8.b
respectively. Naturally, as this data set is designed to match our modelling assumptions, the Batch
method outperforms all other methods; it is interesting however that the method successfully detects
from which cluster of tasks the unseen target task comes from even for relatively small training set
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Figure 8: Average AP on the unseen tasks of Toy data set I; (a) training on 2 tasks generalising on
4, (b) training on 4 tasks generalising on 2.

sizes. Comparing the performance of the Toy data set I in the fully and partially observed cases, in
Figures 3 and 8 respectively, reveals that the same levels of AUC are achieved in both experimental
setups, indicating that the task classification GP is highly confident of the correct result.

4.2.2 LANDMINE DETECTION

The landmine detection data set consists of images measured with airborne radar systems, and the
goal is to predict landmines or clutter (Xue et al., 2007). Data are collected from 19 landmine fields,
which are considered as subtasks, and each point is represented by a nine-dimensional feature vector.
Tasks 1-10 correspond to regions that are relatively highly foliated while tasks 11-19 correspond to
regions that are bare earth or desert. Figure 9 shows the number of data points from each task
and each class, which indicates that this data set is highly imbalanced in favor of the Clutter (‘-1’)
class. The experimental setup suggests the presence of two clusters of tasks corresponding to the
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Figure 9: Landmine detection data distribution.
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geomorphology of the region the observations come from; this is confirmed by our preliminary
investigation (not shown), as well as from previously published results on this data set by Xue et al.
(2007) and Liu et al. (2009). Thus, in this data set training tasks are set by randomly selecting
equal number of tasks from the first cluster, tasks 1-10, and from the second cluster, tasks 11-19.
Experiments are presented for two, four, and eight training tasks. The data covariance function that
is used for this data set is the ARD.

Figures 10.a, 11.a, and 12.a shows the mean AP on the 17, 15, and 11 unseen target tasks for
each partition respectively. Due to the high imbalance between the classes (Landmine-Clutter) the
achieved AP of all methods is very low. Therefore, in this data set we also present the AP of a
random predictor which clearly shows the improvement of each method considered. Note that in
terms of AUC the results obtained in this work are consistent with previous studies in this data set
(Xue et al., 2007; Liu et al., 2009), which are presented in Appendix C Figure 14 for completeness.
Moreover, it is noticed that there are large overlapping error bars between all methods. Large error
bars give evidence that there might be two levels of performance. Therefore, for each partition we
provide the average AP for each cluster separately; subfigures (b) from Figures 10, 11, and 12 show
the average AP for the first cluster, and subfigures (c) for the second cluster. Measuring the AP in
each cluster separately gives significantly smaller error bars, and reveals interesting structures in the
problem. Specifically, the performance on the second cluster is always better than on the first cluster
by a considerable margin. Moreover, comparing the methods on each cluster separately we see that
the Batch method outperformed the pooling and the P2PGat in most of the cases, particularly in
the first cluster where the advantages become very significant as we increase the number of tasks/
DPETs. The correlation structure within the second cluster is looser, immplying a weaker applica-
bility of our modelling assumptions. However it should be pointed out that this is a substantially
harder pattern recognition task compared to the toy data set considered above. For example, Liu
et al. (2009) that investigated the application of semi-supervised MTL on this data set achieved a
best performance of 78% AUC; the CMTMC (which relies on the more flexible GP framework for
MTL) achieves an average AUC above 76% on totally unseen tasks having trained on only 8 source
tasks with 100 DPET (see Figure 14).
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Figure 10: AP on the 17 unseen tasks of Landmine data set; training on 2 tasks, generalising on 17;
(a) AP over 17 tasks, (b) AP over 9 tasks of the first cluster, (c) AP over 8 tasks of the
second cluster.
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Figure 11: Average AP on the 15 unseen tasks of Landmine data set; training on 4 tasks, generalis-
ing on 15; (a) Overall AP over 15 tasks, (b) Average AP over 8 tasks of the first cluster,
(c) Average AP over 7 tasks of the second cluster.
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Figure 12: Average AP on the 11 unseen tasks of Landmine data set; training on 8 tasks, generalis-
ing on 11; (a) Overall AP over 11 tasks, (b) Average AP over 6 tasks of the first cluster,
(c) Average AP over 5 tasks of the second cluster.

4.2.3 ARRHYTHMIA CLASSIFICATION

As a second real data set, we return to the arrhythmia classification problem introduced in Section
4.1.4. The results from the fully observed tasks scenario indicate an unclear pattern of correlations
between the tasks, as summarised in the task covariance matrix Figure 7.b, which calls into question
the validity of the similarity of distribution assumption. Fortunately, in this application the classes
have a physical interpretation. For example normal heart beats between different patients, although
not exactly the same, can be expected to be similar, and a PVC arrhythmic heart beat of one patient
can not have the wave form of a normal heart beat from another patient. This allows us to assume
that the classes between the tasks will not be anti-correlated, so that at least the low-error joint
prediction assumption should approximately hold.

Since there are no obvious clusters among tasks, in this set of experiments the training tasks
are chosen by randomly selecting some for training and keeping the rest as test tasks. Figure 13
presents the results on the unseen tasks that were obtained by training the CMCMT model with
4 and 5 tasks. First of all, we observe that the average AUC in the partially observed case is a
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lot lower than in the fully observed case, something perhaps to be expected since, contrary to the
previous two examples, the model assumptions are not fully met in this data set. Surprisingly, the
method that achieved the best performance was the MAP, and no principled justification can be
given for that. Secondly, we observe that the performance in this set of experiments exhibits some
interesting patterns as the number of training tasks increases. Specifically, for four training tasks
the performance of all methods does not significantly improve as we increase the number of data
points per task, and in some cases it even deteriorates, a phenomenon that was also observed for
2 and 3 training tasks but results are omitted for brevity. This indicates that if the space of tasks
has not been sampled sufficiently, the model can not yield good generalisation performance to new
tasks, even if the number of training data increases. In contrast, for five training tasks the MAP
and P2PGat methods yield a significant improvement of performance as the number of data points
increases (levelling off after 200 DPETs).
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Figure 13: Average AP on the unseen tasks of Arrhythmia data set on different number of training
tasks; (a) training on 4 tasks, generalising on 3, (b) training on 5 tasks, generalising on
2.

Empirically, it would appear that the P2PGat method is preferable to the Batch method when the
model assumptions are violated. Intuitively, one could argue that the Batch method is less flexible,
as the relative contribution of the different single-class predictors is fixed across all points in the
target task. Therefore, if the model assumptions are violated, leading to an incorrect task labelling,
the propagated error could have a worse effect in Batch than in P2PGat. This is partly confirmed
by the analysis of Toy data set II in Section 4.1.2, where the model assumptions were violated and
P2PGat gave significantly higher AP than the Batch method.

4.2.4 CHARACTER CLASSIFICATION

For reasons of completeness, we present an analysis of the character classification problem in the
partially observed tasks scenario. Here the validity of the model assumptions is dubious; neverthe-
less, we believe that interesting lessons can be learned from model failure. The fully observed tasks
analysis of the character classification problem did not reveal any clusters of tasks. Furthermore,
there is no reason to believe that the low-error joint prediction assumption may hold: some tasks
might even be anticorrelated, as in tasks ‘a/g’ and ‘g/y’, where letter ‘g’ belongs to the negative class
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for task ‘a/g’, and to the positive class for task ‘g/y’. Therefore, the character classification problem
is ill-suited for this type of experiments. This is borne out by experimental evidence: simulation
results with 4, 5, and 6 training tasks, which are omitted for brevity, indicated that increasing the
number of tasks and the number of training points per task does not improve the performance in any
of the methods. Specifically, the results obtained were close to that of a random predictor indicating
statistical inconsistency of the model assumptions with the data.

4.2.5 OBSERVATIONS

Meta-generalising in a partially observed tasks scenario is an extremely hard problem; neverthe-
less, we believe there are some interesting points that can be made from the previous experimental
analysis. Below we summarise the most important observations for this scenario.

1. In situations where there are clusters of tasks, even though the model hasn’t seen all tasks, the
Batch method can still make accurate predictions that reaches the performance of the fully
observed tasks case. Pragmatically, one could consider whether the training phase of the
model has revealed clusters of tasks when deciding which prediction method to apply.

2. In multi-task problems where the correlations between the tasks are less pronounced, but
where the low-error joint prediction is satisfied and where a sufficient number of training
tasks is available, the method that is most appropriate is the P2PGat, since it provides a more
flexible task assignment mechanism than the Batch mode. The validity of the low-error joint
prediction assumption can sometimes be assessed from the nature of the problem (as in the
arrhythmia case).

3. Sufficient exploration of the task space is essential for the success of the method. While
we have not tested our model for very large numbers of training tasks, the results suggest
that often a significant improvement in performance can be achieved when the number of
training tasks crosses a critical number, indicating a sufficient coverage of the task space.
This phenomenon was observed in the Arrhythmia classification problem for 2 and 3 training
tasks where the performance of the models remained the same as the number of training
samples per task increased. In essence more training data lead to stronger biases for meta-
generalisation in target tasks that are not correlated with any of the training tasks.

4. In most cases, when the assumptions of the model are only approximately met and when the
exploration of the task space is insufficient, the generalisation performance on totally unseen
tasks is still modest, and it may be that other approaches based on mixtures of GP experts
(Tresp, 2000) achieve similar results. An extensive comparison with these approaches would
be interesting, but outside the scope of the present work.

5. Conclusions

In this paper we presented an investigation on the use of Gaussian Processes for meta-generalisation,
that is, predicting on unseen learning tasks by leveraging the information of several, related tasks.
Our model attacks the meta-generalisation problem by coupling two GPs, a multi-class classifier
that learns task responsibilities, and a multi-task classifier that learns prediction models on indi-
vidual tasks as well as learning the global correlation structure between training tasks. While it
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should be emphasized that this is an initial attempt to address what is certainly a very ambitious
problem, we believe the model will prove useful to understand meta-generalisation. First of all, it
provides a constructive approach to meta-generalisation: most previous studies (Baxter, 2000) have
been mainly theoretical investigations attempting to establish the necessary conditions for meta-
generalisation to work, or have focused on the domain adaptation scenario (Ben-David et al., 2007,
2010). Our model is an attempt to translate these conditions into a model, and to investigate how
well such a model may perform on real meta-generalisation problems.

It is important to remark that our method crucially relies on the ability to learn the covariance
matrix of a GP: the fundamental ingredient in this work is the task correlation matrix which cap-
tures the correlations between source tasks. This not only has a significant impact on the prediction
results, but can reveal the presence of clusters of tasks within the data, hence guiding the choice of
the appropriate prediction method (Batch or P2PGat). Many multi-task learning approaches do not
explicitly model the correlations, but transfer learning solely through some shared prior over param-
eters (Yu et al., 2005, e.g.). While this could have computational advantages, we would argue that
the implicit modelling of task correlations would make them less suitable for meta-generalisation.
A common problem, shared by many GP models, is the computational cost when samples become
large, which would be the probable situation in many applications such as personalised medicine.
Our approach also suffers from the cubic scaling of matrix inversions needed within GP inference;
while sparsity inducing approaches could be helpful (Snelson and Ghahramani, 2006), it would be
interesting to explore sparsity within the task space as well as within the data space.

While we believe that our results are encouraging and help clarify the importance of the various
assumptions underlying meta-generalisation, it remains undeniable that in many practical situations
it is impossible to assess the validity of these assumptions, making meta-generalisation an extremely
challenging problem. Possible avenues to extend the applicability of the approach could be to
consider task descriptor features, or to introduce a semi-supervised element in the model in the
spirit of domain adaptation approaches.
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Appendix A. Approximate Inference

This appendix computes the approximate posteriors for Q(g), Q(f) and Q(hx). The posterior of
Q(Ht) can be found in Girolami and Rogers (2006) and therefore details are omitted.
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A.1 Q(g)

The approximate posterior for Q(g) is computed as Girolami and Rogers (2006)

Q(g) ∝ exp

{
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∑
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A.2 Q(f)
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1
2
fT f−

1
2
fT
(

Kt ⊗Kx)−1 f+ const.
}}

∝ exp
{

−
1
2
fT (I+

(

Kt ⊗Kx)−1)f+ fT h̃+ const.
}

,

which gives that Q(f) =Nf(f̃,Σ f ) where f̃=Σ f h̃x, and Σ f = (I+(Kt ⊗Kx)−1)−1 =Kt ⊗Kx(I+
Kt ⊗Kx)−1.

A.3 Q(hx)

Q(hx) ∝ exp

{

EQ(f)

{

NM

∑
i=1
log p(yxi |hxi )+ log p(hxi | fi)

}}

∝ exp

{

log

(

NM

∏
i=1

p(yxi |h
x
i )

)

+ log

(

NM

∏
i=1

Nhxi ( f̃i,1)

)}

∝
NM

∏
i=1

Nhxi ( f̃i,1)δ(h
x
i )

which gives that Q(hxi ) =
1
ZiNhxi ( f̃i,1)δ(h

x
i ), and we have that

Q(hxi ) =















1
Zi

∫ +∞
0 hxiNhxi ( f̃i,1) = f̃i+

N f̃i
(0,1)

Φ( f̃i)
for yxi =+1

1
Zi

∫ 0
−∞ hxiNhxi ( f̃i,1) = f̃i−

N f̃i
(0,1)

Φ(− f̃i)
) for yxi =−1















,

where Zi =Φ(± f̃i) for yxi =±1. The approximate posterior of Q(Ht) can be computed in a similar
manner, and we refer the interested reader to Girolami and Rogers (2006).
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Appendix B. Lower Bound

This appendix presents the analytical form of the variational bound as well as the gradients of the
bound with respect to the hyperparameters θx and θt .

B.1 Lower Bound on Log Marginal Likelihodd

The lower bound on the log marginal likelihood is computed by

L(Q) = EQ(Θ)[log p(yt ,yx,g,ht , f,hx|X ,θt ,θx)]−
EQ(Θ)[log Q(g)Q(ht)Q(f)Q(hx)]

=−
NM
2
log(2π)+

N
2
log(2π)+

NM
2

−
M
2
trace(Σg)−

1
2∑m

g̃TmKx−1 g̃m

−
M
2
trace

(

Kx−1
Σ
g
)

−
M
2
log |Kx|+

M
2
log |Σg|+∑

n
logztn

+
N

∑
n=1
logzxn−

1
2
log|I+Kt⊗Kx|−

1
2
f̃T (Kt ⊗Kx)−1f̃, (15)

where ztn = Ep(u)
{

∏ j -=iΦ(u+ g̃ni− g̃n j)
}

, and zxn =Φ(yxn f̃n).
Terms that depend on hyperparameters θx and θt are:

L(Q)θx,θt =−
M
2
trace(Σg)−

1
2∑m

g̃TmKx−1 g̃m−
M
2
trace

(

Kx−1
Σ
g
)

−
M
2
log |Kx|+

M
2
log |Σg|−

1
2
log|I+Kt⊗Kx|−

1
2
f̃T (Kt ⊗Kx)−1f̃.

B.2 Gradients on Lower Bound

The gradients with respect to the parameters of the data covariance functionKx are computed from:

∂
∂θx

L(q) =−
M
2
trace

{

Ω(I+Kx)−1−Kx(I+Kx)−1Ω(I+Kx)−1
}

+
1
2
g̃TmKx−1

ΩKx−1 g̃m

+
M
2
trace

{

(I+Kx)−1Ω(I+Kx)−1
}

−
M
2
trace

{

Kx−1
Ω

}

+
M
2
trace

{

(I+Kx−1)−1Kx−1
ΩKx−1

}

+
1
2
f̃T
(

Kt ⊗Kx)−1Kt ⊗Ω
(

Kt ⊗Kx)−1 f̃

−
1
2
trace

(

(

I+Kt ⊗Kx)−1Kt ⊗Ω

)

. (16)

While the gradients with respect to the parameters of the task covariance matrix are computed from:

∂
∂θt

L(q) =
1
2
f̃T
(

Kt ⊗Kx)−1
Ξ⊗Kx (Kt ⊗Kx)−1 f̃−

1
2
trace

(

(

I+Kt ⊗Kx)−1
Ξ⊗Kx

)

,

where Ω= ∂Kx

∂θx , and Ξ= ∂Kt
∂θt
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Appendix C. Additional Results on the Landmine Detection Problem

This appendix provides additional results for the Landmine detection problem (section 4.2.2) from
the Partially observed tasks scenario. In contrast to the results presented in section 4.2.2 where
methods were compared in terms of AP, Figure 14 presents results in terms of AUC, similarly to
previous studies in that data set (Xue et al., 2007; Liu et al., 2009).
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Figure 14: AUC on the Landmine detection problem; (a) AUC over 17 tasks by training on 2 tasks,
(b) AUC over 15 tasks by training on 4 tasks, (c) AUC over 11 tasks by training on 8
tasks.
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Abstract
We propose a framework for analyzing and comparing distributions, which we use to construct sta-
tistical tests to determine if two samples are drawn from different distributions. Our test statistic is
the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert
space (RKHS), and is called the maximum mean discrepancy (MMD). We present two distribution-
free tests based on large deviation bounds for the MMD, and a third test based on the asymptotic
distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear
time approximations are available. Our statistic is an instance of an integral probability metric, and
various classical metrics on distributions are obtained when alternative function classes are used
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1. Introduction

We address the problem of comparing samples from two probability distributions, by proposing
statistical tests of the null hypothesis that these distributions are equal against the alternative hy-
pothesis that these distributions are different (this is called the two-sample problem). Such tests
have application in a variety of areas. In bioinformatics, it is of interest to compare microarray
data from identical tissue types as measured by different laboratories, to detect whether the data
may be analysed jointly, or whether differences in experimental procedure have caused systematic
differences in the data distributions. Equally of interest are comparisons between microarray data
from different tissue types, either to determine whether two subtypes of cancer may be treated as
statistically indistinguishable from a diagnosis perspective, or to detect differences in healthy and
cancerous tissue. In database attribute matching, it is desirable to merge databases containing mul-
tiple fields, where it is not known in advance which fields correspond: the fields are matched by
maximising the similarity in the distributions of their entries.

We test whether distributions p and q are different on the basis of samples drawn from each of
them, by finding a well behaved (e.g., smooth) function which is large on the points drawn from p,
and small (as negative as possible) on the points from q. We use as our test statistic the difference
between the mean function values on the two samples; when this is large, the samples are likely
from different distributions. We call this test statistic the Maximum Mean Discrepancy (MMD).

Clearly the quality of the MMD as a statistic depends on the class F of smooth functions that
define it. On one hand, F must be “rich enough” so that the population MMD vanishes if and only
if p= q. On the other hand, for the test to be consistent in power, F needs to be “restrictive” enough
for the empirical estimate of the MMD to converge quickly to its expectation as the sample size
increases. We will use the unit balls in characteristic reproducing kernel Hilbert spaces (Fukumizu
et al., 2008; Sriperumbudur et al., 2010b) as our function classes, since these will be shown to satisfy
both of the foregoing properties. We also review classical metrics on distributions, namely the
Kolmogorov-Smirnov and Earth-Mover’s distances, which are based on different function classes;
collectively these are known as integral probability metrics (Müller, 1997). On a more practical
note, the MMD has a reasonable computational cost, when compared with other two-sample tests:
given m points sampled from p and n from q, the cost is O(m+ n)2 time. We also propose a test
statistic with a computational cost of O(m+n): the associated test can achieve a given Type II error
at a lower overall computational cost than the quadratic-cost test, by looking at a larger volume of
data.

We define three nonparametric statistical tests based on the MMD. The first two tests are
distribution-free, meaning they make no assumptions regarding p and q, albeit at the expense of
being conservative in detecting differences between the distributions. The third test is based on the
asymptotic distribution of theMMD, and is in practice more sensitive to differences in distribution at
small sample sizes. The present work synthesizes and expands on results of Gretton et al. (2007a,b)
and Smola et al. (2007),1 who in turn build on the earlier work of Borgwardt et al. (2006). Note that

1. In particular, most of the proofs here were not provided by Gretton et al. (2007a), but in an accompanying technical
report (Gretton et al., 2008a), which this document replaces.
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the latter addresses only the third kind of test, and that the approach of Gretton et al. (2007a,b) is
rigorous in its treatment of the asymptotic distribution of the test statistic under the null hypothesis.

We begin our presentation in Section 2 with a formal definition of the MMD. We review the
notion of a characteristic RKHS, and establish that when F is a unit ball in a characteristic RKHS,
then the population MMD is zero if and only if p = q. We further show that universal RKHSs in
the sense of Steinwart (2001) are characteristic. In Section 3, we give an overview of hypothesis
testing as it applies to the two-sample problem, and review alternative test statistics, including the
L2 distance between kernel density estimates (Anderson et al., 1994), which is the prior approach
closest to our work. We present our first two hypothesis tests in Section 4, based on two different
bounds on the deviation between the population and empirical MMD. We take a different approach
in Section 5, where we use the asymptotic distribution of the empirical MMD estimate as the basis
for a third test. When large volumes of data are available, the cost of computing theMMD (quadratic
in the sample size) may be excessive: we therefore propose in Section 6 a modified version of the
MMD statistic that has a linear cost in the number of samples, and an associated asymptotic test.
In Section 7, we provide an overview of methods related to the MMD in the statistics and machine
learning literature. We also review alternative function classes for which the MMD defines a metric
on probability distributions. Finally, in Section 8, we demonstrate the performance of MMD-based
two-sample tests on problems from neuroscience, bioinformatics, and attribute matching using the
Hungarian marriage method. Our approach performs well on high dimensional data with low sample
size; in addition, we are able to successfully distinguish distributions on graph data, for which ours
is the first proposed test.

A Matlab implementation of the tests is at www.gatsby.ucl.ac.uk/∼ gretton/mmd/mmd.htm.

2. The Maximum Mean Discrepancy

In this section, we present the maximum mean discrepancy (MMD), and describe conditions under
which it is a metric on the space of probability distributions. The MMD is defined in terms of
particular function spaces that witness the difference in distributions: we therefore begin in Section
2.1 by introducing the MMD for an arbitrary function space. In Section 2.2, we compute both the
population MMD and two empirical estimates when the associated function space is a reproducing
kernel Hilbert space, and in Section 2.3 we derive the RKHS function that witnesses the MMD for
a given pair of distributions.

2.1 Definition of the Maximum Mean Discrepancy

Our goal is to formulate a statistical test that answers the following question:

Problem 1 Let x and y be random variables defined on a topological space X, with respective
Borel probability measures p and q . Given observations X := {x1, . . . ,xm} and Y := {y1, . . . ,yn},
independently and identically distributed (i.i.d.) from p and q, respectively, can we decide whether
p $= q?

Where there is no ambiguity, we use the shorthand notation Ex[ f (x)] := Ex∼p[ f (x)] and Ey[ f (y)] :=
Ey∼q[ f (y)] to denote expectations with respect to p and q, respectively, where x∼ p indicates x has
distribution p. To start with, we wish to determine a criterion that, in the population setting, takes
on a unique and distinctive value only when p = q. It will be defined based on Lemma 9.3.2 of
Dudley (2002).
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Lemma 1 Let (X,d) be a metric space, and let p,q be two Borel probability measures defined on
X. Then p = q if and only if Ex( f (x)) = Ey( f (y)) for all f ∈ C(X), where C(X) is the space of
bounded continuous functions on X.

AlthoughC(X) in principle allows us to identify p= q uniquely, it is not practical to work with such
a rich function class in the finite sample setting. We thus define a more general class of statistic, for
as yet unspecified function classes F, to measure the disparity between p and q (Fortet and Mourier,
1953; Müller, 1997).

Definition 2 Let F be a class of functions f : X→ R and let p,q,x,y,X ,Y be defined as above. We
define the maximum mean discrepancy (MMD) as

MMD [F, p,q] := sup
f∈F

(Ex[ f (x)]−Ey[ f (y)]) . (1)

In the statistics literature, this is known as an integral probability metric (Müller, 1997). A biased2
empirical estimate of the MMD is obtained by replacing the population expectations with empirical
expectations computed on the samples X and Y ,

MMDb [F,X ,Y ] := sup
f∈F

(

1
m

m

∑
i=1

f (xi)−
1
n

n

∑
i=1

f (yi)

)

. (2)

We must therefore identify a function class that is rich enough to uniquely identify whether p = q,
yet restrictive enough to provide useful finite sample estimates (the latter property will be established
in subsequent sections).

2.2 The MMD in Reproducing Kernel Hilbert Spaces

In the present section, we propose as our MMD function class F the unit ball in a reproducing kernel
Hilbert spaceH. We will provide finite sample estimates of this quantity (both biased and unbiased),
and establish conditions under which the MMD can be used to distinguish between probability
measures. Other possible function classes F are discussed in Sections 7.1 and 7.2.

We first review some properties of H (Schölkopf and Smola, 2002). Since H is an RKHS, the
operator of evaluation δx mapping f ∈H to f (x) ∈ R is continuous. Thus, by the Riesz represen-
tation theorem (Reed and Simon, 1980, Theorem II.4), there is a feature mapping φ(x) from X to
R such that f (x) = 〈 f ,φ(x)〉H. This feature mapping takes the canonical form φ(x) = k(x, ·) (Stein-
wart and Christmann, 2008, Lemma 4.19), where k(x1,x2) : X×X → R is positive definite, and
the notation k(x, ·) indicates the kernel has one argument fixed at x, and the second free. Note in
particular that 〈φ(x),φ(y)〉H = k(x,y). We will generally use the more concise notation φ(x) for the
feature mapping, although in some cases it will be clearer to write k(x, ·).

We next extend the notion of feature map to the embedding of a probability distribution: we
will define an element µp ∈ H such that Ex f = 〈 f ,µp〉H for all f ∈ H, which we call the mean
embedding of p. Embeddings of probability measures into reproducing kernel Hilbert spaces are
well established in the statistics literature: see Berlinet and Thomas-Agnan (2004, Chapter 4) for
further detail and references. We begin by establishing conditions under which the mean embedding
µp exists (Fukumizu et al., 2004, p. 93), (Sriperumbudur et al., 2010b, Theorem 1).

2. The empirical MMD defined below has an upward bias—we will define an unbiased statistic in the following section.
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Lemma 3 If k(·, ·) is measurable and Ex
√

k(x,x)< ∞ then µp ∈H.

Proof The linear operator Tp f := Ex f for all f ∈ F is bounded under the assumption, since

|Tp f |= |Ex f |≤ Ex | f |= Ex |〈 f ,φ(x)〉H|≤ Ex
(√

k(x,x)‖ f‖H
)

.

Hence by the Riesz representer theorem, there exists a µp ∈H such that Tp f = 〈 f ,µp〉H. If we set
f = φ(t) = k(t, ·), we obtain µp(t) = 〈µp,k(t, ·)〉H = Exk(t,x): in other words, the mean embedding
of the distribution p is the expectation under p of the canonical feature map.

We next show that the MMD may be expressed as the distance in H between mean embeddings
(Borgwardt et al., 2006).

Lemma 4 Assume the condition in Lemma 3 for the existence of the mean embeddings µp, µq is
satisfied. Then

MMD2[F, p,q] =
∥
∥µp−µq

∥
∥
2
H
.

Proof

MMD2[F, p,q] =

[

sup
‖ f‖H≤1

(Ex [ f (x)]−Ey [ f (y)])

]2

=

[

sup
‖ f‖H≤1

〈

µp−µq, f
〉

H

]2

=
∥
∥µp−µq

∥
∥
2
H
.

We now establish a condition on the RKHS H under which the mean embedding µp is injective,
which indicates that MMD [F, p,q] = 0 is a metric3 on the Borel probability measures on X. Evi-
dently, this property will not hold for allH: for instance, a polynomial RKHS of degree two cannot
distinguish between distributions with the same mean and variance, but different kurtosis (Sriperum-
budur et al., 2010b, Example 3). The MMD is a metric, however, when H is a universal RKHSs,
defined on a compact metric space X. Universality requires that k(·, ·) be continuous, and H be
dense in C(X) with respect to the L∞ norm. Steinwart (2001) proves that the Gaussian and Laplace
RKHSs are universal.

Theorem 5 Let F be a unit ball in a universal RKHS H, defined on the compact metric space X,
with associated continuous kernel k(·, ·). ThenMMD [F, p,q] = 0 if and only if p= q.

Proof The proof follows Cortes et al. (2008, Supplementary Appendix), whose approach is clearer
than the original proof of Gretton et al. (2008a, p. 4).4 First, it is clear that p = q implies

3. According to Dudley (2002, p. 26) a metric d(x,y) satisfies the following four properties: symmetry, triangle in-
equality, d(x,x) = 0, and d(x,y) = 0 =⇒ x= y. A pseudo-metric only satisfies the first three properties.

4. Note that the proof of Cortes et al. (2008) requires an application the of dominated convergence theorem, rather than
using the Riesz representation theorem to show the existence of the mean embeddings µp and µq as we did in Lemma
3.
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MMD{F, p,q} is zero. We now prove the converse. By the universality of H, for any given ε > 0
and f ∈C(X) there exists a g ∈H such that

‖ f −g‖∞ ≤ ε.

We next make the expansion

|Ex f (x)−Ey( f (y))|≤ |Ex f (x)−Exg(x)|+ |Exg(x)−Eyg(y)|+ |Eyg(y)−Ey f (y)| .

The first and third terms satisfy

|Ex f (x)−Exg(x)|≤ Ex | f (x)−g(x)|≤ ε.

Next, write
Exg(x)−Eyg(y) =

〈

g,µp−µq
〉

H
= 0,

since MMD{F, p,q}= 0 implies µp = µq. Hence

|Ex f (x)−Ey( f (y))|≤ 2ε

for all f ∈C(X) and ε> 0, which implies p= q by Lemma 1.

While our result establishes the mapping µp is injective for universal kernels on compact domains,
this result can also be shown in more general cases. Fukumizu et al. (2008) introduces the notion
of characteristic kernels, these being kernels for which the mean map is injective. Fukumizu et al.
establish that Gaussian and Laplace kernels are characteristic on Rd , and thus that the associated
MMD is a metric on distributions for this domain. Sriperumbudur et al. (2008, 2010b) and Sripe-
rumbudur et al. (2011a) further explore the properties of characteristic kernels, providing a simple
condition to determine whether translation invariant kernels are characteristic, and investigating the
relation between universal and characteristic kernels on non-compact domains.

Given we are in an RKHS, we may easily obtain of the squared MMD,
∥
∥µp−µq

∥
∥
2
H
, in terms of

kernel functions, and a corresponding unbiased finite sample estimate.

Lemma 6 Given x and x′ independent random variables with distribution p, and y and y′ indepen-
dent random variables with distribution q, the squared populationMMD is

MMD2 [F, p,q] = Ex,x′
[

k(x,x′)
]

−2Ex,y [k(x,y)]+Ey,y′
[

k(y,y′)
]

,

where x′ is an independent copy of x with the same distribution, and y′ is an independent copy of y.
An unbiased empirical estimate is a sum of two U-statistics and a sample average,

MMD2u[F,X ,Y ] =
1

m(m−1)

m

∑
i=1

m

∑
j $=i
k(xi,x j)+

1
n(n−1)

n

∑
i=1

n

∑
j $=i
k(yi,y j)

−
2
mn

m

∑
i=1

n

∑
j=1

k(xi,y j). (3)

When m = n, a slightly simpler empirical estimate may be used. Let Z := (z1, . . . ,zm) be m i.i.d.
random variables, where z := (x,y)∼ p×q (i.e., x and y are independent). An unbiased estimate of
MMD2 is

MMD2u [F,X ,Y ] =
1

(m)(m−1)

m

∑
i$= j
h(zi,z j), (4)
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which is a one-sample U-statistic with

h(zi,z j) := k(xi,x j)+ k(yi,y j)− k(xi,y j)− k(x j,yi).

Proof Starting from the expression for MMD2[F, p,q] in Lemma 4,

MMD2[F, p,q] =
∥
∥µp−µq

∥
∥
2
H

= 〈µp,µp〉H+
〈

µq,µq
〉

H
−2
〈

µp,µq
〉

H

= Ex,x′
〈

φ(x),φ(x′)
〉

H
+Ey,y′

〈

φ(y),φ(y′)
〉

H
−2Ex,y 〈φ(x),φ(y)〉H ,

The proof is completed by applying 〈φ(x),φ(x′)〉H = k(x,x′); the empirical estimates follow straight-
forwardly, by replacing the population expectations with their corresponding U-statistics and sample
averages. This statistic is unbiased following Serfling (1980, Chapter 5).

Note that MMD2u may be negative, since it is an unbiased estimator of (MMD[F, p,q])2. The only
terms missing to ensure nonnegativity, however, are h(zi,zi), which were removed to remove spuri-
ous correlations between observations. Consequently we have the bound

MMD2u+
1

m(m−1)

m

∑
i=1

k(xi,xi)+ k(yi,yi)−2k(xi,yi)≥ 0.

Moreover, while the empirical statistic for m= n is an unbiased estimate of MMD2, it does not have
minimum variance, since we ignore the cross-terms k(xi,yi), of which there are O(n). From (3),
however, we see the minimum variance estimate is almost identical (Serfling, 1980, Section 5.1.4).

The biased statistic in (2) may also be easily computed following the above reasoning. Substi-
tuting the empirical estimates µX := 1

m ∑
m
i=1φ(xi) and µY := 1

n ∑
n
i=1φ(yi) of the feature space means

based on respective samples X and Y , we obtain

MMDb [F,X ,Y ] =

[

1
m2

m

∑
i, j=1

k(xi,x j)−
2
mn

m,n

∑
i, j=1

k(xi,y j)+
1
n2

n

∑
i, j=1

k(yi,y j)

] 1
2

. (5)

Note that the U-statistics of (3) have been replaced by V-statistics. Intuitively we expect the empir-
ical test statistic MMD[F,X ,Y ], whether biased or unbiased, to be small if p = q, and large if the
distributions are far apart. It costs O((m+n)2) time to compute both statistics.

2.3 Witness Function of the MMD for RKHSs

We define the witness function f ∗ to be the RKHS function attaining the supremum in (1), and
its empirical estimate f̂ ∗ to be the function attaining the supremum in (2). From the reasoning in
Lemma 4, it is clear that

f ∗(t) ∝
〈

φ(t),µp−µq
〉

H
= Ex [k(x, t)]−Ey [k(y, t)] ,

f̂ ∗(t) ∝ 〈φ(t),µX −µY 〉H = 1
m ∑

m
i=1 k(xi, t)− 1

n ∑
n
i=1 k(yi, t).

where we have defined µX = m−1∑m
i=1φ(xi), and µY by analogy. The result follows since the unit

vector v maximizing 〈v,x〉H in a Hilbert space is v= x/‖x‖H.
We illustrate the behavior of MMD in Figure 1 using a one-dimensional example. The data X

and Y were generated from distributions p and q with equal means and variances, with p Gaussian
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Figure 1: Illustration of the function maximizing the mean discrepancy in the case where a Gaussian
is being compared with a Laplace distribution. Both distributions have zero mean and unit
variance. The function f̂ ∗ that witnesses the MMD has been scaled for plotting purposes,
and was computed empirically on the basis of 2× 104 samples, using a Gaussian kernel
with σ= 0.5.

and q Laplacian. We chose F to be the unit ball in a Gaussian RKHS. The empirical estimate f̂ ∗
of the function f ∗ that witnesses the MMD—in other words, the function maximizing the mean
discrepancy in (1)—is smooth, negative where the Laplace density exceeds the Gaussian density (at
the center and tails), and positive where the Gaussian density is larger. The magnitude of f̂ ∗ is a
direct reflection of the amount by which one density exceeds the other, insofar as the smoothness
constraint permits it.

3. Background Material

We now present three background results. First, we introduce the terminology used in statistical
hypothesis testing. Second, we demonstrate via an example that even for tests which have asymp-
totically no error, we cannot guarantee performance at any fixed sample size without making as-
sumptions about the distributions. Third, we review some alternative statistics used in comparing
distributions, and the associated two-sample tests (see also Section 7 for an overview of additional
integral probability metrics).

3.1 Statistical Hypothesis Testing

Having described a metric on probability distributions (the MMD) based on distances between their
Hilbert space embeddings, and empirical estimates (biased and unbiased) of this metric, we address
the problem of determining whether the empirical MMD shows a statistically significant difference
between distributions. To this end, we briefly describe the framework of statistical hypothesis testing
as it applies in the present context, following Casella and Berger (2002, Chapter 8). Given i.i.d.
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samples X ∼ p of size m and Y ∼ q of size n, the statistical test, T(X ,Y ) : Xm×Xn 0→ {0,1} is used
to distinguish between the null hypothesis H0 : p = q and the alternative hypothesis HA : p $= q.
This is achieved by comparing the test statistic5 MMD[F,X ,Y ] with a particular threshold: if the
threshold is exceeded, then the test rejects the null hypothesis (bearing in mind that a zero population
MMD indicates p= q). The acceptance region of the test is thus defined as the set of real numbers
below the threshold. Since the test is based on finite samples, it is possible that an incorrect answer
will be returned. A Type I error is made when p = q is rejected based on the observed samples,
despite the null hypothesis having generated the data. Conversely, a Type II error occurs when
p = q is accepted despite the underlying distributions being different. The level α of a test is an
upper bound on the probability of a Type I error: this is a design parameter of the test which must
be set in advance, and is used to determine the threshold to which we compare the test statistic
(finding the test threshold for a given α is the topic of Sections 4 and 5). The power of a test
against a particular member of the alternative classHA (i.e., a specific (p,q) such that p $= q) is the
probability of wrongly accepting p = q in this instance. A consistent test achieves a level α, and a
Type II error of zero, in the large sample limit. We will see that the tests proposed in this paper are
consistent.

3.2 A Negative Result

Even if a test is consistent, it is not possible to distinguish distributions with high probability at a
given, fixed sample size (i.e., to provide guarantees on the Type II error), without prior assumptions
as to the nature of the difference between p and q. This is true regardless of the two-sample test
used. There are several ways to illustrate this, which each give insight into the kinds of differences
that might be undetectable for a given number of samples. The following example6 is one such
illustration.

Example 1 Assume we have a distribution p from which we have drawn m i.i.d. observations.
We construct a distribution q by drawing m2 i.i.d. observations from p, and defining a discrete
distribution over these m2 instances with probability m−2 each. It is easy to check that if we now
draw m observations from q, there is at least a

(m2
m
) m!
m2m > 1−e−1 > 0.63 probability that we thereby

obtain an m sample from p. Hence no test will be able to distinguish samples from p and q in this
case. We could make the probability of detection arbitrarily small by increasing the size of the
sample from which we construct q.

3.3 Previous Work

We next give a brief overview of some earlier approaches to the two sample problem for multivariate
data. Since our later experimental comparison is with respect to certain of these methods, we give
abbreviated algorithm names in italics where appropriate: these should be used as a key to the tables
in Section 8.

5. This may be biased or unbiased.
6. This is a variation of a construction for independence tests, which was suggested in a private communication by John
Langford.
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3.3.1 L2 DISTANCE BETWEEN PARZEN WINDOW ESTIMATES

The prior work closest to the current approach is the Parzen window-based statistic of Anderson
et al. (1994). We begin with a short overview of the Parzen window estimate and its properties
(Silverman, 1986), before proceeding to a comparison with the RKHS approach. We assume a
distribution p on Rd , which has an associated density function fp. The Parzen window estimate of
this density from an i.i.d. sample X of size m is

f̂ p(x) =
1
m

m

∑
i=1

κ(xi− x) , where κ satisfies
∫
X
κ(x)dx= 1 and κ(x)≥ 0.

We may rescale κ according to 1
hdm
κ
(

x
hm

)

for a bandwidth parameter hm. To simplify the discussion,
we use a single bandwidth hm+n for both f̂ p and f̂q. Assuming m/n is bounded away from zero and
infinity, consistency of the Parzen window estimates for fp and fq requires

lim
m,n→∞

hdm+n = 0 and lim
m,n→∞

(m+n)hdm+n = ∞. (6)

We now show the L2 distance between Parzen windows density estimates is a special case of the bi-
ased MMD in Equation (5). Denote by Dr(p,q) :=

∥
∥ fp− fq

∥
∥
r the Lr distance between the densities

fp and fq corresponding to the distributions p and q, respectively. For r = 1 the distance Dr(p,q) is
known as the Lévy distance (Feller, 1971), and for r = 2 we encounter a distance measure derived
from the Renyi entropy (Gokcay and Principe, 2002). Assume that f̂ p and f̂q are given as kernel
density estimates with kernel κ(x− x′), that is, f̂ p(x) = m−1∑m

i=1κ(xi− x) and f̂q(y) is defined by
analogy. In this case

D2( f̂ p, f̂q)2 =
∫ [ 1

m

m

∑
i=1

κ(xi− z)−
1
n

n

∑
i=1

κ(yi− z)

]2

dz

=
1
m2

m

∑
i, j=1

k(xi− x j)+
1
n2

n

∑
i, j=1

k(yi− y j)−
2
mn

m,n

∑
i, j=1

k(xi− y j),

where k(x−y) =
∫
κ(x− z)κ(y− z)dz. By its definition k(x−y) is an RKHS kernel, as it is an inner

product between κ(x− z) and κ(y− z) on the domain X.
We now describe the asymptotic performance of a two-sample test using the statisticD2( f̂ p, f̂q)2.

We consider the power of the test under local departures from the null hypothesis. Anderson et al.
(1994) define these to take the form

fq = fp+δg, (7)

where δ∈R, and g is a fixed, bounded, integrable function chosen to ensure that fq is a valid density
for sufficiently small |δ|. Anderson et al. consider two cases: the kernel bandwidth converging to
zero with increasing sample size, ensuring consistency of the Parzen window estimates of fp and
fq; and the case of a fixed bandwidth. In the former case, the minimum distance with which the test
can discriminate fp from fq is7 δ = (m+ n)−1/2h−d/2m+n . In the latter case, this minimum distance is
δ = (m+ n)−1/2, under the assumption that the Fourier transform of the kernel κ does not vanish

7. Formally, define sα as a threshold for the statistic D2
(

f̂ p, f̂q
)2, chosen to ensure the test has level α, and let δ =

(m+ n)−1/2h−d/2m+n c for some fixed c $= 0. When m,n → ∞ such that m/n is bounded away from 0 and ∞, and
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on an interval (Anderson et al., 1994, Section 2.4), which implies the kernel k is characteristic
(Sriperumbudur et al., 2010b). The power of the L2 test against local alternatives is greater when
the kernel is held fixed, since for any rate of decrease of hm+n with increasing sample size, δ will
decrease more slowly than for a fixed kernel.

An RKHS-based approach generalizes the L2 statistic in a number of important respects. First,
we may employ a much larger class of characteristic kernels that cannot be written as inner products
between Parzen windows: several examples are given by Steinwart (2001, Section 3) and Micchelli
et al. (2006, Section 3) (these kernels are universal, hence characteristic). We may further generalize
to kernels on structured objects such as strings and graphs (Schölkopf et al., 2004), as done in our
experiments (Section 8). Second, even when the kernel may be written as an inner product of
Parzen windows on Rd , the D22 statistic with fixed bandwidth no longer converges to an L2 distance
between probability density functions, hence it is more natural to define the statistic as an integral
probability metric for a particular RKHS, as in Definition 2. Indeed, in our experiments, we obtain
good performance in experimental settings where the dimensionality greatly exceeds the sample
size, and density estimates would perform very poorly8 (for instance the Gaussian toy example
in Figure 5B, for which performance actually improves when the dimensionality increases; and the
microarray data sets in Table 1). This suggests it is not necessary to solve the more difficult problem
of density estimation in high dimensions to do two-sample testing.

Finally, the kernel approach leads us to establish consistency against a larger class of local
alternatives to the null hypothesis than that considered by Anderson et al. In Theorem 13, we prove
consistency against a class of alternatives encoded in terms of the mean embeddings of p and q,
which applies to any domain on which RKHS kernels may be defined, and not only densities on Rd .
This more general approach also has interesting consequences for distributions on Rd : for instance,
a local departure from H0 occurs when p and q differ at increasing frequencies in their respective
characteristic functions. This class of local alternatives cannot be expressed in the form δg for fixed
g, as in (7). We discuss this issue further in Section 5.

3.3.2 MMD FOR MULTINOMIALS

Assume a finite domain X := {1, . . . ,d}, and define the random variables x and y on X such that
pi := P(x= i) and q j := P(y= j). We embed x into an RKHSH via the feature mapping φ(x) := ex,
where es is the unit vector in Rd taking value 1 in dimension s, and zero in the remaining entries.
The kernel is the usual inner product on Rd . In this case,

MMD2[F, p,q] = ‖p−q‖2
Rd =

d

∑
i=1

(pi−qi)2 . (8)

Harchaoui et al. (2008, Section 1, long version) note that this L2 statistic may not be the best choice
for finite domains, citing a result of Lehmann and Romano (2005, Theorem 14.3.2) that Pearson’s

assuming conditions (6), the limit

π(c) := lim
(m+n)→∞

PrHA

(

D2
(

f̂ p, f̂q
)2

> sα
)

is well-defined, and satisfies α< π(c)< 1 for 0< |c|< ∞, and π(c)→ 1 as c→ ∞.
8. The L2 error of a kernel density estimate converges asO(n−4/(4+d))when the optimal bandwidth is used (Wasserman,
2006, Section 6.5).
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Chi-squared statistic is optimal for the problem of goodness of fit testing for multinomials.9 It would
be of interest to establish whether an analogous result holds for two-sample testing in a wider class
of RKHS feature spaces.

3.3.3 FURTHER MULTIVARIATE TWO-SAMPLE TESTS

Biau and Gyorfi (2005) (Biau) use as their test statistic the L1 distance between discretized esti-
mates of the probabilities, where the partitioning is refined as the sample size increases. This space
partitioning approach becomes difficult or impossible for high dimensional problems, since there
are too few points per bin. For this reason, we use this test only for low-dimensional problems in
our experiments.

A generalisation of the Wald-Wolfowitz runs test to the multivariate domain was proposed and
analysed by Friedman and Rafsky (1979) and Henze and Penrose (1999) (FR Wolf), and involves
counting the number of edges in the minimum spanning tree over the aggregated data that connect
points in X to points in Y . The resulting test relies on the asymptotic normality of the test statistic,
and is not distribution-free under the null hypothesis for finite samples (the test threshold depends
on p, as with our asymptotic test in Section 5; by contrast, our tests in Section 4 are distribution-
free). The computational cost of this method using Kruskal’s algorithm is O((m+n)2 log(m+n)),
although more modern methods improve on the log(m+ n) term: see Chazelle (2000) for details.
Friedman and Rafsky (1979) claim that calculating the matrix of distances, which costsO((m+n)2),
dominates their computing time; we return to this point in our experiments (Section 8). Two possible
generalisations of the Kolmogorov-Smirnov test to the multivariate case were studied by Bickel
(1969) and Friedman and Rafsky (1979). The approach of Friedman and Rafsky (FR Smirnov) in
this case again requires a minimal spanning tree, and has a similar cost to their multivariate runs
test.

A more recent multivariate test was introduced by Rosenbaum (2005). This entails computing
the minimum distance non-bipartite matching over the aggregate data, and using the number of pairs
containing a sample from both X and Y as a test statistic. The resulting statistic is distribution-free
under the null hypothesis at finite sample sizes, in which respect it is superior to the Friedman-
Rafsky test; on the other hand, it costs O((m+ n)3) to compute. Another distribution-free test
(Hall) was proposed by Hall and Tajvidi (2002): for each point from p, it requires computing the
closest points in the aggregated data, and counting how many of these are from q (the procedure is
repeated for each point from q with respect to points from p). As we shall see in our experimental
comparisons, the test statistic is costly to compute; Hall and Tajvidi consider only tens of points in
their experiments.

4. Tests Based on Uniform Convergence Bounds

In this section, we introduce two tests for the two-sample problem that have exact performance
guarantees at finite sample sizes, based on uniform convergence bounds. The first, in Section 4.1,
uses the McDiarmid (1989) bound on the biased MMD statistic, and the second, in Section 4.2, uses
a Hoeffding (1963) bound for the unbiased statistic.

9. A goodness of fit test determines whether a sample from p is drawn from a known target multinomial q. Pearson’s
Chi-squared statistic weights each term in the sum (8) by its corresponding q−1i .

734



A KERNEL TWO-SAMPLE TEST

4.1 Bound on the Biased Statistic and Test

We establish two properties of the MMD, from which we derive a hypothesis test. First, we show
that regardless of whether or not p= q, the empirical MMD converges in probability at rate O((m+

n)− 1
2 ) to its population value. This shows the consistency of statistical tests based on the MMD.

Second, we give probabilistic bounds for large deviations of the empirical MMD in the case p= q.
These bounds lead directly to a threshold for our first hypothesis test. We begin by establishing the
convergence of MMDb[F,X ,Y ] to MMD[F, p,q]. The following theorem is proved in A.2.

Theorem 7 Let p,q,X ,Y be defined as in Problem 1, and assume 0≤ k(x,y)≤ K. Then

PrX ,Y
{

|MMDb[F,X ,Y ]−MMD[F, p,q]|> 2
(

(K/m)
1
2 +(K/n)

1
2

)

+ ε
}

≤ 2exp
(

−ε2mn
2K(m+n)

)

,

where PrX ,Y denotes the probability over the m-sample X and n-sample Y .

Our next goal is to refine this result in a way that allows us to define a test threshold under the null
hypothesis p= q. Under this circumstance, the constants in the exponent are slightly improved. The
following theorem is proved in Appendix A.3.

Theorem 8 Under the conditions of Theorem 7 where additionally p= q and m= n,

MMDb[F,X ,Y ]≤ m− 1
2

√

2Ex,x′ [k(x,x)− k(x,x′)]
︸ ︷︷ ︸

B1(F,p)

+ ε≤ (2K/m)1/2
︸ ︷︷ ︸

B2(F,p)

+ ε,

both with probability at least 1− exp
(

− ε2m
4K

)

.

In this theorem, we illustrate two possible bounds B1(F, p) and B2(F, p) on the bias in the empirical
estimate (5). The first inequality is interesting inasmuch as it provides a link between the bias bound
B1(F, p) and kernel size (for instance, if we were to use a Gaussian kernel with large σ, then k(x,x)
and k(x,x′) would likely be close, and the bias small). In the context of testing, however, we would
need to provide an additional bound to show convergence of an empirical estimate of B1(F, p) to its
population equivalent. Thus, in the following test for p = q based on Theorem 8, we use B2(F, p)
to bound the bias.10

Corollary 9 A hypothesis test of level α for the null hypothesis p= q, that is, forMMD[F, p,q] = 0,
has the acceptance regionMMDb[F,X ,Y ]<

√

2K/m
(

1+
√

2logα−1
)

.

We emphasize that this test is distribution-free: the test threshold does not depend on the particular
distribution that generated the sample. Theorem 7 guarantees the consistency of the test against fixed
alternatives, and that the Type II error probability decreases to zero at rateO

(

m−1/2), assumingm=
n. To put this convergence rate in perspective, consider a test of whether two normal distributions
have equal means, given they have unknown but equal variance (Casella and Berger, 2002, Exercise
8.41). In this case, the test statistic has a Student-t distribution with n+m−2 degrees of freedom,
and its Type II error probability converges at the same rate as our test.

It is worth noting that bounds may be obtained for the deviation between population mean
embeddings µp and the empirical embeddings µX in a completely analogous fashion. The proof

10. Note that we use a tighter bias bound than Gretton et al. (2007a).
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requires symmetrization by means of a ghost sample, that is, a second set of observations drawn
from the same distribution. While not the focus of the present paper, such bounds can be used to
perform inference based on moment matching (Altun and Smola, 2006; Dudı́k and Schapire, 2006;
Dudı́k et al., 2004).

4.2 Bound on the Unbiased Statistic and Test

The previous bounds are of interest since the proof strategy can be used for general function classes
with well behaved Rademacher averages (see Sriperumbudur et al., 2010a). When F is the unit ball
in an RKHS, however, we may very easily define a test via a convergence bound on the unbiased
statistic MMD2u in Lemma 4. We base our test on the following theorem, which is a straightforward
application of the large deviation bound on U-statistics of Hoeffding (1963, p. 25).

Theorem 10 Assume 0≤ k(xi,x j)≤ K, from which it follows −2K ≤ h(zi,z j)≤ 2K. Then

PrX ,Y
{

MMD2u(F,X ,Y )−MMD2(F, p,q)> t
}

≤ exp
(
−t2m2
8K2

)

where m2 := 1m/22 (the same bound applies for deviations of −t and below).

A consistent statistical test for p= q using MMD2u is then obtained.

Corollary 11 A hypothesis test of level α for the null hypothesis p = q has the acceptance region
MMD2u < (4K/

√
m)
√

log(α−1).

This test is distribution-free. We now compare the thresholds of the above test with that in Corollary
9. We note first that the threshold for the biased statistic applies to an estimate of MMD, whereas
that for the unbiased statistic is for an estimate of MMD2. Squaring the former threshold to make
the two quantities comparable, the squared threshold in Corollary 9 decreases as m−1, whereas the
threshold in Corollary 11 decreases as m−1/2. Thus for sufficiently large11 m, the McDiarmid-based
threshold will be lower (and the associated test statistic is in any case biased upwards), and its Type
II error will be better for a given Type I bound. This is confirmed in our Section 8 experiments.
Note, however, that the rate of convergence of the squared, biased MMD estimate to its population
value remains at 1/

√
m (bearing in mind we take the square of a biased estimate, where the bias

term decays as 1/
√
m).

Finally, we note that the bounds we obtained in this section and the last are rather conservative
for a number of reasons: first, they do not take the actual distributions into account. In fact, they are
finite sample size, distribution-free bounds that hold even in the worst case scenario. The bounds
could be tightened using localization, moments of the distribution, etc.: see, for example, Bousquet
et al. (2005) and de la Peña and Giné (1999). Any such improvements could be plugged straight
into Theorem 19. Second, in computing bounds rather than trying to characterize the distribution of
MMD(F,X ,Y ) explicitly, we force our test to be conservative by design. In the following we aim for
an exact characterization of the asymptotic distribution of MMD(F,X ,Y ) instead of a bound. While
this will not satisfy the uniform convergence requirements, it leads to superior tests in practice.

11. In the case of α= 0.05, this is m≥ 12.
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5. Test Based on the Asymptotic Distribution of the Unbiased Statistic

We propose a third test, which is based on the asymptotic distribution of the unbiased estimate of
MMD2 in Lemma 6. This test uses the asymptotic distribution of MMD2u underH0, which follows
from results of Anderson et al. (1994, Appendix) and Serfling (1980, Section 5.5.2): see Appendix
B.1 for the proof.

Theorem 12 Let k̃(xi,x j) be the kernel between feature space mappings from which the mean em-
bedding of p has been subtracted,

k̃(xi,x j) :=
〈

φ(xi)−µp,φ(x j)−µp
〉

H

= k(xi,x j)−Exk(xi,x)−Exk(x,x j)+Ex,x′k(x,x′), (9)

where x′ is an independent copy of x drawn from p. Assume k̃ ∈ L2 (X×X, p× p) (i.e., the centred
kernel is square integrable, which is true for all p when the kernel is bounded), and that for t =
m+n, limm,n→∞m/t→ ρx and limm,n→∞ n/t→ ρy := (1−ρx) for fixed 0< ρx < 1. Then underH0,
MMD2u converges in distribution according to

tMMD2u[F,X ,Y ]→D

∞

∑
l=1

λl
[

(ρ−1/2x al−ρ−1/2y bl)2− (ρxρy)
−1
]

, (10)

where al ∼ N(0,1) and bl ∼ N(0,1) are infinite sequences of independent Gaussian random vari-
ables, and the λi are eigenvalues of

∫
X
k̃(x,x′)ψi(x)dp(x) = λiψi(x′).

We illustrate the MMD density under both the null and alternative hypotheses by approximating it
empirically for p= q and p $= q. Results are plotted in Figure 2.

Our goal is to determine whether the empirical test statistic MMD2u is so large as to be outside
the 1−α quantile of the null distribution in (10), which gives a level α test. Consistency of this test
against local departures from the null hypothesis is provided by the following theorem, proved in
Appendix B.2.

Theorem 13 Define ρx, ρy, and t as in Theorem 12, and write µq = µp+gt , where gt ∈H is chosen
such that µp+gt remains a valid mean embedding, and ‖gt‖H is made to approach zero as t→∞ to
describe local departures from the null hypothesis. Then ‖gt‖H = ct−1/2 is the minimum distance
between µp and µq distinguishable by the test.

An example of a local departure from the null hypothesis is described earlier in the discussion of
the L2 distance between Parzen window estimates (Section 3.3.1). The class of local alternatives
considered in Theorem 13 is more general, however: for instance, Sriperumbudur et al. (2010b,
Section 4) and Harchaoui et al. (2008, Section 5, long version) give examples of classes of pertur-
bations gt with decreasing RKHS norm. These perturbations have the property that p differs from q
at increasing frequencies, rather than simply with decreasing amplitude.

One way to estimate the 1−α quantile of the null distribution is using the bootstrap on the
aggregated data, following Arcones and Giné (1992). Alternatively, we may approximate the null
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Figure 2: Left: Empirical distribution of the MMD under H0, with p and q both Gaussians with
unit standard deviation, using 50 samples from each. Right: Empirical distribution of
the MMD under HA, with p a Laplace distribution with unit standard deviation, and q
a Laplace distribution with standard deviation 3

√
2, using 100 samples from each. In

both cases, the histograms were obtained by computing 2000 independent instances of
the MMD.

distribution by fitting Pearson curves to its first four moments (Johnson et al., 1994, Section 18.8).
Taking advantage of the degeneracy of the U-statistic, we obtain for m= n

E
(
[

MMD2u
]2
)

=
2

m(m−1)
Ez,z′

[

h2(z,z′)
]

and

E
(
[

MMD2u
]3
)

=
8(m−2)
m2(m−1)2

Ez,z′
[

h(z,z′)Ez′′
(

h(z,z′′)h(z′,z′′)
)]

+O(m−4) (11)

(see Appendix B.3), where h(z,z′) is defined in Lemma 6, z= (x,y)∼ p×q where x and y are inde-
pendent, and z′,z′′ are independent copies of z. The fourth moment E

(
[

MMD2u
]4
)

is not computed,
since it is both very small, O(m−4), and expensive to calculate, O(m4). Instead, we replace the kur-
tosis12 with a lower bound due to Wilkins (1944), kurt

(

MMD2u
)

≥
(

skew
(

MMD2u
))2

+1. In Figure
3, we illustrate the Pearson curve fit to the null distribution: the fit is good in the upper quantiles of
the distribution, where the test threshold is computed. Finally, we note that two alternative empiri-
cal estimates of the null distribution have more recently been proposed by Gretton et al. (2009): a
consistent estimate, based on an empirical computation of the eigenvalues λl in (10); and an alter-
native Gamma approximation to the null distribution, which has a smaller computational cost but is
generally less accurate. Further detail and experimental comparisons are given by Gretton et al.

12. The kurtosis is defined in terms of the fourth and second moments as kurt
(

MMD2u
)

=
E
(

[MMD2u]
4
)

[

E
(

[MMD2u]
2
)]2 −3.
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Figure 3: Illustration of the empirical CDF of the MMD and a Pearson curve fit. Both p and q were
Gaussian with zero mean and unit variance, and 50 samples were drawn from each. The
empirical CDF was computed on the basis of 1000 randomly generated MMD values. To
ensure the quality of fit was determined only by the accuracy of the Pearson approxima-
tion, the moments used for the Pearson curves were also computed on the basis of these
1000 samples. The MMD used a Gaussian kernel with σ= 0.5.

6. A Linear Time Statistic and Test

The MMD-based tests are already more efficient than the O(m2 logm) and O(m3) tests described in
Section 3.3.3 (assuming m = n for conciseness). It is still desirable, however, to obtain O(m) tests
which do not sacrifice too much statistical power. Moreover, we would like to obtain tests which
have O(1) storage requirements for computing the test statistic, in order to apply the test to data
streams. We now describe how to achieve this by computing the test statistic using a subsampling
of the terms in the sum. The empirical estimate in this case is obtained by drawing pairs from X and
Y respectively without replacement.

Lemma 14 Define m2 := 1m/22, assume m= n, and define h(z1,z2) as in Lemma 6. The estimator

MMD2l [F,X ,Y ] :=
1
m2

m2

∑
i=1

h((x2i−1,y2i−1),(x2i,y2i))

can be computed in linear time, and is an unbiased estimate ofMMD2[F, p,q].

While it is expected that MMD2l has higher variance than MMD
2
u (as we will see explicitly later), it

is computationally much more appealing. In particular, the statistic can be used in stream computa-
tions with need for only O(1) memory, whereas MMD2u requires O(m) storage and O(m2) time to
compute the kernel h on all interacting pairs.

Since MMD2l is just the average over a set of random variables, Hoeffding’s bound and the cen-
tral limit theorem readily allow us to provide both uniform convergence and asymptotic statements
with little effort. The first follows directly from Hoeffding (1963, Theorem 2).

739



GRETTON, BORGWARDT, RASCH, SCHÖLKOPF AND SMOLA

Theorem 15 Assume 0≤ k(xi,x j)≤ K. Then

PrX ,Y
{

MMD2l (F,X ,Y )−MMD2(F, p,q)> t
}

≤ exp
(
−t2m2
8K2

)

where m2 := 1m/22 (the same bound applies for deviations of −t and below).

Note that the bound of Theorem 10 is identical to that of Theorem 15, which shows the former is
rather loose. Next we invoke the central limit theorem (e.g., Serfling, 1980, Section 1.9).

Corollary 16 Assume 0 < E
(

h2
)

< ∞. Then MMD2l converges in distribution to a Gaussian ac-
cording to

m
1
2
(

MMD2l −MMD2 [F, p,q]
) D→N

(

0,σ2l
)

,

where σ2l = 2
[

Ez,z′h2(z,z′)− [Ez,z′h(z,z′)]2
]

, where we use the shorthand Ez,z′ := Ez,z′∼p×q.

The factor of 2 arises since we are averaging over only 1m/22 observations. It is instructive to
compare this asymptotic distribution with that of the quadratic time statistic MMD2u under HA,
when m= n. In this case, MMD2u converges in distribution to a Gaussian according to

m
1
2
(

MMD2u−MMD2 [F, p,q]
) D→N

(

0,σ2u
)

,

where σ2u = 4
(

Ez
[

(Ez′h(z,z′))2
]

− [Ez,z′(h(z,z′))]2
)

(Serfling, 1980, Section 5.5). Thus for MMD2u,
the asymptotic variance is (up to scaling) the variance of Ez′ [h(z,z′)], whereas for MMD2l it is
Varz,z′ [h(z,z′)].

We end by noting another potential approach to reducing the cost of computing an empirical
MMD estimate, by using a low rank approximation to the Gram matrix (Fine and Scheinberg, 2001;
Williams and Seeger, 2001; Smola and Schölkopf, 2000). An incremental computation of the MMD
based on such a low rank approximation would require O(md) storage and O(md) computation
(where d is the rank of the approximate Gram matrix which is used to factorize both matrices)
rather than O(m) storage and O(m2) operations. That said, it remains to be determined what effect
this approximation would have on the distribution of the test statistic under H0, and hence on the
test threshold.

7. Related Metrics and Learning Problems

The present section discusses a number of topics related to the maximum mean discrepancy, includ-
ing metrics on probability distributions using non-RKHS function classes (Sections 7.1 and 7.2), the
relation with set kernels and kernels on probability measures (Section 7.3), an extension to kernel
measures of independence (Section 7.4), a two-sample statistic using a distribution over witness
functions (Section 7.5), and a connection to outlier detection (Section 7.6).

7.1 The MMD in Other Function Classes

The definition of the maximum mean discrepancy is by no means limited to RKHS. In fact, any
function class F that comes with uniform convergence guarantees and is sufficiently rich will enjoy
the above properties. Below, we consider the case where the scaled functions in F are dense inC(X)
(which is useful for instance when the functions in F are norm constrained).
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Definition 17 Let F be a subset of some vector space. The star S[F] of a set F is

S[F] := {α f | f ∈ F and α ∈ [0,∞)}

Theorem 18 Denote by F the subset of some vector space of functions from X to R for which
S[F]∩C(X) is dense in C(X) with respect to the L∞(X) norm. Then MMD [F, p,q] = 0 if and only
if p= q, andMMD[F, p,q] is a metric on the space of probability distributions. Whenever the star
of F is not dense, theMMD defines a pseudo-metric space.

Proof It is clear that p = q implies MMD [F, p,q] = 0. The proof of the converse is very similar
to that of Theorem 5. Define H := S(F)∩C(X). Since by assumption H is dense in C(X), there
exists an h∗ ∈H satisfying ‖h∗ − f‖∞ < ε for all f ∈C(X). Write h∗ := α∗g∗, where g∗ ∈ F. By
assumption, Exg∗ −Eyg∗ = 0. Thus we have the bound

|Ex f (x)−Ey( f (y))| ≤ |Ex f (x)−Exh∗(x)|+α∗ |Exg∗(x)−Eyg∗(y)|+ |Eyh∗(y)−Ey f (y)|
≤ 2ε

for all f ∈C(X) and ε> 0, which implies p= q by Lemma 1.
To show MMD [F, p,q] is a metric, it remains to prove the triangle inequality. We have

sup
f∈F

∣
∣Ep f −Eq f

∣
∣+ sup

g∈F

∣
∣Eqg−Erg

∣
∣≥ sup

f∈F

[∣
∣Ep f −Eq f

∣
∣+
∣
∣Eq f −Er

∣
∣
]

≥ sup
f∈F

|Ep f −Er f | .

Note that any uniform convergence statements in terms of F allow us immediately to characterize
an estimator of MMD(F, p,q) explicitly. The following result shows how (this reasoning is also the
basis for the proofs in Section 4, although here we do not restrict ourselves to an RKHS).
Theorem 19 Let δ ∈ (0,1) be a confidence level and assume that for some ε(δ,m,F) the following
holds for samples {x1, . . . ,xm} drawn from p:

PrX

{

sup
f∈F

∣
∣
∣
∣
∣
Ex[ f ]−

1
m

m

∑
i=1

f (xi)

∣
∣
∣
∣
∣
> ε(δ,m,F)

}

≤ δ.

In this case we have that,

PrX ,Y {|MMD[F, p,q]−MMDb[F,X ,Y ]|> 2ε(δ/2,m,F)}≤ δ,

whereMMDb[F,X ,Y ] is taken from Definition 2.

Proof The proof works simply by using convexity and suprema as follows:

|MMD[F, p,q]−MMDb[F,X ,Y ]|

=

∣
∣
∣
∣
∣
sup
f∈F

|Ex[ f ]−Ey[ f ]|− sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

f (xi)−
1
n

n

∑
i=1

f (yi)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤sup
f∈F

∣
∣
∣
∣
∣
Ex[ f ]−Ey[ f ]−

1
m

m

∑
i=1

f (xi)+
1
n

n

∑
i=1

f (yi)

∣
∣
∣
∣
∣

≤sup
f∈F

∣
∣
∣
∣
∣
Ex[ f ]−

1
m

m

∑
i=1

f (xi)

∣
∣
∣
∣
∣
+ sup

f∈F

∣
∣
∣
∣
∣
Ey[ f ]−

1
n

n

∑
i=1

f (yi)

∣
∣
∣
∣
∣
.
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Bounding each of the two terms via a uniform convergence bound proves the claim.

This shows that MMDb[F,X ,Y ] can be used to estimate MMD[F, p,q], and that the quantity is
asymptotically unbiased.

Remark 20 (Reduction to Binary Classification) As noted by Friedman (2003), any classifier
which maps a set of observations {zi, li} with zi ∈ X on some domain X and labels li ∈ {±1}, for
which uniform convergence bounds exist on the convergence of the empirical loss to the expected
loss, can be used to obtain a similarity measure on distributions—simply assign li = 1 if zi ∈ X and
li = −1 for zi ∈ Y and find a classifier which is able to separate the two sets. In this case maxi-
mization of Ex[ f ]−Ey[ f ] is achieved by ensuring that as many z ∼ p(z) as possible correspond to
f (z) = 1, whereas for as many z ∼ q(z) as possible we have f (z) = −1. Consequently neural net-
works, decision trees, boosted classifiers and other objects for which uniform convergence bounds
can be obtained can be used for the purpose of distribution comparison. Metrics and divergences
on distributions can also be defined explicitly starting from classifiers. For instance, Sriperumbudur
et al. (2009, Section 2) show the MMD minimizes the expected risk of a classifier with linear loss
on the samples X and Y , and Ben-David et al. (2007, Section 4) use the error of a hyperplane clas-
sifier to approximate theA-distance between distributions (Kifer et al., 2004). Reid and Williamson
(2011) provide further discussion and examples.

7.2 Examples of Non-RKHS Function Classes

Other function spaces F inspired by the statistics literature can also be considered in defining the
MMD. Indeed, Lemma 1 defines an MMD with F the space of bounded continuous real-valued
functions, which is a Banach space with the supremum norm (Dudley, 2002, p. 158). We now
describe two further metrics on the space of probability distributions, namely the Kolmogorov-
Smirnov and Earth Mover’s distances, and their associated function classes.

7.2.1 KOLMOGOROV-SMIRNOV STATISTIC

The Kolmogorov-Smirnov (K-S) test is probably one of the most famous two-sample tests in statis-
tics. It works for random variables x ∈ R (or any other set for which we can establish a total order).
Denote by Fp(x) the cumulative distribution function of p and let FX(x) be its empirical counterpart,

Fp(z) := Pr{x≤ z for x∼ p} and FX(z) :=
1
|X |

m

∑
i=1
1z≤xi .

It is clear that Fp captures the properties of p. The Kolmogorov metric is simply the L∞ distance
‖FX −FY‖∞ for two sets of observations X andY . Smirnov (1939) showed that for p= q the limiting
distribution of the empirical cumulative distribution functions satisfies

lim
m,n→∞

PrX ,Y
{
[ mn
m+n
] 1
2 ‖FX −FY‖∞ > x

}

= 2
∞

∑
j=1

(−1) j−1e−2 j
2x2 for x≥ 0, (12)

which is distribution independent. This allows for an efficient characterization of the distribution
under the null hypothesisH0. Efficient numerical approximations to (12) can be found in numerical
analysis handbooks (Press et al., 1994). The distribution under the alternative p $= q, however, is
unknown.
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The Kolmogorov metric is, in fact, a special instance of MMD[F, p,q] for a certain Banach
space (Müller, 1997, Theorem 5.2).

Proposition 21 Let F be the class of functions X → R of bounded variation13 1. Then
MMD[F, p,q] =

∥
∥Fp−Fq

∥
∥
∞.

7.2.2 EARTH-MOVER DISTANCES

Another class of distance measures on distributions that may be written as maximum mean discrep-
ancies are the Earth-Mover distances. We assume (X,ρ) is a separable metric space, and define
P1(X) to be the space of probability measures on X for which

∫
ρ(x,z)dp(z)< ∞ for all p ∈ P1(X)

and x ∈ X (these are the probability measures for which Ex |x|< ∞ when X= R). We then have the
following definition (Dudley, 2002, p. 420).

Definition 22 (Monge-Wasserstein metric) Let p∈P1(X) and q∈P1(X). TheMonge-Wasserstein
distance is defined as

W (p,q) := inf
µ∈M(p,q)

∫
ρ(x,y)dµ(x,y),

where M(p,q) is the set of joint distributions on X×X with marginals p and q.

We may interpret this as the cost (as represented by the metric ρ(x,y)) of transferring mass dis-
tributed according to p to a distribution in accordance with q, where µ is the movement schedule.
In general, a large variety of costs of moving mass from x to y can be used, such as psycho-optical
similarity measures in image retrieval (Rubner et al., 2000). The following theorem provides the
link with the MMD (Dudley, 2002, Theorem 11.8.2).

Theorem 23 (Kantorovich-Rubinstein) Let p ∈ P1(X) and q ∈ P1(X), where X is separable.
Then a metric on P1(S) is defined as

W (p,q) = ‖p−q‖∗L = sup
‖ f‖L≤1

∣
∣
∣
∣

∫
f d(p−q)

∣
∣
∣
∣
,

where
‖ f‖L := sup

x $=y∈X

| f (x)− f (y)|
ρ(x,y)

is the Lipschitz seminorm14 for real valued f on X.

A simple example of this theorem is as follows (Dudley, 2002, Exercise 1, p. 425).

Example 2 Let X = R with associated ρ(x,y) = |x− y|. Then given f such that ‖ f‖L ≤ 1, we use
integration by parts to obtain

∣
∣
∣
∣

∫
f d(p−q)

∣
∣
∣
∣
=

∣
∣
∣
∣

∫
(Fp−Fq)(x) f ′(x)dx

∣
∣
∣
∣
≤

∫
∣
∣(Fp−Fq)

∣
∣(x)dx,

13. A function f defined on [a,b] is of bounded variation C if the total variation is bounded by C, that is, the supremum
over all sums

∑
1≤i≤n

| f (xi)− f (xi−1)|,

where a≤ x0 ≤ . . .≤ xn ≤ b (Dudley, 2002, p. 184).
14. A seminorm satisfies the requirements of a norm besides ‖x‖= 0 only for x= 0 (Dudley, 2002, p. 156).
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where the maximum is attained for the function g with derivative g′ = 21Fp>Fq − 1 (and for which
‖g‖L = 1). We recover the L1 distance between distribution functions,

W (P,Q) =
∫
∣
∣(Fp−Fq)

∣
∣(x)dx.

One may further generalize Theorem 23 to the set of all laws P(X) on arbitrary metric spaces X
(Dudley, 2002, Proposition 11.3.2).

Definition 24 (Bounded Lipschitz metric) Let p and q be laws on a metric space X. Then

β(p,q) := sup
‖ f‖BL≤1

∣
∣
∣
∣

∫
f d(p−q)

∣
∣
∣
∣

is a metric on P(X), where f belongs to the space of bounded Lipschitz functions with norm

‖ f‖BL := ‖ f‖L+‖ f‖∞ .

Empirical estimates of the Monge-Wasserstein and Bounded Lipschitz metrics on Rd are provided
by Sriperumbudur et al. (2010a).

7.3 Set Kernels and Kernels Between Probability Measures

Gärtner et al. (2002) propose kernels for Multi-Instance Classification (MIC) which deal with sets of
observations. The purpose of MIC is to find estimators which are able to infer that if some elements
in a set satisfy a certain property, then the set of observations also has this property. For instance,
a dish of mushrooms is poisonous if it contains any poisonous mushrooms. Likewise a keyring
will open a door if it contains a suitable key. One is only given the ensemble, however, rather than
information about which instance of the set satisfies the property.

The solution proposed by Gärtner et al. (2002) is to map the ensembles Xi := {xi1, . . . ,ximi},
where i is the ensemble index and mi the number of elements in the ith ensemble, jointly into
feature space via

φ(Xi) :=
1
mi

mi

∑
j=1

φ(xi j),

and to use the latter as the basis for a kernel method. This simple approach affords rather good
performance. With the benefit of hindsight, it is now understandable why the kernel

k(Xi,Xj) =
1

mimj

mi,mj

∑
u,v

k(xiu,x jv)

produces useful results: it is simply the kernel between the empirical means in feature space
〈

µ(Xi),µ(Xj)
〉

(Hein et al., 2004, Equation 4). Jebara and Kondor (2003) later extended this set-
ting by smoothing the empirical densities before computing inner products.

Note, however, that the empirical mean embedding µX may not be the best statistic to use for
MIC: we are only interested in determining whether some instances in the domain have the desired
property, rather than making a statement regarding the distribution over all instances. Taking this
into account leads to an improved algorithm (Andrews et al., 2003).
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7.4 Kernel Measures of Independence

We next demonstrate the application of MMD in determining whether two random variables x and
y are independent. In other words, assume that pairs of random variables (xi,yi) are jointly drawn
from some distribution p := pxy. We wish to determine whether this distribution factorizes; that
is, whether q := px× py is the same as p. One application of such an independence measure is in
independent component analysis (Comon, 1994), where the goal is to find a linear mapping of the
observations xi to obtain mutually independent outputs. Kernel methods were employed to solve
this problem by Bach and Jordan (2002), Gretton et al. (2005a,b), and Shen et al. (2009). In the
following we re-derive one of the above kernel independence measures as a distance between mean
embeddings (see also Smola et al., 2007).

We begin by defining

µ[pxy] := Ex,y [v((x,y), ·)]
and µ[px× py] := ExEy [v((x,y), ·)] .

Here we assumeV is an RKHS overX×Ywith kernel v((x,y),(x′,y′)). If x and y are dependent, then
µ[pxy] $= µ[px× py]. Hence we may use ∆(V, pxy, px× py) := ‖µ[pxy]−µ[px× py]‖V as a measure of
dependence.

Now assume that v((x,y),(x′,y′)) = k(x,x′)l(y,y′), that is, the RKHS V is a direct productH⊗G

of RKHSs on X and Y. In this case it is easy to see that

∆2 (V, pxy, px× py) = ‖Exy [k(x, ·)l(y, ·)]−Ex [k(x, ·)]Ey [l(y, ·)]‖2V
= ExyEx′y′

[

k(x,x′)l(y,y′)
]

−2ExEyEx′y′
[

k(x,x′)l(y,y′)
]

+ExEyEx′Ey′
[

k(x,x′)l(y,y′)
]

.

The latter is also the squared Hilbert-Schmidt norm of the cross-covariance operator between RKHSs
(Gretton et al., 2005a): for characteristic kernels, this is zero if and only if x and y are independent.

Theorem 25 Denote by Cxy the covariance operator between random variables x and y, drawn
jointly from pxy, where the functions on X and Y are the reproducing kernel Hilbert spaces F and G
respectively. Then the Hilbert-Schmidt norm ‖Cxy‖HS equals ∆(V, pxy, px× py).

Empirical estimates of this quantity are as follows:

Theorem 26 Denote by K and L the kernel matrices on X and Y respectively, and by H = I−1/m
the projection matrix onto the subspace orthogonal to the vector with all entries set to 1 (where 1 is
an m×m matrix of ones). Then m−2 trHKHL is an estimate of ∆2 with bias O(m−1). The deviation
from ∆2 is OP(m−1/2).

Gretton et al. (2005a) provide explicit constants. In certain circumstances, including in the case of
RKHSs with Gaussian kernels, the empirical ∆2 may also be interpreted in terms of a smoothed
difference between the joint empirical characteristic function (ECF) and the product of the marginal
ECFs (Feuerverger, 1993; Kankainen, 1995). This interpretation does not hold in all cases, however,
for example, for kernels on strings, graphs, and other structured spaces. An illustration of the wit-
ness function f ∗ ∈ V from Section 2.3 is provided in Figure 4, for the case of dependence detection.
This is a smooth function which has large magnitude where the joint density is most different from
the product of the marginals.
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Figure 4: Illustration of the function maximizing the mean discrepancy when MMD is used as a
measure of dependence. A sample from dependent random variables x and y is shown
in black, and the associated function f̂ ∗ that witnesses the MMD is plotted as a contour.
The latter was computed empirically on the basis of 200 samples, using a Gaussian kernel
with σ= 0.2.

We remark that a hypothesis test based on the above kernel statistic is more complicated than
for the two-sample problem, since the product of the marginal distributions is in effect simulated
by permuting the variables of the original sample. Further details are provided by Gretton et al.
(2008b).

7.5 Kernel Statistics Using a Distribution over Witness Functions

Shawe-Taylor and Dolia (2007) define a distance between distributions as follows: letH be a set of
functions on X and r be a probability distribution overH. Then the distance between two distribu-
tions p and q is given by

D(p,q) := E f∼r( f ) |Ex[ f (x)]−Ey[ f (y)]| . (13)
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That is, we compute the average distance between p and q with respect to a distribution over test
functions. The following result shows the relation with the MMD, and is due to Song et al. (2008,
Section 6).

Lemma 27 LetH be a reproducing kernel Hilbert space, f ∈H, and assume r( f ) = r(‖ f‖H) with
finite E f∼r[‖ f‖H]. Then D(p,q) = C

∥
∥µp−µq

∥
∥
H
for some constant C which depends only on H

and r.

Proof By definition Ex[ f (x)] = 〈µp, f 〉H. Using linearity of the inner product, Equation (13) equals
∫
∣
∣
〈

µp−µq, f
〉

H

∣
∣dr( f )

=
∥
∥µp−µq

∥
∥
H

∫ ∣∣
∣
∣
∣

〈

µp−µq
∥
∥µp−µq

∥
∥
H

, f

〉

H

∣
∣
∣
∣
∣
dr( f ),

where the integral is independent of p,q. To see this, note that for any p,q, µp−µq
‖µp−µq‖

H

is a unit vector
which can be transformed into the first canonical basis vector (for instance) by a rotation which
leaves the integral invariant, bearing in mind that r is rotation invariant.

7.6 Outlier Detection

An application related to the two sample problem is that of outlier detection: this is the question of
whether a novel point is generated from the same distribution as a particular i.i.d. sample. In a way,
this is a special case of a two sample test, where the second sample contains only one observation.
Several methods essentially rely on the distance between a novel point to the sample mean in feature
space to detect outliers.

For instance, Davy et al. (2002) use a related method to deal with nonstationary time series.
Likewise Shawe-Taylor and Cristianini (2004, p. 117) discuss how to detect novel observations by
using the following reasoning: the probability of being an outlier is bounded both as a function of
the spread of the points in feature space and the uncertainty in the empirical feature space mean (as
bounded using symmetrisation and McDiarmid’s tail bound).

Instead of using the sample mean and variance, Tax and Duin (1999) estimate the center and
radius of a minimal enclosing sphere for the data, the advantage being that such bounds can po-
tentially lead to more reliable tests for single observations. Schölkopf et al. (2001) show that the
minimal enclosing sphere problem is equivalent to novelty detection by means of finding a hyper-
plane separating the data from the origin, at least in the case of radial basis function kernels.

8. Experiments

We conducted distribution comparisons using our MMD-based tests on data sets from three real-
world domains: database applications, bioinformatics, and neurobiology. We investigated both
uniform convergence approaches (MMDb with the Corollary 9 threshold, and MMD2u H with the
Corollary 11 threshold); the asymptotic approaches with bootstrap (MMD2u B) and moment match-
ing to Pearson curves (MMD2u M), both described in Section 5; and the asymptotic approach using
the linear time statistic (MMD2l ) from Section 6. We also compared against several alternatives from
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the literature (where applicable): the multivariate t-test, the Friedman-Rafsky Kolmogorov-Smirnov
generalisation (Smir), the Friedman-Rafsky Wald-Wolfowitz generalisation (Wolf), the Biau-Györfi
test (Biau) with a uniform space partitioning, and the Hall-Tajvidi test (Hall). See Section 3.3 for
details regarding these tests. Note that we do not apply the Biau-Györfi test to high-dimensional
problems (since the required space partitioning is no longer possible), and that MMD is the only
method applicable to structured data such as graphs.

An important issue in the practical application of the MMD-based tests is the selection of the
kernel parameters. We illustrate this with a Gaussian RBF kernel, where we must choose the kernel
width σ (we use this kernel for univariate and multivariate data, but not for graphs). The empirical
MMD is zero both for kernel size σ = 0 (where the aggregate Gram matrix over X and Y is a unit
matrix), and also approaches zero as σ→ ∞ (where the aggregate Gram matrix becomes uniformly
constant). We set σ to be the median distance between points in the aggregate sample, as a compro-
mise between these two extremes: this remains a heuristic, similar to those described in Takeuchi
et al. (2006) and Schölkopf (1997), and the optimum choice of kernel size is an ongoing area of
research. We further note that setting the kernel using the sample being tested may cause changes to
the asymptotic distribution: in particular, the analysis in Sections 4 and 5 assumes the kernel not to
be a function of the sample. An analysis of the convergence of MMD when the kernel is adapted on
the basis of the sample is provided by Sriperumbudur et al. (2009), although the asymptotic distri-
bution in this case remains a topic of research. As a practical matter, however, the median heuristic
has not been observed to have much effect on the asymptotic distribution, and in experiments is
indistinguishable from results obtained by computing the kernel on a small subset of the sample set
aside for this purpose. See Appendix C for more detail.

8.1 Toy Example: Two Gaussians

In our first experiment, we investigated the scaling performance of the various tests as a function
of the dimensionality d of the space X ⊂ Rd , when both p and q were Gaussian. We considered
values of d up to 2500: the performance of the MMD-based tests cannot therefore be explained
in the context of density estimation (as in Section 3.3.1), since the associated density estimates are
necessarily meaningless here. The levels for all tests were set at α= 0.05,m= n= 250 samples were
used, and results were averaged over 100 repetitions. In the first case, the distributions had different
means and unit variance. The percentage of times the null hypothesis was correctly rejected over a
set of Euclidean distances between the distribution means (20 values logarithmically spaced from
0.05 to 50), was computed as a function of the dimensionality of the normal distributions. In case
of the t-test, a ridge was added to the covariance estimate, to avoid singularity (the ratio of largest
to smallest eigenvalue was ensured to be at most 2). In the second case, samples were drawn from
distributions N(0,I) and N(0,σ2I) with different variance. The percentage of null rejections was
averaged over 20 σ values logarithmically spaced from 100.01 to 10. The t-test was not compared in
this case, since its output would have been irrelevant. Results are plotted in Figure 5.

In the case of Gaussians with differing means, we observe the t-test performs best in low di-
mensions, however its performance is severely weakened when the number of samples exceeds the
number of dimensions. The performance of MMD2u M is comparable to the t-test in low dimen-
sions, and outperforms all other methods in high dimensions. The worst performance is obtained
for MMD2u H, though MMDb also does relatively poorly: this is unsurprising given that these tests
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Figure 5: Type II performance of the various tests when separating two Gaussians, with test level
α = 0.05. A Gaussians having same variance and different means. B Gaussians having
same mean and different variances.

derive from distribution-free large deviation bounds, and the sample size is relatively small. Re-
markably,MMD2l performs quite well compared with the Section 3.3.3 tests in high dimensions.

In the case of Gaussians of differing variance, the Hall test performs best, followed closely
by MMD2u M. FR Wolf and (to a much greater extent) FR Smirnov both have difficulties in high
dimensions, failing completely once the dimensionality becomes too great. The linear-cost test
MMD2l again performs surprisingly well, almost matching theMMD

2
u M performance at the highest

dimensionality. Both MMD2u H and MMDb perform poorly, the former failing completely: this
is one of several illustrations we will encounter of the much greater tightness of the Corollary 9
threshold over that in Corollary 11.

8.2 Data Integration

In our next application of MMD, we performed distribution testing for data integration: the objec-
tive being to aggregate two data sets into a single sample, with the understanding that both original
samples were generated from the same distribution. Clearly, it is important to check this last con-
dition before proceeding, or an analysis could detect patterns in the new data set that are caused
by combining the two different source distributions. We chose several real-world settings for this
task: we compared microarray data from normal and tumor tissues (Health status), microarray data
from different subtypes of cancer (Subtype), and local field potential (LFP) electrode recordings
from the Macaque primary visual cortex (V1) with and without spike events (Neural Data I and
II, as described in more detail by Rasch et al., 2008). In all cases, the two data sets have different
statistical properties, but the detection of these differences is made difficult by the high data dimen-
sionality (indeed, for the microarray data, density estimation is impossible given the sample size and
data dimensionality, and no successful test can rely on accurate density estimates as an intermediate
step).
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Data Set Attr. MMDb MMD2u H MMD2u B MMD2u M t-test Wolf Smir Hall
Neural Data I Same 100.0 100.0 96.5 96.5 100.0 97.0 95.0 96.0

Different 38.0 100.0 0.0 0.0 42.0 0.0 10.0 49.0
Neural Data II Same 100.0 100.0 94.6 95.2 100.0 95.0 94.5 96.0

Different 99.7 100.0 3.3 3.4 100.0 0.8 31.8 5.9
Health status Same 100.0 100.0 95.5 94.4 100.0 94.7 96.1 95.6

Different 100.0 100.0 1.0 0.8 100.0 2.8 44.0 35.7
Subtype Same 100.0 100.0 99.1 96.4 100.0 94.6 97.3 96.5

Different 100.0 100.0 0.0 0.0 100.0 0.0 28.4 0.2

Table 1: Distribution testing for data integration on multivariate data. Numbers indicate the per-
centage of repetitions for which the null hypothesis (p=q) was accepted, given α = 0.05.
Sample size (dimension; repetitions of experiment): Neural I 4000 (63; 100) ; Neural II
1000 (100; 1200); Health Status 25 (12,600; 1000); Subtype 25 (2,118; 1000).

Data Set Attr. MMDb MMD2u H MMD2u B MMD2u M t-test Wolf Smir Hall Biau
BIO Same 100.0 100.0 93.8 94.8 95.2 90.3 95.8 95.3 99.3

Different 20.0 52.6 17.2 17.6 36.2 17.2 18.6 17.9 42.1
FOREST Same 100.0 100.0 96.4 96.0 97.4 94.6 99.8 95.5 100.0

Different 3.9 11.0 0.0 0.0 0.2 3.8 0.0 50.1 0.0
CNUM Same 100.0 100.0 94.5 93.8 94.0 98.4 97.5 91.2 98.5

Different 14.9 52.7 2.7 2.5 19.17 22.5 11.6 79.1 50.5
FOREST10D Same 100.0 100.0 94.0 94.0 100.0 93.5 96.5 97.0 100.0

Different 86.6 100.0 0.0 0.0 0.0 0.0 1.0 72.0 100.0

Table 2: Naive attribute matching on univariate (BIO, FOREST, CNUM) and multivariate (FOR-
EST10D) data. Numbers indicate the percentage of times the null hypothesis p = q was
accepted with α= 0.05, pooled over attributes. Sample size (dimension; attributes; repeti-
tions of experiment): BIO 377 (1; 6; 100); FOREST 538 (1; 10; 100); CNUM 386 (1; 13;
100); FOREST10D 1000 (10; 2; 100).

We applied our tests to these data sets in the following fashion. Given two data sets A and B,
we either chose one sample from A and the other from B (attributes = different); or both samples
from either A or B (attributes = same). We then repeated this process up to 1200 times. Results
are reported in Table 1. Our asymptotic tests perform better than all competitors besides Wolf : in
the latter case, we have greater Type II error for one neural data set, lower Type II error on the
Health Status data (which has very high dimension and low sample size), and identical (error-free)
performance on the remaining examples. We note that the Type I error of the bootstrap test on the
Subtype data set is far from its design value of 0.05, indicating that the Pearson curves provide a
better threshold estimate for these low sample sizes. For the remaining data sets, the Type I errors
of the Pearson and Bootstrap approximations are close. Thus, for larger data sets, the bootstrap is
to be preferred, since it costs O(m2), compared with a cost of O(m3) for the Pearson curves (due to
the cost of computing (11)). Finally, the uniform convergence-based tests are too conservative, with
MMDb finding differences in distribution only for the data with largest sample size, and MMD2u H
never finding differences.
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8.3 Computational Cost

We next investigate the tradeoff between computational cost and performance of the various tests,
with a particular focus on how the quadratic-cost MMD tests from Sections 4 and 5 compare with the
linear time MMD-based asymptotic test from Section 6. We consider two 1-D data sets (CNUM and
FOREST) and two higher-dimensional data sets (FOREST10D and NEUROII). Results are plotted
in Figure 6. If cost is not a factor, then the MMD2u B shows best overall performance as a function
of sample size, with a Type II error dropping to zero as fast or faster than competing approaches in
three of four cases, and narrowly trailing FR Wolf in the remaining case (FOREST10D). That said,
for data sets CNUM, FOREST, and FOREST10D, the linear time MMD achieves a given Type II
error at a far smaller computational cost than MMD2u B, albeit by looking at a great deal more data.
In the CNUM case, however, the linear test is not able to achieve zero error even for the largest
data set size. For the NEUROII data, attaining zero Type II error has about the same cost for both
approaches. The difference in cost of MMD2u B and MMDb is due to the bootstrapping required for
the former, which produces a constant offset in cost between the two (here 150 resamplings were
used).

The t-test also performs well in three of the four problems, and in fact represents the best cost-
performance tradeoff in these three data sets (i.e., while it requires much more data than MMD2u B
for a given Type II error rate, it costs far less to compute). The t-test assumes that only the difference
in means is important in distinguishing the distributions, and it requires an accurate estimate of
the within-sample covariance; the test fails completely on the NEUROII data. We emphasise that
the Kolmogorov-Smirnov results in 1-D were obtained using the classical statistic, and not the
Friedman-Rafsky statistic, hence the low computational cost. The cost of both Friedman-Rafsky
statistics is therefore given by the FR Wolf cost in this case. The latter scales similarly with sample
size to the quadratic time MMD tests, confirming Friedman and Rafsky’s observation that obtaining
the pairwise distances between sample points is the dominant cost of their tests. We also remark
on the unusual behaviour of the Type II error of the FR Wolf test in the FOREST data set, which
worsens for increasing sample size.

We conclude that the approach to be recommended for two-sample testing will depend on the
data available: for small amounts of data, the best results are obtained using every observation to
maximum effect, and employing the quadratic time MMD2u B test. When large volumes of data are
available, a better option is to look at each point only once, which can yield lower Type II error for a
given computational cost. It may also be worth doing a t-test first in this case, and only running more
sophisticated nonparametric tests if the t-test accepts the null hypothesis, to verify the distributions
are identical in more than just mean.

8.4 Attribute Matching

Our final series of experiments addresses automatic attribute matching. Given two databases, we
want to detect corresponding attributes in the schemas of these databases, based on their data-
content (as a simple example, two databases might have respective fieldsWage and Salary, which are
assumed to be observed via a subsampling of a particular population, and we wish to automatically
determine that both Wage and Salary denote to the same underlying attribute). We use a two-
sample test on pairs of attributes from two databases to find corresponding pairs.15 This procedure

15. Note that corresponding attributes may have different distributions in real-world databases. Hence, schema matching
cannot solely rely on distribution testing.
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Figure 6: Linear-cost vs quadratic-cost MMD. The first column shows Type II performance, and
the second shows runtime. The dashed grey horizontal line indicates zero Type II error
(required due to log y-axis).
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is also called table matching for tables from different databases. We performed attribute matching
as follows: first, the data set D was split into two halves A and B. Each of the n attributes in A (and
B, resp.) was then represented by its instances in A (resp. B). We then tested all pairs of attributes
from A and from B against each other, to find the optimal assignment of attributes A1, . . . ,An from
A to attributes B1, . . . ,Bn from B. We assumed that A and B contain the same number of attributes.

As a naive approach, we could assume that any possible pair of attributes might correspond,
and thus that every attribute of A needs to be tested against all the attributes of B to find the opti-
mal match. We report results for this naive approach, aggregated over all pairs of possible attribute
matches, in Table 2. We used three data sets: the census income data set from the UCI KDD archive
(CNUM), the protein homology data set from the 2004 KDD Cup (BIO) (Caruana and Joachims,
2004), and the forest data set from the UCI ML archive (Blake and Merz, 1998). For the final data
set, we performed univariate matching of attributes (FOREST) and multivariate matching of tables
(FOREST10D) from two different databases, where each table represents one type of forest. Both
our asymptotic MMD2u-based tests perform as well as or better than the alternatives, notably for
CNUM, where the advantage of MMD2u is large. Unlike in Table 1, the next best alternatives are not
consistently the same across all data: for example, in BIO they are Wolf or Hall, whereas in FOR-
EST they are Smir, Biau, or the t-test. Thus, MMD2u appears to perform more consistently across
the multiple data sets. The Friedman-Rafsky tests do not always return a Type I error close to the
design parameter: for instance, Wolf has a Type I error of 9.7% on the BIO data set (on these data,
MMD2u has the joint best Type II error without compromising the designed Type I performance).
Finally, MMDb performs much better than in Table 1, although surprisingly it fails to reliably detect
differences in FOREST10D. The results of MMD2u H are also improved, although it remains among
the worst performing methods.

A more principled approach to attribute matching is also possible. Assume that
φ(A) = (φ1(A1),φ2(A2), ...,φn(An)): in other words, the kernel decomposes into kernels on the indi-
vidual attributes of A (and also decomposes this way on the attributes of B). In this case,MMD2 can
be written ∑n

i=1 ‖µi(Ai)−µi(Bi)‖2, where we sum over the MMD terms on each of the attributes.
Our goal of optimally assigning attributes from B to attributes of A via MMD is equivalent to finding
the optimal permutation π of attributes of B that minimizes ∑n

i=1 ‖µi(Ai)−µi(Bπ(i))‖2. If we define
Ci j = ‖µi(Ai)−µi(Bj)‖2, then this is the same as minimizing the sum over Ci,π(i). This is the linear
assignment problem, which costs O(n3) time using the Hungarian method (Kuhn, 1955).

While this may appear to be a crude heuristic, it nonetheless defines a semi-metric on the sample
spaces X andY and the corresponding distributions p and q. This follows from the fact that matching
distances are proper metrics if the matching cost functions are metrics. We formalize this as follows:

Theorem 28 Let p,q be distributions on Rd and denote by pi,qi the marginal distributions on the
i-th variable. Moreover, denote by Π the symmetric group on {1, . . . ,d}. The following distance,
obtained by optimal coordinate matching, is a semi-metric.

∆[F, p,q] :=min
π∈Π

d

∑
i=1
MMD[F, pi,qπ(i)].

Proof Clearly ∆[F, p,q] is nonnegative, since it is a sum of nonnegative quantities. Next we show
the triangle inequality. Denote by r a third distribution on Rd and let πp,q,πq,r and πp,r be the
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distance minimizing permutations over the associated pairs from {p,q,r}. It follows that

∆[F, p,q]+∆[F,q,r] =
d

∑
i=1
MMD[F, pi,qπp,q(i)]+

d

∑
i=1
MMD[F,qi,rπq,r(i)]

≥
d

∑
i=1
MMD[F, pi,r[πp,q◦πq,r](i)]≥ ∆[F, p,r].

The first inequality follows from the triangle inequality on MMD,

MMD[F, pi,qπp,q(i)]+MMD[F,qπp,q(i),r[πp,q◦πq,r](i)]≥MMD[F, pi,r[πp,q◦πq,r](i)].

The second inequality is a result of minimization over π.

We tested this ’Hungarian approach’ to attribute matching via MMD2u B on three univariate
data sets (BIO, CNUM, FOREST) and for table matching on a fourth (FOREST10D). To study
MMD2u B on structured data, we used two data sets of protein graphs (PROTEINS and ENZYMES)
and used the graph kernel for proteins from Borgwardt et al. (2005) for table matching via the
Hungarian method (the other tests were not applicable to these graph data). The challenge here is
to match tables representing one functional class of proteins (or enzymes) from data set A to the
corresponding tables (functional classes) in B. Results are shown in Table 3. Besides on the BIO
and CNUM data sets, MMD2u B made no errors.

Data Set Data type No. attributes Sample size Repetitions % correct
BIO univariate 6 377 100 90.0
CNUM univariate 13 386 100 99.8
FOREST univariate 10 538 100 100.0
FOREST10D multivariate 2 1000 100 100.0
ENZYME structured 6 50 50 100.0
PROTEINS structured 2 200 50 100.0

Table 3: Hungarian Method for attribute matching via MMD2u B on univariate (BIO, CNUM,
FOREST), multivariate (FOREST10D), and structured (ENZYMES, PROTEINS) data
(α= 0.05; “% correct” is the percentage of correct attribute matches over all repetitions).

9. Conclusion

We have established three simple multivariate tests for comparing two distributions p and q, based
on samples of size m and n from these respective distributions. Our test statistic is the maximum
mean discrepancy (MMD), defined as the maximum deviation in the expectation of a function eval-
uated on each of the random variables, taken over a sufficiently rich function class: in our case, a
reproducing kernel Hilbert space (RKHS). Equivalently, the statistic can be written as the norm of
the difference between distribution feature means in the RKHS. We do not require density estimates
as an intermediate step. Two of our tests provide Type I error bounds that are exact and distribution-
free for finite sample sizes. We also give a third test based on quantiles of the asymptotic distribution
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of the associated test statistic. All three tests can be computed in O((m+n)2) time, however when
sufficient data are available, a linear time statistic can be used, which in our experiments was able to
achieve a given Type II error at smaller computational cost, by looking at many more samples than
the quadratic-cost tests.

We have seen in Section 7 that several classical metrics on probability distributions can be writ-
ten as integral probability metrics with function classes that are not Hilbert spaces, but rather Banach
or seminormed spaces (for instance the Kolmogorov-Smirnov and Earth Mover’s distances). It is
therefore of interest to establish under what conditions one could write these discrepancies in terms
of norms of differences of mean embeddings. Sriperumbudur et al. (2011b) provide expressions
for the maximum mean discrepancy in terms of mean embeddings in reproducing kernel Banach
spaces. When the Banach space is not an RKBS, the question of establishing a mean embedding
interpretation for the MMD remains open.

We also note (following Section 7.3) that the MMD for RKHSs is associated with a particular
kernel between probability distributions. Hein et al. (2004) describe several further such kernels,
which induce corresponding distances between feature space distribution mappings: these may in
turn lead to new and powerful two-sample tests.

Two recent studies have shown that additional divergence measures between distributions can
be obtained empirically through optimization in a reproducing kernel Hilbert space. Harchaoui
et al. (2008) define a two-sample test statistic arising from the kernel Fisher discriminant, rather
than the difference of RKHS means; and Nguyen et al. (2008) obtain a KL divergence estimate
by approximating the ratio of densities (or its log) with a function in an RKHS. By design, both
these kernel-based statistics prioritise different features of p and q when measuring the divergence
between distributions, and the resulting effects on distinguishability of distributions are therefore of
interest.
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Appendix A. Large Deviation Bounds for Tests with Finite Sample Guarantees

This section contains proofs of the theorems of Section 4.1. We begin in Section A.1 with a review
of McDiarmid’s inequality and the Rademacher average of a function class. We prove Theorem 7
in Section A.2, and Theorem 8 in Section A.3.
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A.1 Preliminary Definitions and Theorems

We need the following theorem, due to McDiarmid (1989).

Theorem 29 (McDiarmid’s inequality) Let f : Xm→R be a function such that for all i∈ {1, . . . ,m},
there exist ci < ∞ for which

sup
X∈Xm,x̃∈X

| f (x1, . . .xm)− f (x1, . . .xi−1, x̃,xi+1, . . . ,xm)|≤ ci.

Then for all probability measures p and every ε> 0,

PrX ( f (X)−EX( f (X))> t)< exp
(

−
2ε2

∑m
i=1 c2i

)

,

where EX denotes the expectation over the m random variables xi ∼ p, and PrX denotes the proba-
bility over these m variables.

We also define the Rademacher average of the function class F with respect to the m-sample X .

Definition 30 (Rademacher average of F on X) Let F be the unit ball in an RKHS on the domain
X, with kernel bounded according to 0 ≤ k(x,y) ≤ K. Let X be an i.i.d. sample of size m drawn
according to a probability measure p on X, and let σi be i.i.d and take values in {−1,1} with equal
probability. We define the Rademacher average

Rm(F,X) := Eσ sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

σi f (xi)

∣
∣
∣
∣
∣

≤ (K/m)1/2 ,

where the upper bound is due to Bartlett and Mendelson (2002, Lemma 22), and Eσ denotes the
expectation over all the σi. Similarly, we define

Rm(F, p) := Ex,σ sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

σi f (xi)

∣
∣
∣
∣
∣
.

A.2 Bound when p and qMay Differ

Wewant to show that the absolute difference betweenMMD(F, p,q) andMMDb(F,X ,Y ) is close to
its expected value, independent of the distributions p and q. To this end, we prove three intermediate
results, which we then combine. The first result we need is an upper bound on the absolute difference
between MMD(F, p,q) and MMDb(F,X ,Y ). We have

|MMD(F, p,q)−MMDb(F,X ,Y )|

=

∣
∣
∣
∣
∣
sup
f∈F

(Ex( f )−Ey( f ))− sup
f∈F

(

1
m

m

∑
i=1

f (xi)−
1
n

n

∑
i=1

f (yi)

)∣
∣
∣
∣
∣

≤ sup
f∈F

∣
∣
∣
∣
∣
Ex( f )−Ey( f )−

1
m

m

∑
i=1

f (xi)+
1
n

n

∑
i=1

f (yi)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

∆(p,q,X ,Y )

. (14)
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Second, we provide an upper bound on the difference between ∆(p,q,X ,Y ) and its expectation.
Changing either of xi or yi in ∆(p,q,X ,Y ) results in changes in magnitude of at most 2K1/2/m
or 2K1/2/n, respectively. We can then apply McDiarmid’s theorem, given a denominator in the
exponent of

m
(

2K1/2/m
)2

+n
(

2K1/2/n
)2

= 4K
(
1
m
+
1
n

)

= 4K
m+n
mn

,

to obtain

PrX ,Y (∆(p,q,X ,Y )−EX ,Y [∆(p,q,X ,Y )]> ε)≤ exp
(

−
ε2mn

2K(m+n)

)

. (15)

For our final result, we exploit symmetrisation, following, for example, van der Vaart and Wellner
(1996, p. 108), to upper bound the expectation of ∆(p,q,X ,Y ). Denoting by X ′ an i.i.d sample of
size m drawn independently of X (and likewise for Y ′), we have

EX ,Y [∆(p,q,X ,Y )]

= EX ,Y sup
f∈F

∣
∣
∣
∣
∣
Ex( f )−

1
m

m

∑
i=1

f (xi)−Ey( f )+
1
n

n

∑
i=1

f (y j)

∣
∣
∣
∣
∣

= EX ,Y sup
f∈F

∣
∣
∣
∣
∣
EX ′

(

1
m

m

∑
i=1

f (x′i)

)

−
1
m

m

∑
i=1

f (xi)−EY ′

(

1
n

n

∑
i=1

f (y′j)

)

+
1
n

n

∑
i=1

f (y j)

∣
∣
∣
∣
∣

≤
(a)

EX ,Y,X ′,Y ′ sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

f (x′i)−
1
m

m

∑
i=1

f (xi)−
1
n

n

∑
i=1

f (y′j)+
1
n

n

∑
i=1

f (y j)

∣
∣
∣
∣
∣

= EX ,Y,X ′,Y ′,σ,σ′ sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

σi
(

f (x′i)− f (xi)
)

+
1
n

n

∑
i=1

σ′i
(

f (y′j)− f (y j)
)

∣
∣
∣
∣
∣

≤
(b)

EX ,X ′,σ sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

σi
(

f (x′i)− f (xi)
)

∣
∣
∣
∣
∣
+EY,Y ′,σ sup

f∈F

∣
∣
∣
∣
∣

1
n

n

∑
i=1

σi
(

f (y′j)− f (y j)
)

∣
∣
∣
∣
∣

≤
(c)

2 [Rm(F, p)+Rn(F,q)] .

≤
(d)

2
[

(K/m)1/2+(K/n)1/2
]

, (16)

where (a) uses Jensen’s inequality, (b) uses the triangle inequality, (c) substitutes Definition 30 (the
Rademacher average), and (d) bounds the Rademacher averages, also via Definition 30.

Having established our preliminary results, we proceed to the proof of Theorem 7.
Proof (Theorem 7) Combining Equations (15) and (16), gives

PrX ,Y
(

∆(p,q,X ,Y )−2
[

(K/m)1/2+(K/n)1/2
]

> ε
)

≤ exp
(

−
ε2mn

2K(m+n)

)

.

Substituting Equation (14) yields the result.
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A.3 Bound when p= q and m= n

In this section, we derive the Theorem 8 result, namely the large deviation bound on the MMD
when p= q and m= n. Note also that we consider only positive deviations of MMDb(F,X ,Y ) from
MMD(F, p,q), since negative deviations are irrelevant to our hypothesis test. The proof follows the
same three steps as in the previous section. The first step in (14) becomes

MMDb(F,X ,Y )−MMD(F, p,q) = MMDb(F,X ,X ′)−0

= sup
f∈F

(

1
m

m

∑
i=1

(

f (xi)− f (x′i)
)

)

. (17)

The McDiarmid bound on the difference between (17) and its expectation is now a function of 2m
observations in (17), and has a denominator in the exponent of 2m

(

2K1/2/m
)2

= 8K/m. We use a
different strategy in obtaining an upper bound on the expected (17), however: this is now

EX ,X ′

[

sup
f∈F

1
m

m

∑
i=1

(

f (xi)− f (x′i)
)

]

=
1
m
EX ,X ′

∥
∥
∥
∥
∥

m

∑
i=1

(

φ(xi)−φ(x′i)
)

∥
∥
∥
∥
∥

=
1
m
EX ,X ′

[
m

∑
i=1

m

∑
j=1

(

k(xi,x j)+ k(x′i,x
′
j)− k(xi,x′j)− k(x′i,x j)

)

] 1
2

≤
1
m
[

2mExk(x,x)+2m(m−1)Ex,x′k(x,x′)−2m2Ex,x′k(x,x′)
] 1
2

=

[
2
m
Ex,x′

(

k(x,x)− k(x,x′)
)
] 1
2

(18)

≤ (2K/m)1/2 . (19)

We remark that both (18) and (19) bound the amount by which our biased estimate of the population
MMD exceeds zero underH0. Combining the three results, we find that underH0,

PrX ,X ′

(

MMDb(F,X ,X ′)−
[
2
m
Ex,x′

(

k(x,x)− k(x,x′)
)
] 1
2

> ε

)

< exp
(
−ε2m
4K

)

and

PrX ,X ′

(

MMDb(F,X ,X ′)− (2K/m)1/2 > ε
)

< exp
(
−ε2m
4K

)

.

Appendix B. Proofs for Asymptotic Tests

We derive results needed in the asymptotic test of Section 5. Appendix B.1 describes the distribution
of the empirical MMD underH0 (i.e., p= q). Appendix B.2 establishes consistency of the test under
local departures from H0. Appendix B.3 contains derivations of the second and third moments of
the empirical MMD, also underH0.
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B.1 Convergence of the Empirical MMD underH0

In this appendix, we prove Theorem 12, which describes the distribution of the unbiased estimator
MMD2u[F,X ,Y ] under the null hypothesis. Thus, throughout this section, the reader should bear in
mind that y now has the same distribution as x, that is, y ∼ p. We first recall from Lemma 6 in
Section 2.2 the population expression,

MMD2[F, p,q] := Ex,x′k(x,x′)+Ey,y′k(y,y′)−2Ex,yk(x,y),

and its empirical counterpart,

MMD2u[F,X ,Y ] =
1

m(m−1)

m

∑
i=1

m

∑
j $=i
k(xi,x j)+

1
n(n−1)

n

∑
i=1

n

∑
j $=i
k(yi,y j)

−
2
mn

m

∑
i=1

n

∑
j=1

k(xi,y j). (20)

We begin with the asymptotic analysis of MMD2u[F,X ,Y ] under the null hypothesis. This is based
on the reasoning of Anderson et al. (1994, Appendix), bearing in mind the following changes:

• we do not need to deal with the bias terms S1 j in Anderson et al. (1994, Appendix) that vanish
for large sample sizes, since our statistic is unbiased;

• we require greater generality, since our kernels are not necessarily inner products in L2 be-
tween probability density functions (although this is a special case: see Section 3.3.1).

We first transform each term in the sum (20) by centering. Under H0, both x and y have the same
mean embedding µp. Thus we replace each instance of k(xi,x j) in the sum with a kernel k̃(xi,x j)
between feature space mappings from which the mean has been subtracted,

k̃(xi,x j) :=
〈

φ(xi)−µp,φ(x j)−µp
〉

H

= k(xi,x j)−Exk(xi,x)−Exk(x,x j)+Ex,x′k(x,x′).

The centering terms cancel across the three terms (the distance between the two points is unaffected
by an identical global shift in both the points). This gives the equivalent form of the empirical
MMD,

MMD2u[F,X ,Y ] =
1

m(m−1)

m

∑
i=1

m

∑
j $=i
k̃(xi,x j)+

1
n(n−1)

n

∑
i=1

n

∑
j $=i
k̃(yi,y j)

−
2
mn

m

∑
i=1

n

∑
j=1

k̃(xi,y j), (21)

where each of the three sums has expected value zero. Note in particular that the U-statistics in
k̃(xi,x j) are degenerate, meaning

Exk̃(x,v) = Exk(x,v)−Ex,x′k(x,x′)−Exk(x,v)+Ex,x′k(x,x′) = 0. (22)

We define the operator Sk̃ : L2(p)→ F satisfying

Sk̃g(x) :=
∫
X
k̃(x,x′)g(x′)dp(x′).
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According to Reed and Simon (1980, Theorem VI.23), this operator is Hilbert-Schmidt, and hence
compact, if and only if the kernel k̃ is square integrable under p,

k̃ ∈ L2 (X×X, p× p) . (23)

We may write the kernel k̃(xi,x j) in terms of eigenfunctions ψl(x) with respect to the probability
measure p,

k̃(x,x′) =
∞

∑
l=1

λlψl(x)ψl(x′), (24)

where ∫
X
k̃(x,x′)ψi(x)dp(x) = λiψi(x′),∫
X
ψi(x)ψ j(x)dp(x) = δi j, (25)

and the convergence is in L2 (X×X, p× p). Since the operator is Hilbert-Schmidt, we have by Reed
and Simon (1980, Theorem VI.22) that ∑λ2i < ∞.

Using the degeneracy of the U-statistic in (22), then when λi $= 0,

λiEx′ψi(x′) =
∫
X
Ex′ k̃(x,x′)ψi(x)dp(x)

= 0,

and hence
Exψi(x) = 0. (26)

In other words, the eigenfunctions ψi(x) are zero mean and uncorrelated.
We now use these results to find the asymptotic distribution of (21). First,

1
m

m

∑
i=1

m

∑
j $=i
k̃(xi,x j) =

1
m

m

∑
i=1

m

∑
j $=i

∞

∑
l=1

λlψl(xi)ψl(x j)

=
1
m

∞

∑
l=1

λl





(

∑
i
ψl(xi)

)2

−∑
i
ψ2l (xi)





→
D

∞

∑
l=1

λl(a2l −1), (27)

where al ∼ N(0,1) are i.i.d., and the final relation denotes convergence in distribution, which is
proved by Serfling (1980, Section 5.5.2) using (25) and (26).16 Given that the random variables
a2l are zero mean with finite variance, it can be shown either via Kolmogorov’s inequality or by
the Martingale convergence theorem that the above sum converges almost surely if ∑∞

l=1λ
2
l < ∞

(Grimmet and Stirzaker, 2001, Chapter 7.11 Exercise 30). As we have seen, this is guaranteed
under the assumption (23).

Likewise
1
n

n

∑
i=1

n

∑
j $=i
k̃(yi,y j)→

D

∞

∑
l=1

λl(b2l −1),

16. Simply replace h̃2(xi,x j) with k̃(xi,x j) in Serfling (1980, top of p. 196).
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where bl ∼N(0,1) independent of the al , and

1√
mn

m

∑
i=1

n

∑
j=1

k̃(xi,y j)→
D

∞

∑
l=1

λlalbl , (28)

both jointly in distribution with (27), where (28) is proved at the end of the section. We now combine
these results. Define t = m+n, and assume limm,n→∞m/t → ρx and limm,n→∞ n/t → ρy := (1−ρx)
for fixed 0< ρx < 1. Then

tMMD2u[F,X ,Y ] →
D

ρ−1x
∞

∑
l=1

λl(a2l −1)+ρ−1y
∞

∑
l=1

λl(b2l −1)−
2

√
ρxρy

∞

∑
l=1

λlalbl

=
∞

∑
l=1

λl
[

(ρ−1/2x al−ρ−1/2y bl)2− (ρxρy)
−1
]

.

Proof (Equation 28) The proof is a modification of the result for convergence of degenerate U-
statistics of Serfling (1980, Section 5.5.2). We only provide those details that differ from the proof
of Serfling, and otherwise refer to the steps in the original proof as needed. First, using (24) to
expand out the centred kernel, we may write

Tmn :=
1√
mn

m

∑
i=1

n

∑
j=1

k̃(xi,y j) =
1√
mn

m

∑
i=1

n

∑
j=1

∞

∑
l=1

λlψl(xi)ψl(y j).

We define a truncation of this sum,

TmnL :=
1√
mn

m

∑
i=1

n

∑
j=1

L

∑
l=1

λlψl(xi)ψl(y j).

The target distribution is written

V =
∞

∑
l=1

λlalbl ,

and its truncation is

VL :=
L

∑
l=1

λlalbl .

Our goal is to show
∣
∣EX ,Y

(

eısTmn
)

−Ea,b
(

eısV
)∣
∣

vanishes for all s as m and n increase, where the expectation EX ,Y is over all sample points, which
implies Tmn →

D
V (Dudley, 2002, Theorem 9.8.2). We achieve this via the upper bound

∣
∣EX ,Y

(

eısTmn
)

−Ea,b
(

eısV
)∣
∣ ≤

∣
∣EX ,Y

(

eısTmn
)

−EXY
(

eısTmnL
)∣
∣+
∣
∣EXY

(

eısTmnL
)

−Ea,b
(

eısVL
)∣
∣

+
∣
∣Ea,b

(

eısVL
)

−Ea,b
(

eısV
)∣
∣ ,

where we need to show that for large enough L, each of the three terms vanish.
First term: We first show that for large enough L, Tmn and TmnL are close in distribution. From

Serfling (1980, p. 197),

∣
∣EX ,Y

(

eısTmn
)

−EX ,Y
(

eısTmnL
)∣
∣≤ |s|

[

EX ,Y (Tmn−TmnL)2
]1/2

,

761



GRETTON, BORGWARDT, RASCH, SCHÖLKOPF AND SMOLA

and we may write the difference between the full sum and its truncation as

Tmn−TmnL =
1√
mn

m

∑
i=1

n

∑
j=1

(

k̃(xi,y j)−
L

∑
l=1

λlψl(xi)ψl(y j)

)

︸ ︷︷ ︸

gK(xi,y j)

.

Each of the properties (Serfling, 1980, Equations (6a)-(6c) p. 197) still holds for gK , namely

Ex,x′
(

gK(x,x′)
)

= 0,

Ex,x′
(

g2K(x,x
′)
)

=
∞

∑
l=L+1

λ2l ,

Ex
(

gK(x,x′)
)

= 0.

Then

EX ,Y (Tmn−TmnL)2 =
1
mn

m

∑
i=1

m

∑
q=1

n

∑
j=1

n

∑
r=1
Exi,xq,y j,yr [gK(xi,y j)gK(xq,yr)]

=

{ 1
mn ∑

m
i=1∑

n
j=1Ex,x′

(

g2K(x,x′)
)

i= q and j = r,
0 otherwise.

where we have used that p= q underH0, which allows us to replace Ex,y with Ex,x′ in the final line.
It follows that for large enough L,

|s|
[

EX ,Y (Tmn−TmnL)2
]1/2

= |s|

[

1
mn

m

∑
i=1

n

∑
j=1
Ex,x′

(

g2K(x,x
′)
)

]1/2

= |s|

[
∞

∑
l=L+1

λ2l

]1/2

< ε.

Second term: We show that
TmnL →

D
VL (29)

as m→ ∞ and n→ ∞. We rewrite TmnL as

TmnL =
L

∑
l=1

λl

(

1√
m

m

∑
i=1

ψl(xi)

)(

1√
n

n

∑
i=1

ψl(y j)

)

.

Define the length L vectorsWm andW ′
n having lth entries

Wml =
1√
m

m

∑
i=1

ψl(xi), W ′
nl =

1√
n

n

∑
i=1

ψl(y j),

respectively. These have mean and covariance

EX(Wml) = 0, CovX ,Y (Wml ,Wml′) =

{

1 l = l′,
0 l $= l′.
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Moreover, the vectorsWm andW ′
n are independent. The result (29) then holds by the Lindberg-Lévy

CLT (Serfling, 1980, Theorem 1.9.1A).
Third term: From Serfling (1980, p. 199), we have

∣
∣Ea,b

(

eısVL
)

−Ea,b
(

eısV
)∣
∣≤ |s|

[

Ea,b (V −VL)2
]1/2

.

We can bound the right hand term by

Ea,b (V −VL)2 = Ea,b

(
∞

∑
l=L+1

λlalbl

)2

=
∞

∑
l=L+1

λ2l Ey
(

a2l
)

Ez
(

b2l
)

=
∞

∑
l=L+1

λ2l

≤ ε

for L sufficiently large.

B.2 Alternative Distribution: Consistency Against Local Alternatives

We prove Theorem 13, which gives the power against a local alternative hypothesis of a two-sample
test based on MMD2u. The proof modifies a result of Anderson et al. (1994, Section 2.4), where we
consider a more general class of local departures from the null hypothesis (rather than the class of
perturbed densities described in Section 3.3.1).

First, we recall our test statistic,

MMD2u[F,X ,Y ] =
1

m(m−1)

m

∑
i=1

m

∑
j $=i
k(xi,x j)

+
1

n(n−1)

n

∑
i=1

n

∑
j $=i
k(yi,y j)−

2
mn

m

∑
i=1

n

∑
j=1

k(xi,y j).

We begin by transforming this statistic by centering the samples X and Y in feature space by µp and
µq, respectively; unlike theH0 case, however, µp $= µq, and the new statistic MMD2c is not the same
as MMD2u. The first term is centered as in (9). The second and third terms are respectively replaced
by

1
n(n−1)

n

∑
i=1

n

∑
j $=i

〈

φ(yi)−µq,φ(y j)−µq
〉

H

and
2
mn

m

∑
i=1

n

∑
j=1

〈

φ(xi)−µp,φ(y j)−µq
〉

H
.
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The resulting centred statistic is

MMD2c [F,X ,Y ] =
1

m(m−1)

m

∑
i=1

m

∑
j $=i

〈

φ(xi)−µp,φ(x j)−µp
〉

H

+
1

n(n−1)

n

∑
i=1

n

∑
j $=i

〈

φ(yi)−µq,φ(y j)−µq
〉

H
−
2
mn

m

∑
i=1

n

∑
j=1

〈

φ(xi)−µp,φ(y j)−µq
〉

H
.

We write µq = µp+gt , where gt ∈H is chosen such that µp+gt remains a valid distribution embed-
ding, and ‖gt‖H can be made to approach zero to describe local departures from the null hypothesis.
The difference between the original statistic and the centred statistic is then

MMD2u[F,X ,Y ]−MMD2c [F,X ,Y ]

=
2
m

m

∑
i=1

〈µp,φ(xi)〉H−〈µp,µp〉H+
2
n

n

∑
i=1

〈

µq,φ(yi)
〉

H
−
〈

µq,µq
〉

H

−
2
m

m

∑
i=1

〈

µq,φ(xi)
〉

H
−
2
n

n

∑
i=1

〈µp,φ(yi)〉H+2
〈

µp,µq
〉

H

=
2
n

n

∑
i=1

〈

gt ,φ(yi)−µq
〉

H
−
2
m

m

∑
i=1

〈gt ,φ(xi)−µp〉H+ 〈gt ,gt〉H .

We next show gt can be used to encode a local departure from the null hypothesis. Define
t = m+ n, and assume limm,n→∞m/t → ρx and limm,n→∞ n/t → ρy := (1−ρx) where 0 < ρx < 1.
Consider the case where the departure from the null hypothesis satisfies ‖gt‖H = ct−1/2. Then, as
t → ∞,

tMMD2c [F,X ,Y ]→D

∞

∑
l=1

λl
[

(ρ−1/2x al+ρ−1/2y bl)2− (ρxρy)
−1
]

=: S

as before, since the distance between µp and µq vanishes for large t (as ‖gt‖H → 0). Next, the terms

1√
n

n

∑
i=1

〈
gt

‖gt‖H
,φ(yi)−µq

〉

H

and
1√
m

m

∑
i=1

〈
gt

‖gt‖H
,φ(xi)−µp

〉

H

in the difference between MMD2u and MMD2c are straightforward sums of independent zero mean
random variables, and have Gaussian asymptotic distribution. Defining uy to be the zero mean
Gaussian random variable associated with the first term,

t
n

n

∑
i=1

〈

gt ,φ(yi)−µq
〉

H
=

t
n

(

ct−1/2
) n

∑
i=1

〈
gt

‖gt‖H
,φ(yi)−µq

〉

H

→
D

cρ−1/2y uy.

Likewise,
t
m

m

∑
i=1

〈gt ,φ(xi)−µp〉H →
D
cρ−1/2x ux,

where ux is a zero mean Gaussian random variable independent of uy (note, however, that ux and
uy are correlated with terms in S, and are defined on the same probability space as al and bl in this
sum). Finally,

t 〈gt ,gt〉H = c2.
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This leads to our main result: given the threshold sα, then

PrHA

(

tMMD2u > sα
)

→ Pr
(

S+2c
(

ρ−1/2x ux−ρ−1/2y uy
)

+ c2 > sα
)

,

which is constant in t, and increases as c → ∞. Thus, ‖gt‖H = ct−1/2 is the minimum distance
between µp and µq distinguishable by the asymptotic MMD-based test.

B.3 Moments of the Empirical MMD UnderH0

In this section, we compute the moments of the U-statistic in Section 5 for m = n, under the null
hypothesis conditions

Ez,z′h(z,z′) = 0, (30)

and, importantly,

Ez′h(z,z′) = 0. (31)

Note that the latter implies the former.
Variance/2nd moment: This was derived by Hoeffding (1948, p. 299), and is also described

by Serfling (1980, Lemma A p. 183). Applying these results,

E
(
[

MMD2u
]2
)

=

(
2

n(n−1)

)2[n(n−1)
2

(n−2)(2)Ez
[

(Ez′h(z,z′))2
]

+
n(n−1)
2

Ez,z′
[

h2(z,z′)
]
]

=
2(n−2)
n(n−1)

Ez
[

(Ez′h(z,z′))2
]

+
2

n(n−1)
Ez,z′

[

h2(z,z′)
]

=
2

n(n−1)
Ez,z′

[

h2(z,z′)
]

,

where the first term in the penultimate line is zero due to (31). Note that variance and 2nd moment
are the same under the zero mean assumption.
3rd moment: We consider the terms that appear in the expansion of E

(
[

MMD2u
]3
)

. These are
all of the form

(
2

n(n−1)

)3
E(habhcdhe f ),

where we shorten hab = h(za,zb), and we know za and zb are always independent. Most of the terms
vanish due to (30) and (31). The first terms that remain take the form

(
2

n(n−1)

)3
E(habhbchca),

and there are
n(n−1)
2

(n−2)(2)
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of them, which gives us the expression
(

2
n(n−1)

)3 n(n−1)
2

(n−2)(2)Ez,z′
[

h(z,z′)Ez′′
(

h(z,z′′)h(z′,z′′)
)]

=
8(n−2)
n2(n−1)2

Ez,z′
[

h(z,z′)Ez′′
(

h(z,z′′)h(z′,z′′)
)]

. (32)

Note the scaling 8(n−2)
n2(n−1)2 ∼

1
n3 . The remaining non-zero terms, for which a= c= e and b= d = f ,

take the form
(

2
n(n−1)

)3
Ez,z′

[

h3(z,z′)
]

,

and there are n(n−1)
2 of them, which gives

(
2

n(n−1)

)2
Ez,z′

[

h3(z,z′)
]

.

However
(

2
n(n−1)

)2
∼ n−4 so this term is negligible compared with (32). Thus, a reasonable ap-

proximation to the third moment is

E
(
[

MMD2u
]3
)

≈
8(n−2)
n2(n−1)2

Ez,z′
[

h(z,z′)Ez′′
(

h(z,z′′)h(z′,z′′)
)]

.

Appendix C. Empirical Evaluation of the Median Heuristic for Kernel Choice

In this appendix, we provide an empirical evaluation of the median heuristic for kernel choice,
described at the start of Section 8: according to this heuristic, the kernel bandwidth is set at the
median distance between points in the aggregate sample over p and q (in the case of a Gaussian
kernel on Rd). We investigated three kernel choice strategies: kernel selection on the entire sample
from p and q; kernel selection on a hold-out set (10% of data), and testing on the remaining 90%;
and kernel selection and testing on 90% of the available data. These strategies were evaluated on
the Neural Data I data set described in Section 8.2, using a Gaussian kernel, and both the bootstrap
and Pearson curve methods for selecting the test threshold. Results are plotted in Figure 7. We note
that the Type II error of each approach follows the same trend. The Type II errors of the second and
third approaches are indistinguishable, and the first approach has a slightly lower Type II error (as it
is computed on slightly more data). In this instance, the null distribution with the kernel bandwidth
set using the tested data is not substantially different to that obtained when a held-out set is used.
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Abstract

This paper presents the Getting-started style documentation for the local and parallel computa-
tion toolbox for Gaussian process regression (GPLP), an open source software package written in
Matlab (but also compatible with Octave). The working environment and the usage of the software
package will be presented in this paper.

Keywords: Gaussian process regression, domain decomposition method, partial independent con-
ditional, bagging for Gaussian process, local probabilistic regression

1. Introduction

The Gaussian process regression (GP regression) has recently developed to be a useful tool in ma-
chine learning (Rasmussen and Williams, 2006). A GP regression provides the best unbiased linear
estimator computable by a simple closed form expression and is a popular method for interpolation
or extrapolation. A major limitation of GP regression is its computational complexity, scaled by
O(N3), where N is the number of training observations.

Many fast computation methods have been introduced in the literature to relieve the computation
burden: matrix approximation (Williams and Seeger, 2000; Smola and Bartlett, 2001), likelihood
approximation (Seeger et al., 2003; Snelson and Ghahramani, 2006, 2007) and localized regression
(Tresp, 2000; Schwaighofer et al., 2003; Urtasun and Darrell, 2008; Rasmussen and Ghahramani,
2002; Gramacy and Lee, 2008; Chen and Ren, 2009; Park et al., 2011).

©2012 Chiwoo Park, Jianhua Z. Huang and Yu Ding.



PARK, HUANG AND DING

Many of the computation methods have been implemented as software, which includes SOGP1,
GPML2, SPGP3, TGP4 and GPStuff5. However, many of the methods are still not implemented,
because of various complexities involved in the methods as well as in their implementation. In
particular, most of the localized regression methods are not implemented in spite of their unique
advantages such as adaptivity to non-stationary changes and easiness of being parallelized for faster
computation.

The GPLP is the Octave and Matlab implementation of several localized regression methods:
the domain decomposition method (Park et al., 2011, DDM), partial independent conditional (Snel-
son and Ghahramani, 2007, PIC), localized probabilistic regression (Urtasun and Darrell, 2008,
LPR), and bagging for Gaussian process regression (Chen and Ren, 2009, BGP). Most of the lo-
calized regression methods can be applied for general machine learning problems although DDM
is only applicable for spatial data sets. In addition, the GPLP provides two parallel computation
versions of the domain decomposition method. The easiness of being parallelized is one of the
advantages of the localized regression, and the two parallel implementations will provide a good
guidance about how to materialize this advantage as software.

This manual is written in Getting-started style; it introduces the working environment of GPLP
(in Section 2) and illustrates the usage with an simple example (in Section 3). If you need more
detailed documentation, please refer to User Manual at ./doc directory.

2. Implementation

The GPLP is implemented in Matlab code such that it is executable and has been tested in Matlab
Version 7.7 or later versions, and Octave Version 3.2.4 or later versions. It might be executable
in any of Matlab Version 7.x and any of Octave Version 3.2.x, but it has not been tested on
those versions. One exception is the implementation of LPR that only works in Matlab 7.12.0,
in Matlab 7.7.0 or later versions with a compiler supporting mex-compile, or in Octave 3.2.4 or
later versions. For information on the list of compilers to support the mex-compile in Matlab,
please refer to the technical support webpage at http://www.mathworks.com/support/
compilers/previous_releases.html.

The GPLP also includes the parallel computation version of DDM, which requires the open
source message passing interface, MatMPI Version 1.2, to be pre-installed before executing the
parallel version. All of the Matlab, Octave and MatMPI are working in many versions of
Windows and Unix, so GPLP is virtually OS-independent.

The implementation consists of six different main modules for the six different methods imple-
mented, but all of the main modules are structured in the common form having the similar input
and output arguments. In addition, the implementation partially supports the separation of the main

1. Implementation of SOGP (Smola and Bartlett, 2001) is available at http://cs.brown.edu/people/dang/
code.shtml.

2. Implementation of GPML (Williams and Seeger, 2000) is available at http://gaussianprocess.org/
gpml/code/matlab/doc/index.html.

3. Implementation of SPGP (Snelson and Ghahramani, 2006) is available at http://www.gatsby.ucl.ac.uk/
˜snelson.

4. Implementation of TGP (Gramacy and Lee, 2008) is available at http://users.soe.ucsc.edu/
˜rbgramacy/tgp.html.

5. Implementation of GPStuff (Snelson and Ghahramani, 2006, 2007; Schwaighofer et al., 2003) is available at http:
//www.lce.hut.fi/research/mm/gpstuff/.
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logic from the specification of the covariance function and the mesh generation function (the spec-
ification of mesh generation function is only applicable for DDM and its two parallel computation
versions; the explanation of the mesh generation function will be in the next section). With such
separation, users can easily extend the function of GPLP by adding a new covariance function and
adding a new mesh generation function without major modification of the main logic.

The code and documentation of GPLP are publicly available on the JMLR MOSS website at
http://www.jmlr.org/mloss under GNU General Public License version 3.0 (GPL-3.0).

3. GPLP: A software Package for Localized and Parallel Computation of GP
Regression

The GPLP provides an individual function for calling each one of the six localized regression meth-
ods (including two parallel implementations. The individual functions have a common structure of
input and output arguments so that users can easily use all functions once they learn the common
structure. In this section, we will explain the common structure by means of a simple example.

Consider a unknown random function f : X → R. The GP regression predicts the realization
of the random function at test locations xs, given a set of observations x from the realization.
The localized GP regression partitions x into many smaller chunks, x_j’s, and it does localized
predictions at xs with each one of x_j’s as the training data for every j. Finally, the localized GP
regression combines the localized predictions to make a global prediction in many different ways.
The key design parameters for the localized GP regression are (1) mean function and covariance
function defining the GP, and (2) mesh generation function for partitioning x into x_j’s.

1 % define the structure of local regions
2 param1.meshfunc = 'rectMesh'; % mesh generation function
3 param1.mparam = [14 21]; % mesh generation function parameters
4 param1.p = 3; param1.q = 3; % parameters defining the interaction
5 % between local regions for improving
6 % prediction accuracy
7

8 % set the prior GP by specifying a covariance function
9 param2.covfunc = {'covSum', {'covSEard','covNoise'}}; %covariance function
10 D = size(x, 2);
11 logtheta0 = log(ones(D+2,1));
12 logtheta0(D+2) = log(0.3);
13 param2.logtheta0 = logtheta0; % initial value of log hyperparameters
14 param2.frachyper = 0.5; % fraction of training data used for learning
15 % hyperparameters
16 param2.nIter = 100; % maximum number of iterations in optimizing the
17 % log hyperparameters
18

19 % train the localized regression model for Gaussian process regression
20 [model, elpasedTrain] = ddmGP(x, y, param1, param2);
21

22 % predict at test inputs
23 [meanPred, varPred, elapsedPred] = ddm_pred(model, xs);

In line 2 and 3, we specify the mesh generation function as rectMesh with its input parameter
(14, 21). The mesh generation function decomposes X (domain of f ) into 14-by-21 rectangular
meshes, {X j}, and it partitions x into x_j’s such that x_j belongs to X j.
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In line 4, there are two parameters that defines how many localized predictions are combined to
produce a global prediction. In the domain decomposition method (DDM), a localized prediction is
available for each mesh X j, which becomes the global prediction if the test input is in the interior
of local domain X j. If the test input is over the common boundary of X j and Xk, the localized
predictions are constrained by two factors: (1) the two local predictions for both of X j and Xk
should have limited degrees of freedom on the common boundary (called flexibility of boundary
prediction); and (2) the two localized predictions should produce the same values on the boundary
(called consistency of boundary prediction). The param1.q is the the number of control points on
the boundary where the DDM checks the consistency of boundary prediction, and the param1.p
is the number of degrees of freedom to constrain the flexibility of boundary prediction.

In line 9 through 13, we specify the covSum composite covariance function. The compos-
ite covariance function generates the covariance by summing two base covariance functions: the
anisotropic version of squared exponential covariance function (covSEard) and the noise covari-
ance function (covNoise). The covSEard is parameterized by (D+1) hyperparameters as fol-
lows:

K(x,x′) = θ2D+1 exp

{

−
1
2

D

∑
d=1

(

xd− x′d
θd

)2
}

,

whereD is the dimension of X . The covNoise is parameterized by noise variance parameter σ2 as
K(x,x′)=σ2δ(x,x′). In total, the composite covariance function is parameterized by (D+2) param-
eter values, so the initial guess of hyperparameter, logtheta0, should be (D+ 2)-dimensional.
In line 11 and 12, the first (D+1) elements of logtheta0 are initialized for the hyperparameter
values of covSEard, and the last one element of logtheta0 is initialized for the value of σ2.

In line 14 and 15, param2.frachyper and param2.nIter are the process parameters
used in maximizing the likelihood function with respect to the hyperparameters. The maximization
is an iterative process that updates the log hyperparameter values, starting with the initial guess
logtheta0. The param2.nIter=100 implies that the number of the iterations allowed for the
iterative maximization is at most one hundred. In each iteration, the likelihood function is evaluated.
Since the evaluation is computationally expensive with big size of training data, people usually uses
only a subset of the training data for the evaluation. The param2.frachyper = 0.5 implies
that only half of the training data x will be used for the evaluation of the likelihood function.

Last, in line 20, the function ddmGP trains the domain decomposition method for the localized
GP regression with training data set x and the previously specified parameters, and ddmGP returns
the trained model (model) and the elapsed time (elpasedTrain). The number of the parameters
to be specified depends on the method used for the training. For more details, please refer to User
Manual at ./doc directory in this package. In line 22, the function ddm_pred produces the mean
prediction meanPred and the variance prediction varPred at test locations xs, and also reports
the time used for prediction (elpasedPred).
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Abstract
We consider the sparse inverse covariance regularization problem or graphical lasso with regular-
ization parameter λ. Suppose the sample covariance graph formed by thresholding the entries of
the sample covariance matrix at λ is decomposed into connected components. We show that the
vertex-partition induced by the connected components of the thresholded sample covariance graph
(at λ) is exactly equal to that induced by the connected components of the estimated concentration
graph, obtained by solving the graphical lasso problem for the same λ. This characterizes a very
interesting property of a path of graphical lasso solutions. Furthermore, this simple rule, when used
as a wrapper around existing algorithms for the graphical lasso, leads to enormous performance
gains. For a range of values of λ, our proposal splits a large graphical lasso problem into smaller
tractable problems, making it possible to solve an otherwise infeasible large-scale problem. We
illustrate the graceful scalability of our proposal via synthetic and real-life microarray examples.
Keywords: sparse inverse covariance selection, sparsity, graphical lasso, Gaussian graphical mod-
els, graph connected components, concentration graph, large scale covariance estimation

1. Introduction

Consider a data matrix Xn×p comprising of n sample realizations from a p dimensional Gaus-
sian distribution with zero mean and positive definite covariance matrix Σp×p (unknown), that is,
xi
i.i.d∼ MVN(0,Σ), i = 1, . . . ,n. The task is to estimate the unknown Σ based on the n samples. !1

regularized Sparse Inverse Covariance Selection also known as graphical lasso (Friedman et al.,
2007; Banerjee et al., 2008; Yuan and Lin, 2007) estimates the covariance matrix Σ, under the as-
sumption that the inverse covariance matrix, that is, Σ−1 is sparse. This is achieved by minimizing
the regularized negative log-likelihood function:

minimize
Θ%0

− logdet(Θ)+ tr(SΘ)+λ∑
i, j
|Θi j|, (1)

where S is the sample covariance matrix. Problem (1) is a convex optimization problem in the
variable Θ (Boyd and Vandenberghe, 2004). Let Θ̂

(λ)
denote the solution to (1). We note that (1)

can also be used in a more non-parametric fashion for any positive semi-definite input matrix S, not
necessarily a sample covariance matrix of a MVN sample as described above.

∗. Also in the Department of Health, Research and Policy
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A related criterion to (1) is one where the diagonals are not penalized—by substituting S←
S+λIp×p in the “unpenalized” problem we get (1). In this paper we concentrate on problem (1).

Developing efficient large-scale algorithms for (1) is an active area of research across the fields
of Convex Optimization, Machine Learning and Statistics. Many algorithms have been proposed
for this task (Friedman et al., 2007; Banerjee et al., 2008; Lu, 2009, 2010; Scheinberg et al., 2010;
Yuan, 2009, for example). However, it appears that certain special properties of the solution to
(1) have been largely ignored. This paper is about one such (surprising) property—namely estab-
lishing an equivalence between the vertex-partition induced by the connected components of the
non-zero pattern of Θ̂

(λ)
and the thresholded sample covariance matrix S. This paper is not about

a specific algorithm for the problem (1)—it focuses on the aforementioned observation that leads
to a novel thresholding/screening procedure based on S. This provides interesting insight into the
path of solutions {Θ̂

(λ)
}λ≥0 obtained by solving (1), over a path of λ values. The behavior of

the connected-components obtained from the non-zero patterns of {Θ̂
(λ)

}λ≥0 can be completely
understood by simple screening rules on S. This can be done without even attempting to solve (1)—
arguably a very challenging convex optimization problem. Furthermore, this thresholding rule can
be used as a wrapper to enormously boost the performance of existing algorithms, as seen in our
experiments. This strategy becomes extremely effective in solving large problems over a range of
values of λ—sufficiently restricted to ensure sparsity and the separation into connected components.
Of course, for sufficiently small values of λ there will be no separation into components, and hence
no computational savings.

At this point we introduce some notation and terminology, which we will use throughout the
paper.

1.1 Notations and Preliminaries

For a matrix Z, its (i, j)th entry is denoted by Zi j.
We also introduce some graph theory notations and definitions (Bollobas, 1998) sufficient for

this exposition. A finite undirected graph G on p vertices is given by the ordered tuple G = (V ,E),
where V is the set of nodes and E the collection of (undirected) edges. The edge-set is equiv-
alently represented via a (symmetric) 0-1 matrix1 (also known as the adjacency matrix) with p
rows/columns. We use the convention that a node is not connected to itself, so the diagonals of the
adjacency matrix are all zeros. Let |V | and |E | denote the number of nodes and edges respectively.

We say two nodes u,v∈V are connected if there is a path between them. A maximal connected
subgraph2 is a connected component of the graph G . Connectedness is an equivalence relation that
decomposes a graph G into its connected components {(V!,E !)}1≤!≤K—with G = ∪K!=1(V!,E !),
where K denotes the number of connected components. This decomposition partitions the vertices
V of G into {V!}1≤!≤K . Note that the labeling of the components is unique upto permutations
on {1, . . . ,K}. Throughout this paper we will often refer to this partition as the vertex-partition
induced by the components of the graph G . If the size of a component is one, that is, |V!| =
1, we say that the node is isolated. Suppose a graph Ĝ defined on the set of vertices V admits
the following decomposition into connected components: Ĝ = ∪K̂!=1(V̂!, Ê !). We say the vertex-

1. 0 denotes absence of an edge and 1 denotes its presence.
2. G ′ = (V ′,E ′) is a subgraph of G if V ′ ⊂ V and E ′ ⊂ E .
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partitions induced by the connected components of G and Ĝ are equal if K̂ = K and there is a
permutation π on {1, . . . ,K} such that V̂π(!) = V! for all ! ∈ {1, . . . ,K}.

The paper is organized as follows. Section 2 describes the covariance graph thresholding idea
along with theoretical justification and related work, followed by complexity analysis of the algo-
rithmic framework in Section 3. Numerical experiments appear in Section 4, concluding remarks in
Section 5 and the proofs are gathered in the Appendix A.

2. Methodology: Exact Thresholding of the Covariance Graph

The sparsity pattern of the solution Θ̂
(λ)
to (1) gives rise to the symmetric edge matrix/skeleton

∈ {0,1}p×p defined by:

E (λ)
i j =

{
1 if Θ̂

(λ)
i j .= 0, i .= j;

0 otherwise.
(2)

The above defines a symmetric graph G (λ) = (V ,E (λ)), namely the estimated concentration graph
(Cox and Wermuth, 1996; Lauritzen, 1996) defined on the nodes V = {1, . . . , p} with edges E (λ).

Suppose the graph G (λ) admits a decomposition into κ(λ) connected components:

G (λ) = ∪κ(λ)!=1G
(λ)
! , (3)

where G (λ)
! = (V̂ (λ)

! ,E (λ)
! ) are the components of the graph G (λ). Note that κ(λ) ∈ {1, . . . , p}, with

κ(λ) = p (large λ) implying that all nodes are isolated and for small enough values of λ, there is
only one component, that is, κ(λ) = 1.

We now describe the simple screening/thresholding rule. Given λ, we perform a thresholding
on the entries of the sample covariance matrix S and obtain a graph edge skeleton E(λ) ∈ {0,1}p×p
defined by:

E(λ)i j =

{
1 if |Si j|> λ, i .= j;
0 otherwise. (4)

The symmetric matrix E(λ) defines a symmetric graph on the nodes V = {1, . . . , p} given by G(λ) =
(V ,E(λ)). We refer to this as the thresholded sample covariance graph. Similar to the decomposi-
tion in (3), the graph G(λ) also admits a decomposition into connected components:

G(λ) = ∪k(λ)!=1G
(λ)
! , (5)

where G(λ)
! = (V (λ)

! ,E(λ)! ) are the components of the graph G(λ).
Note that the components of G (λ) require knowledge of Θ̂

(λ)
—the solution to (1). Construction

of G(λ) and its components require operating on S—an operation that can be performed completely
independent of the optimization problem (1), which is arguably more expensive (See Section 3). The
surprising message we describe in this paper is that the vertex-partition of the connected components
of (5) is exactly equal to that of (3).

This observation has the following consequences:

1. We obtain a very interesting property of the path of solutions {Θ̂
(λ)

}λ≥0—the behavior of the
connected components of the estimated concentration graph can be completely understood by
simple screening rules on S.
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2. The cost of computing the connected components of the thresholded sample covariance graph
(5) is orders of magnitude smaller than the cost of fitting graphical models (1). Furthermore,
the computations pertaining to the covariance graph can be done off-line and are amenable to
parallel computation (See Section 3).

3. The optimization problem (1) completely separates into k(λ) separate optimization
sub-problems of the form (1). The sub-problems have size equal to the number of nodes
in each component pi := |Vi|, i = 1, . . . ,k(λ). Hence for certain values of λ, solving prob-
lem (1) becomes feasible although it may be impossible to operate on the p× p dimensional
(global) variable Θ on a single machine.

4. Suppose that for λ0, there are k(λ0) components and the graphical model computations are
distributed.3 Since the vertex-partitions induced via (3) and (5) are nested with increasing λ
(see Theorem 2), it suffices to operate independently on these separate machines to obtain the
path of solutions {Θ̂

(λ)
}λ for all λ≥ λ0.

5. Consider a distributed computing architecture, where every machine allows operating on a
graphical lasso problem (1) of maximal size pmax. Then with relatively small effort we can
find the smallest value of λ = λpmax , such that there are no connected components of size
larger than pmax. Problem (1) thus ‘splits up’ independently into manageable problems across
the different machines. When this structure is not exploited the global problem (1) remains
intractable.

The following theorem establishes the main technical contribution of this paper—the equivalence
of the vertex-partitions induced by the connected components of the thresholded sample covariance
graph and the estimated concentration graph.

Theorem 1 For any λ > 0, the components of the estimated concentration graph G (λ), as defined
in (2) and (3) induce exactly the same vertex-partition as that of the thresholded sample covari-
ance graph G(λ), defined in (4) and (5). That is κ(λ) = k(λ) and there exists a permutation π on
{1, . . . ,k(λ)} such that:

V̂ (λ)
i = V (λ)

π(i), ∀i= 1, . . . ,k(λ). (6)

Proof The proof of the theorem appears in Appendix A.1.

Since the decomposition of a symmetric graph into its connected components depends upon the
ordering/ labeling of the components, the permutation π appears in Theorem 1.

Remark 1 Note that the edge-structures within each block need not be preserved. Under a match-
ing reordering of the labels of the components of G (λ) and G(λ):
for every fixed ! such that V̂ (λ)

! = V (λ)
! the edge-sets E (λ)

! and E(λ)! are not necessarily equal.

3. Distributing these operations depend upon the number of processors available, their capacities, communication lag,
the number of components and the maximal size of the blocks across all machines. These of-course depend upon the
computing environment. In the context of the present problem, it is often desirable to club smaller components into
a single machine.
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Theorem 1 leads to a special property of the path-of-solutions to (1), that is, the vertex-partition
induced by the connected components of G (λ) are nested with increasing λ. This is the content of
the following theorem.

Theorem 2 Consider two values of the regularization parameter such that λ> λ′ > 0, with corre-
sponding concentration graphs G (λ) and G (λ′) as in (2) and connected components (3). Then the
vertex-partition induced by the components of G (λ) are nested within the partition induced by the
components of G (λ′). Formally, κ(λ)≥ κ(λ′) and the vertex-partition {V̂ (λ)

! }1≤!≤κ(λ) forms a finer
resolution of {V̂ (λ′)

! }1≤!≤κ(λ′).
Proof The proof of this theorem appears in the Appendix A.2.

Remark 2 It is worth noting that Theorem 2 addresses the nesting of the edges across connected
components and not within a component. In general, the edge-set E (λ) of the estimated concentra-
tion graph need not be nested as a function of λ:
for λ> λ′, in general, E (λ) .⊂ E (λ′).

See Friedman et al. (2007, Figure 3), for numerical examples demonstrating the non-monotonicity
of the edge-set across λ, as described in Remark 2.

2.1 Node-Thresholding

A simple consequence of Theorem 1 is that of node-thresholding. If λ ≥ max j .=i |Si j|, then the
ith node will be isolated from the other nodes, the off-diagonal entries of the ith row/column are
all zero, that is, max j .=i |Θ̂

(λ)
i j | = 0. Furthermore, the ith diagonal entries of the estimated covari-

ance and precision matrices are given by (Sii + λ) and 1
Sii+λ , respectively. Hence, as soon as

λ ≥ maxi=1,...,p{max j .=i |Si j|}, the estimated covariance and precision matrices obtained from (1)
are both diagonal.

2.2 Related Work

Witten et al. (2011) independently discovered block screening as described in this paper. At the
time of our writing, an earlier version of their paper was available (Witten and Friedman, 2011); it
proposed a scheme to detect isolated nodes for problem (1) via a simple screening of the entries of
S, but no block screening. Earlier, Banerjee et al. (2008, Theorem 4) made the same observation
about isolated nodes. The revised manuscript (Witten et al., 2011) that includes block screening
became available shortly after our paper was submitted for publication.

Zhou et al. (2011) use a thresholding strategy followed by re-fitting for estimating Gaussian
graphical models. Their approach is based on the node-wise lasso-regression procedure of Mein-
shausen and Bühlmann (2006). A hard thresholding is performed on the !1-penalized regression
coefficient estimates at every node to obtain the graph structure. A restricted MLE for the concen-
tration matrix is obtained for the graph. The proposal in our paper differs since we are interested in
solving the GLASSO problem (1).
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3. Computational Complexity

The overall complexity of our proposal depends upon (a) the graph partition stage and (b) solving
(sub)problems of the form (1). In addition to these, there is an unavoidable complexity associated
with handling and/or forming S.

The cost of computing the connected components of the thresholded covariance graph is fairly
negligible when compared to solving a similar sized graphical lasso problem (1)—see also our sim-
ulation studies in Section 4. In case we observe samples xi ∈ℜp, i= 1, . . . ,n the cost for creating the
sample covariance matrix S is O(n · p2). Thresholding the sample covariance matrix costs O(p2).
Obtaining the connected components of the thresholded covariance graph costs O(|E(λ)|+ p) (Tar-
jan, 1972). Since we are interested in a region where the thresholded covariance graph is sparse
enough to be broken into smaller connected components—|E(λ)|0 p2. Note that all computations
pertaining to the construction of the connected components and the task of computing S can be
computed off-line. Furthermore the computations are parallelizable. Gazit (1991, for example)
describes parallel algorithms for computing connected components of a graph—they have a time
complexity O(log(p)) and require O((|E(λ)|+ p)/ log(p)) processors with space O(p+ |E(λ)|).

There are a wide variety of algorithms for the task of solving (1). While an exhaustive review
of the computational complexities of the different algorithms is beyond the scope of this paper, we
provide a brief summary for a few algorithms below.

Banerjee et al. (2008) proposed a smooth accelerated gradient based method (Nesterov, 2005)
with complexity O( p

4.5

ε ) to obtain an ε accurate solution—the per iteration cost being O(p3). They
also proposed a block coordinate method which has a complexity of O(p4).

The complexity of the GLASSO algorithm (Friedman et al., 2007) which uses a row-by-row
block coordinate method is roughly O(p3) for reasonably sparse-problems with p nodes. For denser
problems the cost can be as large as O(p4).

The algorithm SMACS proposed in Lu (2010) has a per iteration complexity of O(p3) and an
overall complexity of O( p

4
√
ε
) to obtain an ε> 0 accurate solution.

It appears that most existing algorithms for (1), have a complexity of at least O(p3) to O(p4)
or possibly larger, depending upon the algorithm used and the desired accuracy of the solution—
making computations for (1) almost impractical for values of p much larger than 2000.

It is quite clear that the role played by covariance thresholding is indeed crucial in this context.
Assume that we use a solver of complexity O(pJ) with J ∈ {3,4}, along with our screening proce-
dure. Suppose for a given λ, the thresholded sample covariance graph has k(λ) components—the
total cost of solving these smaller problems is then ∑k(λ)

i=1 O(|V
(λ)
i |J)0O(pJ), with J ∈ {3,4}. This

difference in practice can be enormous—see Section 4 for numerical examples. This is what makes
large scale graphical lasso problems solvable!

4. Numerical Examples

In this section we show via numerical experiments that the screening property helps in obtaining
many fold speed-ups when compared to an algorithm that does not exploit it. Section 4.1 considers
synthetic examples and Section 4.2 discusses real-life microarray data-examples.
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4.1 Synthetic Examples

Experiments are performed with two publicly available algorithm implementations for the problem
(1):

GLASSO: The algorithm of Friedman et al. (2007). We used the MATLAB wrapper available at
http://www-stat.stanford.edu/˜tibs/glasso/index.html to the Fortran code. The
specific criterion for convergence (lack of progress of the diagonal entries) was set to 10−5
and the maximal number of iterations was set to 1000.

SMACS: denotes the algorithm of Lu (2010). We used the MATLAB implementation
smooth_covsel available at http://people.math.sfu.ca/˜zhaosong/Codes/SMOOTH_
COVSEL/. The criterion for convergence (based on duality gap) was set to 10−5 and the max-
imal number of iterations was set to 1000.

We will like to note that the convergence criteria of the two algorithms GLASSO and SMACS are not
the same. For obtaining the connected components of a symmetric adjacency matrix we used the
MATLAB function graphconncomp. All of our computations are done in MATLAB 7.11.0 on a 3.3
GhZ Intel Xeon processor.

The simulation examples are created as follows. We generated a block diagonal matrix given by
S̃= blkdiag(S̃1, . . . , S̃K), where each block S̃! = 1p!×p!—a matrix of all ones and ∑! p! = p. In the
examples we took all p!s to be equal to p1 (say). Noise of the form σ ·UU ′ (U is a p× pmatrix with
i.i.d. standard Gaussian entries) is added to S̃ such that 1.25 times the largest (in absolute value) off
block-diagonal (as in the block structure of S̃) entry of σ ·UU ′ equals the smallest absolute non-zero
entry in S̃, that is, one. The sample covariance matrix is S= S̃+σ ·UU ′.

We consider a number of examples for varying K and p1 values, as shown in Table 1. Sizes were
chosen such that it is at-least ‘conceivable’ to solve (1) on the full dimensional problem, without
screening. In all the examples shown in Table 1, we set λI := (λmax+λmin)/2, where for all values
of λ in the interval [λmin,λmax] the thresh-holded version of the sample covariance matrix has exactly
K connected components. We also took a larger value of λ, that is, λII := λmax, which gave sparser
estimates of the precision matrix but the number of connected components were the same.

The computations across different connected blocks could be distributed into as many machines.
This would lead to almost aK fold improvement in timings, however in Table 1 we report the timings
by operating serially across the blocks. The serial ‘loop’ across the different blocks are implemented
in MATLAB.

Table 1 shows the rather remarkable improvements obtained by using our proposed covariance
thresholding strategy as compared to operating on the whole matrix. Timing comparisons between
GLASSO and SMACS are not fair, since GLASSO is written in Fortran and SMACS in MATLAB.
However, we note that our experiments are meant to demonstrate how the thresholding helps in
improving the overall computational time over the baseline method of not exploiting screening.
Clearly our proposed strategy makes solving larger problems (1), not only feasible but with quite
attractive computational time. The time taken by the graph-partitioning step in splitting the thresh-
olded covariance graph into its connected components is negligible as compared to the timings for
the optimization problem.
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K p1 / p λ Algorithm
Algorithm Timings (sec) Ratio Time (sec)
with without Speedup graph
screen screen factor partition

2 200 / 400
λI

GLASSO 11.1 25.97 2.33 0.04
SMACS 12.31 137.45 11.16

λII
GLASSO 1.687 4.783 2.83 0.066
SMACS 10.01 42.08 4.20

2 500 /1000
λI

GLASSO 305.24 735.39 2.40 0.247
SMACS 175 2138* 12.21

λII
GLASSO 29.8 121.8 4.08 0.35
SMACS 272.6 1247.1 4.57

5 300 /1500
λI

GLASSO 210.86 1439 6.82 0.18
SMACS 63.22 6062* 95.88

λII
GLASSO 10.47 293.63 28.04 0.123
SMACS 219.72 6061.6 27.58

5 500 /2500
λI

GLASSO 1386.9 - - 0.71
SMACS 493 - -

λII
GLASSO 17.79 963.92 54.18 0.018
SMACS 354.81 - -

8 300 /2400
λI

GLASSO 692.25 - - 0.713
SMACS 185.75 - -

λII
GLASSO 9.07 842.7 92.91 0.023
SMACS 153.55 - -

Table 1: Table showing (a) the times in seconds with screening, (b) without screening, that is, on
the whole matrix and (c) the ratio (b)/(a)—‘Speedup factor’ for algorithms GLASSO and
SMACS. Algorithms with screening are operated serially—the times reflect the total time
summed across all blocks. The column ‘graph partition’ lists the time for computing the
connected components of the thresholded sample covariance graph. Since λII > λI , the
former gives sparser models. ‘*’ denotes the algorithm did not converge within 1000
iterations. ‘-’ refers to cases where the respective algorithms failed to converge within 2
hours.

4.2 Micro-array Data Examples

The graphical lasso is often used in learning connectivity networks in gene-microarray data (Fried-
man et al., 2007, see for example). Since in most real examples the number of genes p is around
tens of thousands, obtaining an inverse covariance matrix by solving (1) is computationally imprac-
tical. The covariance thresholding method we propose easily applies to these problems—and as we
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see gracefully delivers solutions over a large range of the parameter λ. We study three different
micro-array examples and observe that as one varies λ from large to small values, the thresholded
covariance graph splits into a number of non-trivial connected components of varying sizes. We
continue till a small/moderate value of λ when the maximal size of a connected component gets
larger than a predefined machine-capacity or the ‘computational budget’ for a single graphical lasso
problem. Note that in relevant micro-array applications, since p2 n (n, the number of samples is
at most a few hundred) heavy regularization is required to control the variance of the covariance
estimates—so it does seem reasonable to restrict to solutions of (1) for large values of λ.

Following are the data-sets we used for our experiments:

(A) This data-set appears in Alon et al. (1999) and has been analyzed by Rothman et al. (2008,
for example). In this experiment, tissue samples were analyzed using an Affymetrix Oligonu-
cleotide array. The data were processed, filtered and reduced to a subset of p = 2000 gene
expression values. The number of Colon Adenocarcinoma tissue samples is n= 62.

(B) This is an early example of an expression array, obtained from the Patrick Brown Laboratory
at Stanford University. There are n = 385 patient samples of tissue from various regions of
the body (some from tumors, some not), with gene-expression measurements for p = 4718
genes.

(C) The third example is the by now famous NKI data set that produced the 70-gene prognostic
signature for breast cancer (Van-De-Vijver et al., 2002). Here there are n= 295 samples and
p= 24481 genes.

Among the above, both (B) and (C) have few missing values—which we imputed by the respective
global means of the observed expression values. For each of the three data-sets, we took S to be the
corresponding sample correlation matrix. The exact thresholding methodolgy could have also been
applied to the sample covariance matrix. Since it is a common practice to standardize the “genes”,
we operate on the sample correlation matrix.

Figure 1 shows how the component sizes of the thresholded covariance graph change across λ.
We describe the strategy we used to arrive at the figure. Note that the connected components change
only at the absolute values of the entries of S. From the sorted absolute values of the off-diagonal
entries of S, we obtained the smallest value of λ, say λ′min, for which the size of the maximal
connected component was 1500. For a grid of values of λ till λ′min, we computed the connected
components of the thresholded sample-covariance matrix and obtained the size-distribution of the
various connected components. Figure 1 shows how these components change over a range of values
of λ for the three examples (A), (B) and (C). The number of connected components of a particular
size is denoted by a color-scheme, described by the color-bar in the figures. With increasing λ: the
larger connected components gradually disappear as they decompose into smaller components; the
sizes of the connected components decrease and the frequency of the smaller components increase.
Since these are all correlation matrices, for λ ≥ 1 all the nodes in the graph become isolated. The
range of λ values for which the maximal size of the components is smaller than 1500 differ across
the three examples. For (C) there is a greater variety in the sizes of the components as compared
to (A) and (B). Note that by Theorem 1, the pattern of the components appearing in Figure 1 are
exactly the same as the components appearing in the solution of (1) for that λ.
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Figure 1: Figure showing the size distribution (in the log-scale) of connected components arising
from the thresholded sample covariance graph for examples (A)-(C). For every value of λ
(vertical axis), the horizontal slice denotes the sizes of the different components appearing
in the thresholded covariance graph. The colors represent the number of components in
the graph having that specific size. For every figure, the range of λ values is chosen such
that the maximal size of the connected components do not exceed 1500.

For examples (B) and (C) we found that the full problem sizes are beyond the scope of GLASSO
and SMACS—the screening rule is apparently the onlyway to obtain solutions for a reasonable range
of λ-values as shown in Figure 1.

5. Conclusions

In this paper we present a novel property characterizing the family of solutions to the graphical lasso
problem (1), as a function of the regularization parameter λ. The property is fairly surprising—the
vertex partition induced by the connected components of the non-zero pattern of the estimated
concentration matrix (at λ) and the thresholded sample covariance matrix S (at λ) are exactly equal.
This property seems to have been unobserved in the literature. Our observation not only provides
interesting insights into the properties of the graphical lasso solution-path but also opens the door
to solving large-scale graphical lasso problems, which are otherwise intractable. This simple rule
when used as a wrapper around existing algorithms leads to enormous performance boosts—on
occasions by a factor of thousands!
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Appendix A. Proofs

Here we provide proofs of Theorems 1 and 2.

A.1 Proof of Theorem 1

Proof Suppose Θ̂ (we suppress the superscript λ for notational convenience) solves problem (1),
then standard KKT conditions of optimality (Boyd and Vandenberghe, 2004) give:

|Si j−Ŵi j|≤ λ ∀ Θ̂i j = 0; and (7)

Ŵi j = Si j+λ ∀ Θ̂i j > 0; Ŵi j = Si j−λ ∀ Θ̂i j < 0; (8)

where Ŵ= (Θ̂)−1. The diagonal entries satisfy Ŵii = Sii+λ, for i= 1, . . . , p.
Using (4) and (5), there exists an ordering of the vertices {1, . . . , p} of the graph such that E(λ) is

block-diagonal. For notational convenience, we will assume that the matrix is already in that order.
Under this ordering of the vertices, the edge-matrix of the thresholded covariance graph is of the
form:

E(λ) =





E(λ)1 0 · · · 0
0 E(λ)2 0 · · ·
...

... . . . ...
0 · · · 0 E(λ)k(λ)




(9)

where the different components represent blocks of indices given by: V (λ)
! ,!= 1, . . . ,k(λ).

We will construct a matrix Ŵ having the same structure as (9) which is a solution to (1). Note
that if Ŵ is block diagonal then so is its inverse. Let Ŵ and its inverse Θ̂ be given by:

Ŵ=





Ŵ1 0 · · · 0
0 Ŵ2 0 · · ·
...

... . . . ...
0 · · · 0 Ŵk(λ)




, Θ̂=





Θ̂1 0 · · · 0
0 Θ̂2 0 · · ·
...

... . . . ...
0 · · · 0 Θ̂k(λ)





Define the block diagonal matrices Ŵ! or equivalently Θ̂! via the following sub-problems

Θ̂! = argmin
Θ!

{− logdet(Θ!)+ tr(S!Θ!)+λ∑
i j
|(Θ!)i j |} (10)

for ! = 1, . . . ,k(λ), where S! is a sub-block of S, with row/column indices from V (λ)
! ×V (λ)

! . The
same notation is used for Θ!. Denote the inverses of the block-precision matrices by {Θ̂!}−1 = Ŵ!.
We will show that the above Θ̂ satisfies the KKT conditions—(7) and (8).

Note that by construction of the thresholded sample covariance graph,
if i ∈ V (λ)

! and j ∈ V (λ)
!′ with ! .= !′, then |Si j|≤ λ.

Hence, for i ∈ V (λ)
! and j ∈ V (λ)

!′ with ! .= !′; the choice Θ̂i j = Ŵi j = 0 satisfies the KKT
conditions (7)

|Si j−Ŵi j|≤ λ

for all the off-diagonal entries in the block-matrix (9).
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By construction (10) it is easy to see that for every !, the matrix Θ̂! satisfies the KKT conditions
(7) and (8) corresponding to the !th block of the p× p dimensional problem. Hence Θ̂ solves
problem (1).

The above argument shows that the connected components obtained from the estimated preci-
sion graphG (λ) leads to a partition of the vertices {V̂ (λ)

! }1≤!≤κ(λ) such that for every !∈ {1, . . . ,k(λ)},
there is a !′ ∈ {1, . . . ,κ(λ)} such that V̂ (λ)

!′ ⊂ V (λ)
! . In particular k(λ)≤ κ(λ).

Conversely, if Θ̂ admits the decomposition as in the statement of the theorem, then it follows
from (7) that:
for i ∈ V̂ (λ)

! and j ∈ V̂ (λ)
!′ with ! .= !′; |Si j − Ŵi j| ≤ λ. Since Ŵi j = 0, we have |Si j| ≤ λ. This

proves that the connected components of G(λ) leads to a partition of the vertices, which is finer than
the vertex-partition induced by the components of G (λ). In particular this implies that k(λ)≥ κ(λ).

Combining the above two we conclude k(λ) = κ(λ) and also the equality (6). The permutation
π in the theorem appears since the labeling of the connected components is not unique.

A.2 Proof of Theorem 2

Proof This proof is a direct consequence of Theorem 1, which establishes that the vertex-partitions
induced by the the connected components of the estimated precision graph and the thresholded
sample covariance graph are equal.

Observe that, by construction, the connected components of the thresholded sample covariance
graph, that is, G(λ) are nested within the connected components of G(λ′). In particular, the vertex-
partition induced by the components of the thresholded sample covariance graph at λ, is contained
inside the vertex-partition induced by the components of the thresholded sample covariance graph
at λ′. Now, using Theorem 1 we conclude that the vertex-partition induced by the components of
the estimated precision graph at λ, given by {V̂ (λ)

! }1≤!≤κ(λ) is contained inside the vertex-partition
induced by the components of the estimated precision graph at λ′, given by {V̂ (λ′)

! }1≤!≤κ(λ′). The
proof is thus complete.
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Abstract
This paper presents new and effective algorithms for learning kernels. In particular, as shown by
our empirical results, these algorithms consistently outperform the so-called uniform combination
solution that has proven to be difficult to improve upon in the past, as well as other algorithms for
learning kernels based on convex combinations of base kernels in both classification and regression.
Our algorithms are based on the notion of centered alignment which is used as a similarity measure
between kernels or kernel matrices. We present a number of novel algorithmic, theoretical, and
empirical results for learning kernels based on our notion of centered alignment. In particular, we
describe efficient algorithms for learning a maximum alignment kernel by showing that the problem
can be reduced to a simple QP and discuss a one-stage algorithm for learning both a kernel and a
hypothesis based on that kernel using an alignment-based regularization. Our theoretical results
include a novel concentration bound for centered alignment between kernel matrices, the proof of
the existence of effective predictors for kernels with high alignment, both for classification and for
regression, and the proof of stability-based generalization bounds for a broad family of algorithms
for learning kernels based on centered alignment. We also report the results of experiments with
our centered alignment-based algorithms in both classification and regression.
Keywords: kernel methods, learning kernels, feature selection

1. Introduction

One of the key steps in the design of learning algorithms is the choice of the features. This choice
is typically left to the user and represents his prior knowledge, but it is critical: a poor choice makes
learning challenging while a better choice makes it more likely to be successful. The general objec-
tive of this work is to define effective methods that partially relieve the user from the requirement
of specifying the features.

∗. A significant amount of the presented work was completed while AR was a graduate student at the Courant Institute
of Mathematical Sciences and a postdoctoral scholar at the University of Califorinia at Berkeley.
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For kernel-based algorithms the features are provided intrinsically via the choice of a positive-
definite symmetric kernel function (Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik, 1998).
To limit the risk of a poor choice of kernel, in the last decade or so, a number of publications
have investigated the idea of learning the kernel from data (Cristianini et al., 2001; Chapelle et al.,
2002; Bousquet and Herrmann, 2002; Lanckriet et al., 2004; Jebara, 2004; Argyriou et al., 2005;
Micchelli and Pontil, 2005; Lewis et al., 2006; Argyriou et al., 2006; Kim et al., 2006; Cortes et al.,
2008; Sonnenburg et al., 2006; Srebro and Ben-David, 2006; Zien and Ong, 2007; Cortes et al.,
2009a, 2010a,b). This reduces the requirement from the user to only specifying a family of kernels
rather than a specific kernel. The task of selecting (or learning) a kernel out of that family is then
reserved to the learning algorithm which, as for standard kernel-based methods, must also use the
data to choose a hypothesis in the reproducing kernel Hilbert space (RKHS) associated to the kernel
selected.

Different kernel families have been studied in the past, but the most widely used one has been
that of convex combinations of a finite set of base kernels. However, while different learning kernel
algorithms have been introduced in that case, including those of Lanckriet et al. (2004), to our
knowledge, in the past, none has succeeded in consistently and significantly outperforming the
uniform combination solution, in binary classification or regression tasks. The uniform solution
consists of simply learning a hypothesis out of the RKHS associated to a uniform combination of
the base kernels. This disappointing performance of learning kernel algorithms has been pointed
out in different instances, including by many participants at different NIPS workshops organized on
the theme in 2008 and 2009, as well as in a survey talk (Cortes, 2009) and tutorial (Cortes et al.,
2011b). The empirical results we report further confirm this observation. Other kernel families
have been considered in the literature, including hyperkernels (Ong et al., 2005), Gaussian kernel
families (Micchelli and Pontil, 2005), or non-linear families (Bach, 2008; Cortes et al., 2009b;
Varma and Babu, 2009). However, the performance reported for these other families does not seem
to be consistently superior to that of the uniform combination either.

In contrast, on the theoretical side, favorable guarantees have been derived for learning kernels.
For general kernel families, learning bounds based on covering numbers were given by Srebro
and Ben-David (2006). Stronger margin-based generalization guarantees based on an analysis of
the Rademacher complexity, with only a square-root logarithmic dependency on the number of
base kernels were given by Cortes et al. (2010b) for convex combinations of kernels with an L1
constraint. The dependency of theses bounds, as well as others given for Lq constraints, were
shown to be optimal with respect to the number of kernels. These L1 bounds generalize those
presented in Koltchinskii and Yuan (2008) in the context of ensembles of kernel machines. The
learning guarantees suggest that learning kernel algorithms even with a relatively large number of
base kernels could achieve a good performance.

This paper presents new algorithms for learning kernels whose performance is more consis-
tent with expectations based on these theoretical guarantees. In particular, as can be seen by our
experimental results, several of the algorithms we describe consistently outperform the uniform
combination solution. They also surpass in performance the algorithm of Lanckriet et al. (2004) in
classification and improve upon that of Cortes et al. (2009a) in regression. Thus, this can be viewed
as the first series of algorithmic solutions for learning kernels in classification and regression with
consistent performance improvements.

Our learning kernel algorithms are based on the notion of centered alignment which is a sim-
ilarity measure between kernels or kernel matrices. This can be used to measure the similarity of
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each base kernel with the target kernel KY derived from the output labels. Our definition of cen-
tered alignment is close to the uncentered kernel alignment originally introduced by Cristianini et al.
(2001). This closeness is only superficial however: as we shall see both from the analysis of several
cases and from experimental results, in contrast with our notion of alignment, the uncentered kernel
alignment of Cristianini et al. (2001) does not correlate well with performance and thus, in general,
cannot be used effectively for learning kernels. We note that other kernel optimization criteria sim-
ilar to centered alignment, but without the key normalization have been used by some authors (Kim
et al., 2006; Gretton et al., 2005). Both the centering and the normalization are critical components
of our definition.

We present a number of novel algorithmic, theoretical, and empirical results for learning kernels
based on our notion of centered alignment. In Section 2, we introduce and analyze the properties
of centered alignment between kernel functions and kernel matrices, and discuss its benefits. In
particular, the importance of the centering is justified theoretically and validated empirically. We
then describe several algorithms based on the notion of centered alignment in Section 3.

We present two algorithms that each work in two subsequent stages (Sections 3.1 and 3.2):
the first stage consists of learning a kernel K that is a non-negative linear combination of p base
kernels; the second stage combines this kernel with a standard kernel-based learning algorithm such
as support vector machines (SVMs) (Cortes and Vapnik, 1995) for classification, or kernel ridge
regression (KRR) for regression (Saunders et al., 1998), to select a prediction hypothesis. These
two algorithms differ in the way centered alignment is used to learn K. The simplest and most
straightforward to implement algorithm selects the weight of each base kernel matrix independently,
only from the centered alignment of that matrix with the target kernel matrix. The other more
accurate algorithm instead determines these weights jointly by measuring the centered alignment
of a convex combination of base kernel matrices with the target one. We show that this more
accurate algorithm is very efficient by proving that the base kernel weights can be obtained by
solving a simple quadratic program (QP). We also give a closed-form expression for the weights
in the case of a linear, but not necessarily convex, combination. Note that an alternative two-stage
technique consists of first learning a prediction hypothesis using each base kernel and then learning
the best linear combination of these hypotheses. But, as pointed out in Section 3.3, in general, such
ensemble-based techniques make use of a richer hypothesis space than the one used by learning
kernel algorithms. In addition, we present and analyze an algorithm that uses centered alignment
to both select a convex combination kernel and a hypothesis based on that kernel, these two tasks
being performed in a single stage by solving a single optimization problem (Section 3.4).

We also present an extensive theoretical analysis of the notion of centered alignment and algo-
rithms based on that notion. We prove a concentration bound for the notion of centered alignment
showing that the centered alignment of two kernel matrices is sharply concentrated around the cen-
tered alignment of the corresponding kernel functions, the difference being bounded by a term in
O(1/

√
m) for samples of size m (Section 4.1). Our result is simpler and directly bounds the dif-

ference between these two relevant quantities, unlike previous work by Cristianini et al. (2001)
(for uncentered alignments). We also show the existence of good predictors for kernels with high
centered alignment, both for classification and for regression (Section 4.2). This result justifies
the search for good learning kernel algorithms based on the notion of centered alignment. We
note that the proofs given for similar results in classification for uncentered alignments by Cris-
tianini et al. (2001, 2002) are erroneous. We also present stability-based generalization bounds for
two-stage learning kernel algorithms based on centered alignment when the second stage is kernel
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ridge regression (Section 4.3). We further study the application of these bounds in the case of our
alignment maximization algorithm and initiate a detailed analysis of the stability of this algorithm
(Appendix B).

Finally, in Section 5, we report the results of experiments with our centered alignment-based al-
gorithms both in classification and regression, and compare our results with L1- and L2-regularized
learning kernel algorithms (Lanckriet et al., 2004; Cortes et al., 2009a), as well as with the uniform
kernel combination method. The results show an improvement both over the uniform combina-
tion and over the one-stage kernel learning algorithms. They also demonstrate a strong correlation
between the centered alignment achieved and the performance of the algorithm.1

2. Alignment Definitions

The notion of kernel alignment was first introduced by Cristianini et al. (2001). Our definition of
kernel alignment is different and is based on the notion of centering in the feature space. Thus, we
start with the definition of centering and the analysis of its relevant properties.

2.1 Centered Kernel Functions

Let D be the distribution according to which training and test points are drawn. A feature mapping
Φ : X →H is centered by subtracting from it its expectation, that is forming it by Φ−Ex[Φ], where
Ex denotes the expected value of Φ when x is drawn according to the distribution D. Centering a
positive definite symmetric (PDS) kernel function K : X ×X → R consists of centering any feature
mapping Φ associated to K. Thus, the centered kernel Kc associated to K is defined for all x,x′ ∈ X

by

Kc(x,x′) = (Φ(x)−E
x
[Φ]))(Φ(x′)−E

x′
[Φ])

= K(x,x′)−E
x
[K(x,x′)]−E

x′
[K(x,x′)]+ E

x,x′
[K(x,x′)].

This also shows that the definition does not depend on the choice of the feature mapping associated
to K. Since Kc(x,x′) is defined as an inner product, Kc is also a PDS kernel.2 Note also that for a
centered kernel Kc, Ex,x′ [Kc(x,x′)] = 0, that is, centering the feature mapping implies centering the
kernel function.

2.2 Centered Kernel Matrices

Similar definitions can be given for a finite sample S= (x1, . . . ,xm) drawn according to D: a feature
vector Φ(xi) with i ∈ [1,m] is centered by subtracting from it its empirical expectation, that is form-
ing it withΦ(xi)−Φ, whereΦ= 1

m ∑
m
i=1Φ(xi). The kernel matrixK associated to K and the sample

1. This is an extended version of Cortes et al. (2010a) with much additional material, including additional empirical
evidence supporting the importance of centered alignment, the description and discussion of a single-stage algorithm
for learning kernels based on centered alignment, an analysis of unnormalized centered alignment and the proof of
the existence of good predictors for large values of centered alignment, generalization bounds for two-stage learning
kernel algorithms based on centered alignment, and an experimental investigation of the single-stage algorithm.

2. For convenience, we use a matrix notation for feature vectors and useΦ(x))Φ(x′) to denote the inner product between
two feature vectors and similarly Φ(x)Φ(x′)) for the outer product, including in the case where the dimension of the
feature space is infinite, in which case we are using infinite matrices.
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S is centered by replacing it with Kc defined for all i, j ∈ [1,m] by

[Kc]i j =Ki j−
1
m

m

∑
i=1
Ki j−

1
m

m

∑
j=1
Ki j+

1
m2

m

∑
i, j=1

Ki j. (1)

Let Φ = [Φ(x1), . . . ,Φ(xm)]) and Φ = [Φ, . . . ,Φ]). Then, it is not hard to verify that Kc = (Φ−
Φ)(Φ−Φ)), which shows thatKc is a positive semi-definite (PSD) matrix. Also, as with the kernel
function, 1m2 ∑

m
i, j=1[Kc]i j = 0. Let 〈·, ·〉F denote the Frobenius product and ‖ ·‖F the Frobenius norm

defined by
∀A,B ∈ R

m×m,〈A,B〉F = Tr[A)B] and ‖A‖F =
√
〈A,A〉F .

Then, the following basic properties hold for centering kernel matrices.

Lemma 1 Let 1 ∈ Rm×1 denote the vector with all entries equal to one, and I the identity matrix.

1. For any kernel matrix K ∈ Rm×m, the centered kernel matrix Kc can be expressed as follows

Kc =

[
I−
11)

m

]
K
[
I−
11)

m

]
.

2. For any two kernel matrices K and K′,

〈Kc,K′
c〉F = 〈K,K′

c〉F = 〈Kc,K′〉F .

Proof The first statement can be shown straightforwardly from the definition of Kc (Equation (1)).
The second statement follows from

〈Kc,K′
c〉F = Tr

[[
I−
11)

m

]
K
[
I−
11)

m

][
I−
11)

m

]
K′

[
I−
11)

m

]]

,

the fact that [I− 1
m11

)]2 = [I− 1
m11

)], and the trace property Tr[AB] = Tr[BA], valid for all matrices
A,B ∈ Rm×m.

We shall use these properties in the proofs of the results presented in Section 4.

2.3 Centered Kernel Alignment

In the following sections, in the absence of ambiguity, to abbreviate the notation, we often omit the
variables over which an expectation is taken. We define the alignment of two kernel functions as
follows.

Definition 2 (Kernel function alignment) Let K and K′ be two kernel functions defined over X ×
X such that 0 < E[K2c ] < +∞ and 0 < E[K′

c
2] < +∞. Then, the alignment between K and K′ is

defined by

ρ(K,K′) =
E[KcK′

c]√
E[K2c ]E[K′

c
2]

.

Since |E[KcK′
c]|≤

√
E[K2c ]E[K′

c
2] by the Cauchy-Schwarz inequality, we have ρ(K,K′)∈ [−1,1].

The following lemma shows more precisely that ρ(K,K′)∈ [0,1] when K and K′ are PDS kernels.
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Lemma 3 For any two PDS kernels K and K′, E[KK′]≥ 0.

Proof Let Φ be a feature mapping associated to K and Φ′ a feature mapping associated to K′. By
definition of Φ and Φ′, and using the properties of the trace, we can write:

E
x,x′

[K(x,x′)K′(x,x′)] = E
x,x′

[Φ(x))Φ(x′)Φ′(x′))Φ′(x)]

= E
x,x′

[
Tr[Φ(x))Φ(x′)Φ′(x′))Φ′(x)]

]

= 〈E
x
[Φ(x)Φ′(x))],E

x′
[Φ(x′)Φ′(x′))]〉F = ‖U‖2F ≥ 0,

where U= Ex[Φ(x)Φ′(x))].

The lemma applies in particular to any two centered kernels Kc and K′
c which, as previously shown,

are PDS kernels if K and K′ are PDS. Thus, for any two PDS kernels K and K′, the following holds:

E[KcK′
c]≥ 0.

We can define similarly the alignment between two kernel matrices K and K′ based on a finite
sample S= (x1, . . . ,xm) drawn according to D.

Definition 4 (Kernel matrix alignment) Let K ∈ Rm×m and K′ ∈ Rm×m be two kernel matrices
such that ‖Kc‖F 0= 0 and ‖K′

c‖F 0= 0. Then, the alignment between K and K′ is defined by

ρ̂(K,K′) =
〈Kc,K′

c〉F
‖Kc‖F‖K′

c‖F
.

Here too, by the Cauchy-Schwarz inequality, ρ̂(K,K′) ∈ [−1,1] and in fact ρ̂(K,K′) ≥ 0 since the
Frobenius product of any two positive semi-definite matrices K and K′ is non-negative. Indeed,
for such matrices, there exist matrices U and V such that K = UU) and K′ = VV). The statement
follows from

〈K,K′〉F = Tr(UU)VV)) = Tr
(
(U)V))(U)V)

)
= ‖U)V‖2F ≥ 0. (2)

This applies in particular to the kernel matrices of the PDS kernels Kc and K′
c:

〈Kc,K′
c〉F ≥ 0.

Our definitions of alignment between kernel functions or between kernel matrices differ from
those originally given by Cristianini et al. (2001, 2002):

A=
E[KK′]√
E[K2]E[K′2]

, Â=
〈K,K′〉F

‖K‖F‖K′‖F
,

which are thus in terms of K and K′ instead of Kc and K′
c and similarly for matrices. This may appear

to be a technicality, but it is in fact a critical difference. Without that centering, the definition of
alignment does not correlate well with performance. To see this, consider the standard case where
K′ is the target label kernel, that is K′(x,x′) = yy′, with y the label of x and y′ the label of x′, and
examine the following simple example in dimension two (X = R2), where K(x,x′) = x · x′+ 1 and
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Figure 1: (a) Representation of the distribution D. In this simple two-dimensional example, a frac-
tion α of the points are at (−1,0) and have the label −1. The remaining points are at
(1,0) and have the label+1. (b) Alignment values computed for two different definitions
of alignment. The solid line in black plots the definition of alignment computed accord-
ing to Cristianini et al. (2001) A = (α2+(1−α)2)1/2, while our definition of centered
alignment results in the straight dotted blue line ρ= 1.

KINEMATICS IONOSPHERE GERMAN SPAMBASE SPLICE
(REGR.) (REGR.) (CLASS.) (CLASS.) (CLASS.)

ρ̂ 0.9624 0.9979 0.9439 0.9918 0.9515
Â 0.8627 0.9841 0.9390 0.9889 -0.4484

Table 1: The correlations of the alignment values and error-rates of various kernels. The top row re-
ports the correlation of the accuracy of the base kernels used in Section 5 with the centered
alignments ρ̂, the bottom row the correlation with the non-centered alignment Â.

where the distribution D is defined by a fraction α ∈ [0,1] of all points being at (−1,0) and labeled
with −1, and the remaining points at (1,0) with label +1, as shown in Figure 1.

Clearly, for any value of α∈ [0,1], the problem is separable, for example with the simple vertical
line going through the origin, and one would expect the alignment to be 1. However, the alignment
A calculated using the definition of the distribution D admits a different expression. Using

E[K′2] = 1,
E[K2] = α2 ·4+(1−α)2 ·4+2α(1−α) ·0= 4

(
α2+(1−α)2

)
,

E[KK′] = α2 ·2+(1−α)2 ·2+2α(1−α) ·0= 2
(
α2+(1−α)2

)
,

gives A = (α2+(1−α)2)1/2. Thus, A is never equal to one except for α = 0 or α = 1 and for the
balanced case where α = 1/2, its value is A = 1/

√
2 ≈ .707 < 1. In contrast, with our definition,

ρ(K,K′) = 1 for all α ∈ [0,1] (see Figure 1).
This mismatch between A (or Â) and the performance values can also be seen in real world

data sets. Instances of this problem have been noticed by Meila (2003) and Pothin and Richard
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Figure 2: Detailed view of the splice and kinematics experiments presented in Table 1. Both the
centered (plots in blue on left) and non-centered alignment (plots in orange on right) are
plotted as a function of the accuracy (for the regression problem in the kinematics task
“accuracy” is 1 - RMSE). It is apparent from these plots that the non-centered alignment
can be misleading when evaluating the quality of a kernel.

(2008) who have suggested various (input) data translation methods, and by Cristianini et al. (2002)
who observed an issue for unbalanced data sets. Table 1, as well as Figure 2, give a series of
empirical results in several classification and regression tasks based on data sets taken from the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/) and Delve data sets (http:
//www.cs.toronto.edu/˜delve/data/datasets.html). The table and the figure illustrate the
fact that the quantity Â measured with respect to several different kernels does not always correlate
well with the performance achieved by each kernel. In fact, for the splice classification task, the
non-centered alignment is negatively correlated with the accuracy, while a large positive correlation
is expected of a good quality measure. The centered notion of alignment ρ̂ however, shows good
correlation along all data sets and is always better correlated than Â.

The notion of alignment seeks to capture the correlation between the random variables K(x,x′)
and K′(x,x′) and one could think it natural, as for the standard correlation coefficients, to consider
the following definition:

ρ′(K,K′) =
E[(K−E[K])(K′ −E[K′])]√
E[(K−E[K])2]E[(K′ −E[K′])2]

.
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However, centering the kernel values, as opposed to centering the feature values, is not directly
relevant to linear predictions in feature space, while our definition of alignment ρ is precisely related
to that. Also, as already shown in Section 2.1, centering in the feature space implies the centering
of the kernel values, since E[Kc] = 0 and 1

m2 ∑
m
i, j=1[Kc]i j = 0 for any kernel K and kernel matrix K.

Conversely, however, centering the kernel does not imply centering in feature space. For example,
consider any kernel where all the row marginals are not all equal.

3. Algorithms

This section discusses several learning kernel algorithms based on the notion of centered alignment.
In all cases, the family of kernels considered is that of non-negative combinations of p base kernels
Kk, k∈ [1, p]. Thus, the final hypothesis learned belongs to the reproducing kernel Hilbert space
(RKHS) HKµ

associated to a kernel of the form Kµ=∑
p
k=1µkKk, with µ≥0, which guarantees that

Kµ is PDS, and ‖µ‖=Λ≥0, for some regularization parameter Λ.
We first describe and analyze two algorithms that both work in two stages: in the first stage,

these algorithms determine the mixture weights µ. In the second stage, they train a standard kernel-
based algorithm, for example, SVMs for classification, or KRR for regression, in combination with
the kernel matrix Kµ associated to Kµ, to learn a hypothesis h ∈HKµ

. Thus, these two-stage algo-
rithms differ only by their first stage, which determines Kµ. We describe first in Section 3.1 a simple
algorithm that determines each mixture weight µk independently, (align), then, in Section 3.2, an
algorithm that determines the weights µks jointly (alignf) by selectingµ to maximize the alignment
with the target kernel. We briefly discuss in Section 3.3 the relationship of such two-stage learning
algorithms with algorithms based on ensemble techniques, which also consist of two stages. Fi-
nally, we introduce and analyze a single-stage alignment-based algorithm which learns µ and the
hypothesis h ∈HKµ

simultaneously in Section 3.4.

3.1 Independent Alignment-based Algorithm (align)

This is a simple but efficient method which consists of using the training sample to independently
compute the alignment between each kernel matrix Kk and the target kernel matrix KY = yy),
based on the labels y, and to choose each mixture weight µk proportional to that alignment. Thus,
the resulting kernel matrix is defined by:

Kµ ∝
p

∑
k=1

ρ̂(Kk,KY )Kk =
1

‖KY‖F

p

∑
k=1

〈Kk,KY 〉F
‖Kk‖F

Kk. (3)

When the base kernel matrices Kk have been normalized with respect to the Frobenius norm, the
independent alignment-based algorithm can also be viewed as the solution of a joint maximization
of the unnormalized alignment defined as follows, with a L2-norm constraint on the norm of µ.

Definition 5 (Unnormalized alignment) Let K and K′ be two PDS kernels defined over X ×X and
K and K′ their kernel matrices for a sample of size m. Then, the unnormalized alignment ρu(K,K′)
between K and K′ and the unnormalized alignment ρ̂u(K,K′) between K and K′ are defined by

ρu(K,K′) = E
x,x′

[Kc(x,x′)K′
c(x,x

′)] and ρ̂u(K,K′) =
1
m2

〈Kc,K′
c〉F .
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Since they are not normalized, the alignment values a and â are no longer guaranteed to be in the
interval [0,1]. However, assuming the kernel function K and labels are bounded, the unnormalized
alignment between K and KY are bounded as well.

Lemma 6 Let K be a PDS kernel. Assume that for all x ∈ X , Kc(x,x)≤ R2 and for all output label
y, |y|≤M. Then, the following bounds hold:

0≤ ρu(K,KY )≤MR2 and 0≤ ρ̂u(K,KY )≤MR2.

Proof The lower bounds hold by Lemma 3 and Inequality (2). The upper bounds can be obtained
straightforwardly via the application of the Cauchy-Schwarz inequality:

ρ2u(K,KY ) = E
(x,y),(x′,y′)

[Kc(x,x′)yy′]2 ≤ E
x,x′

[K2c (x,x
′)] E

y,y′
[yy′]2 ≤ R4M2

ρ̂u(K,K′) =
1
m2

〈Kc,KY 〉F ≤
1
m2

‖Kc‖F‖Ky‖F ≤
mR2mM
m2

= R2M,

where we used the identity 〈Kc,KY c〉F = 〈Kc,KY 〉F from Lemma 1.

We will consider more generally the corresponding optimization with an Lq-norm constraint on µ
with q> 1:

max
µ

ρ̂u
( p

∑
k=1

µkKk,KY
)
=
〈 p

∑
k=1

µkKk,KY
〉

F
(4)

subject to:
p

∑
k=1

µqk ≤ Λ.

An explicit constraint enforcing µ ≥ 0 is not necessary since, as we shall see, the optimal solution
found always satisfies this constraint.

Proposition 7 Let µ∗ be the solution of the optimization problem (4), then µ∗k ∝ 〈Kk,KY 〉
1

q−1
F .

Proof The Lagrangian corresponding to the optimization (4) is defined as follows,

L(µ,β) =−
p

∑
k=1

µk〈Kk,KY 〉F +β(
p

∑
k=1

µqk−Λ),

where the dual variable β is non-negative. Differentiating with respect to µk and setting the result to
zero gives

∂L
∂µk

=−〈Kk,KY 〉F +qβµq−1k = 0 =⇒ µk ∝ 〈Kk,KY 〉
1

q−1
F ,

which concludes the proof.

Thus, for q= 2, µk ∝ 〈Kk,KY 〉F is exactly the solution given by Equation (3) modulo normalization
by the Frobenius norm of the base matrix. Note that for q= 1, the optimization becomes trivial and
can be solved by simply placing all the weight on µk with the largest coefficient, that is the µk whose
corresponding kernel matrix Kk has the largest alignment with the target kernel.
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3.2 Alignment Maximization Algorithm

The independent alignment-based method ignores the correlation between the base kernel matrices.
The alignment maximization method takes these correlations into account. It determines the mixture
weights µk jointly by seeking to maximize the alignment between the convex combination kernel
Kµ = ∑

p
k=1µkKk and the target kernel KY = yy).

This was also suggested in the case of uncentered alignment by Cristianini et al. (2001); Kandola
et al. (2002a) and later studied by Lanckriet et al. (2004) who showed that the problem can be
solved as a QCQP (however, as already discussed in Section 2.1, the uncentered alignment is not
well correlated with performance). In what follows, we present even more efficient algorithms for
computing the weights µk by showing that the problem can be reduced to a simple QP. We start by
examining the case of a non-convex linear combination where the components of µ can be negative,
and show that the problem admits a closed-form solution in that case. We then partially use that
solution to obtain the solution of the convex combination.

3.2.1 LINEAR COMBINATION

We can assume without loss of generality that the centered base kernel matricesKkc are independent,
that is, no linear combination is equal to the zero matrix, otherwise we can select an independent
subset. This condition ensures that ‖Kµc‖F > 0 for arbitrary µ and that ρ̂(Kµ,yy)) is well defined
(Definition 4). By Lemma 1, 〈Kµc,KY c〉F = 〈Kµc,KY 〉F . Thus, since ‖KY c‖F does not depend
on µ, the alignment maximization problem maxµ∈M ρ̂(Kµ,yy)) can be equivalently written as the
following optimization problem:

max
µ∈M

〈Kµc,yy
)〉F

‖Kµc‖F
, (5)

where M = {µ : ‖µ‖2 = 1}. A similar set can be defined via the L1-norm instead of L2. As we
shall see, however, the direction of the solution µ! does not change with respect to the choice of
norm. Thus, the problem can be solved in the same way in both cases and subsequently scaled
appropriately. Note that, by Lemma 1, Kµc = UmKµUm with Um = I−11)/m, thus,

Kµc = Um
( p

∑
k=1

µkKk

)
Um =

p

∑
k=1

µkUmKkUm =
p

∑
k=1

µkKkc.

Let

a= (〈K1c,yy)〉F , . . . ,〈Kpc,yy
)〉F)),

and letM denote the matrix defined by

Mkl = 〈Kkc,Kl c〉F ,

for k, l ∈ [1, p]. Note that, in view of the non-negativity of the Frobenius product of symmetric PSD
matrices shown in Section 2.3, the entries of a andM are all non-negative. Observe also thatM is a
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symmetric PSD matrix since for any vector X= (x1, . . . ,xp)) ∈ Rp,

X)MX=
p

∑
k,l=1

xkxlMkl

= Tr
[ p

∑
k,l=1

xkxlKkcKl c

]

= Tr
[
(
p

∑
k=1

xkKkc)(
p

∑
l=1

xlKl c)
]
= ‖

p

∑
k=1

xkKkc‖2F > 0.

The strict inequality follows from the fact that the base kernels are linearly independent. Since this
inequality holds for any non-zero X, it also shows thatM is invertible.

Proposition 8 The solution µ! of the optimization problem (5) is given by µ! = M−1a
‖M−1a‖ .

Proof With the notation introduced, problem (5) can be rewritten as µ! = argmax‖µ‖2=1
µ
)a√

µ)Mµ
.

Thus, clearly, the solution must verify µ!)a ≥ 0. We will square the objective and yet not enforce
this condition since, as we shall see, it will be verified by the solution we find. Therefore, we
consider the problem

µ
! = argmax

‖µ‖2=1

(µ)a)2

µ)Mµ
= argmax

‖µ‖2=1

µ)aa)µ
µ)Mµ

.

In the final equality, we recognize the general Rayleigh quotient. Let ν =M1/2
µ and ν! =M1/2

µ
!,

then

ν
! = argmax

‖M−1/2ν‖2=1

ν)
[
M−1/2aa)M−1/2]ν

ν)ν
.

Hence, the solution is

ν
! = argmax

‖M−1/2ν‖2=1

[
ν)M−1/2a

]2

‖ν‖22
= argmax

‖M−1/2ν‖2=1

[[
ν

‖ν‖

])
M−1/2a

]2
.

Thus, ν! ∈ Vec(M−1/2a) with ‖M−1/2ν!‖2 = 1. This yields immediately µ! = M−1a
‖M−1a‖ , which ver-

ifies µ!)a= a)M−1a/‖M−1a‖ ≥ 0 sinceM andM−1 are PSD.

3.2.2 CONVEX COMBINATION (alignf)

In view of the proof of Proposition 8, the alignment maximization problem with the set M ′ =
{‖µ‖2 = 1∧µ≥ 0} can be written as

µ
∗ = argmax

µ∈M ′

µ)aa)µ
µ)Mµ

. (6)

The following proposition shows that the problem can be reduced to solving a simple QP.
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Proposition 9 Let v! be the solution of the following QP:

min
v≥0
v)Mv−2v)a. (7)

Then, the solution µ∗ of the alignment maximization problem (6) is given by µ! = v!/‖v!‖.

Proof Note that problem (7) is equivalent to the following one defined over µ and b

min
µ≥0,‖µ‖2=1

b>0

b2µ)Mµ−2bµ)a, (8)

where the relation v = bµ can be used to retrieve v. The optimal choice of b as a function of µ
can be found by setting the gradient of the objective function with respect to b to zero, giving the
closed-form solution b∗ = µ

)a
µ)Mµ

. Plugging this back into (8) results in the following optimization
after straightforward simplifications:

min
µ≥0,‖µ‖2=1

−
(µ)a)2

µ)Mµ
,

which is equivalent to (6). This shows that v! = b∗µ∗ where µ∗ is the solution of (6) and concludes
the proof.

It is not hard to see that this problem is equivalent to solving a hard margin SVM problem, thus,
any SVM solver can also be used to solve it. A similar problem with the non-centered definition of
alignment is treated by Kandola et al. (2002b), but their optimization solution differs from ours and
requires cross-validation.

Also, note that solving this QP problem does not require a matrix inversion of M. In fact, the
assumption about the invertibility of matrix M is not necessary and a maximal alignment solution
can be computed using the same optimization as that of Proposition 9 in the non-invertible case. The
optimization problem is then not strictly convex however and the alignment solution µ not unique.

We now further analyze the properties of the solution v of problem (7). Let ρ̂0(µ) denote the
partially normalized alignment maximized by (5):

ρ̂0(µ) = ‖yy)‖2F ρ̂(µ) =
〈Kµc,yy

)〉F
‖Kµc‖F

=
µ)a√
µ)Mµ

=
〈µ,M−1a〉M√

µ)Mµ
=

〈µ,M−1a〉M
‖µ‖M

.

The following proposition gives a simple expression for ρ̂0(µ).

Proposition 10 For µ= v/‖v‖, with v 0=0 solution of the alignment maximization problem (7), the
following identity holds:

ρ̂0(µ) = ‖v‖M.

Proof Since ‖v‖2M−2v)a = ‖v‖2M−2〈v,M−1a〉M = ‖v−M−1a‖2M−‖M−1a‖2M the optimization
problem (7) can be equivalently written as

min
v≥0

‖v−M−1a‖2M.
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This implies that the solution v is theM-orthogonal projection ofM−1a over the convex set {v : v≥
0}. Therefore, v−M−1a isM-orthogonal to v:

〈v,v−M−1a〉M = 0 =⇒ ‖v‖2M = 〈v,M−1a〉M.

Thus,

‖v‖M =
〈v,M−1a〉M

‖v‖M
=

〈µ,M−1a〉M
‖µ‖M

= ρ(µ),

which concludes the proof.

Thus, the proposition gives a straightforward way of computing ρ0(µ), thereby also ρ(µ), from the
M-norm of the solution vector v that µ is derived from.

3.3 Relationship with Ensemble Techniques

An alternative two-stage technique for learning with multiple kernels consists of first learning a pre-
diction hypothesis hk using each kernel Kk, k∈ [1, p], and then of learning the best linear combina-
tion of these hypotheses: h= ∑

p
k=1µkhk. But, such ensemble-based techniques make use of a richer

hypothesis space than the one used by learning kernel algorithms such as that of Lanckriet et al.
(2004). For ensemble techniques, each hypothesis hk, k ∈ [1, p], is of the form hk =∑m

i=1αikKk(xi, ·)
for some αk = (α1k, . . . ,αmk)) ∈ Rm with different constraints ‖αk‖ ≤ Λk, Λk ≥ 0, and the final
hypothesis is of the form

p

∑
k=1

µkhk =
p

∑
k=1

µk
m

∑
j=1

αikKk(xi, ·) =
m

∑
i=1

p

∑
k=1

µkαikKk(xi, ·).

In contrast, the general form of the hypothesis learned using kernel learning algorithms is

m

∑
i=1

αiKµ(xi, ·) =
m

∑
i=1

αi
p

∑
k=1

µkKk(xi, ·) =
p

∑
k=1

m

∑
i=1

µkαiKk(xi, ·),

for some α ∈ Rm with ‖α‖ ≤ Λ, Λ ≥ 0. When the coefficients αik can be decoupled, that is
αik = αiβk for some βks, the two solutions seem to have the same form but they are in fact different
since in general the coefficients must obey different constraints (different Λks). Furthermore, the
combination weights µi are not required to be positive in the ensemble case. We present a more
detailed theoretical and empirical comparison of the ensemble and learning kernel techniques else-
where (Cortes et al., 2011a).

3.4 Single-stage Alignment-based Algorithm

This section analyzes an optimization based on the notion of centered alignment, which can be
viewed as the single-stage counterpart of the two-stage algorithm discussed in Sections 3.1 - 3.2.

As in Sections 3.1 and 3.2, we denote by a the vector (〈K1c,yy)〉F , . . . ,〈Kpc,yy
)〉F)) and let

M ∈ Rp×p be the matrix defined by Mkl = 〈Kkc,Kl c〉F . The optimization is then defined by aug-
menting standard single-stage learning kernel optimizations with an alignment maximization con-
straint. Thus, the domainM of the kernel combination vector µ is defined by:

M = {µ : µ≥ 0∧‖µ‖ ≤ Λ∧ρ(Kµ,yy))≥Ω},
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for non-negative parameters Λ and Ω. The alignment constraint ρ(Kµ,yy)) ≥ Ω can be rewritten
as Ω

√
µ)Mµ−µ

)a≤ 0, which defines a convex region. Thus,M is a convex subset of Rp.
For a fixed µ∈M and corresponding kernel matrix Kµ, let F(µ,α) denote the objective func-

tion of the dual optimization problem minimizeα∈AF(µ,α) solved by an algorithm such as SVM,
KRR, or more generally any other algorithm for which A is a convex set and F(µ, ·) a concave
function for all µ ∈M , and F(·,α) convex for all α ∈ A . Then, the general form of a single-stage
alignment-based learning kernel optimization is

min
µ∈M

max
α∈A

F(µ,α).

Note that, by the convex-concave properties of F and the convexity of M and A , von Neumann’s
minimax theorem applies:

min
µ∈M

max
α∈A

F(µ,α) =max
α∈A

min
µ∈M

F(µ,α).

We now further examine this optimization problem in the specific case of the kernel ridge regression
algorithm. In the case of KRR, F(µ,α) = −α

)(Kµ+λI)α+ 2α)y. Thus, the max-min problem
can be rewritten as

max
α∈A

min
µ∈M

−α
)(Kµ+λI)α+2α)y.

Let bα denote the vector (α)K1α, . . . ,α)Kpα)), then the problem can be rewritten as

max
α∈A

−λα)
α+2α)y−max

µ∈M
µ
)bα,

where λ = λ0m in the notation of Equation (10). We first focus on analyzing only the term
−maxµ∈M µ)bα. Since the last constraint in M is convex, standard Lagrange multiplier theory
guarantees that for any Ω there exists a γ ≥ 0 such that the following optimization is equivalent to
the original maximization over µ.

min
µ

−µ
)bα+ γ(Ω

√
µ)Mµ−µ

)a)

subject to µ≥ 0∧‖µ‖ ≤ Λ∧ γ≥ 0.

Note that γ is not a variable, but rather a parameter that will be hand-tuned. Now, again applying
standard Lagrange multiplier theory we have that for any (γΩ) ≥ 0 there exists an Ω′ such that the
following optimization is equivalent:

min −µ
)(γa+bα)

subject to µ≥ 0∧‖µ‖ ≤ Λ∧ γ≥ 0∧µ
)Mµ≤Ω′2.

Applying the Lagrange technique a final time (for any Λ there exists a γ′ ≥ 0 and for any Ω′2 there
exists a γ′′ ≥ 0) leads to

min −µ
)(γa+bα)+ γ′µ)

µ+ γ′′µ)Mµ

subject to µ≥ 0∧ γ,γ′,γ′′ ≥ 0.
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This is a simple QP problem. Note that the overall problem can now be written as

max
α∈A ,µ≥0

−λα)
α+2α)y+µ

)(γa+bα)− γ′µ)
µ− γ′′µ)Mµ.

This last problem is not convex in (α,µ), but the problem is convex in each variable. In the case
of kernel ridge regression, the maximization in α admits a closed form solution. Plugging in that
solution yields the following convex optimization problem in µ:

min
µ≥0

y)(Kµ+λI)−1y− γµ)a+µ
)(γ′′M+ γ′I)µ.

Note that multiplying the objective by λ using the substitution µ′ = 1
λµ results in the following

equivalent problem,

min
µ′≥0

y)(Kµ′ + I)−1y−λ2γµ′)a+µ
′)(λ3γ′′M+λ3γ′I)µ′,

which makes clear that the trade-off parameter λ can be subsumed by the γ,γ′ and γ′′ parameters.
This leads to the following simpler problem with a reduced number of trade-off parameters,

min
µ≥0

y)(Kµ+ I)−1y− γµ)a+µ
)(γ′′M+ γ′I)µ. (9)

This is a convex optimization problem. In particular, µ 4→ y)(Kµ+ I)−1y is a convex funtion by
convexity of f : M 4→ y)M−1y over the set of positive definite symmetric matrices. The convexity
of f can be seen from that of its epigraph, which, by the property of the Schur complement, can be
written as follows (Boyd and Vandenberghe, 2004):

epi f = {(M, t) : M5 0,y)M−1y≤ t}= {(M, t) :
(
M y
y) t

)
6 0,M5 0}.

This defines a linear matrix inequality in (M, t) and thus a convex set. The convex optimization (9)
can be solved efficiently using a simple iterative algorithm as in Cortes et al. (2009a). In practice,
the algorithm converges within 10-50 iterations.

4. Theoretical Results

This section presents a series of theoretical guarantees related to the notion of kernel alignment.
Section 4.1 proves a concentration bound of the form |ρ− ρ̂|≤O(1/

√
m), which relates the centered

alignment ρ to its empirical estimate ρ̂. In Section 4.2, we prove the existence of accurate predictors
in both classification and regression in the presence of a kernel K with good alignment with respect
to the target kernel. Section 4.3 presents stability-based generalization bounds for the two-stage
alignment maximization algorithm whose first stage was described in Section 3.2.2.

4.1 Concentration Bounds for Centered Alignment

Our concentration bound differs from that of Cristianini et al. (2001) both because our definition
of alignment is different and because we give a bound directly on the quantity of interest |ρ− ρ̂|.
Instead, Cristianini et al. (2001) give a bound on |A′ − Â|, where A′ 0= A can be related to A by
replacing each Frobenius product with its expectation over samples of size m.

The following proposition gives a bound on the essential quantities appearing in the definition
of the alignments.
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Proposition 11 Let K and K′ denote kernel matrices associated to the kernel functions K and
K′ for a sample of size m drawn according to D. Assume that for any x ∈ X , K(x,x) ≤ R2 and
K′(x,x)≤ R′2. Then, for any δ> 0, with probability at least 1−δ, the following inequality holds:

∣∣∣∣
〈Kc,K′

c〉F
m2

−E[KcK′
c]

∣∣∣∣≤
18R2R′2

m
+24R2R′2

√
log 2δ
2m

.

Note that in the case K′(xi,x j) = yiy j, we then have R′2 ≤maxi y2i .
Proof The proof relies on a series of lemmas given in the Appendix. By the triangle inequality and
in view of Lemma 19, the following holds:

∣∣∣∣
〈Kc,K′

c〉F
m2

−E[KcK′
c]

∣∣∣∣≤
∣∣∣∣
〈Kc,K′

c〉F
m2

−E
[
〈Kc,K′

c〉F
m2

]∣∣∣∣+
18R2R′2

m
.

Now, in view of Lemma 18, the application of McDiarmid’s inequality (McDiarmid, 1989) to
〈Kc,K′

c〉F
m2 gives for any ε> 0:

Pr
[∣∣∣∣
〈Kc,K′

c〉F
m2

−E
[
〈Kc,K′

c〉F
m2

]∣∣∣∣> ε

]
≤ 2exp[−2mε2/(24R2R′2)2].

Setting δ to be equal to the right-hand side yields the statement of the proposition.

Theorem 12 Under the assumptions of Proposition 11, and further assuming that the conditions of
the Definitions 2-4 are satisfied for ρ(K,K′) and ρ̂(K,K′), for any δ > 0, with probability at least
1−δ, the following inequality holds:

|ρ(K,K′)− ρ̂(K,K′)|≤ 18β

[
3
m
+8

√
log 6δ
2m

]

,

with β=max(R2R′2/E[K2c ],R2R′2/E[K′
c
2]).

Proof To shorten the presentation, we first simplify the notation for the alignments as follows:

ρ(K,K′) =
b√
aa′

ρ̂(K,K′) =
b̂√
ââ′

,

with b = E[KcK′
c], a = E[K2c ], a′ = E[K′

c
2] and similarly, b̂ = (1/m2)〈Kc,K′

c〉F , â = (1/m2)‖Kc‖2,
and â′ = (1/m2)‖K′

c‖2. By Proposition 11 and the union bound, for any δ > 0, with probability at

least 1−δ, all three differences a− â, a′− â′, and b− b̂ are bounded by α= 18R2R′2
m +24R2R′2

√
log 6δ
2m .

Using the definitions of ρ and ρ̂, we can write:

|ρ(K,K′)− ρ̂(K,K′)|=
∣∣∣

b√
aa′

−
b̂√
ââ′

∣∣∣=
∣∣∣
b
√
ââ′ − b̂

√
aa′√

aa′ââ′

∣∣∣

=
∣∣∣
(b− b̂)

√
ââ′ − b̂(

√
aa′ −

√
ââ′)√

aa′ââ′

∣∣∣

=
∣∣∣
(b− b̂)√
aa′

− ρ̂(K,K′)
aa′ − ââ′√

aa′(
√
aa′+

√
ââ′)

∣∣∣.
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Since ρ̂(K,K′) ∈ [0,1], it follows that

|ρ(K,K′)− ρ̂(K,K′)|≤
|b− b̂|√
aa′

+
|aa′ − ââ′|√

aa′(
√
aa′+

√
ââ′)

.

Assume first that â ≤ â′. Rewriting the right-hand side to make the differences a− â and a′ − â′
appear, we obtain:

|ρ(K,K′)− ρ̂(K,K′)|≤
|b− b̂|√
aa′

+
|(a− â)a′+ â(a′ − â′)|√

aa′(
√
aa′+

√
ââ′)

≤
α√
aa′

[
1+

a′+ â√
aa′+

√
ââ′

]
≤

α√
aa′

[
1+

a′√
aa′

+
â√
ââ′

]

≤
α√
aa′

[

2+
√
a′

a

]

=

[
2√
aa′

+
1
a

]
α.

We can similarly obtain
[

2√
aa′

+ 1
a′

]
αwhen â′ ≤ â. Both bounds are less than or equal to 3max(αa ,

α
a′ ).

Equivalently, one can set the right hand side of the high probability statement presented in Theo-
rem 12 equal to ε and solve for δ, which shows that Pr

[
|ρ(K,K′)− ρ̂(K,K′)|> ε

]
≤ O(e−mε2).

4.2 Existence of Good Alignment-based Predictors

For classification and regression tasks, the target kernel is based on the labels and defined by
KY (x,x′) = yy′, where we denote by y the label of point x and y′ that of x′. This section shows
the existence of predictors with high accuracy both for classification and regression when the align-
ment ρ(K,KY ) between the kernel K and KY is high.

In the regression setting, we shall assume that the labels have been normalized such that E[y2] =
1. In classification, y=±1 and thus E[y2] = 1 without any normalization. Denote by h∗ the hypoth-
esis defined for all x ∈ X by

h∗(x) =
Ex′ [y′Kc(x,x′)]√

E[K2c ]
.

Observe that by definition of h∗, Ex[yh∗(x)] = ρ(K,KY ). For any x ∈ X , define γ(x) =
√

Ex′ [K2c (x,x′)]
Ex,x′ [K2c (x,x′)]

and Γ = maxx γ(x). The following result shows that the hypothesis h∗ has high accuracy when the
kernel alignment is high and Γ not too large.3

Theorem 13 (classification) Let R(h∗) = Pr[yh∗(x)< 0] denote the error of h∗ in binary classifica-
tion. For any kernel K such that 0< E[K2c ]<+∞, the following holds:

R(h∗)≤ 1−ρ(K,KY )/Γ.

3. A version of this result was presented by Cristianini, Shawe-Taylor, Elisseeff, and Kandola (2001) and Cristianini,
Kandola, Elisseeff, and Shawe-Taylor (2002) for the so-called Parzen window solution and non-centered kernels.
However, both proofs are incorrect since they rely implicitly on the fact that maxx

[ Ex′ [K2(x,x′)]
Ex,x′ [K2(x,x′)]

] 1
2 = 1, which can

only hold in the trivial case where the kernel function K2 is a constant: by definition of the maximum and expectation
operators, maxx

[
Ex′ [K2(x,x′)]

]
≥ Ex

[
Ex′ [K2(x,x′)]

]
, with equality only in the constant case.
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Proof Note that for all x ∈ X ,

|yh∗(x)|=
|yEx′ [y′Kc(x,x′)]|√

E[K2c ]
≤

√
Ex′ [y′2]Ex′ [K2c (x,x′)]√

E[K2c ]
=

√
Ex′ [K2c (x,x′)]√
E[K2c ]

≤ Γ.

In view of this inequality, and the fact that Ex[yh∗(x)] = ρ(K,KY ), we can write:

1−R(h∗) = Pr[yh∗(x)≥ 0]
= E[1{yh∗(x)≥0}]

≥ E
[
yh∗(x)
Γ

1{yh∗(x)≥0}
]

≥ E
[
yh∗(x)
Γ

]
= ρ(K,KY )/Γ,

where 1ω is the indicator function of the event ω.

A probabilistic version of the theorem can be straightforwardly derived by noting that by Markov’s
inequality, for any δ> 0, with probability at least 1−δ, |γ(x)|≤ 1/

√
δ.

Theorem 14 (regression) Let R(h∗) = Ex[(y− h∗(x))2] denote the error of h∗ in regression. For
any kernel K such that 0< E[K2c ]<+∞, the following holds:

R(h∗)≤ 2(1−ρ(K,KY )).

Proof By the Cauchy-Schwarz inequality, it follows that:

E
x
[h∗2(x)] = E

x

[
Ex′ [y′Kc(x,x′)]2

E[K2c ]

]

≤ E
x

[
Ex′ [y′2]Ex′ [K2c (x,x′)]

E[K2c ]

]

=
Ex′ [y′2]Ex,x′ [K2c (x,x′)]

E[K2c ]
= E

x′
[y′2] = 1.

Using again the fact that Ex[yh∗(x)] = ρ(K,KY ), the error of h∗ can be bounded as follows:

E[(y−h∗(x))2] = E
x
[h∗(x)2]+E

x
[y2]−2E

x
[yh∗(x)]≤ 1+1−2ρ(K,KY ),

which concludes the proof.

The hypothesis h∗ is closely related to the hypothesis h∗S derived as follows from a finite sample
S= ((x1,y1), . . . ,(xm,ym)):

hS(x) =
1
m ∑

m
i=1 yiKc(x,xi)√

1
m2 ∑

m
i, j=1Kc(xi,x j)2

√
1
m2 ∑

m
i, j=1(yiy j)2

.

Note in particular that Êx[yhS(x)] = ρ̂(K,KY), where we denote by Ê the expectation based on the
empirical distribution. Using this and other results of this section, it is not hard to show that with
high probability |R(h∗)−R(h∗S)|≤ O(1/

√
m) both in the classification and regression settings.
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For classification, the existence of a good predictor g∗ based on the unnormalized alignment ρu
(see Definition 5) can also be shown. The corresponding guarantees are simpler and do not depend
on a term such as Γ. However, unlike the normalized case, the loss of the predictor g∗S derived from
a finite sample may not always be close to that of g∗. Note that in classification, for any label y,
|y| = 1, thus, by Lemma 6, the following holds: 0 ≤ ρu(K,KY )|≤R2. Let g∗ be the hypothesis
defined by:

g∗(x) = E
x′
[y′Kc(x,x′)].

Since 0 ≤ ρu(K,KY )|≤R2, the following theorem provides strong guarantees for g∗ when the un-
normalized alignment a is sufficiently large, that is close to R2.

Theorem 15 (classification) Let R(g∗) = Pr[yg∗(x)< 0] denote the error of g∗ in binary classifica-
tion. For any kernel K such that supx∈X Kc(x,x)≤ R2, we have:

R(g∗)≤ 1−ρu(K,KY )/R2.

Proof Note that for all x ∈ X ,

|yg∗(x)|= |g∗(x)|= |E
x′
[y′Kc(x,x′)]|≤ R2.

Using this inequality, and the fact that Ex[yg∗(x)] = ρu(K,KY ), we can write:

1−R(g∗) = Pr[yg∗(x)≥ 0] = E[1{yg∗(x)≥0}]

≥ E
[
yg∗(x)
R2

1{yh∗(x)≥0}
]

≥ E
[
yg∗(x)
R2

]
= ρu(K,KY )/R2,

which concludes the proof.

4.3 Generalization Bounds for Two-stage Learning Kernel Algorithms

This section presents stability-based generalization bounds for two-stage learning kernel algorithms.
The proof of a stability-based learning bound hinges on showing that the learning algorithm is sta-
ble, that is the pointwise loss of a learned hypothesis does not change drastically if the training
sample changes only slightly. We refer the reader to Bousquet and Elisseeff (2000) for a full intro-
duction.

We present learning bounds for the case where the second stage of the algorithm is kernel ridge
regression (KRR). Similar results can be given in classification using algorithms such as SVMs in
the second stage. Thus, in the first stage, the algorithms we examine select a combination weight
parameter µ∈Mq={µ : µ≥0,‖µ‖qq=Λq} which defines a kernel Kµ, and in the second stage use
KRR to select a hypothesis from the RKHS associated to Kµ. While several of our results hold in
general, we will be more specifically interested in the alignment maximization algorithm presented
in Section 3.2.2.
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Recall that for a fixed kernel function Kµ with associated RKHS HKµ
and training set S =

((x1,y1), . . . ,(xm,ym)), the KRR optimization problem is defined by the following constraint opti-
mization problem:

min
h∈HKµ

G(h) = λ0‖h‖2Kµ
+
1
m

m

∑
i=1

(h(xi)− yi)2. (10)

We first analyze the stability of two-stage algorithms and then use that to derive a stability-based
generalization bound (Bousquet and Elisseeff, 2000). More precisely, we examine the pointwise
difference in hypothesis values obtained on any point x when the algorithm has been trained on two
data sets S and S′ of size m that differ in exactly one point.

In what follows, we denote by ‖K‖s,t=(∑
p
k=1 ‖Kk‖ts)1/t the (s, t)-norm of a collection of matri-

ces and by ∆µ the difference µ′ −µ of the combination vector µ′ and µ returned by the first stage
of the algorithm by training on S, respectively S′.

Theorem 16 (Stability of two-stage learning kernel algorithm) Let S and S′ be two samples of
size m that differ in exactly one point and let h and h′ be the associated hypotheses generated by
a two-stage KRR learning kernel algorithm with the constraint µ∈M1. Then, for any s, t ≥ 1 with
1
s +

1
r = 1 and any x ∈ X :

|h′(x)−h(x)|≤
2Λ1R2M
λ0m

[
1+

‖∆µ‖s‖Kc‖2,t
2λ0

]
,

where M is an upper bound on the target labels and R2 = supk∈[1,p]
x∈X

Kk(x,x).

Proof The KRR algorithm returns the hypothesis h(x) = ∑m
i=1αiKµ(xi,x), where α = (Kµ +

mλ0I)−1y. Thus, this hypothesis is parametrized by the kernel weight vector µ, which defines the
kernel function, and the sample S, which is used to populate the kernel matrix, and will be explicitly
denoted hµ,S. To estimate the stability of the overall two-stage algorithm, ∆hµ,S = hµ′,S′ −hµ,S, we
use the decomposition

∆hµ,S = (hµ′,S′ −hµ′,S)+(hµ′,S−hµ,S)

and bound each parenthesized term separately. The first parenthesized term measures the point-
wise stability of KRR due to a change of a single training point with a fixed kernel. This can be
bounded using Theorem 2 of Cortes et al. (2009a). Since, for all x∈X , Kµ(x,x) =∑

p
k=1µkKk(x,x)≤

R2∑p
k=1µk ≤ Λ1R2, using that theorem yields the following bound:

∀x ∈ X , |hµ,S′(x)−hµ,S(x)|≤
2Λ1R2M
λ0m

.

The second parenthesized term measures the pointwise difference of the hypotheses due to the
change of kernel from Kµ′ to Kµ for a fixed training sample when using KRR. By Proposition 1 of
Cortes et al. (2010c), this term can be bounded as follows:

∀x ∈ X , |hµ′,S(x)−hµ,S(x)|≤
Λ1R2M
λ20m

‖Kµ′ −Kµ‖.

The term ‖Kµ′ −Kµ‖ can be bounded using Hölder’s inequality as follows:

‖Kµ′ −Kµ‖= ‖
p

∑
k=1

(∆µk)Kk‖ ≤
p

∑
k=1

|∆µk| ‖Kk‖ ≤ ‖∆µ‖s‖K‖2,t ,
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which completes the proof.

The pointwise stability result just presented can be used directly to derive a generalization bound
for two-stage learning kernel algorithms as in Bousquet and Elisseeff (2000).

For a hypothesis h, we denote by R(h) its generalization error and by R̂(h) its empirical error on
a S= ((x1,y1), . . . ,(xm,ym)):

R(h) = E
x,y
[(hS(x)− y)2] R̂(h) =

1
m

m

∑
i=1

(hS(xi)− yi)2.

Theorem 17 (Stability-based generalization bound) Let hS denote the hypothesis returned by a
two-stage KRR kernel learning algorithm with the constraint µ∈M1 when trained on sample S. For
any s, t≥1 with 1

s +
1
r = 1, with probability at least 1− δ over samples S of size m, the following

bound holds:

R(hS)≤ R̂(hS)+
2M1M2

m
+
(
1+

16M2

M1

)M1M2

4

√
log 1δ
2m

,

with M1 = 2
[
1+

√
Λ1R2
λ0

]
M and M2 =

2Λ1R2
λ0

[
1+ ‖∆µ‖s‖Kc‖2,t

2λ0

]
M.

Proof Since hS is the minimizer of the objective (10) and since 0 belongs to the hypothesis space,

G(hS)≤ G(0) =
1
m

m

∑
i=1

(0− yi)2 ≤M2.

Furthermore, since the mean squared loss is non-negative, we can write: λ0‖hS‖2Kµ
≤G(hS). There-

fore, ‖hS‖2Kµ
≤ M2

λ0
. By the reproducing property, for any x ∈ X ,

|hS(x)|= |〈hS,Kµ(x, ·)〉Kµ
|≤ ‖hS‖Kµ

√
Kµ(x,x)

=

√
M
λ0

√
p

∑
k=1

µkKk(x,x)

≤
√
M
λ0

√
‖µ‖1R2 ≤ RM

√
Λ1
λ0

.

Thus, for all x ∈ X and y ∈ [−M,M], the squared loss can be bounded as follows

|hS(x)− y|≤
(
M+RM

√
Λ1
λ0

)
=
M1

2
.

This implies that the squared loss is M1-Lipschitz and by Theorem 16 that the algorithm is stable
with a uniform stability parameter β≤ M1M2

m bounded as follows:

|(hS′(x)− y)2− (hS(x)− y)2|≤M1|hS′(x)−hS(x)|≤
M1M2

m
.

The application of Theorem 12 of Bousquet and Elisseeff (2000) with the bound on the loss M1
2 and

the uniform stability parameter β directly yields the statement.
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The inequality just presented holds for all two-stage learning kernel algorithms. To determine its
convergence rate, the term ‖∆µ‖s‖Kc‖2,t must be bounded. Let s = 1 and t = ∞, and assume
that the base kernels Kk, k ∈ [1, p], are trace-normalized as in our experiments (Section 3), then a
straightforward bound can be given for this term:

‖∆µ‖1‖Kc‖2,∞ ≤ (‖µ′‖1+‖µ‖1) max
k∈[1,k]

‖Kkc‖2 ≤ max
k∈[1,k]

2Λ1 Tr[Kkc]≤ 2Λ1.

Thus, in the statement of Theorem 17,M2 can be replaced with 2Λ1R2
λ0

[
1+ Λ1

λ0

]
M and, for Λ1 and λ0

constant, the learning bound converges in O(1/
√
m).

The straightforward upper bound on ‖∆µ‖s‖Kc‖2,t applies to all such two-stage learning kernel
algorithms. For a specific algorithm, finer or more favorable bounds could be derived. We have
initiated this study in the specific case of the alignment maximization algorithm. The result given
in Proposition 21 (Appendix B) can be used to bound ‖∆µ‖2 and thus ‖∆µ‖2‖Kc‖2,2.

Note that in the specific case of the alignment maximization algorithm, if µ∗ is the solution
obtained for the constraint µ∈M2, then it is also the alignment maximizing solution found in the
set µ∈M1 with Λ1=‖µ∗‖1≤

√p‖µ‖2≤
√pΛ2. This makes the dependence on p explicit in the

case of the constraint µ∈M2.

5. Experiments

This section compares the performance of several learning kernel algorithms for classification
and regression. We compare the alignment-based two-stage learning kernel algorithms align and
alignf, as well as the single-stage algorithm presented in Section 3 with the following algorithms:

Uniform combination (unif): this is the most straightforward method, which consists of choos-
ing equal mixture weights, thus the kernel matrix used is,

Kµ =
Λ
p

p

∑
k=1
Kk.

Nevertheless, improving upon the performance of this method has been surprisingly difficult for
standard (one-stage) learning kernel algorithms (Cortes, 2009; Cortes et al., 2011b).

Norm-1 regularized combination (l1-svm): this algorithm optimizes the SVM objective

min
µ
max
α

2α)1−α
)Y)KµYα

subject to: µ≥ 0,Tr[Kµ]≤ Λ,α)y= 0,0≤α≤ C,

as described by Lanckriet et al. (2004). Here, Y is the diagonal matrix constructed from the labels
y and C is the regularization parameter of the SVM.

Norm-2 regularized combination (l2-krr): this algorithm optimizes the kernel ridge regression
objective

min
µ
max
α

−λα)
α−α

)Kµα+2α)y

subject to: µ≥ 0,‖µ−µ0‖2 ≤ Λ.
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KINEMATICS IONOSPHERE GERMAN SPAMBASE SPLICE
SIZE 1000 351 1000 1000 1000
γ -3, 3 -3, 3 -4, 3 -12, -7 -9, -3

unif
.138± .005 .479± .033 .259± .018 .187± .028 .152± .022
.158± .013 .246± .033 .089± .008 .138± .031 .122± .011

1-stage
.137± .005 .470± .032 .260± .026 .209± .028 .153± .025
.155± .012 .251± .035 .082± .003 .099± .024 .105± .006

align
.125± .004 .456± .036 .255± .015 .186± .026 .151± .024
.173± .016 .261± .040 .089± .008 .140± .031 .123± .011

alignf
.115± .004 .444± .034 .242± .015 .180± .024 .139± .013
.176± .017 .278± .057 .093± .009 .146± .028 .124± .011

REGRESSION CLASSIFICATION

Table 2: Error measures (top) and alignment values (bottom) for unif, 1-stage (l2-krr or l1-svm),
align and alignf with kernels built from linear combinations of Gaussian base kernels.
The choice of γ0,γ1 is listed in the row labeled γ and the total size of the data set used is
listed under SIZE. The results are shown with ±1 standard deviation measured by 5-fold
cross-validation. Further measures of significance are shown in Appendix C, Table 4.

The L2 regularized method is used for regression since it is shown in Cortes et al. (2009a) to out-
perform the alternative L1 regularized method in similar settings. Here, λ is the regularization
parameter of KRR and µ0 is an additional regularization parameter for the kernel selection.

In all experiments, the error measures reported are for 5-fold cross validation, where, in each
trial, three folds are used for training, one used for validation, and one for testing. For the two-
stage methods, the same training and validation data is used for both stages of the learning. The
regularization parameter Λ is chosen via a grid search based on the performance on the validation
set, while the regularization parameters C for l1-svm and λ for l2-krr are fixed since only the ratios
C/Λ and λ/Λ are important. More explicitly, for the KRR algorithm, scaling the vector µ by Λ
results in a scaled dual solution: α = (KµΛ+ λI)−1y = Λ−1(Kµ+ λ

ΛI)
−1y. In turn, we see that

the primal solution h(x) = ∑m
i=1Λ

−1αiΛKµ(x,xi) = ∑m
i=1αiKµ(x,xi) is equivalent to the solution of

the KRR algorithm that uses a regularization parameter equal to λ/Λ without scaling µ and, thus, it
suffices to vary only one regularization parameter. In the case of SVMs, the scale of the hypothesis
does not change its sign (or the binary prediction) and thus the same property can be shown to hold.
The µ0 parameter is set to zero in our experiments.

5.1 General Kernel Combinations

In the first set of experiments, we consider combinations of Gaussian kernels of the form

Kγ(xi,x j) = exp(−γ‖xi−x j‖2),

with varying bandwidth parameter γ ∈ {2γ0 ,2γ0+1, . . . ,21−γ1 ,2γ1}. The values γ0 and γ1 are chosen
such that the base kernels are sufficiently different in alignment and performance. Each base kernel
is centered and normalized to have trace one. We test the algorithms on several data sets taken from
the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/) and Delve (http:
//www.cs.toronto.edu/˜delve/data/datasets.html).
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Figure 3: A scatter plot comparison of the different kernel combination weight values obtained by
optimally tuned one-stage and two-stage algorithms on the kinematics data set.

Table 2 summarizes our results. For regression, we compare against the l2-krr method and
report RMSE. For classification, we compare against the l1-svm method and report the misclassifi-
cation percentage. In general, we see that performance and alignment are well correlated. In all data
sets, we see improvement over the uniform combination as well as the one-stage kernel learning al-
gorithms. Note that although the align method often increases the alignment of the final kernel, as
compared to the uniform combination, the alignf method gives the best alignment since it directly
maximizes this quantity. Nonetheless, align provides an inexpensive heuristic that increases the
alignment and performance of the final combination kernel.

In our experiments with the one-stage KRR algorithm presented in Section 3.4, there was no
significant improvement found over the two-stage alignf algorithm with respect to the kinematics
and ionosphere data sets. In fact, for optimally cross-validated parameters γ,γ′ and γ′′ the solu-
tion combination weights were found to closely coincide with the alignf solution (see Figure 3).
This would suggest the use of the two-stage algorithm over the one-stage, since there are fewer
parameters to tune and the problem can be solved as a standard QP.

To the best of our knowledge, these are the first kernel combination experiments for alignment
with general base kernels. Previous experiments seem to have dealt exclusively with rank-one base
kernels built from the eigenvectors of a single kernel matrix (Cristianini et al., 2001). In the next
section, we also examine rank-one kernels, although not generated from a spectral decomposition.

5.2 Rank-one Kernel Combinations

In this set of experiments we use the sentiment analysis data set version 1 from Blitzer et al. (2007):
books, dvd, electronics and kitchen. Each domain has 2,000 examples. In the regression setting, the
goal is to predict a rating between 1 and 5, while for classification the goal is to discriminate positive
(ratings≥ 4) from negative reviews (ratings≤ 2). We use rank-one kernels based on the 4,000 most
frequent bigrams. The kth base kernel,Kk, corresponds to the kth bigram count vk,Kk = vkv)k . Each
base kernel is normalized to have trace one and the labels are centered.

The alignf method returns a sparse weight vector due to the constraint µ ≥ 0. As is demon-
strated by the performance of the l1-svm method, Table 3, and also previously observed by Cortes
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BOOKS DVD ELEC KITCHEN

unif
1.442± .015 1.438± .033 1.342± .030 1.356± .016
0.029± .005 0.029± .005 0.038± .002 0.039± .006

l2-krr
1.410± .024 1.423± .034 1.318± .033 1.333± .015
0.036± .008 0.036± .009 0.050± .004 0.056± .005

align
1.401± .035 1.414± .017 1.308± .033 1.312± .012
0.046± .006 0.047± .005 0.065± .004 0.076± .008

REGRESSION

BOOKS DVD ELEC KITCHEN

unif
0.258± .017 0.243± .015 0.188± .014 0.201± .020
0.030± .004 0.030± .005 0.040± .002 0.039± .007

l1-svm
0.286± .016 0.292± .025 0.238± .019 0.236± .024
0.030± .011 0.033± .014 0.051± .004 0.058± .007

align
0.243± .020 0.214± .020 0.166± .016 0.172± .022
0.043± .003 0.045± .005 0.063± .004 0.070± .010

CLASSIFICATION

Table 3: The error measures (top) and alignment values (bottom) on four sentiment analysis do-
mains using kernels learned as combinations of rank-one base kernels corresponding to
individual features. The results are shown with ±1 standard deviation as measured by 5-
fold cross-validation. Further measures of significance are shown in Appendix C, Table 5.

et al. (2009a), a sparse weight vector µ does not generally offer an improvement over the uniform
combination in the rank-one setting. Thus, we focus on the performance of align and compare
it to unif and one-stage learning methods. Table 3 shows that align significantly improves both
the alignment and the error percentage over unif and also improves somewhat over the one-stage
l2-krr algorithm. Evidence of statistical significance is provided in Appendix C, Table 5. Note
that, although the sparse weighting provided by l1-svm improves the alignment in certain cases, it
does not improve performance.

6. Conclusion

We presented a series of novel algorithmic, theoretical, and empirical results for learning kernels
based on the notion of centered alignment. Our experiments show a consistent improvement of the
performance of alignment-based algorithms over previous learning kernel techniques, as well as
the straightforward uniform kernel combination, which has been difficult to surpass in the past, in
both classification and regression. The algorithms we described are efficient and easy to implement.
All the algorithms presented in this paper are available in the open-source C++ library available
at www.openkernel.org. They can be used in a variety of applications to improve performance.
We also gave an extensive theoretical analysis which provides a number of guarantees for centered
alignment-based algorithms and methods. Several of the algorithmic and theoretical results pre-
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sented can be extended to other learning settings. In particular, methods based on similar ideas
could be used to design learning kernel algorithms for dimensionality reduction.

The notion of centered alignment served as a key similarity measure to achieve these results.
Note that we are not proving that good alignment is necessarily needed for a good classifier, but
both our theory and empirical results do suggest the existence of accurate predictors with a good
centered alignment. Different methods based on possibly different efficiently computable similarity
measures could be used to design effective learning kernel algorithms. In particular, the notion of
similarity suggested by Balcan and Blum (2006), if it could be computed from finite samples, could
be used in a equivalent way.
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Appendix A. Lemmas Supporting Proof of Proposition 11

For a function f of the sample S, we denote by ∆( f ) the difference f (S′)− f (S), where S′ is a
sample differing from S by just one point, say the m-th point is xm in S and x′m in S′. The following
perturbation bound will be needed in order to apply McDiarmid’s inequality.

Lemma 18 Let K and K′ denote kernel matrices associated to the kernel functions K and K′ for
a sample of size m according to the distribution D. Assume that for any x ∈ X , K(x,x) ≤ R2 and
K′(x,x) ≤ R′2. Then, the following perturbation inequality holds when changing one point of the
sample:

1
m2

|∆(〈Kc,K′
c〉F)|≤

24R2R′2

m
.

Proof By Lemma 1, we can write:

〈Kc,K′
c〉F = 〈Kc,K′〉F = Tr

[[
I−
11)

m

]
K
[
I−
11)

m

]
K′

]

= Tr
[
KK′ −

11)

m
KK′ −K

11)

m
K′+

11)

m
K
11)

m
K′

]

= 〈K,K′〉F −
1)(KK′+K′K)1

m
+

(1)K1)(1)K′1)
m2

.

The perturbation of the first term is given by

∆(〈K,K′〉F) =
m

∑
i=1

∆(KimK′
im)+∑

i0=m
∆(KmiK′

mi).

By the Cauchy-Schwarz inequality, for any i, j∈ [1,m],

|Ki j|= |K(xi,x j)|≤
√
K(xi,xi)K(x j,x j)≤ R2
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and the product can be bound as |Ki, jK′
i, j|≤ |Ki, j||K′

i j|≤ R2R′2. The difference of products is then
bound as |∆(Ki, jK′

i, j)|≤ 2R2R′2. Thus,

1
m2

|∆(〈K,K′〉F)|≤
2m−1
m2

(2R2R′2)≤
4R2R′2

m
.

Similarly, for the first part of the second term, we obtain

1
m2

∣∣∣∣∆
(
1)KK′1

m

)∣∣∣∣=
∣∣∣∣∆
( m

∑
i, j,k=1

KikK′
k j

m3

)∣∣∣∣

=

∣∣∣∣∆
(
∑m
i,k=1KikK′

km+∑i, j 0=mKimK′
mj

m3
+
∑k 0=m, j 0=mKmkK′

k j

m3

)∣∣∣∣

≤
m2+m(m−1)+(m−1)2

m3
(2R2R′2)≤

3m2−3m+1
m3

(2R2R′2)

≤
6R2R′2

m
.

Similarly, we have:
1
m2

∣∣∣∣∆
(
1)K′K1

m

)∣∣∣∣≤
6R2R′2

m
.

The final term is bounded as follows,

1
m2

∣∣∣∣∆
(
(1)K1)(1)K′1)

m2

)∣∣∣∣≤
∣∣∣∣∆
(
∑i, j,kKi jK′

km+∑i, j,k 0=mKi jK′
mk

m4
+

∑i, j 0=m,k 0=mKimK′
jk+∑i0=m, j 0=m,k 0=mKmiK′

jk

m4

)∣∣∣∣

≤
m3+m2(m−1)+m(m−1)2+(m−1)3

m4
(2R2R′2)

≤
8R2R′2

m
.

Combining these last four inequalities leads directly to the statement of the lemma.

Because of the diagonal terms of the matrices, 1
m2 〈Kc,K′

c〉F is not an unbiased estimate of
E[KcK′

c]. However, as shown by the following lemma, the estimation bias decreases at the rate
O(1/m).

Lemma 19 Under the same assumptions as Lemma 18, the following bound on the difference of
expectations holds:

∣∣∣∣ Ex,x′
[Kc(x,x′)K′

c(x,x
′)]−E

S

[
〈Kc,K′

c〉F
m2

]∣∣∣∣≤
18R2R′2

m
.

Proof To simplify the notation, unless otherwise specified, the expectation is taken over x,x′ drawn
according to the distribution D. The key observation used in this proof is that

E
S
[Ki jK′

i j] = ES [K(xi,x j)K
′(xi,x j)] = E[KK′], (11)
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for i, j distinct. For expressions such as ES[KikK′
k j] with i, j,k distinct, we obtain the following:

E
S
[KikK′

k j] = ES [K(xi,xk)K
′(xk,x j)] = E

x′
[E
x
[K]E

x
[K′]]. (12)

Let us start with the expression of E[KcK′
c]:

E[KcK′
c] = E

[(
K−E

x′
[K]−E

x
[K]+E[K]

)(
K′ −E

x′
[K′]−E

x
[K′]+E[K′]

)]
. (13)

After expanding this expression, applying the expectation to each of the terms, and simplifying, we
obtain:

E[KcK′
c] = E[KK′]−2E

x

[
E
x′
[K]E

x′
[K′]

]
+E[K]E[K′].

〈Kc,K′
c〉F can be expanded and written more explicitly as follows:

〈Kc,K′
c〉F = 〈K,K′〉F −

1)KK′1
m

−
1)K′K1

m
+
1)K′11)K1

m2

=
m

∑
i, j=1

Ki jK′
i j−

1
m

m

∑
i, j,k=1

(KikK′
k j+K′

ikKk j)+
1
m2

(
m

∑
i, j=1

Ki j)(
m

∑
i, j=1

K′
i j).

To take the expectation of this expression, we use the observations (11) and (12) and similar identi-
ties. Counting terms of each kind, leads to the following expression of the expectation:

E
S

[
〈Kc,K′

c〉F
m2

]
=

[
m(m−1)

m2
−
2m(m−1)

m3
+
2m(m−1)

m4

]
E[KK′]

+

[
−2m(m−1)(m−2)

m3
+
2m(m−1)(m−2)

m4

]
E
x

[
E
x′
[K]E

x′
[K′]

]

+

[
m(m−1)(m−2)(m−3)

m4

]
E[K]E[K′]

+

[
m
m2

−
2m
m3

+
m
m4

]
E
x
[K(x,x)K′(x,x)]

+

[
−m(m−1)

m3
+
2m(m−1)

m4

]
E[K(x,x)K′(x,x′)]

+

[
−m(m−1)

m3
+
2m(m−1)

m4

]
E[K(x,x′)K′(x,x)]

+

[
m(m−1)

m4

]
E
x
[K(x,x)]E

x
[K′(x,x)]

+

[
m(m−1)(m−2)

m4

]
E
x
[K(x,x)]E[K′]

+

[
m(m−1)(m−2)

m4

]
E[K]E

x
[K′(x,x)].

Taking the difference with the expression of E[KcK′
c] (Equation 13), using the fact that terms of form

Ex[K(x,x)K′(x,x)] and other similar ones are all bounded by R2R′2 and collecting the terms gives
∣∣∣∣E[KcK

′
c]−ES

[〈Kc,K′
c〉F

m2
]∣∣∣∣≤

3m2−4m+2
m3

E[KK′]−2
4m2−5m+2

m3
E
x

[
E
x′
[K]E

x′
[K′]

]

+
6m2−11m+6

m3
E[K]E[K′]+ γ,
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with |γ|≤ m−1
m2 R

2R′2. Using again the fact that the expectations are bounded by R2R′2 yields
∣∣∣∣E[KcK

′
c]−ES

[〈Kc,K′
c〉F

m2
]∣∣∣∣≤

[
3
m
+
8
m
+
6
m
+
1
m

]
R2R′2 ≤

18
m
R2R′2,

and concludes the proof.

Appendix B. Stability Bounds for Alignment Maximization Algorithm

Lemma 20 Let µ=v/‖v‖ and µ′=v′/‖v′‖. Then, the following identity holds for ∆µ=µ
′ −µ:

∆µ=

[
∆v
‖v′‖

−
(∆v))(v+v′)v

‖v‖‖v′‖(‖v‖+‖v′‖)

]
.

Proof By definition of ∆µ, we can write

∆µ= ∆

(
v
‖v‖

)
=

[
v′ −v
‖v′‖

−
v‖v′‖−v‖v‖

‖v‖‖v′‖

]
=

[
∆v
‖v′‖

−
v∆(‖v‖)
‖v‖‖v′‖

]
. (14)

Observe that:

∆(‖v‖) =
∆(‖v‖2)

‖v‖+‖v′‖
=
∆(∑

p
i=1 v

2
i )

‖v‖+‖v′‖
=
∑
p
i=1∆(vi)(vi+ v′i)
‖v‖+‖v′‖

=
(∆v))(v+v′)
‖v‖+‖v′‖

.

Plugging in this expression in (14) yields the statement of the lemma.

Consider the minimization (7) shown by Proposition 9 to provide the solution of the alignment
maximization problem for a convex combination. The matrix M and vector a are functions of the
training sample S. To emphasize this dependency, we rewrite that optimization for a sample S as

min
v≥0

F(S,v), (15)

where F(S,v) = v)Mv−2v)a= ‖v‖2M−2v)a. The following lemma provides a stability result for
this optimization problem.

Proposition 21 Let S and S′ denote two samples of size m differing by only one point. Let v and v′
be the solution of (15), respectively, for sample S and S′. Then, the following inequality holds for
∆v= v′ −v:

‖∆v‖2M ≤
[
∆a− (∆M)v′

])
∆v.

Proof Since C = {v : v ≥ 0} is convex, for any s ∈ [0,1], v+ s∆v and v′ − s∆v are in C. Thus, by
definition of v′ and v,

F(S,v)≤ F(S,v+ s∆v) and F(S′,v′)≤ F(S′,v′ − s∆v).

Summing up these inequalities, we obtain

‖v‖2M−‖v+ s∆v‖2M+‖v′‖2M′ −‖v′ − s∆v‖2M′

≤ 2v)a−2(v+ s∆v))a+2v′)a′ −2(v′+ s∆v))a′

=−2[sa)∆v− sa′)∆v] = 2s(∆a))∆v.
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Table 4: Significance tests for general kernel combination results presented in Table 2. An entry of
1 indicates that the algorithm listed in the column has a significantly better accuracy than
the algorithm listed in the row.

The left-hand side of this inequality can be rewritten as follows after expansion and using the identity
‖v′ − s∆v‖2M′ −‖v′ − s∆v‖2M = ‖v′ − s∆v‖2∆M:

−‖s∆v‖2M−2sv)M∆v+‖v′‖2M′ −‖v′‖2M−‖s∆v‖2M+2sv′)M(∆v)−‖v′ − s∆v‖2∆M
= 2s(1− s)‖∆v‖2M+‖v′‖2∆M−‖v′ − s∆v‖2∆M.

Then, expanding ‖v′ − s∆v‖2∆M results in the final inequality

2s(1− s)‖∆v‖2M− s2‖∆v‖2∆M+2sv′)(∆M)(∆v)≤ 2s(∆a))∆v.

Dividing by s and setting s=0 yields

‖∆v‖2M+v′)(∆M)(∆v)≤ (∆a))∆v,

which concludes the proof of the lemma.

Appendix C. Significance Tests for Empirical Results

Tables 4 and 5 show the results of paired-sample one-sided T-tests for all pairs of algorithms com-
pared across all data sets presented in Section 5 for both regression and classification. Each entry
of the tables indicates whether the mean error of the algorithm listed in the column is significantly
less than the mean error of the algorithm listed in the row at significance level p = 0.1. An entry
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CLASSIFICATION

Table 5: Significance tests for rank-one kernel combination results presented in Table 3. An entry
of 1 indicates that the algorithm listed in the column has a significantly better accuracy
then the algorithm listed in the row.

of 1 indicates a significant difference, while an entry of 0 indicates that the null hypothesis (that the
errors are not significantly different) cannot be rejected.

Table 4 indicates that the alignf method offers significant improvement over unif in all data
sets with the exception of spambase and significantly improves over the compared one-stage method
in all data sets apart from splice. Table 5 indicates that the alignmethod significantly improves over
both the uniform and one-stage combination in all data sets apart from dvd in the regression setting,
where improvement over l2-krr is not deemed significant.
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Nello Cristianini, John Shawe-Taylor, André Elisseeff, and Jaz S. Kandola. On kernel-target align-
ment. In NIPS, 2001.
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Abstract
Conditional independence relations involving latent variables do not necessarily imply observ-
able independences. They may imply inequality constraints on observable parameters and causal
bounds, which can be used for falsification and identification. The literature on computing such
constraints often involve a deterministic underlying data generating process in a counterfactual
framework. If an analyst is ignorant of the nature of the underlying mechanisms then they may
wish to use a model which allows the underlying mechanisms to be probabilistic. A method of
computation for a weaker model without any determinism is given here and demonstrated for the
instrumental variable model, though applicable to other models. The approach is based on the
analysis of mappings with convex polytopes in a decision theoretic framework and can be imple-
mented in readily available polyhedral computation software. Well known constraints and bounds
are replicated in a probabilistic model and novel ones are computed for instrumental variable mod-
els without non-deterministic versions of the randomization, exclusion restriction and monotonicity
assumptions respectively.
Keywords: instrumental variables, instrumental inequality, causal bounds, convex polytope, latent
variables, directed acyclic graph

1. Introduction

Conditional independence relations represent equality constraints on the parameters of a joint prob-
ability distribution. Such relations cannot be empirically validated if they involve latent variables.
Collections of latent conditional independencies may imply inequality constraints on parameters
of the observable distribution. The classical motivation is the instrumental variable (IV) model
(Durbin, 1954; Angrist et al., 1996). It includes the IV, A, and inference is required about the effect
of a variable, B, on another,C, in the presence of latent confounders,U . The IV model is defined by
A⊥⊥/ B, C⊥⊥A |(B,U) andU ⊥⊥A. The latter two involve the latent variableU so it was tradition-
ally thought that the model could not be empirically verified (Imbens and Angrist, 1994). However
Pearl (1995) derived the ‘instrumental inequality’

max
B ∑

C

{

max
A
P(C,B |A)

}

≤ 1, (1)

c©2012 Roland R. Ramsahai.
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a set of constraints which are implied by and can be used to falsify the discrete IV model. To
compute the constraints, Pearl (1995) defines the IV model as a deterministic counterfactual model
(Rubin, 1974). Such models involve latent deterministic relations, which marginalise to produce
observed probabilistic relationships, and are technically equivalent to structural equation models
(Strotz and Wold, 1960) and other functional models (Heckerman and Shachter, 1995).

Without intervention data and further assumptions, the causal effect of B on C cannot be point
identified (Durbin, 1954; Angrist et al., 1996), but, using the deterministic counterfactual model, it
can be bounded with the joint distribution of A, B andC (Pearl, 1995; Robins, 1989; Manski, 1990).
Thus making it possible to acquire non-trivial information about the effect of the intervention when
intervention studies cannot be conducted; because of ethical, financial or other reasons. Using
the deterministic counterfactual approach and linear programming software developed by Balke
(1995), the constraints on the causal effect of B on C were improved by Balke and Pearl (1997)
and extended to other models by Kaufman et al. (2009). This linear programming approach within
a deterministic counterfactual model has become the standard tool for computing such constraints,
with some exceptions (Geiger and Meek, 1998; Kang and Tian, 2006).

As a technical construct for computations, deterministic counterfactual models are widely ac-
cepted as valuable. Applications of deterministic counterfactual models assume there are underlying
deterministic relations (Angrist et al., 1996) and pose no issues if the determinism can be practi-
cally justified. For certain applications though, for example, mutations that cause cancer (Aalen and
Frigessi, 2007), subject matter knowledge suggests that assumptions about the existence of deter-
ministic mechanisms are unrealistic and spawns controversy (Dawid, 2000). Even if an analyst is
unaware of the type of mechanisms involved in their study, it would be desirable to avoid determin-
istic counterfactuals if alternative computations are no more difficult. The method in §2 provides
such an alternative, which is agnostic to whether the underlying mechanisms are probabilistic or
deterministic, to deriving falsifiable constraints and causal bounds of the type previously described.
The method described does not use counterfactuals, which has certain advantages (Dawid, 2000),
but more importantly demonstrates that the determinism in the models is unnecessary.

In this discussion, causal inference is formalized within standard decision theory (Spirtes et al.,
1993; Pearl, 1993), with conditional independence assumptions (Lauritzen, 2001; Dawid, 2002).
The model has been successfully applied in defining direct effects (Geneletti, 2007) and dynamic
treatment strategies (Dawid and Didelez, 2010), to name a few. The approach in §2 and throughout
uses this framework and it is compared to the counterfactual framework in §3. The method is based
on the analysis of convex polytopes and can be implemented in standard polytope representation
software such as Polymake (Gawrilow and Joswig, 2000) or PORTA (Christof and Loebel, 1998).
Known constraints, which have been previously derived using deterministic counterfactuals, are
derived in §5. Graphical models for representing causal assumptions are described in §4. Non-
trivial modifications of the computation technique are considered in §6, §7 and §8 to derive novel
constraints and causal bounds when various assumptions in the IV model are weakened.

Example 1 Consider an IV model of partial compliance, where A ∈ {1,2} is treatment assigned,
B ∈ {0,1} is treatment taken and C is an outcome of interest. The counterfactual IV model involves
counterfactual variables (B1,B2) which represent a unit’s deterministic compliance behaviour when
A is set to 1 (no treatment) or 2 (treatment) respectively. Analyses of this model often make the
monotonicity assumption B2 ≥ B1, meaning that a unit which does not take treatment if assigned it,
will never take it.
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The deterministic counterfactual framework only allows the compliance behaviour in Example 1
to be modelled as deterministic. Monotonicity assumptions, used to compute bounds in IV models,
in the literature (Pearl, 1995; Balke and Pearl, 1997) are imposed in models which are stronger than
necessary. It is shown in §8 that the known bounds and novel bounds can be derived for a weaker
model. In the context of Example 1, monotonicity in the weaker model is equivalent to assuming
that units are more likely to take treatment if assigned it than if not assigned it.

The counterfactual IV model in Example 1 uses the exclusion restriction assumption (Imbens
and Angrist, 1994). This assumption restricts C to be a deterministic function of compliance be-
haviour and treatment taken only. Stochastic exclusion restrictions are considered within the deter-
ministic counterfactual framework in Hirano et al. (2000). In a weaker fully probabilistic model, the
exclusion restriction assumptionC⊥⊥A |(B,U) is used in §2 to replicate results which were derived
under the stronger model (Balke and Pearl, 1993; Pearl, 1995; Balke and Pearl, 1997). Whilst vary-
ing the strength of the exclusion restriction, novel constraints are derived in §7 with the probabilistic
approach. This allows a sensitivity analysis to the non-deterministic exclusion restriction, which is
important when assumptions involve unobservable variables (Shepherd et al., 2006).

Another assumption in the IVmodel in Example 1 is that treatment assignment is independent of
compliance behaviour. In the probabilistic framework, novel constraints are computed for a weaker
IV model with U ⊥⊥/ A, as described in §6. Applications to data are given in §9. The IV model
provides motivation for this discussion but the approach extends to other models. The notation used
throughout is listed in Appendix A.

2. Computation of Constraints in the Instrumental Variable Model

Consider a model involving the random variables A, B, C and U , where the state space of A is
{1,2}, B is {0,1} and C is {0,1}. U is unobservable by definition so no assumption is made
about it. Let !v∗ = (ζ∗00.1,ζ

∗
01.1, . . . ,ζ

∗
11.2) be a random vector with components ζ∗cb.a, which are

random variables that are functions of U , where ζ∗cb.a = P(C = c,B = b |A = a,U). Similarly, let
!v= (ζ00.1,ζ01.1, . . . ,ζ11.2) be a fixed vector of probabilities that are not functions ofU , where ζcb.a=
P(C = c,B= b |A= a). Let!τ∗ = (η∗0,η

∗
1,δ

∗
1,δ

∗
2), where

η∗b = P(C = 1 |B= b,U), δ∗a = P(B= 1 |A= a,U). (2)

Since!τ∗ is a vector of probabilities then!τ∗ ∈ T since the components of!τ∗ satisfy the axioms of
probability, where T = [0,1]4. To derive falsifiable constraints on!v for the IV model, it is necessary
to determine the set of !v which does not satisfy the assumptions in the IV model. Under the IV
model,C⊥⊥A |(B,U), which implies that

P(C,B |A,U) = P(C |B,U)P(B |A,U), (3)

and!v∗ can be parameterised by!τ∗. The relation in Equation (3) together with the codes in (2) define
a mapping Ξ :!τ∗ ∈ T →!v∗ ∈V , where!τ∗ is unrestricted by the IV model and V = Ξ(T ) contains
all !v∗ which obey the IV model. Since the components of each !v∗ obey the axioms of probability
then V ⊆ Z, where Z ⊂ [0,1]8 is the intersection of the hyperplanes defined by ∑c,b ζ

∗
cb.a = 1 for

a ∈ {1,2}.
Under the IV model,U ⊥⊥A, which implies that ζcb.a = EU(ζ∗cb.a) and thus all!v that obey the IV

model lie in H , where H is the set of all possible convex combinations of all!v∗ ∈ V or the convex

831



RAMSAHAI

hull of V . Let V̂ = Ξ(T̂ ) and Ĥ be the convex hull of V̂ , where T̂ is the collection of extreme
vertices of T . The vertices T̂ and V̂ are partially listed in Figure 1 (top) and the transformation
Ξ(·) is represented in Figure 1 (bottom).

η∗0 η∗1 δ∗1 δ∗2 ζ∗00.1 ζ∗01.1 ζ∗10.1 ζ∗11.1 ζ∗00.2 ζ∗01.2 ζ∗10.2 ζ∗11.2
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 → 1 0 0 0 0 1 0 0
...

...
...

...
...

...
...

...
...

...
...

...
1 1 1 1 0 0 0 1 0 0 0 1

Z

Figure 1: Transformation of extreme vertices (top) of polytope (bottom).

Since H = Ĥ , from Theorem 1 in Appendix B, then all!v that obey the IV model lie in Ĥ . The
proof of Theorem 1 does not use the specific form of Ξ(·), only its monotonicity in each coordinate.
A program such as Polymake (Gawrilow and Joswig, 2000) or PORTA (Christof and Loebel, 1998)
can be used to transform the representation of Ĥ in terms of its extreme vertices to a representation
in terms of its facets or inequalities. The inequalities are constraints which are satisfied by !v if !v
obeys the IV model. This specific computation produces the falsifiable ‘instrumental inequality’
constraints in (1) and is exactly the approach of Dawid (2003).

It is possible for the randomization or exclusion restriction assumption to fail without violation
of any of the constraints in (1). This is because there are distributions P(C,B,A,U) which either
violate the assumption U ⊥⊥A or Equation (3) but give rise to margins P(C,B,A) that obey the
inequalities in (1). For example, if all !v∗ lie in H \V and randomization holds then the exclusion
restriction in Equation (3) is not satisfied but all!v ∈H , which means that the inequalities in (1) are
satisfied. I conjecture that the condition thatU has a certain small state space is sufficient to imply
that it is possible for the IV model to fail without violation of any of the constraints in (1).

3. Geometry of Counterfactuals and Latent Variables

The binary IV model can be re-parameterised by replacing U in P(C,B |A,U) with!τ∗ and consid-
ering P(C,B |A,!τ∗). The polytope H represents the model for P(C,B |A) and, since H = Ĥ , a
computationally and empirically indistinguishable model is formed by restricting!τ∗ to T̂ . In this
minimal representation of the model, where!τ∗ ∈ T̂ , the parameters η∗b ∈ {0,1} and δ∗a ∈ {0,1}.
Therefore η∗b is a deterministic function of B and the latent variable U and can be interpreted as
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a counterfactual variable which is the value of C when B = b for a given!τ∗, and similarly for δ∗a.
Similar comments are given in Lauritzen (2004).

If U is interpreted as the collection of variables which define a unit then !τ∗ is the vector of
potential responses for a unit and each vertex of the polytope corresponds to a certain type of unit.
In the partial compliance model of Example 1, the vertex !τ∗ = (0,0,0,0) corresponds to a unit
which is classified as never recover (response is 0 regardless of treatment taken) and a never taker
(treatment taken is 0 regardless of treatment assigned).

The probabilistic model is parameterised by!τ∗ over the entire polytope T whereas the counter-
factual model is parameterised by!τ∗ only at the extreme vertices of the polytope T . In special cases
where latent determinism is realistic then such a parameterisation is meaningful and assumptions
about the non-existence of certain vertices of the polytope or!τ∗ ∈ T̂ can potentially be justified. If
latent determinism is known to be unrealistic (Aalen and Frigessi, 2007) and the reparameterisation
is a technical construct then it may be wise to steer clear of any interpretation beyond simply saying
that they are the vertices of the polytope defining the model.

The concepts are demonstrated in the reformulation of the monotonicity assumption in §8. The
deterministic counterfactual approach assumes latent determinism and interprets the vertices as hav-
ing real meaning. Under the deterministic interpretation, the monotonicity assumption implies that
certain vertices are not valid for the model. The probabilistic approach defines monotonicity as
a constraint on the latent conditional distributions to lie in a particular half-space, still allowing
probabilistic behaviour.

4. Causal Graphical Models

The IV model considered so far, that is, without causal assumptions, is relatively simple. However
extensions of it will be considered later and it will be useful, though not vital, to use graphical
models to represent the assumptions involved. Graphs that are useful for representing conditional
independence and causal assumptions are described in §4.1 and §4.2 respectively.

4.1 Directed Acyclic Graph

A purely probabilistic directed acyclic graph (DAG) (Lauritzen, 1996) consists of a set of vertices
or nodes, N , and a set of directed edges, E . If λ1,λ2 ∈N and (λ1,λ2) ∈ E then (λ2,λ1) /∈ E . It is
said that there is a directed edge from λ1 to λ2, this is written as λ1 → λ2 and λ1 is called a parent
of λ2. In a DAG which represents the probability distribution of a set of random variables, X , every
λ ∈N corresponds to a random variable Xλ ∈ X . The probability distribution function has the form

P(X ) =∏λ∈N P{Xλ |Xpa(λ)}, (4)

where ‘pa(·)’ is the set of ‘parents’ of a node. This factorisation property is equivalent to a collection
of conditional independence relations, which can be derived from the DAG using the concepts of ‘d-
separation’ (Verma and Pearl, 1988) and a ‘moral graph’ (Lauritzen et al., 1990). The observational
assumptions of the IV model can be represented by the DAG in Figure 2 (left).

4.2 Augmented Directed Acyclic Graph

The notation ‘ || ’ (Lauritzen, 2001) is used for intervention conditioning and is equivalent to the
‘do(·)’ notation (Goldszmidt and Pearl, 1992) and the ‘Pman(·)’ notation (Spirtes et al., 1993). Using
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Figure 2: DAG which represents observational assumptions of the instrumental variable model
(left) and augmented DAG for IV model, which includes causal assumptions (right).

the notation, P(C ||B= b) is the probability of C given that B is actively forced to take the value b,
and not passively observed to take the value b, as in P(C |B= b).

To derive intervention constraints, the assumptions represented by the augmented DAG (Spirtes
et al., 1993; Pearl, 1993; Lauritzen, 2001; Dawid, 2002) in Figure 2 (right) are considered, where
ACE(B → C) = α = P(C = 1 ||B = 1)− P(C = 1 ||B = 0) is the causal effect of interest. The
intervention node FB is a regime indicator decision variable which represents the way in which
the value of B arises. Conditional independence relations can be derived in the same way as for
the purely probabilistic DAGs since the probability distribution, conditional on FB, still factorises
according to Equation (4). The node FB takes the values ‘idle’, 0 or 1. If FB = idle then B takes a
random value given by P{B |pa(B)}, but if FB is either 0 or 1 then B= FB. Using previous notation
P(C ||B= b) = P(C |FB = b). The relationC⊥⊥B |(FB = b,U) holds from the definition of FB but is
not represented in Figure 2 (right). Square nodes are decision nodes which represent fixed strategies,
whereas circle nodes are random nodes which represent random variables.

The augmented DAGs which represent the IV model without randomization and the exclusion
restriction are given in Figure 3.
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Figure 3: Augmented DAGs which represent the causal IV model without randomization (left) and
without exclusion restriction (right).

The assumptions represented by the augmented DAGs in Figure 3 will be used in §6 and §7
respectively to derive constraints. The augmented DAG in Figure 2 (right) still applies under mono-
tonicity since no extra conditional independences are assumed.
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5. Applications of Computation

Many results in the literature are recovered by specific applications of the general method described
in §2. It is based on parameterising with the factors of Equation (4) and transforming them according
to a mapping. By defining the appropriate mapping, the various constraints are obtainable. Key
requirements are the monotonicity of the mapping and that the space of valid parameters is the
convex hull of the transformed polytope. Constraints on other quantities, such as P(C |A), P(B |A),
P(C |B) etc., can be derived but some interesting examples are given in §5.1 and §5.2.

5.1 Falsifiable Constraints

Some applications, such as studies with partial compliance, require constraints involving the distri-
bution P(C,B |A), whereas others can only identify the pairwise conditional distributions P(C |A)
and P(B |A). For example, Mendelian randomization in genetic epidemiology involves the use of
a genotype (A) as an instrument for the effect of a phenotype (B) on a disease (C). However only
genotype-phenotype and genotype-disease data is usually available (Didelez and Sheehan, 2007)
and thus constraints involving P(C |A) and P(B |A) are needed.

To derive the constraints, consider the monotone mapping!τ∗ +−→ (!γ∗,!θ∗) for the IV model of
Figure 2 (left), where γ∗ca = P(C = c |A = a,U) and θ∗ba = P(B = b |A = a,U). Since U ⊥⊥A then
(!γ,!θ) lies in the convex hull of the set of (!γ∗,!θ∗) which satisfy the IV model, where γca = P(C =
c |A= a) and θba = P(B= b |A= a). Similarly to the approach in §2, the constraints

θ01+θ02 ≥ γ01− γ02,
θ01+θ02 ≥ γ02− γ01,
θ11+θ12 ≥ γ01− γ02,
θ11+θ12 ≥ γ02− γ01,

are obtained, which are the same as in Ramsahai (2007).

5.2 Bounds on Fixed Interventions

From the motivating Mendelian randomization example in §5.1, it may be necessary to obtain causal
bounds in terms of the pairwise conditional distributions P(C |A) and P(B |A). Consider the model
in Figure 2 (right). Since C⊥⊥FB |(B,U) and U ⊥⊥FB then P(C ||B) = ∑U P(C |B,U)P(U). This
implies that (!γ,!θ,α) lies in the convex hull of (!γ∗,!θ∗,α∗), where α∗ = P(C = 1 |B= 1,U)−P(C =
1 |B= 0,U) and α= EU(α∗). Therefore the monotone mapping!τ∗ +−→ (!γ∗,!θ∗,α∗) can be used to
compute constraints on (!γ,!θ,α). The results of the computation are given in Appendix C and are
the same as those derived in Ramsahai (2007).

Similarly, constraints and causal bounds in terms of the identifiable ζcb.a parameters can be
obtained by considering the mapping!τ∗ +−→ (!v∗,α∗). The constraints involving the identifiable
ζcb.a parameters only are the same as those obtained in §2, which are given in (1), and the rest
constrain α. The bounds on α are given in Appendix C and are the same as those of Dawid (2003),
which are derived by Balke and Pearl (1997) in a deterministic model.

6. Relaxing the Randomization Assumption in the Instrumental Variable Model

It is possible for treatment assignment in a partial compliance study, which is suitable for an IV
model, to have invalid randomization, for example, if the doctor involved is aware of the health
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status of the patients. To analyze such a study, an analyst may opt for a model without randomization
or at least assess the effect of the assumption on the inference. Both require constraints to be
derived for a model without U ⊥⊥A, as in Figure 3 (left). The decision framework is used here for
computations without any assumptions of determinism. It is irrelevant to the computation whether
U causes A, A causes U or both have a common cause. This is because the model in Figure 3
(left) only makes assumptions about distributions in the observational regime and the regime with
intervention on B, since it includes the regime indicator FB. No FA or FU regime indicators are
included so no assumptions are made about interventions on A orU .

If there is data on P(C |A) and P(B |A) but not P(C |B,A) then constraints and bounds involving
!γ and !θ are useful. Without the randomization assumption, U ⊥⊥A, (!γ,!θ,α) does not necessarily
lie in the convex hull of (!γ∗,!θ∗,α∗) and similarly for the other applications in §5. Assuming the
exclusion restriction in Equation (3) still holds,!τ∗ still fully parameterises P(C,B |A,U). Consider
the monotone mapping Ξi(·):!τ∗ +−→!v∗i , where!v∗i = (γ∗0i,γ

∗
1i,θ

∗
0i,θ

∗
1i,α

∗) for i= 1,2, which can be
expressed as

α∗ = η∗1−η∗0, γ∗0i = (1−η∗0)(1−δ∗i )+(1−η∗1)δ
∗
i , θ∗0i = 1−δ∗i

γ∗1i = η∗0(1−δ∗i )+η∗1δ
∗
i , θ∗1i = δ∗i .

The transformation of T̂ by Ξi(·) is given in Figure 4. Since the relations C⊥⊥FB |(B,U),U ⊥⊥FB

η∗0 η∗1 δ∗i γ∗0i γ∗1i θ∗0i θ∗1i α∗

0 0 0 1 0 1 0 0
0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 1
0 1 1 → 0 1 0 1 1
1 0 0 0 1 1 0 -1
1 0 1 1 0 0 1 -1
1 1 0 0 1 1 0 0
1 1 1 0 1 0 1 0

Figure 4: Transformation of T̂ by Ξi(·) to the polytope which represents the IV model without
randomization, in terms of the pairwise conditional distributions P(C |A) and P(B |A).

andC⊥⊥A |(B,U) follow from Figure 3 andC⊥⊥B |(U,FB = B),

P(C ||B) = ∑A∑U P(C |B,U)P(U |A)P(A) = EA(α′
A), (5)

where α′
A=∑U P(C |B,U)P(U |A). Since P(C |A)=EU |A{P(C |A,U)} and P(B |A)=EU |A{P(B |A,U)}

then !wi lies in the convex hull of the set of!v∗i , where !wi = (γ0i,γ1i,θ0i,θ1i,α′
i), and the method of §2

computes the tight constraints
0≤ γ0i+2γ1i−θ0i+α′

i,
0≤ γ0i+θ0i+α′

i,
0≤ γ1i+θ0i−α′

i,
0≤ 2γ0i+ γ1i−θ0i−α′

i,

or
max{ γ0i+θ0i−2,−γ0i−θ0i }≤ α′

i ≤min{ −γ0i+θ0i+1,γ0i−θ0i+1 } ,

836



CONSTRAINTS FOR NON-DETERMINISTIC MODELS

for all i. The constraints are tight since the vertices of the convex hull are a subset of the vertices of
the transformed polytope and any vertex is achievable if the value ofU , corresponding to the vertex,
occurs with probability one. Since α= EA(α′

A) from Equation (5) then

min
i

[

max
{

γ0i+θ0i−2
−γ0i−θ0i

}]

≤ α≤max
i

[

min
{

−γ0i+θ0i+1
γ0i−θ0i+1

}]

.

These bounds always span zero and are tight since the bounds on α′
i are achievable by α if P(A =

i) = 1. If marginal A data are available, the bounds can be improved to

ACE(B→C)≥ ∑i

[

max
{

γ0i+θ0i−2
−γ0i−θ0i

}

P(A= i)
]

,

ACE(B→C)≤ ∑i

[

min
{

−γ0i+θ0i+1
γ0i−θ0i+1

}

P(A= i)
]

,

or

−1+EA(|γ1A−θ0A|)≤ ACE(B→C)≤ 1−EA(|γ0A−θ0A|). (6)

Although the expression in (6) bounds the unobservable causal effect, there are no falsifiable con-
straints to invalidate the model. The bounds in (6) always span zero.

If a sample from P(C,B |A) is available, the mapping!τ∗ +−→!v∗i can be used to compute observ-
able constraints and causal bounds. The computation is possible since P(C,B |A) =
EU |A{P(C,B |A,U)}, which implies that !wi lies in the convex hull of the set of !v∗i , where !v∗i =
(ζ∗00.i,ζ

∗
01.i,ζ

∗
10.i,ζ

∗
11.i,α

∗) and !wi = (ζ00.i,ζ01.i,ζ10.i,ζ11.i,α′
i). The bounds −ζ01− ζ10 ≤ ACE(B→

C)≤ ζ00+ζ11 are obtained, where ζcb = P(C= c,B= b). All of the results in this section still hold
if the state space of A is extended to {1,2, . . . , l} but the state space of (B,C) kept binary.

The bounds on ACE(B→ C) by the ζcb parameters are derived by Manski (1990) in a model
involving (B,C,C0,C1) under the assumptions that the potential outcomes (C0,C1) for a unit are
the same regardless of how treatment is assigned, that is, whether by intervention or observation,
and thus C is a deterministic function of (B,C0,C1) for a unit. The derivation, of the bounds on
ACE(B→C) by the ζcb parameters, given here only requires the analogous assumptions U ⊥⊥FB
andC⊥⊥FB |(B,U). The additional variable A used here, which satisfies the conditionC⊥⊥A |(B,U),
trivially exists by constructing a variable A = B. Also, the conditional independence assumption
A⊥⊥FB represented in Figure 3 (left) is unnecessary since it is not used in the derivation.

7. Relaxing the Exclusion Restriction in the Instrumental Variable Model

The exclusion restriction assumption may often be inapplicable, for example, if patients in a study
with partial compliance become aware of their treatment assignment and this affects their outcome.
There could be a direct relation between treatment assignment A and the outcome C, for which the
model in Figure 3 (right) would be appropriate. The probabilistic nature of the exclusion restric-
tion within the decision framework allows the strength of the direct relation to be varied and the
sensitivity of inference to this assumption to be assessed.

A weaker alternative to the exclusion restriction assumption, C⊥⊥A |(B,U), in the binary IV
model is 0 ≤ |η∗b1−η∗b2| ≤ ε for b = 0,1, where η∗ba = P(C = 1 |B = b,A = a,U) and 0 ≤ ε ≤ 1.
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η∗01 η∗02 η∗11 η∗12 δ∗1 δ∗2
0 0 0 0 0 0
0 0 0 0.5 0 1
0 0 0.5 0 1 0
0 0 0.5 1 1 1
0 0 1 0.5 0 0
0 0 1 1 0 1
...

...
...

...
...

...

↓

ζ∗00.1 ζ∗01.1 ζ∗10.1 ζ∗11.1 ζ∗00.2 ζ∗01.2 ζ∗10.2 ζ∗11.2
1 0 0 0 1 0 0 0
1 0 0 0 0 0.5 0 0.5
0 0.5 0 0.5 1 0 0 0
0 0.5 0 0.5 0 0 0 1
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...

Figure 5: Transformation to the extreme vertices corresponding to the polytope which represents
the IVmodel with the weaker exclusion restriction, for ε= 0.5, in terms of the distribution
P(C,B |A).

The condition ε = 0 is equivalent to the exclusion restriction. For ε = 1, there are no constraints
on (η∗b1,η

∗
b2) other than the axioms of probability and there are no falsifiable constraints or causal

bounds for the IV model without the exclusion restriction. The augmented DAG in Figure 3 (right)
does not represent any assumptions about ε but assumptions about ε are required to obtain non-trivial
constraints and bounds. The application of the technique is considered for ε = 0.5. Consider the
mapping of!τ∗ = (η∗01,η

∗
02,η

∗
11,η

∗
12,δ

∗
1,δ

∗
2) to!v∗ = (ζ∗00.1,ζ

∗
01.1, . . . ,ζ

∗
11.2) for a model with A∈ {1,2}

and B,C ∈ {0,1}. The transformation of some of the extreme vertices are given in Figure 5. Use of
the technique produces the causal bounds in Appendix D and the constraints

ζ00.1+ζ10.2−ζ10.1−ζ00.2 ≤ 1,
ζ10.1+ζ00.2−ζ00.1−ζ10.2 ≤ 1,
ζ11.1+ζ01.2−ζ01.1−ζ11.2 ≤ 1,
ζ01.1+ζ11.2−ζ11.1−ζ01.2 ≤ 1,

which is a weaker version of the ‘instrumental inequality’ of Equation (1) and can be violated if
the IV model with the weak exclusion restriction, ε = 0.5, is invalid. By adding the component
P(C |B,A,U) to !v∗, causal bounds on P(C |A,FB = B) = ∑U P(C |B,A,U)P(U) can be derived for
each A and used to compute bounds on ACE(B→C) since P(C |FB = B) =∑AP(C |A,FB = B)P(A).
Similarly to the bounds in §6, these bounds are tight. Although ε is currently defined as a constant,
similar computations can be done if ε is allowed to be a function of b, that is, |η∗b1−η∗b2| has a
different range for each b.
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7.1 Bounds on Direct Effects

Without assuming C⊥⊥A |(B,U), if intervention on A is possible then the direct effect of A on
C can be bounded with parameters of the distribution under no intervention. Consider extending
the sample space of FB to include the random regime dA, which represents the regime in which
P(B |A,U,FB = da∗) = P(B |A= a∗,U). Consider the controlled direct effect (CDE) (Didelez et al.,
2006) and the random regime direct effect (RRDE)

CDE(B) = E(C |FB = B,FA = 2)−E(C |FB = B,FA = 1)
= EU{E(C |B,A= 2,U)−E(C |B,A= 1,U)}
= EU(η∗B2−η∗B1),

RRDE(a∗) = E(C |FB = da∗ ,FA = 2)−E(C |FB = da∗ ,FA = 1)
= EU [EB{E(C |B,A= 2,U)−E(C |B,A= 1,U) |A= a∗,U}]
= EU{(η∗12−η∗11)δ

∗
a∗ +(η∗12−η∗11)(1−δ∗a∗)}.

The RRDE is called the NDE in Didelez et al. (2006) but Robins and Richardson (2010) argue that
the parameter being referred to as NDE in Didelez et al. (2006) is not the same as the NDE in Pearl
(2001). Thus a separate name is given here to RRDE. By considering the mapping of!τ∗ to the
vector with!v∗ and the extra component η∗B2−η∗B1, the bounds on CDE(B) of Cai et al. (2008) can
be replicated. Similarly by mapping!τ∗ to a vector with!v∗ and EB(η∗B2−η∗B1 |A= a∗,U), bounds on
RRDE(a∗) are obtained, which are identical to the bounds on NDE(a∗) in Sjölander (2009). Unlike
here, both references use counterfactuals and use the definition of CDE and NDE, sometimes called
pure direct effect (Robins and Greenland, 1992), given in Pearl (2001).

8. Monotonicity Assumption in the Instrumental Variable Model

The monotonicity assumption in the literature (Imbens and Angrist, 1994; Angrist et al., 1996) is
formulated in a deterministic model. In a partial compliance study, a patient may be more likely
to take treatment under assignment but it may not be reasonable to assume that their behaviour is
deterministically related to treatment assignment. A monotonicity assumption in a weaker proba-
bilistic model is considered here and can be expressed mathematically for the binary IV model by
δ∗2 ≥ δ∗1, from Equation (2). It restricts the space of the vector of probabilities so the constraints are
at least as strong as without it.

The IV model considered in this section includes the exclusion restriction and the randomization
assumption, as in the augmented DAG in Figure 2 (right). As an illustrative example, consider the
computation of falsifiable constraints and causal bounds on ϕ given!γ, without monotonicity, where
ϕ=ACE(A→ B) = θ01−θ02. This computation produces only trivial results. Under monotonicity,
T must be redefined to omit all!τ∗ which do not satisfy it. Therefore all of the vertices with δ∗2 < δ∗1
or ϕ∗ ≥ 0 should be removed to redefine T̂ , where ϕ∗ = P(B= 1 |A = 2,U)−P(B= 1 |A= 1,U).
The required mapping is!τ∗ +−→ (!γ∗,ϕ∗) over the domain of the restricted T . The transformation is
given in Figure 6 and the non-trivial constraints obtained are

max
{

γ01− γ02
−γ01+ γ02

}

≤ ϕ≤ 1 ⇐⇒ |γ01− γ02|≤ ϕ≤ 1, (7)

or ACE(A→ B) ≥ |γ01− γ02| = |ACE(A→C)|. This makes sense since it is assumed that ϕ∗ ≥ 0
and B lies on the causal pathway from A toC. The transformed polytope in Figure 6 is 3 dimensional

839



RAMSAHAI

η∗0 η∗1 δ∗1 δ∗2 γ∗01 γ∗11 γ∗02 γ∗12 ϕ∗

0 0 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0 1
0 0 1 0 − − − − −
0 0 1 1 1 0 1 0 0
0 1 0 0 1 0 1 0 0
0 1 0 1 1 0 0 1 1
0 1 1 0 − − − − −
0 1 1 1 → 0 1 0 1 0
1 0 0 0 0 1 0 1 0
1 0 0 1 0 1 1 0 1
1 0 1 0 − − − − −
1 0 1 1 1 0 1 0 0
1 1 0 0 0 1 0 1 0
1 1 0 1 0 1 0 1 1
1 1 1 0 − − − − −
1 1 1 1 0 1 0 1 0

Figure 6: Transformation to the extreme vertices corresponding to the polytope which represents
the IV model, with the exclusion restriction, randomization and monotonicity assump-
tions, in terms of the distribution P(C |A). The dashes correspond to points ruled out by
monotonicity, which are represented by ◦’s in Figure 7.

since γ∗11 = 1− γ∗01 and γ∗12 = 1− γ∗02; its projection in (γ∗01,γ∗02,ϕ∗) space is given in Figure 7. The
6 •’s are the vertices which are not removed after assuming monotonicity and the 6 ◦’s, which
correspond to dashes in Figure 6, are the vertices which are removed. Figure 7 clearly demonstrates
that the constraints without monotonicity are trivial whereas those with it are not.

To determine the effect of the monotonicity assumption on the constraints and bounds with
(!γ,!θ) in §5, the same mapping is used as in the derivation of the bivariate bounds on α but applied
to the restricted T and T̂ formed by removing the appropriate vertices. The falsifiable constraints
obtained are θ01−θ02 ≥ |γ01− γ02| (equivalent to Equation (7)) and the causal bounds

ACE(B→C)≥max























2γ01− γ02+θ01−2
γ01−2γ02−θ02
γ01+θ01−2
−γ02−θ02

γ01− γ02+θ01−θ02−1























,

ACE(B→C)≤min























2γ01− γ02−θ01+1
γ01−2γ02+θ02+1

γ01−θ01+1
−γ02+θ02+1

γ01− γ02−θ01+θ02+1























.

By considering the analogous mapping for!v∗, as defined in §2, the falsifiable constraints of Balke
and Pearl (1997) and the causal bounds of Balke and Pearl (1993) for the IV model with mono-
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10 γ∗01

1
γ∗02

-1

1

ϕ∗

Figure 7: The extreme vertices which satisfy monotonicity are the 6 •’s, the 6 ◦’s are those which
do not. The convex hull of the transformed polytope for the IV model with the mono-
tonicity assumption is the region above the shaded surface and without the monotonicity
assumption is the entire cuboid.

tonicity are recovered. The bounds correspond to results in Robins (1989) and Manski (1990). Thus
the IV model with monotonicity, introduced in this section, is empirically and computationally in-
distinguishable from the IV model with ‘no defiers’ considered in Example 1 and Angrist et al.
(1996).

9. Data Analysis

The relative frequencies for two data sets are given in Table 1 and described below.

9.1 Lipid Research Clinics Coronary Data

Consider the Lipid Research Coronary Primary Prevention Trial (Lipid Research Clinic Program,
1984), which was analysed by Efron and Feldman (1991) and Balke and Pearl (1997). Subjects were
randomized into two groups, 172 men were given the placebo and 165 were given the treatment,
and the subjects’ cholesterol levels were measured. There was partial compliance with the treatment
assigned.

9.2 Vitamin A Supplementation

Another example of partial compliance is the study of Vitamin A supplementation in northern Suma-
tra, described by Sommer and Zeger (1991). The study consisted of children in 450 villages, 11588
children (221 villages) were assigned to the control group and 12094 (229 villages) to the treatment
group.
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Data Set a ζ̂00.a ζ̂01.a ζ̂10.a ζ̂11.a
Lipid Research 1 0.919 0 0.081 0
Clinic Program 2 0.315 0.139 0.073 0.473
Vitamin A 1 0.0064 0 0.9936 0

Supplementation 2 0.0028 0.0010 0.1972 0.7990

Table 1: Relative frequencies derived from the data sets in Lipid Research Clinic Program (1984)
and Sommer and Zeger (1991).

In these trials, the relative frequencies are the maximum likelihood estimates of the parameters
!v. Bounds on ACE(B→C) are computed under various assumptions from the data in Table 1 and
are given in Table 2. Sampling uncertainty is ignored here but can be properly considered using
techniques described in Ramsahai and Lauritzen (2011).

Study Assumptions Lower bound Upper bound
Lipid IV model 0.392 0.780

Research IV, no randomization -0.145 0.855
Clinic IV, partial exclusion restriction (ε= 0.5) 0.050 0.855
Program IV, monotonicity 0.392 0.780

IV model -0.1946 0.0054
Vitamin A IV, no randomization -0.587 0.413
Supplement. IV, partial exclusion restriction (ε= 0.5) -0.392 0.212

IV, monotonicity -0.1946 0.0054

Table 2: Causal bounds on ACE(B→ C) computed from Lipid Research Clinic Program (1984)
and Vitamin A Supplementation Study under various assumptions.

From Table 2, the imposition of the monotonicity assumption has no effect and is unnecessary
for these data sets. However the randomized treatment assignment is important since the bounds
computed without randomization are very wide and not much can be inferred about the causal effect.
Even though the bounds are much wider for the Lipid Research Clinic Program (1984) data, under
the partial exclusion restriction with ε = 0.5, it can still be deduced that there is a positive causal
effect.

10. Discussion

The methods given here are applied while relaxing various assumptions that are often used in the
deterministic counterfactual IV model. By removing the assumption that there are latent determin-
istic mechanisms, it is shown that the same bounds and constraints are obtained and that the models
are empirically equivalent §3. The results for models which relax the randomization and exclusion
restriction assumptions are valuable for sensitivity analyses. They are also useful for applications in
which some of the assumptions in the IV model are known to be false.

In §7, the constraints and bounds were computed for the IV model with a partial exclusion
restriction for ε= 0.5. It is not obvious how the methods described in this paper can be extended to
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compute bounds and constraints as a function of ε but that would be worthy of future investigation.
Such results would show how the bounds vary with ε and whether the data places any restrictions
on the possible values of ε.

The ideas discussed can be extended to other models involving conditional independence since
it is the factorization of the probability distribution which determines the algebraic structure of
the polytope representing the model. The model must satisfy the condition that the observable
distributions lie in the convex hull of the latent distribution. The vector of parameters P(X ) always
lies in the convex hull of P(X |U) but there is no guarantee that the factorisation of P(X |U) produces
any non-trivial constraints, where X and U are collections of observed and unobserved variables
respectively. However there may be non-trivial constraints on conditional probabilities derived from
P(X ).
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Appendix A. Notation

The symbols used throughout are listed below.

ζ∗cb.a = P(C = c,B= b |A= a,U),
η∗b = P(C = 1 |B= b,U),
δ∗a = P(B= 1 |A= a,U),
α= P(C = 1 ||B= 1)−P(C = 1 ||B= 0),
α∗ = P(C = 1 |B= 1,U)−P(C = 1 |B= 0,U),
γ∗ca = P(C = c |A= a,U),
θ∗ba = P(B= b |A= a,U).

The symbols with ∗ are functions of U and the corresponding symbols without ∗ are the marginals
overU .

Appendix B. Equivalence of Convex Hulls

Theorem 1 H = Ĥ .

Proof Following Dawid (2003), since V̂ ⊆ V and Ĥ is the minimal convex set containing V̂ then
Ĥ ⊆H .

Let m(!v∗) be an affine function, that is a linear function plus a constant, of !v∗, which returns
a scalar, for !v∗ ∈ V . A closed half space in [0,1]8 that contains !v is defined by an affine function
inequality m(!v∗) ≥ 0 or m{Ξ(!τ∗)} ≥ 0 for!τ∗ ∈ T . From Equations (3) and (2), m{Ξ(!τ∗)} is a
monotonic function of any single component of!τ∗ when the other three are fixed. Therefore the
minimum of m{Ξ(!τ∗)} over T is attained for some!τ∗ ∈ T̂ . Therefore

m{Ξ(!τ∗)}≥ 0 for all!τ∗ ∈ T̂ ⇒ m{Ξ(!τ∗)}≥ 0 for all!τ∗ ∈ T .
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This means that any half space containing V̂ also contains V . Since Ĥ is the intersection of all half
spaces containing V̂ then V ⊆ Ĥ . Since Ĥ is convex and H is the minimal convex set containing
V then H ⊆ Ĥ .

Appendix C. Causal Bounds for Binary Instrumental Variable Model

For the binary IV model of Figure 2 (right), bounds on α in terms of ζcb.a are

α≥max
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For the binary IV model of Figure 2 (right), bounds on α in terms of γca and θba are

α≥max
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and

α≤min
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Appendix D. Causal Bounds for Instrumental Variable Model Without Exclusion
Restriction

For the binary IV model without the exclusion restriction in §7, for ε = 0.5, the following bounds
are obtained for a= 1,2

2{E(C |A= a,FB = 1)
−E(C |A= a,FB = 0)}

≥max
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−3ζ01.a−2ζ10.a+ζ11.a−2ζ10.a′ −2ζ11.a′
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and

2{E(C |A= a,FB = 1)
−E(C |A= a,FB = 0)}
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where a′ = 2 if a= 1 and a′ = 1 if a= 2.
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Blaž Zupan BLAZ.ZUPAN@FRI.UNI-LJ.SI
Faculty of Computer and Information Science
University of Ljubljana
SI-1000 Ljubljana, Tržaška 25, Slovenia
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Abstract

NIMFA is an open-source Python library that provides a unified interface to nonnegative matrix
factorization algorithms. It includes implementations of state-of-the-art factorization methods, ini-
tialization approaches, and quality scoring. It supports both dense and sparse matrix representation.
NIMFA’s component-based implementation and hierarchical design should help the users to em-
ploy already implemented techniques or design and code new strategies for matrix factorization
tasks.

Keywords: nonnegative matrix factorization, initialization methods, quality measures, scripting,
Python

1. Introduction

As a method to learn parts-based representation, a nonnegative matrix factorization (NMF) has
become a popular approach for gaining new insights about complex latent relationships in high-
dimensional data through feature construction, selection and clustering. It has recently been suc-
cessfully applied to many diverse fields such as image and signal processing, bioinformatics, text
mining, speech processing, and analysis of multimedia data (Cichocki et al., 2009). NMF’s dis-
tinguishing feature is imposition of nonnegativity constraints, where only non-subtractive combi-
nations of vectors in original space are allowed (Lee and Seung, 1999, 2001). Specific knowledge
of the problem domain can be modelled by further imposing discriminative constraints, locality
preservation, network-regularization or constraint on sparsity.

We have developed a Python-based NMF library called NIMFA which implements a wide va-
riety of useful NMF operations and its components at a granular level. Our aim was both to pro-
vide access to already published variants of NMF and ease the innovative use of its components
in crafting new algorithms. The library intentionally focuses on nonnegative variant of matrix fac-
torization, and in terms of variety of different approaches compares favourably to several popular
matrix factorization packages that are broader in scope (PyMF, (http://code.google.com/p/
pymf), NMF package (http://nmf.r-forge.r-project.org), and bioNMF (http://bionmf.
cnb.csic.es); see Table 1).

c©2012 Marinka Žitnik and Blaž Zupan.
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NIMFA PyMF NMF bioNMF
Language Python Python R, C++ PHP, Matlab, C
License/Copyright GPL3 GPL3 GPL2+ license-free
Hierarchical factorization models + – (+) –
Sparse format support + (+) – –
Web based client – – – +
Quality measures + – + +
Fitted model and residuals tracking + – + –
Algorithm specific parameters + + + +
Advanced initialization methods + – + (+)
Extensive documentation + – + +
Support for multiple runs + – + +
Visualization (+) – + +
Methods / Shared with NIMFA 11/11 10/3 5/4 3/3

Table 1: Feature comparison of NIMFA and three popular matrix factorization libraries. Symbol +
denotes full support, (+) partial support and symbol − no support. Last row reports on a
number of different NMF algorithms implemented and a number of these that are shared
with NIMFA .

2. Supported Factorization Methods and Approaches

In a standard model of NMF (Lee and Seung, 2001), a data matrix V is factorized to V ≡W H
by solving a related optimization problem. Nonnegative matricesW and H are commonly referred
to as basis and mixture matrix, respectively. NIMFA implements an originally proposed optimiza-
tion (Lee and Seung, 2001; Brunet et al., 2004) with Euclidean or Kullback-Leibler cost function,
along with Frobenius, divergence or connectivity costs. It also supports alternative optimization
algorithms including Bayesian NMF Gibbs sampler (Schmidt et al., 2009), iterated conditional
modes NMF (Schmidt et al., 2009), probabilistic NMF (Laurberg et al., 2008) and alternating least
squares NMF using projected gradient method for subproblems (Lin, 2007). Sparse matrix factor-
ization is provided either through probabilistic (Dueck and Frey, 2004) or alternating nonnegativity-
constrained least squares factorization (Kim and Park, 2007). Fisher local factorization (Wang et
al., 2004; Li et al., 2001) may be used when dependency of a new feature is constrained to a given
small number of original features. Crisp relations can be revealed by binary NMF (Zhang et al.,
2007).

NIMFA also implements several non-standard models. These comprise nonsmooth factorization
V ≡W S(θ) H (Pascual-Montano et al., 2006) and multiple model factorization for simultaneous
treatment of several input matrices and their factorization with the same basis matrixW (Zhang et
al., 2011).

All mentioned optimizations are incremental and start with initial approximation of matricesW
and H. Appropriate choice of initialization can greatly speed-up the convergence and increase the
overall quality of the factorization results. NIMFA contains implementations of popular initializa-
tion methods such as nonnegative double singular value decomposition (Boutsidis and Gallopoulos,
2007), random C and random Vcol algorithms (Albright et al., 2006). User can also completely
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specify initial factorization by passing fixed factors or choose any inexpensive method of randomly
populated factors.

Factorization rank, choice of optimization method, and method-specific parameters jointly de-
fine the quality of approximation of input matrix V with the factorized system. NIMFA provides a
number of quality measures ranging from standard ones (e.g., Euclidean distance, Kullback-Leibler
divergence, and sparseness) to those more specific like feature scoring representing specificity to
basis vectors (Kim and Park, 2007).

3. Design and Implementation

NIMFA has hierarchical, modular, and scalable structure which allows uniform treatment of numer-
ous factorization models, their corresponding factorization algorithms and initialization methods.
The library enables easy integration into user’s code and arbitrary combinations of its factoriza-
tion algorithms and their components. NIMFA’s modules encompass implementations of factoriza-
tion (nimfa.methods.factorization) and initialization algorithms (nimfa.methods.seeding),
supporting models for factorization, fitted results, tracking and computation of quality and perfor-
mance measures (nimfa.models), and linear algebra helper routines for sparse and dense matrices
(nimfa.utils).

The library provides access to a set of standard data sets (nimfa.datasets), including those
from text mining, image processing, bioinformatics, functional genomics, and collaborative filter-
ing. Module nimfa.examples stores scripts that demonstrate factorization-based analysis of these
data sets and provide examples for various analytic approaches like factorization of sparse matrices,
multiple factorization runs, and others.

The guiding principle of constructing NIMFA was a component-oriented architecture. Every
block of the algorithms, like data preprocessing, initialization of matrix factors, overall optimization,
stopping criteria and quality scoring may be selected from the library or defined in a user-script, thus
seamlessly enabling experimentation and construction of new approaches. Optimization process
may be monitored, tracking residuals across iterations or tracking fitted factorization model.

NIMFA uses a popular Python matrix computation package NumPy for data management and
representation. A drawback of the library is that is holds matrix factors and fitted model in main
memory, raising an issue with very large data sets. To address this, NIMFA fully supports compu-
tations with sparse matrices as implemented in SciPy.

4. An Example Script

The sample script below demonstrates factorization of medulloblastoma gene expression data us-
ing alternating least squares NMF with projected gradient method for subproblems (Lin, 2007) and
Random Vcol (Albright et al., 2006) initialization algorithm. An object returned by nimfa.mf run
is fitted factorization model through which user can access matrix factors and estimate quality mea-
sures.
import nimfa
V = nimfa.examples.medulloblastoma.read(normalize = True)
fctr = nimfa.mf(V, seed=’random_vcol’, method=’lsnmf’, rank=40, max_iter=65)
fctr_res = nimfa.mf_run(fctr)

print ’Rss: %5.4f, Evar: %5.4f’ % (fctr_res.fit.rss(), fctr_res.fit.evar())
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print ’K-L divergence: %5.4f’ % fctr_res.distance(metric = ’kl’)
print ’Sparseness , W: %5.4f, H: %5.4f’ % fctr_res.fit.sparseness()

Running this script produces the following output, where slight differences in reported scores
across different runs can be attributed to randomness of the Random Vcol initialization method.
Rss: 0.1895, Evar: 0.9998
K-L divergence: 38.6581
Sparseness , W: 0.7279, H: 0.8739

5. Availability and Requirements

NIMFA is a Python-based package requiring SciPy version 0.9.0 or higher. It is available under the
GNU General Public License (GPL) version 3. The latest version with documentation and working
examples can be found at http://nimfa.biolab.si.
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Franz J. Király∗ FRANZ.J.KIRALY@TU-BERLIN.DE
Paul von Bünau PAUL.BUENAU@TU-BERLIN.DE
Frank C. Meinecke FRANK.MEINECKE@TU-BERLIN.DE
Duncan A. J. Blythe† DUNCAN.BLYTHE@BCCN-BERLIN.DE
Klaus-Robert Müller‡ KLAUS-ROBERT.MUELLER@TU-BERLIN.DE
Machine Learning Group, Computer Science
Berlin Institute of Technology (TU Berlin)
Franklinstr. 28/29
10587 Berlin, Germany

Editor: Kenji Fukumizu

Abstract
We propose a novel algebraic algorithmic framework for dealing with probability distributions rep-
resented by their cumulants such as the mean and covariance matrix. As an example, we consider
the unsupervised learning problem of finding the subspace on which several probability distribu-
tions agree. Instead of minimizing an objective function involving the estimated cumulants, we
show that by treating the cumulants as elements of the polynomial ring we can directly solve the
problem, at a lower computational cost and with higher accuracy. Moreover, the algebraic view-
point on probability distributions allows us to invoke the theory of algebraic geometry, which we
demonstrate in a compact proof for an identifiability criterion.
Keywords: computational algebraic geometry, approximate algebra, unsupervised Learning

1. Introduction

Comparing high dimensional probability distributions is a general problem in machine learning,
which occurs in two-sample testing (e.g., Hotelling, 1932; Gretton et al., 2007), projection pursuit
(e.g., Friedman and Tukey, 1974), dimensionality reduction and feature selection (e.g., Torkkola,
2003). Under mild assumptions, probability densities are uniquely determined by their cumulants
which are naturally interpreted as coefficients of homogeneous multivariate polynomials. Repre-
senting probability densities in terms of cumulants is a standard technique in learning algorithms.
For example, in Fisher Discriminant Analysis (Fisher, 1936), the class conditional distributions are
approximated by their first two cumulants.

In this paper, we take this viewpoint further and work explicitly with polynomials. That is, we
treat estimated cumulants not as constants in an objective function but as objects that we manipulate
algebraically in order to find the optimal solution. As an example, we consider the problem of
finding the linear subspace on which several probability distributions are identical: given D-variate
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random variables X1, . . . ,Xm, we want to find the linear map P ∈ Rd×D such that the projected
random variables have the same probability distribution,

PX1 ∼ · · ·∼ PXm.

This amounts to finding the directions on which all projected cumulants agree. For the first cu-
mulant, the mean, the projection is readily available as the solution of a set of linear equations.
For higher order cumulants, we need to solve polynomial equations of higher degree. We present
the first algorithm that solves this problem explicitly for arbitrary degree, and show how algebraic
geometry can be applied to prove properties about it.
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Figure 1: Illustration of the optimization approach. The left panel shows the contour plots of three
sample covariance matrices. The black line is the true one-dimensional subspace on
which the projected variances are exactly equal, the magenta line corresponds to a local
minimum of the objective function. The right panel shows the value of the objective
function over all possible one-dimensional subspaces, parameterized by the angle α to the
horizontal axis; the angles corresponding to the global minimum and the local minimum
are indicated by black and magenta lines respectively.

To clarify the gist of our approach, let us consider a stylized example. In order to solve a learning
problem, the conventional approach in machine learning is to formulate an objective function, for
example, the log likelihood of the data or the empirical risk. Instead of minimizing an objective
function that involves the polynomials, we consider the polynomials as objects in their own right
and then solve the problem by algebraic manipulations. The advantage of the algebraic approach
is that it captures the inherent structure of the problem, which is in general difficult to model in an
optimization approach. In other words, the algebraic approach actually solves the problem, whereas
optimization searches the space of possible solutions guided by an objective function that is minimal
at the desired solution but can give poor directions outside of the neighborhood around its global
minimum. Let us consider the problem where we would like to find the direction v ∈ R2 on which
several sample covariance matrices Σ1, . . . ,Σm ⊂ R2×2 are equal. The usual ansatz would be to
formulate an optimization problem such as

v∗ = argmin
‖v‖=1

∑
1≤i, j≤m

(

v)Σiv− v)Σ jv
)2

. (1)
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This objective function measures the deviation from equality for all pairs of covariance matrices; it
is zero if and only if all projected covariances are equal and positive otherwise. Figure 1 shows an
example with three covariance matrices (left panel) and the value of the objective function for all
possible projections v=

[

cos(α) sin(α)
]). The solution to this non-convex optimization problem

can be found using a gradient-based search procedure, which may terminate in one of the local
minima (e.g., the magenta line in Figure 1) depending on the initialization.

However, the natural representation of this problem is not in terms of an objective function but
rather a system of equations to be solved for v, namely

v)Σ1v= · · ·= v)Σmv. (2)

In fact, by going from an algebraic description of the set of solutions to a formulation as an opti-
mization problem in Equation 1, we lose important structure. In the case where there is an exact
solution, it can be attained explicitly with algebraic manipulations. However, when we estimate a
covariance matrix from finite or noisy samples, there exists no exact solution in general. Therefore
we present an algorithm which combines the statistical treatment of uncertainty in the coefficients
of polynomials with the exactness of algebraic computations to obtain a consistent estimator for v
that is computationally efficient.

Note that this approach is not limited to this particular learning task. In fact, it is applicable
whenever a set of solutions can be described in terms of a set of polynomial equations, which is a
rather general setting. For example, we could use a similar strategy to find a subspace on which the
projected probability distribution has another property that can be described in terms of cumulants,
for example, independence between variables. Moreover, an algebraic approach may also be useful
in solving certain optimization problems, as the set of extrema of a polynomial objective function
can be described by the vanishing set of its gradient. The algebraic viewpoint also allows a novel
interpretation of algorithms operating in the feature space associated with the polynomial kernel.
We would therefore argue that methods from computational algebra and algebraic geometry are
useful for the wider machine learning community.

Figure 2: Representation of the problem: the left panel shows sample covariance matrices Σ1 and
Σ2 with the desired projection v. In the middle panel, this projection is defined as the
solution to a quadratic polynomial. This polynomial is embedded in the vector space of
coefficients spanned by the monomials X2,Y 2 and XY shown in the right panel.
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Let us first of all explain the representation over which we compute. We will proceed in the
three steps illustrated in Figure 2, from the geometric interpretation of sample covariance matrices
in data space (left panel), to the quadratic equation defining the projection v (middle panel), to
the representation of the quadratic equation as a coefficient vector (right panel). To start with, we
consider the Equation 2 as a set of homogeneous quadratic equations defined by

v)(Σi−Σ j)v= 0 ∀1≤ i, j ≤ m, (3)

where we interpret the components of v as variables, v=
[

X Y
]). The solution to these equations

is the direction inR2 on which the projected variance is equal over all covariance matrices. Each of
these equations corresponds to a quadratic polynomial in the variables X and Y ,

qi j = v)(Σi−Σ j)v

= v)
[

a11 a12
a21 a22

]

v

= a11X2+(a12+a21)XY +a22Y 2, (4)

which we embed into the vector space of coefficients. The coordinate axis are the monomials
{X2,XY,Y 2}; that is, the three independent entries in the Gram matrix (Σi − Σ j). That is, the
polynomial in Equation 4 becomes the coefficient vector

!qi j =
[

a11 a12+a21 a22
])

.

The motivation for the vector space interpretation is that every linear combination of the Equations 3
is also a characterization of the set of solutions: this will allow us to find a particular set of equations
by linear combination, from which we can directly obtain the solution. Note, however, that the
vector space representation does not give us all equations which can be used to describe the solution:
we can also multiply with arbitrary polynomials. However, for the algorithm that we present here,
linear combinations of polynomials are sufficient.

Figure 3 illustrates how the algebraic algorithm works in the vector space of coefficients. The
polynomials Q = {qi j}ni, j=1 span a space of constraints which defines the set of solutions. The next
step is to find a polynomial of a certain form that immediately reveals the solution. One of these sets
is the linear subspace spanned by the monomials {XY,Y 2}: any polynomial in this span is divisible
by Y . Our goal is now to find a polynomial which is contained in both this subspace and the span of
Q . Under mild assumptions, one can always find a polynomial of this form, and it corresponds to
an equation

Y (αX+βY ) = 0. (5)

Since this polynomial is in the span of Q , our solution v has to be a zero of this particular poly-
nomial: v2(αv1+βv2) = 0. Moreover, we can assume1 that v2 ,= 0, so that we can divide out the
variable Y to get the linear factor (αX+βY ),

0= αX+βY =
[

α β
]

v.

1. This is a consequence of the generative model for the observed polynomials which is introduced in Section 2.1. In
essence, we use the fact that our polynomials have no special property (apart from the existence of a solution) with
probability one.
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Figure 3: Illustration of the algebraic algorithm. The left panel shows the vector space of coef-
ficients where the polynomials corresponding to the Equations 3 are considered as ele-
ments of the vector space shown as red points. The middle panel shows the approximate
2-dimensional subspace (blue surface) onto which we project the polynomials. The right
panel shows the one-dimensional intersection (orange line) of the approximate subspace
with the plane spanned by spanned by {XY,Y 2}. This subspace is spanned by the poly-
nomial Y (αX+βY ), so we can divide by the variable Y .

Hence v=
[

−β α
]) is the solution up to arbitrary scaling, which corresponds to the one-dimensional

subspace in Figure 3 (orange line, right panel). A more detailed treatment of this example can also
be found in Appendix A.

In the case where there exists a direction v on which the projected covariances are exactly equal,
the linear subspace spanned by the set of polynomials Q has dimension two, which corresponds to
the degrees of freedom of possible covariance matrices that have fixed projection on one direction.
However, since in practice covariance matrices are estimated from finite and noisy samples, the
polynomials Q usually span the whole space, which means that there exists only a trivial solution
v = 0. This is the case for the polynomials pictured in the left panel of Figure 3. Thus, in order
to obtain an approximate solution, we first determine the approximate two-dimensional span of Q
using a standard least squares method as illustrated in the middle panel. We can then find the in-
tersection of the approximate two-dimensional span of Q with the plane spanned by the monomials
{XY,Y 2}. As we have seen in Equation 5, the polynomials in this span provide us with a unique
solution for v up to scaling, corresponding to the fact that the intersection has dimension one (see
the right panel of Figure 3). Alternatively, we could have found the one-dimensional intersection
with the span of {XY,X2} and divided out the variable X . In fact, in the final algorithm we will
find all such intersections and combine the solutions in order to increase the accuracy. Note that we
have found this solution by solving a simple least-squares problem (second step, middle panel of
Figure 3). In contrast, the optimization approach (Figure 1) can require a large number of iterations
and may converge to a local minimum. A more detailed example of the algebraic algorithm can be
found in Appendix A.

The algebraic framework does not only allow us to construct efficient algorithms for working
with probability distributions, it also offers powerful tools to prove properties of algorithms that
operate with cumulants. For example, we can answer the following central question: how many
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Figure 4: The left panel shows two sample covariance matrices in the plane, along with a direction
on which they are equal. In the right panel, a third (green) covariance matrix does not
have the same projected variance on the black direction.

distinct data sets do we need such that the subspace with identical probability distributions be-
comes uniquely identifiable? This depends on the number of dimensions and the cumulants that
we consider. Figure 4 illustrates the case where we are given only the second order moment in two
dimensions. Unless Σ1−Σ2 is indefinite, there always exists a direction on which two covariance
matrices in two dimensions are equal (left panel of Figure 4)—irrespective of whether the probabil-
ity distributions are actually equal. We therefore need at least three covariance matrices (see right
panel), or to consider other cumulants as well. We derive a tight criterion on the necessary number
of data sets depending on the dimension and the cumulants under consideration. The proof hinges
on viewing the cumulants as polynomials in the algebraic geometry framework: the polynomials
that define the sought-after projection (e.g., Equations 3) generate an ideal in the polynomial ring
which corresponds to an algebraic set that contains all possible solutions. We can then show how
many independent polynomials are necessary so that the dimension of the linear part of the alge-
braic set has smaller dimension in the generic case. We conjecture that these proof techniques are
also applicable to other scenarios where we aim to identify a property of a probability distribution
from its cumulants using algebraic methods.

Our work is not the first that applies geometric or algebraic methods to Machine Learning or
statistics: for example, methods from group theory have already found their application in machine
learning, for example, Kondor (2007) and Kondor and Borgwardt (2008); there are also algebraic
methods estimating structured manifold models for data points as in Vidal et al. (2005) which are
strongly related to polynomial kernel PCA—a method which can itself be interpreted as a way of
finding an approximate vanishing set.

The field of Information Geometry interprets parameter spaces of probability distributions as
differentiable manifolds and studies them from an information-theoretical point of view (see for
example the standard book by Amari and Nagaoka, 2000), with recent interpretations and improve-
ments stemming from the field of algebraic geometry by Watanabe (2009). There is also the nascent
field of algebraic statistics which studies the parameter spaces of mainly discrete random variables
in terms of commutative algebra and algebraic geometry, see the recent overviews by Sturmfels
(2002, Chapter 8) and Drton et al. (2010) or the book by Gibilisco et al. (2010) which also focuses
on the interplay between information geometry and algebraic statistics. These approaches have in
common that the algebraic and geometric concepts arise naturally when considering distributions in
parameter space.
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Given samples from a probability distribution, we may also consider algebraic structures in the
data space. Since the data are uncertain, the algebraic objects will also come with an inherent un-
certainty, unlike the exact manifolds in the case when we have an a-priori family of probability
distributions. Coping with uncertainties is one of the main interests of the emerging fields of ap-
proximative and numerical commutative algebra, see the book by Stetter (2004) for an overview
on numerical methods in algebra, or the treatise by Kreuzer et al. (2009) for recent developments
in approximate techniques on noisy data. There exists a wide range of methods; however, to our
knowledge, the link between approximate algebra and the representation of probability distributions
in terms of their cumulants has not been studied yet.

The remainder of this paper is organized as follows: in the next Section 2, we introduce the
algebraic view of probability distribution, rephrase our problem in terms of this framework and
investigate its identifiability. The algorithm for the exact case is presented in Section 3, followed by
the approximate version in Section 4. The results of our numerical simulations and a comparison
against the Stationary Subspace Analysis (SSA) algorithm given in von Bünau et al. (2009), can be
found in Section 5. In the last Section 6, we discuss our findings and point to future directions. The
appendix contains an example and proof details.

2. The Algebraic View on Probability Distributions

In this section we introduce the algebraic framework for dealing with probability distributions.
This requires basic concepts from complex algebraic geometry. A comprehensive introduction to
algebraic geometry with a view to computation can be found in the book by Cox et al. (2007). In
particular, we recommend to go through the Chapters 1 and 4.

In this section, we demonstrate the algebraic viewpoint of probability distributions on the appli-
cation that we study in this paper: finding the linear subspace on which probability distributions are
equal.

Problem 1 Let X1, . . . ,Xm be a set of D-variate random variables, having smooth densities. Find
all linear maps P ∈Rd×D such that the transformed random variables have the same distribution,

PX1 ∼ · · ·∼ PXm.

In the first part of this section, we show how this problem can be formulated algebraically. We will
first of all review the relationship between the probability density function and its cumulants, before
we translate the cumulants into algebraic objects. Then we introduce the theoretical underpinnings
for the statistical treatment of polynomials arising from estimated cumulants and prove conditions
on identifiability for the problem addressed in this paper.

2.1 From Probability Distributions to Polynomials

The probability distribution of every smooth real random variable X can be fully characterized
in terms of its cumulants, which are the tensor coefficients of the cumulant generating function.
This representation has the advantage that each cumulant provides a compact description of certain
aspects of the probability density function.

Definition 2 Let X be a D-variate random variable. Then by κn(X) ∈ RD(×n) we denote the n-th
cumulant, which is a real tensor of degree n.
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Let us introduce a useful shorthand notation for linearly transforming tensors.

Definition 3 Let A ∈ Cd×D be a matrix. For a tensor T ∈ RD(×n) (i.e., a real tensor T of degree n
of dimension Dn = D ·D · . . . ·D) we will denote by A◦T the application of A to T along all tensor
dimensions, that is,

(A◦T )i1...in =
D

∑
j1=1

· · ·
D

∑
jn=1

Ai1 j1 · . . . ·Ain jnTj1... jn .

The cumulants of a linearly transformed random variable are the multilinearly transformed cumu-
lants, which is a convenient property when one is looking for a certain linear subspace.

Proposition 4 Let X be a real D-dimensional random variable and let A∈Rd×D be a matrix. Then
the cumulants of the transformed random variable AX are the transformed cumulants,

κn(AX) = A◦κn(X).

We now want to formulate our problem in terms of cumulants. First of all, note that PXi ∼ PXj
if and only if vXi ∼ vXj for all row vectors v ∈ spanP).

Problem 5 Find all d-dimensional linear subspaces in the set of vectors

S= {v ∈R
D
∣

∣

∣
v)X1 ∼ · · ·∼ v)Xm}

= {v ∈R
D
∣

∣

∣
v) ◦κn(Xi) = v) ◦κn(Xj), n ∈N,1≤ i, j ≤ m} .

Note that we are looking for linear subspaces in S; however, S itself is not a vector space in general.
Apart from the fact that S is homogeneous, that is, λS = S for all λ ∈ R, there is no additional
structure that we make use of.

For the sake of clarity, in the remainder of this paper we restrict ourselves to the first two cumu-
lants. Note, however, that one of the strengths of the algebraic framework is that the generalization
to arbitrary degree is straightforward; throughout this paper, we indicate the necessary changes and
differences. Thus, from now on, we denote the first two cumulants by µi = κ1(Xi) and Σi = κ2(Xi)
respectively for all 1 ≤ i ≤ m. Moreover, without loss of generality, we can shift the mean vectors
and choose a basis such that the random variable Xm has zero mean and unit covariance. Thus we
arrive at the following formulation.

Problem 6 Find all d-dimensional linear subspaces in

S= {v ∈R
D | v)(Σi− I)v= 0, v)µi = 0, 1≤ i≤ (m−1)}.

Note that S is the set of solutions to m−1 quadratic and m−1 linear equations in D variables. Now
it is only a formal step to arrive in the framework of algebraic geometry: let us think of the left hand
side of each of the quadratic and linear equations as polynomials q1, . . . ,qm−1 and f1, . . . , fm−1 in
the variables T1, . . . ,TD respectively,

qi =
[

T1 · · ·TD
]

◦ (Σi− I) and fi =
[

T1 · · ·TD
]

◦µi,

which are elements of the polynomial ring over the complex numbers in D variables, C[T1, . . . ,TD].
Note that in the introduction we have used X and Y to denote the variables in the polynomials, we
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will now switch to T1, . . . ,TD in order to avoid confusion with random variables. Thus S can be
rewritten in terms of polynomials,

S=
{

v ∈R
D | qi(v) = fi(v) = 0 ∀1≤ i≤ m−1} ,

which means that S is an algebraic set. In the following, we will consider the corresponding complex
vanishing set

S= V(q1, . . . ,qm−1, f1, . . . , fm−1)
:=

{

v ∈ C
D | qi(v) = fi(v) = 0 ∀1≤ i≤ m−1}⊆ C

D

and keep in mind that eventually we will be interested in the real part of S. Working over the
complex numbers simplifies the theory and creates no algorithmic difficulties: when we start with
real cumulant polynomials, the solution will always be real. Finally, we can translate our problem
into the language of algebraic geometry.

Problem 7 Find all d-dimensional linear subspaces in the algebraic set

S= V(q1, . . . ,qm−1, f1, . . . , fm−1).

So far, this problem formulation does not include the assumption that a solution exists. In order
to prove properties about the problem and algorithms for solving it we need to assume that there
exist a d-dimensional linear subspace S′ ⊂ S. That is, we need to formulate a generative model
for our observed polynomials q1, . . . ,qm−1, f1, . . . , fm−1. To that end, we introduce the concept of a
generic polynomial, for a technical definition see Appendix B. Intuitively, a generic polynomial is
a continuous, polynomial valued random variable which almost surely has no algebraic properties
except for those that are logically implied by the conditions on it. An algebraic property is an
event in the probability space of polynomials which is defined by the common vanishing of a set of
polynomial equations in the coefficients. For example, the property that a quadratic polynomial is
a square of linear polynomial is an algebraic property, since it is described by the vanishing of the
discriminants. In the context of Problem 7, we will consider the observed polynomials as generic
conditioned on the algebraic property that they vanish on a fixed d-dimensional linear subspace S′.

One way to obtain generic polynomials is to replace coefficients with, for example, Gaussian
random variables. For example, a generic homogeneous quadric q ∈ C[T1,T2] is given by

q= Z11T 21 +Z12T1T2+Z22T 22 ,

where the coefficients Zi j ∼ N (µi j,σi j) are independent Gaussian random variables with arbitrary
parameters. Apart from being homogeneous, there is no condition on q. If we want to add the
condition that q vanishes on the linear space defined by T1 = 0, we would instead consider

q= Z11T 21 +Z12T1T2.

A more detailed treatment of the concept of genericity, how it is linked to probabilistic sampling,
and a comparison with the classical definitions of genericity can be found in Appendix B.1.

We are now ready to reformulate the genericity conditions on the random variables X1, . . . ,Xm
in the above framework. Namely, we have assumed that the Xi are general under the condition that
they agree in the first two cumulants when projected onto some linear subspace S′. Rephrased for
the cumulants, Problems 1 and 7 become well-posed and can be formulated as follows.
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Problem 8 Let S′ be an unknown d-dimensional linear subspace in CD. Assume that f1, . . . , fm−1
are generic homogenous linear polynomials, and q1, . . . ,qm−1 are generic homogenous quadratic
polynomials, all vanishing on S′. Find all d-dimensional linear subspaces in the algebraic set

S= V(q1, . . . ,qm−1, f1, . . . , fm−1).

As we have defined “generic” as an implicit “almost sure” statement, we are in fact looking for
an algorithm which gives the correct answer with probability one under our model assumptions.
Intuitively, S′ should be also the only d-dimensional linear subspace in S, which is not immediately
guaranteed from the problem description. Indeed this is true if m is large enough, which is the topic
of the next section.

2.2 Identifiability

In the last subsection, we have seen how to reformulate our initial Problem 1 about comparison
of cumulants as the completely algebraic Problem 8. We can also reformulate identifiability of
the true solution in the original problem in an algebraic way: identifiability in Problem 1 means
that the projection P can be uniquely computed from the probability distributions. Following the
same reasoning we used to arrive at the algebraic formulation in Problem 8, one concludes that
identifiability is equivalent to the fact that there exists a unique linear subspace in S.

Since identifiability is now a completely algebraic statement, it can be treated also in algebraic
terms. In Appendix B, we give an algebraic geometric criterion for identifiability of the stationary
subspace; we will sketch its derivation in the following.

The main ingredient is the fact that, intuitively spoken, every generic polynomials carries one
degree of freedom in terms of dimension, as for example the following result on generic vector
spaces shows:

Proposition 9 Let P be an algebraic property such that the polynomials with property P form a
vector space V . Let f1, . . . , fn ∈ C[T1, . . .TD] be generic polynomials satisfying P . Then

rankspan( f1, . . . , fn) =min(n,dimV ).

Proof This is Proposition 42 in the appendix.

On the other hand, if the polynomials act as constraints, one can prove that each one reduces the
degrees of freedom in the solution by one:

Proposition 10 Let Z be a sub-vector space of CD. Let f1, . . . , fn be generic homogenous polyno-
mials in D variables (of fixed but arbitrary degree each), vanishing on Z. Then for their common
vanishing set V( f1, . . . , fn) = {x ∈ CD | fi(x) = 0 ∀i}, one can write

V( f1, . . . , fn) = Z∪U,

where U is an algebraic set with

dimU ≤max(D−n, 0).
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Proof This follows from Corollary 61 in the appendix.

Proposition 10 can now be directly applied to Problem 8. It implies that S= S′ if 2(m−1)≥D+1,
and that S′ is the maximal dimensional component of S if 2(m−1)≥ D−d+1. That is, if we start
with m random variables, then S′ can be identified uniquely if

2(m−1)≥ D−d+1

with classical algorithms from computational algebraic geometry in the noiseless case.

Theorem 11 Let X1, . . . ,Xm be random variables. Assume there exists a projection P ∈Rd×D such
that the first two cumulants of all PX1, . . . ,PXm agree and the cumulants are generic under those
conditions. Then the projection P is identifiable from the first two cumulants alone if

m≥
D−d+1

2
+1.

Proof This is a direct consequence of Proposition 65 in the appendix, applied to the reformulation
given in Problem 8. It is obtained by applying Proposition 10 to the generic forms vanishing on the
fixed linear subspace S′, and using that S′ can be identified in S if it is the biggest dimensional part.

We have seen that identifiability means that there is an algorithm to compute P uniquely when the
cumulants are known, resp. to compute a unique S from the polynomials fi,qi. It is not difficult to
see that an algorithm doing this can be made into a consistent estimator when the cumulants are
sample estimates. We will give an algorithm of this type in the following parts of the paper.

3. An Algorithm for the Exact Case

In this section we present an algorithm for solving Problem 8, under the assumption that the cumu-
lants are known exactly. We will first fix notation and introduce important algebraic concepts. In
the previous section, we derived in Problem 8 an algebraic formulation of our task: given generic
quadratic polynomials q1, . . . ,qm−1 and linear polynomials f1, . . . , fm−1, vanishing on a unknown
linear subspace S′ of CD, find S′ as the unique d-dimensional linear subspace in the algebraic set
V(q1, . . . ,qm−1, f1, . . . , fm−1). First of all, note that the linear equations fi can easily be removed
from the problem: instead of looking at CD, we can consider the linear subspace defined by the
fi, and examine the algebraic set V(q′1, . . . ,q′m−1), where q′i are polynomials in D−m+1 variables
which we obtain by substituting m−1 variables. So the problem we need to examine is in fact
the modified problem where we have only quadratic polynomials. Secondly, we will assume that
m−1≥ D. Then, from Proposition 10, we know that S= S′ and Problem 8 becomes the following.

Problem 12 Let S be an unknown d-dimensional subspace of CD. Given m−1 ≥ D generic ho-
mogenous quadratic polynomials q1, . . . ,qm−1 vanishing on S, find the d-dimensional linear sub-
space

S= V(q1, . . . ,qm−1).

Of course, we have to say what we mean by finding the solution. By assumption, the quadratic
polynomials already fully describe the linear space S. However, since S is a linear space, we want
a basis for S, consisting of d linearly independent vectors in CD. Or, equivalently, we want to find
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KIRÁLY, VON BÜNAU, MEINECKE, BLYTHE AND MÜLLER

linearly independent linear forms "1, . . . ,"D−d such that "i(x) = 0 for all x ∈ S. The latter is the
correct description of the solution in algebraic terms. We now show how to reformulate this in the
right language, following the algebra-geometry duality. The algebraic set S corresponds to an ideal
in the polynomial ringC[T1, . . . ,TD].

Notation 13 We denote the polynomial ring C[T1, . . . ,TD] by R. The ideal of S is an ideal in R, and
we denote it by by s= I(S). Since S is a linear space, there exists a linear generating set "1, . . . ,"D−d
of s which we will fix in the following.

We can now relate the Problem 12 to a classical problem in algebraic geometry.

Problem 14 Let m> D and q1, . . . ,qm−1 be generic homogenous quadratic polynomials vanishing
on a linear d-dimensional subspace S⊆ CD. Then find a linear basis for the radical ideal

√

〈q1, . . . ,qm−1〉= I(V(q1, . . . ,qm−1)) = I(S).

The first equality follows from Hilbert’s Nullstellensatz. This also shows that solving the problem
is in fact a question of computing a radical of an ideal. Computing the radical of an ideal is a
classical problem in computational algebraic geometry, which is known to be difficult (for a more
detailed discussion see Section 3.3). However, if we assume m−1≥D(D+1)/2−d(d+1)/2, we
can dramatically reduce the computational cost and it is straightforward to derive an approximate
solution. In this case, the qi generate the vector space of homogenous quadratic polynomials which
vanish on S, which we will denote by s2. That this is indeed the case, follows from Proposition 9,
and we have dims2 = D(D+1)/2−d(d+1)/2, as we will calculate in Remark 23.

Before we continue with solving the problem, we will need to introduce several concepts and
abbreviating notations. First we introduce notation to denote sub-vector spaces which contain poly-
nomials of certain degrees.

Notation 15 Let I be a sub-C-vector space of R, that is, I = R, or I is some ideal of R, for example,
I = s. We denote the sub-C-vector space of homogenous polynomials of degree k in I by Ik (in
commutative algebra, this is standard notation for homogenously generated R-modules).

For example, the homogenous polynomials of degree 2 vanishing on S form exactly the vector space
s2. Moreover, for any I , the equation Ik = I ∩Rk holds. The vector spaces R2 and s2 will be the
central objects in the following chapters. As we have seen, their dimension is given in terms of
triangular numbers, for which we introduce some notation:

Notation 16 We will denote the n-th triangular number by ∆(n) = n(n+1)
2 .

The last notational ingredient will capture the structure which is imposed on Rk by the orthogo-
nal decomposition CD = S⊕S⊥.

Notation 17 Let S⊥ be the orthogonal complement of S. Denote its ideal by n= I
(

S⊥
)

.

Remark 18 As n and s are homogenously generated in degree one, we have the calculation rules

sk+1 = sk ·R1 and nk+1 = nk ·R1,
(s1)

k = (sk)k and (n1)
k = (nk)k
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where · is the symmetrized tensor or outer product of vector spaces (these rules are canonically in-
duced by the so-called graded structure of R-modules). In terms of ideals, the above decomposition
translates to

R1 = s1⊕n1.

Using the above rules and the binomial formula for ideals, this induces an orthogonal decomposi-
tion

R2 =R1 ·R1 = (s1⊕n1) · (s1⊕n1) = (s1)
2⊕ (s1 ·n1)⊕ (n1)

2

= s1 · (s1⊕n1)⊕ (n2)2 = s1 ·R1⊕ (n2)2 = s2⊕ (n2)2

(and similar decompositions for the higher degree polynomials Rk).

The tensor products above can be directly translated to products of ideals, as the vector spaces
above are each generated in a single degree (e.g., sk,nk, are generated homogenously in degree k).
To express this, we will define an ideal which corresponds to R1:

Notation 19 We denote the ideal of R generated by all monomials of degree 1 by

m= 〈T1, . . . ,TD〉.

Note that idealm is generated by all elements in R1.Moreover, we havemk = Rk for all k≥ 1. Using
m, one can directly translate products of vector spaces involving some Rk into products of ideals:

Remark 20 The equality of vector spaces

sk = s1 · (R1)k−1

translates to the equality of ideals
s∩mk = s ·mk−1,

since both the left and right sides are homogenously generated in degree k.

3.1 The Algorithm

S⊂ CD d-dimensional projection space
R= C[T1, . . .TD] Polynomial ring over C in D variables
Rk C-vector space of homogenous k-forms in T1, . . . ,TD
∆(n) = n(n+1)

2 n-th triangular number
s= 〈"1, . . . ,"D−d〉= I(S) The ideal of S, generated by linear polynomials "i
sk = Rk∩ s C-vector space of homogenous k-forms vanishing on S
n= I(S⊥) The ideal of S⊥
nk = Rk∩n C-vector space of homogenous k-forms vanishing on S⊥
m= 〈T1, . . . ,TD〉 The ideal of the origin in CD

Table 1: Notation and important definitions
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In this section we present an algorithm for solving Problem 14, the computation of the radical
of the ideal 〈q1, . . . ,qm−1〉 under the assumption that

m≥ ∆(D)−∆(d)+1.

Under those conditions, as we will prove in Remark 23 (iii), we have that

〈q1, . . . ,qm−1〉= s2.

Using the notations previously defined, one can therefore infer that solving Problem 14 is equiva-
lent to computing the radical s =

√
s ·m in the sense of obtaining a linear generating set for s, or

equivalent to finding a basis for s1 when s2 is given in an arbitrary basis. s2 contains the complete
information given by the covariance matrices and s1 gives an explicit linear description of the space
of projections under which the random variables X1, . . . ,Xm agree.

Algorithm 1 The input consists of the quadratic forms q1, . . . ,qm−1 ∈ R, generating s2, and the
dimension d; the output is the linear generating set "1, . . . ,"D−d for s1.
1: Let π← (12 · · · D) be a transitive permutation of the variable indices {1, . . . ,D}
2: Let Q←

[

q1 · · · qm−1
]) be the ((m−1)×∆(D))-matrix of coefficient vectors, where every

row corresponds to a polynomial and every column to a monomial TiTj.
3: for k = 1, . . . ,D−d do
4: Order the columns of Q according to the lexicographical ordering of monomials TiTj with

variable indices permuted by πk, that is, the ordering of the columns is given by the relation
9 as

T 2πk(1) 9 Tπk(1)Tπk(2) 9 Tπk(1)Tπk(3) 9 · · ·9 Tπk(1)Tπk(D) 9 T 2πk(2)
9 Tπk(2)Tπk(3) 9 · · ·9 T 2πk(D−1) 9 Tπk(D−1)Tπk(D) 9 T

2
πk(D)

5: Transform Q into upper triangular form Q′ using Gaussian elimination
6: The last non-zero row of Q′ is a polynomial Tπk(D)", where " is a linear form in s, and we

set "k← "
7: end for

Algorithm 1 shows the procedure in pseudo-code; a summary of the notation defined in the
previous section can be found in Table 1. The algorithm has polynomial complexity in the dimension
d of the linear subspace S.

Remark 21 Algorithm 1 has average and worst case complexity

O
(

(∆(D)−∆(d))2∆(D)
)

,

In particular, if d is not considered as parameter of the algorithm, the average and the worst case
complexity is O(D6). On the other hand, if ∆(D)−∆(d) is considered a fixed parameter, then Algo-
rithm 1 has average and worst case complexity O(D2).

Proof This follows from the complexities of the elementary operations: upper triangularization of
a generic matrix of rank r with m columns matrix needs O(r2m) operations. We first perform trian-
gularization of a rank ∆(D)−∆(d) matrix with ∆(D) columns. The permutations can be obtained
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efficiently by bringing Q in row-echelon form and then performing row operations. Operations for
extracting the linear forms and comparisons with respect to the monomial ordering are negligible.
Thus the overall operation complexity to calculate s1 is O((∆(D)−∆(d))2∆(D)).

Note that the difference between worst- and average case lies at most in the coefficients, since
the inputs are generic and the complexity only depends on the parameter D and not on the qi. Thus,
with probability 1, exactly the worst-case-complexity is attained.

There are two crucial facts which need to be verified for correctness of this algorithm. Namely,
there are implicit claims made in Line 6 of Algorithm 1: first, it is claimed that the last non-zero
row of Q′ corresponds to a polynomial which factors into certain linear forms. Second, it is claimed
that the " obtained in step 6 generate s resp. s1. The proofs of these non-trivial claims can be found
in Proposition 22 in the next subsection.

Dealing with additional linear forms f1, . . . , fm−1, is possible by way of a slight modification of
the algorithm. Because the fi are linear forms, they are generators of s.We may assume that the fi
are linearly independent. By performing Gaussian elimination before the execution of Algorithm 1,
we may reduce the number of variables by m−1, thus having to deal with new quadratic forms
in D−m+ 1 instead of D variables. Also, the dimension of the space of projections is reduced
to min(d−m+ 1,−1). Setting D′ = D−m+ 1 and d′ = min(d−m+ 1,−1) and considering the
quadratic forms qi with Gaussian eliminated variables, Algorithm 1 can be applied to the quadratic
forms to find the remaining generators for s1. In particular, if m− 1 ≥ d, then there is no need
for considering the quadratic forms, since d linearly independent linear forms already suffice to
determine the solution.

We can also incorporate forms of higher degree corresponding to higher order cumulants. For
this, we start with sk, where k is the degree of the homogenous polynomials we get from the cumu-
lant tensors of higher degree. Supposing we start with enough cumulants, we may assume that we
have a basis of sk. Performing Gaussian elimination on this basis with respect to the lexicographical
order, we obtain in the last row a form of type Tk−1πk(D)", where " is a linear form. Doing this for D−d
permutations again yields a basis for s1.

Moreover, slight algebraic modifications of this strategy also allow to consider data from cumu-
lants of different degree simultaneously, and to reduce the number of needed polynomials to O(D);
however, due to its technicality, this is beyond the scope of the paper. We sketch the idea: in the
general case, one starts with an ideal

I = 〈 f1, . . . , fm〉,

homogenously generated in arbitrary degrees. such that
√
I = s. Proposition 55 in the appendix

implies that this happens whenever m≥ D+1. One then proves that due to the genericity of the fi,
there exists an N such that

IN = sN ,

which means that s1 can again be obtained by calculating the saturation of the ideal I . When fixing
the degrees of the fi, we will have N = O(D) with a relatively small constant (for all fi quadratic,
this even becomes N = O(

√
D)). So algorithmically, one would first calculate IN = sN , which then

may be used to compute s1 and thus s analogously to the case N = 2, as described above.
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3.2 Proof of Correctness

In order to prove the correctness of Algorithm 1, we need to prove the following three statements.

Proposition 22 For Algorithm 1 it holds that
(i) Q is of rank ∆(D)−∆(d).
(ii) The last column of Q in step 6 is of the claimed form.
(iii) The "1, . . . ,"D−d generate s1.

Proof This proposition will be proved successively in the following: (i) will follow from Remark 23
(iii); (ii) will be proved in Lemma 24; and (iii) will be proved in Proposition 25.

Let us first of all make some observations about the structure of the vector space s2 in which we
compute. It is the vector space of polynomials of homogenous degree 2 vanishing on S. On the
other hand, we are looking for a basis "1, . . . ,"D−d of s1. The following remark will relate both
vector spaces:

Remark 23 The following statements hold:
(i) s2 is generated by the polynomials "iTj,1≤ i≤ D−d,1≤ j ≤ D, .
(ii) dimC s2 = ∆(D)−∆(d)
(iii) Let q1, . . . ,qm with m ≥ ∆(D)−∆(d) be generic homogenous quadratic polynomials in s.
Then 〈q1, . . . ,qm〉= s2.

Proof (i) In Remark 18, we have concluded that s2 = s1 ·R1. Thus the product vector space s2 is
generated by a product basis of s1 and R1. Since Tj,1≤ j≤D is a basis for R1, and "i,1≤ i≤D−d
is a basis for s1, the statement holds. (ii) In Remark 20, we have seen that R2 = s2⊕ (n1)2, thus
dims2= dimR2−dim(n1)2. The vector space R2 is minimally generated by the monomials of degree
2 in T1, . . .TD, whose number is ∆(D). Similarly, (n1)2 is minimally generated by the monomials of
degree 2 in the variables "′1, . . . ,"′d that form the dual basis to the "i. Their number is ∆(d), so the
statement follows. (iii) As the qi are homogenous of degree two and vanish on S, they are elements
in s2. Due to (ii), we can apply Proposition 9 to conclude that they generate s2 as vector space.

Now we continue to prove the remaining claims.

Lemma 24 In Algorithm 1 the (∆(D)−∆(d))-th row of Q′ (the upper triangular form of Q) corre-
sponds to a 2-form Tπ(D)" with a linear polynomial " ∈ s1.

Proof Note that every homogenous polynomial of degree k is canonically an element of the vector
space Rk in the monomial basis given by the Ti. Thus it makes sense to speak about the coefficients
of Ti for an 1-form resp. the coefficients of TiTj of a 2-form.

Also, without loss of generality, we can take the trivial permutation π= id, since the proof will
not depend on the chosen lexicographical ordering and thus will be naturally invariant under per-
mutations of variables. First we remark: since S is a generic d-dimensional linear subspace of CD,
any linear form in s1 will have at least d+1 non-vanishing coefficients in the Ti. On the other hand,
by displaying the generators "i,1≤ i≤ D−d in s1 in reduced row echelon form with respect to the
Ti-basis, one sees that one can choose all the "i in fact with exactly d+1 non-vanishing coefficients
in the Ti such that no nontrivial linear combination of the "i has less then d+1 non-vanishing coef-
ficients. In particular, one can choose the "i such that the biggest (w.r.t. the lexicographical order)
monomial with non-vanishing coefficient of "i is Ti.
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Remark 23 (i) states that s2 is generated by

"iTj,1≤ i≤ D−d,1≤ j ≤ D.

Together with our above reasoning, this implies the following.
Fact 1: There exist linear forms "i,1 ≤ i ≤ D− d such that: the 2-forms "iTj generate s2, and

the biggest monomial of "iTj with non-vanishing coefficient under the lexicographical ordering is
TiTj. By Remark 23 (ii), the last row of the upper triangular form Q′ is a polynomial which has zero
coefficients for all monomials possibly except the ∆(d)+1 smallest,

TD−dTD,T 2D−d+1,TD−d+1TD−d+2, . . . ,TD−1TD,T
2
D .

On the other hand, it is guaranteed by our genericity assumption that the biggest of those terms is
indeed non-vanishing, which implies the following.
Fact 2: The biggest monomial of the last row with non-vanishing coefficient (w.r.t the lexico-

graphical order) is that of TD−dTD.
Combining Facts 1 and 2, we can now infer that the last row must be a scalar multiple of

"D−dTD: since the last row corresponds to an element of s2, it must be a linear combination of
the "iTj. By Fact 1, every contribution of an "iTj,(i, j) ,= (D− d,D) would add a non-vanishing
coefficient lexicographically bigger than TD−dTD which cannot cancel. So, by Fact 2, TD divides the
last row of the upper triangular form of Q, which then must be TD"D−d or a multiple thereof. Also
we have that "D−d ∈ s by definition.

It remains to be shown that by permutation of the variables we can find a basis for s1.

Proposition 25 The "1, . . . ,"D−d generate s1 as vector space and thus s as ideal.

Proof Recall that πi was the permutation to obtain "i. As we have seen in the proof of Lemma 24,
"i is a linear form which has non-zero coefficients only for the d+1 coefficients Tπi(D−d), . . . ,Tπi(D).
Thus "i has a non-zero coefficient where all the " j, j< i have a zero coefficient, and thus "i is linearly
independent from the " j, j < i. In particular, it follows that the "i are linearly independent in R1. On
the other hand, they are contained in the D− d-dimensional sub-C-vector space s1 and are thus a
basis of s1, and also a generating set for the ideal s.

Note that all of these proofs generalize to k-forms. For example, one calculates that

dimC sk =

(

D+ k−1
k

)

−
(

d+ k−1
k

)

,

and the triangularization strategy yields a last row which corresponds to Tk−1π(D)" with a linear poly-
nomial " ∈ s1

3.3 Relation to Previous Work in Computational Algebraic Geometry

In this section, we discuss how the algebraic formulation of the cumulant comparison problem given
in Problem 14 relates to the classical problems in computational algebraic geometry.

Problem 14 confronts us with the following task: given polynomials q1, . . . ,qm−1 with special
properties, compute a linear generating set for the radical ideal

√

〈q1, . . . ,qm−1〉= I(V(q1, . . . ,qm−1)).
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Computing the radical of an ideal is a classical task in computational algebraic geometry, so our
problem is a special case of radical computation of ideals, which in turn can be viewed as an instance
of primary decomposition of ideals, see (Cox et al., 2007, Section 4.7).

While it has been known since the work of Hermann (1926) that there exist constructive algo-
rithms to calculate the radical of a given ideal in polynomial rings, only in the recent decades there
have been algorithms feasible for implementation in modern computer algebra systems. The best
known algorithms are those of Gianni et al. (1988), implemented in AXIOM and REDUCE, the
algorithm of Eisenbud et al. (1992), implemented in Macaulay 2, the algorithm of Caboara et al.
(1997), currently implemented in CoCoA, and the algorithm of Krick and Logar (1991) and its
modification by Laplagne (2006), available in SINGULAR.

All of these algorithms have two points in common. First of all, these algorithms have com-
putational worst case complexities which are doubly exponential in the square of the number of
variables of the given polynomial ring, see (Laplagne, 2006, Section 4). Although the worst case
complexities may not be approached for the problem setting described in the current paper, these
off-the-shelf algorithms do not take into account the specific properties of the ideals in question.

On the other hand, Algorithm 1 can be seen as a homogenous version of the well-known Buch-
berger algorithm to find a Groebner basis of the dehomogenization of s with respect to a degree-first
order. Namely, due to our strong assumptions on m, or as is shown in Proposition 55 in the ap-
pendix for a more general case, the homogenous saturations of the ideal 〈q1, . . . ,qm−1〉 = m · s and
the ideal s coincide. In particular, the dehomogenizations of the qi constitute a generating set for
the dehomogenization of s. The Buchberger algorithm now finds a reduced Groebner basis of s
which consists of exactly D−d linear polynomials. Their homogenizations then constitute a basis
of homogenous linear forms of s itself. It can be checked that the first elimination steps which the
Buchberger algorithm performs for the dehomogenizations of the qi correspond directly to the elim-
ination steps in Algorithm 1 for their homogenous versions. So our algorithm performs similarly to
the Buchberger algorithm in a noiseless setting, since both algorithms compute a reduced Groebner
basis in the chosen coordinate system.

However, in our setting which stems from real data, there is a second point which is more
grave and makes the use of off-the-shelf algorithms impossible: the computability of an exact result
completely relies on the assumption that the ideals given as input are exactly known, that is, a
generating set of polynomials is exactly known. This is not a problem in classical computational
algebra; however, when dealing with polynomials obtained from real data, the polynomials come not
only with numerical error but in fact with statistical uncertainty. In general, the classical algorithms
are unable to find any solution when confronted even with minimal noise on the otherwise exact
polynomials. Namely, when we deal with a system of equations for which over-determination is
possible, any perturbed system will be over-determined and thus have no solution. For example, the
exact intersection of N >D+1 linear subspaces in complex D-space is always empty when they are
sampled with uncertainty; this is a direct consequence of Proposition 10, when using the assumption
that the noise is generic. However, if all those hyperplanes are nearly the same, then the result of a
meaningful approximate algorithm should be a hyperplane close to all input hyperplanes instead of
the empty set.

Before we continue, we would like to stress a conceptual point in approaching uncertainty. First,
as in classical numerics, one can think of the input as theoretically exact but with fixed error ε and
then derive bounds on the output error in terms of this ε and analyze their asymptotics. We will
refer to this approach as numerical uncertainty, as opposed to statistical uncertainty, which is a
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view more common to statistics and machine learning, as it is more natural for noisy data. Here,
the error is considered as inherently probabilistic due to small sample effects or noise fluctuation,
and algorithms may be analyzed for their statistical properties, independent of whether they are
themselves deterministic or stochastic. The statistical view on uncertainty is the one the reader
should have in mind when reading this paper.

Parts of the algebra community have been committed to the numerical viewpoint on uncertain
polynomials: the problem of numerical uncertainty is for example extensively addressed in Stetter’s
standard book on numerical algebra (Stetter, 2004). The main difficulties and innovations stem from
the fact that standard methods from algebra like the application of Groebner bases are numerically
unstable, see (Stetter, 2004, Chapter 4.1-2).

Recently, the algebraic geometry community has developed an increasing interest in solving
algebraic problems arising from the consideration of real world data. The algorithms in this area are
more motivated to perform well on the data, some authors start to adapt a statistical viewpoint on
uncertainty, while the influence of the numerical view is still dominant. As a distinction, the authors
describe the field as approximate algebra instead of numerical algebra. Recent developments in this
sense can be found for example in Heldt et al. (2009) or the book of Kreuzer et al. (2009). We will
refer to this viewpoint as the statistical view in order to avoid confusion with other meanings of
approximate.

Interestingly, there are significant similarities on the methodological side. Namely, in compu-
tational algebra, algorithms often compute primarily over vector spaces, which arise for example
as spaces of polynomials with certain properties. Here, numerical linear algebra can provide many
techniques of enforcing numerical stability, see the pioneering paper of Corless et al. (1995). Since
then, many algorithms in numerical and approximate algebra use linear optimization to estimate
vector spaces of polynomials. In particular, least-squares-approximations of rank or kernel are
canonical concepts in both numerical and approximate algebra.

However, to the best of our knowledge, there is to date no algorithm which computes an “ap-
proximate” (or “numerical”) radical of an ideal, or an approximate saturation, and also none in our
special case. In the next section, we will use estimation techniques from linear algebra to con-
vert Algorithm 1 into an algorithm which can cope with the inherent statistical uncertainty of the
estimation problem.

4. Approximate Algebraic Geometry on Real Data

In this section we show how algebraic computations can be applied to polynomials with inexact co-
efficients obtained from estimated cumulants on finite samples. Note that our method for computing
the approximate radical is not specific to the problem studied in this paper.

The reason why we cannot directly apply our algorithm for the exact case to estimated polyno-
mials is that it relies on the assumption that there exists an exact solution, such that the projected
cumulants are equal, that is, we can find a projection P such that the equalities

PΣ1P) = · · ·= PΣmP) and Pµ1 = · · ·= Pµm

hold exactly. However, when the elements of Σ1, . . . ,Σm and µ1, . . . ,µm are subject to random fluc-
tuations or noise, there exists no projection that yields exactly the same random variables. In al-
gebraic terms, working with inexact polynomials means that the joint vanishing set of q1, . . . ,qm−1

873
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and f1, . . . , fm−1 consists only of the origin 0 ∈ CD so that the ideal becomes trivial:

〈q1, . . . ,qm−1, f1, . . . , fm−1〉=m.

Thus, in order to find a meaningful solution, we need to compute the radical approximately.
In the exact algorithm, we are looking for a polynomial of the form TD" vanishing on S, which

is also a C-linear combination of the quadratic forms qi. The algorithm is based on an explicit way
to do so which works since the qi are generic and sufficient in number. So one could proceed to
adapt this algorithm to the approximate case by performing the same operations as in the exact case
and then taking the (∆(D)−∆(d))-th row, setting coefficients not divisible by TD to zero, and then
dividing out TD to get a linear form. This strategy performs fairly well for small dimensions D and
converges to the correct solution, albeit slowly.

Instead of computing one particular linear generator as in the exact case, it is advisable to use as
much information as possible in order to obtain better accuracy. The least-squares-optimal way to
approximate a linear space of known dimension is to use singular value decomposition (SVD): with
this method, we may directly eliminate the most insignificant directions in coefficient space which
are due to fluctuations in the input. To that end, we first define an approximation of an arbitrary
matrix by a matrix of fixed rank.

Definition 26 Let A ∈ Cm×n with singular value decomposition A = UDV ∗, where D =
diag(σ1, . . . ,σp) ∈ Cp×p is a diagonal matrix with ordered singular values on the diagonal,

|σ1|≥ |σ2|≥ · · ·≥ |σp|≥ 0.

For k ≤ p, let D′ = diag(σ1, . . . ,σk,0, . . . ,0). Then the matrix A′ =UD′V ∗ is called rank k approx-
imation of A. The null space, left null space, row span, column span of A′ will be called rank k
approximate null space, left null space, row span, column span of A.

For example, if u1, . . . ,up and v1, . . . ,vp are the columns ofU andV respectively, the rank k approx-
imate left null space of A is spanned by the rows of the matrix

L=
[

up−k+1 · · · up
])

,

and the rank k approximate row span of A is spanned by the rows of the matrix

S=
[

v1 · · · vp
])

.

We will call those matrices the approximate left null space matrix resp. the approximate row span
matrix of rank k associated to A. The approximate matrices are the optimal approximations of rank
k with respect to the least-squares error.

We can now use these concepts to obtain an approximative version of Algorithm 1. Instead of
searching for a single element of the form TD", we estimate the vector space of all such elements
via singular value decomposition—note that this is exactly the vector space (〈TD〉 · s)2, that is, the
vector space of all homogenous polynomials of degree two which are divisible by TD. Also note that
the choice of the linear form TD is irrelevant, that is, we may replace TD above by any variable or
even linear form. As a trade-off between accuracy and runtime, we additionally estimate the vector
spaces (〈TD〉 · s)2 for all 1≤ i≤D, and then least-squares average the putative results for s to obtain
a final estimator for s and thus the desired space of projections.
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Algorithm 2 The input consists of noisy quadratic forms q1, . . . ,qm−1 ∈ C[T1, . . . ,TD], and the di-
mension d; the output is an approximate linear generating set "1, . . . ,"D−d for the ideal s.

1: Let Q←
[

q1 · · · qm−1
]) be the (m− 1×∆(D))-matrix of coefficient vectors, where every

row corresponds to a polynomial and every column to a monomial TiTj in arbitrary order.
2: for i= 1, . . . ,D do
3: Let Qi be the ((m− 1)×∆(D)−D)-sub-matrix of Q obtained by removing all columns

corresponding to monomials divisible by Ti
4: Compute the approximate left null space matrix Li of Qi of rank (m− 1)−∆(D)+∆(d)+

D−d
5: Compute the approximate row span matrix L′i of LiQ of rank D−d
6: Let L′′i be the (D−d×D)-matrix obtained from L′i by removing all columns corresponding

to monomials not divisible by Ti
7: end for
8: Let L be the (D(D−d)×D)-matrix obtained by vertical concatenation of L′′1 , . . . ,L′′D
9: Compute the approximate row span matrix A =

[

a1 · · · aD−d
]) of L of rank D− d and let

"i =
[

T1 · · · TD
]

ai for all 1≤ i≤ D−d.

We explain the logic behind the single steps: in the first step, we start with the same matrix
Q as in Algorithm 1. Instead of bringing Q into triangular form with respect to the term order
T1 ≺ · · ·≺ TD, we compute the left kernel space row matrix Si of the monomials not divisible by Ti.
Its left image Li = SiQ is a matrix whose row space generates the space of possible last rows after
bringing Q into triangular form in an arbitrary coordinate system. In the next step, we perform PCA
to estimate a basis for the so-obtained vector space of quadratic forms of type Ti times linear form,
and extract a basis for the vector space of linear forms estimated via Li. Now we can put together all
Li and again perform PCA to obtain a more exact and numerically more estimate for the projection
in the last step. The rank of the matrices after PCA is always chosen to match the correct ranks in
the exact case.

Note that Algorithm 2 is a consistent estimator for the correct space of projections if the co-
variances are sample estimates. Let us first clarify in which sense consistent is meant here: if each
covariance matrix is estimated from a sample of size N or greater, and N goes to infinity, then the es-
timate of the projection converges in probability to the true projection. The reason why Algorithm 2
gives a consistent estimator in this sense is elementary: covariance matrices can be estimated con-
sistently, and so can their differences, the polynomials qi. Moreover, the algorithm can be regarded
as an almost continuous function in the polynomials qi; so convergence in probability to the true
projection and thus consistency follows from the continuous mapping theorem.

The runtime complexity of Algorithm 2 is O(D6) as for Algorithm 1. For this note that calcu-
lating the singular value decomposition of an m×n-matrix is O(mnmax(m,n)).

If we want to consider k-forms instead of 2-forms, we can use the same strategies as above
to numerically stabilize the exact algorithm. In the second step, one might want to consider all
sub-matrices QM of Q obtained by removing all columns corresponding to monomials divisible by
some degree (k−1) monomial M and perform the for-loop over all such monomials or a selection
of them. Considering D monomials or more gives again a consistent estimator for the projection.
Similarly, these methods allow us to numerically stabilize versions with reduced epoch requirements
and simultaneous consideration of different degrees.
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5. Numerical Evaluation

In this section we evaluate the performance of the algebraic algorithm on synthetic data in various
settings. In order to contrast the algebraic approach with an optimization-based method (cf. Fig-
ure 1), we compare with the Stationary Subspace Analysis (SSA) algorithm (von Bünau et al.,
2009), which solves a similar problem in the context of time series analysis; see Müller et al. (2011)
for an open-source implementation. To date, SSA has been successfully applied in the context of
biomedical data analysis (von Bünau et al., 2010), domain adaptation (Hara et al., 2010), change-
point detection (Blythe et al., 2012) and computer vision (Meinecke et al., 2009).

5.1 Stationary Subspace Analysis

Stationary Subspace Analysis (von Bünau et al., 2009; Müller et al., 2011) factorizes an observed
time series according to a linear model into underlying stationary and non-stationary sources. The
observed time series x(t) ∈RD is assumed to be generated as a linear mixture of stationary sources
ss(t) ∈Rd and non-stationary sources sn(t) ∈RD−d ,

x(t) = As(t) =
[

As An
]

[

ss(t)
sn(t)

]

,

with a time-constant mixing matrix A. The underlying sources s(t) are not assumed to be indepen-
dent or uncorrelated.

The aim of SSA is to invert this mixing model given only samples from x(t). The true mixing
matrix A is not identifiable (von Bünau et al., 2009); only the projection P ∈Rd×D to the stationary
sources can be estimated from the mixed signals x(t), up to arbitrary linear transformation of its im-
age. The estimated stationary sources are given by ŝs(t) = Px(t), that is, the projection P eliminates
all non-stationary contributions: PAn = 0.

The SSA algorithms (von Bünau et al., 2009; Hara et al., 2010) are based on the following
definition of stationarity: a time series Xt is considered stationary if its mean and covariance is
constant over time, that is, E[Xt1 ] = E[Xt2 ] and E[Xt1X)t1 ] = E[Xt2X)t2 ] for all pairs of time points
t1, t2 ∈N. Following this concept of stationarity, the projection P is found by minimizing the differ-
ence between the first two moments of the estimated stationary sources ŝs(t) across epochs of the
times series. To that end, the samples from x(t) are divided into m non-overlapping epochs of equal
size, corresponding to the index sets T1, . . . ,Tm, from which the mean and the covariance matrix is
estimated for all epochs 1≤ i≤ m,

µ̂i =
1
|Ti| ∑t∈Ti

x(t) and Σ̂i =
1

|Ti|−1 ∑t∈Ti
(x(t)− µ̂i)(x(t)− µ̂i)) .

Given a projection P, the mean and the covariance of the estimated stationary sources in the i-th
epoch are given by µ̂si = Pµ̂i and Σ̂si = PΣ̂iP) respectively. Without loss of generality (by centering
and whitening2 the average epoch) we can assume that ŝs(t) has zero mean and unit covariance.

The objective function of the SSA algorithm (von Bünau et al., 2009) minimizes the sum of the
differences between each epoch and the standard normal distribution, measured by the Kullback-

2. A whitening transformation is a basis transformationW that sets the sample covariance matrix to the identity. It can
be obtained from the sample covariance matrix Σ̂ asW = Σ̂−

1
2
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Leibler divergence DKL between Gaussians: the projection P∗ is found as the solution to the opti-
mization problem,

P∗ = argmin
PP)=I

m

∑
i=1

DKL
[

N (µ̂si , Σ̂
s
i )
∣

∣

∣

∣

∣

∣
N (0, I)

]

= argmin
PP)=I

m

∑
i=1

(

− logdet Σ̂si +(µ̂si )
)µ̂si

)

,

which is non-convex and solved using an iterative gradient-based procedure.
This SSA algorithm considers a problem that is closely related to the one addressed in this paper,

because the underlying definition of stationarity does not consider the time structure. In essence, the
m epochs are modeled as m random variables X1, . . . ,Xm for which we want to find a projection P
such that the projected probability distributions PX1, . . . ,PXm are equal, up to the first two moments.
This problem statement is equivalent to the task that we solve algebraically.

5.2 Results

In our simulations, we investigate the influence of the noise level and the number of dimensions on
the performance and the runtime of our algebraic algorithm and the SSA algorithm. We measure
the performance using the subspace angle between the true and the estimated space of projections
S.

The setup of the synthetic data is as follows: we fix the total number of dimensions to D = 10
and vary the dimension d of the subspace with equal probability distribution from one to nine. We
also fix the number of random variables to m = 110. For each trial of the simulation, we need to
choose a random basis for the two subspaces RD = S⊕S⊥, and for each random variable, we need
to choose a covariance matrix that is identical only on S. Moreover, for each random variable, we
need to choose a positive definite disturbance matrix (with given noise level σ), which is added to
the covariance matrix to simulate the effect of finite or noisy samples.

The elements of the basis vectors for S and S⊥ are drawn uniformly from the interval (−1,1).
The covariance matrix of each epoch 1 ≤ i ≤ m is obtained from Cholesky factors with random
entries drawn uniformly from (−1,1), where the first d rows remain fixed across epochs. This
yields noise-free covariance matrices C1, . . . ,Cm ∈RD×D where the first (d×d)-block is identical.
Now for each Ci, we generate a random disturbance matrix Ei to obtain the final covariance matrix

C′i =Ci+Ei.

The disturbance matrix Ei is determined as Ei = ViDiV)i where Vi is a random orthogonal matrix,
obtained as the matrix exponential of an antisymmetric matrix with random elements and Di is a
diagonal matrix of eigenvalues. The noise level σ is the log-determinant of the disturbance matrix
Ei. Thus the eigenvalues of Di are normalized such that

1
10

10

∑
i=1
logDii = σ.

In the final step of the data generation, we transform the disturbed covariance matrices C′1, . . . ,C′m
into the random basis to obtain the cumulants Σ1, . . . ,Σm which are the input to our algorithm.
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Figure 5: Comparison of the algebraic algorithm and the SSA algorithm. Each panel shows the me-
dian error of the two algorithms (vertical axis) for varying numbers of stationary sources
in ten dimensions (horizontal axis). The noise level increases from the left to the right
panel; the error bars extend from the 25% to the 75% quantile estimated over 2000 ran-
dom realizations of the data set.

The first set of results is shown in Figure 5. With increasing noise levels (from left to right panel)
both algorithms become worse. For low noise levels, the algebraic method yields significantly better
results than the optimization-based approach, over all dimensionalities. For medium and high-noise
levels, this situation is reversed.

−5 −4 −3 −2 −1 −0.1

0.0001

0.001

0.01

0.1

0.5
1

5
10
30

Er
ro

r i
n 

de
gr

ee
s

Noise level (log10)

 

 

Algebraic
SSA

1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

R
un

tim
e 

(s
ec

on
ds

)

Number of stationary sources

 

 
Algebraic
SSA

Figure 6: The left panel shows a comparison of the algebraic method and the SSA algorithm over
varying noise levels (five stationary sources in ten dimensions), the two curves show the
median log error. The right panel shows a comparison of the runtime for varying numbers
of stationary sources. The error bars extend from the 25% to the 75% quantile estimated
over 2000 random realizations of the data set.

In the left panel of Figure 6, we see that the error level of the algebraic algorithm decreases
with the noise level, converging to the exact solution when the noise tends to zero. In contrast, the
error of original SSA decreases with noise level, reaching a minimum error baseline which it cannot
fall below. In particular, the algebraic method significantly outperforms SSA for low noise levels,
whereas SSA is better for high noise. However, when noise is too high, none of the two algorithms
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can find the correct solution. In the right panel of Figure 6, we see that the algebraic method is
significantly faster than SSA.

6. Conclusion

In this paper we have shown how a learning problem formulated in terms of cumulants of proba-
bility distributions can be addressed in the framework of computational algebraic geometry. As an
example, we have demonstrated this viewpoint on the problem of finding a linear map P ∈ Rd×D

such that a set of projected random variables X1, . . . ,Xm ∈RD have the same distribution,

PX1 ∼ · · ·∼ PXm.

To that end, we have introduced the theoretical groundwork for an algebraic treatment of inexact
cumulants estimated from data: the concept of polynomials that are generic up to a certain property
which we aim to recover from the data. In particular, we have shown how we can find an approxi-
mate exact solution to this problem using algebraic manipulation of cumulants estimated on samples
drawn from X1, . . . ,Xm. Therefore we have introduced the notion of computing an approximate sat-
uration of an ideal that is optimal in a least-squares sense. Moreover, using the algebraic problem
formulation in terms of generic polynomials, we have presented compact proofs for a condition on
the identifiability of the true solution.

In essence, instead of searching the surface of a non-convex objective function involving the cu-
mulants, the algebraic algorithm directly finds the solution by manipulating cumulant polynomials—
which is the more natural representation of the problem. This viewpoint is not only theoretically
appealing but conveys practical advantages that we demonstrate in a numerical comparison to Sta-
tionary Subspace Analysis (von Bünau et al., 2009): the computational cost is significantly lower
and the error converges to zero as the noise level goes to zero. However, the algebraic algorithm
requires m≥ ∆(D) random variables with distinct distributions, which is quadratic in the number of
dimensionsD. This is due to the fact that the algebraic algorithm represents the cumulant polynomi-
als in the vector space of coefficients. Consequently, the algorithm is confined to linearly combining
the polynomials which describe the solution. However, the set of solutions is also invariant under
multiplication of polynomials and polynomial division, that is, the algorithm does not use all infor-
mation contained in the polynomial equations. We conjecture that we can construct a more efficient
algorithm, if we also multiply and divide polynomials.

The theoretical and algorithmic techniques introduced in this paper can be applied to other
scenarios in machine learning, including the following examples.

• Finding properties of probability distributions. Any inference problem that can be formu-
lated in terms of polynomials, in principle, is amenable to our algebraic approach; incorpo-
rating polynomial constraints is also straightforward.

• Approximate solutions to polynomial equations. In machine learning, the problem of solv-
ing polynomial equations can, for example, occur in the context of finding the solution to a
constrained nonlinear optimization problem by means of setting the gradient to zero.

• Conditions for identifiability. Whenever a machine learning problem can be formulated in
terms of polynomials, identifiability of its generative model can also be phrased in terms of
algebraic geometry, where a wealth of proof techniques stands at disposition.
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We argue for a cross-fertilization of approximate computational algebra and machine learning:
the former can benefit from the wealth of techniques for dealing with uncertainty and noisy data;
the machine learning community may find a novel framework for representing learning problems
that can be solved efficiently using symbolic manipulation.
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Appendix A. An Example

In this section, we will show by using a concrete example how the Algorithms 1 and 2 work. The
setup will be the similar to the example presented in the introduction. We will use the notation
introduced in Section 3.

Example 27 In this example, let us consider the simplest non-trivial case: two random variables
X1,X2 inR2 such that there is exactly one direction w∈R2 such that w)X1 =w)X2; that is, the total
number of dimensions is D= 2, the dimension of the set of projections is d = 1. As in the beginning
of Section 3, we may assume that R2 = S⊕S⊥ is an orthogonal sum of a one-dimensional space of
projections S and its orthogonal complement S⊥. In particular, S⊥ is given as the linear span of a
single vector, say

[

α β
]). The space S is also the linear span of the vector

[

β −α
])

.
Now we partition the sample into D(D+1)/2−d(d+1)/2= 2 epochs (this is the lower bound

needed by Proposition 22). From the two epochs we can estimate two covariance matrices Σ̂1, Σ̂2.
Suppose we have

Σ̂1 =

[

a11 a12
a21 a22

]

.

From this matrices, we can now obtain a polynomial

q1 = w)(Σ̂1− I)w

= w)
[

a11−1 a12
a21 a22−1

]

w

= (a11−1)T 21 +(a12+a21)T1T2+(a22−1)T 22 ,

where w=
[

T1 T2
])

. Similarly, we obtain a polynomial q2 as the Gram polynomial of Σ̂2− I.
First we now illustrate how Algorithm 1, which works with homogenous exact polynomials,

can determine the vector space S from these polynomials. For this, we assume that the estimated
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polynomials are exact; we will discuss the approximate case later. We can also write q1 and q2 in
coefficient expansion:

q1 = q11T 21 +q12T1T2+q13T 22 ,

q2 = q21T 21 +q22T1T2+q23T 22 .

We can also write this formally in the (2×3) coefficient matrix Q= (qi j)i j, where the polynomials
can be reconstructed as the entries in the vector

Q ·
[

T 21 T1T2 T 22
])

.

Algorithm 1 now calculates the upper triangular form of this matrix. For polynomials, this is equiv-
alent to calculating the last row

q21q1−q11q2
= [q21q12−q11q22]T1T2+[q21q13−q11q23]T 22 .

Then we divide out T2 and obtain

P= [q21q12−q11q22]T1+[q21q13−q11q23]T2.

The algorithm now identifies S⊥ as the vector space spanned by the vector
[

α β
])

=
[

q21q12−q11q22 q21q13−q11q23
])

.

This already finishes the calculation given by Algorithm 1, as we now explicitly know the solution
[

α β
])

.

To understand why this strategy works, we need to have a look at the input. Namely, one has to
note that q1 and q2 are generic homogenous polynomials of degree 2, vanishing on S. That is, we
will have qi(x) = 0 for i = 1,2 and all points x ∈ S. It is not difficult to see that every polynomial
fulfilling this condition has to be of the form

(αT1+βT2)(aT1+bT2)

for some a,b ∈ C; that is, a multiple of the equation defining S. However we may not know this
factorization a priori, in particular we are in general agnostic as to the correct values of α and β.
They have to be reconstructed from the qi via an algorithm. Nonetheless, a correct solution exists,
so we may write

q1 = (αT1+βT2)(a1X+b1T2),
q2 = (αT1+βT2)(a2X+b2T2),

with ai,bi generic, without knowing the exact values a priori. If we now compare to the above
expansion in the qi j, we obtain the linear system of equations

qi1 = αai,
qi2 = αbi+βai,
qi3 = βbi
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for i= 1,2, from which we may reconstruct the ai,bi and thus α and β. However, a more elegant and
general way of getting to the solution is to bring the matrixQ as above into triangular form. Namely,
by assumption, the last row of this triangular form corresponds to the polynomial P which vanishes
on S. Using the same reasoning as above, the polynomial P has to be a multiple of (αT1+βT2). To
check the correctness of the solution, we substitute the qi j in the expansion of P for ai,bi, and obtain

P=[q21q12−q11q22]T1T2+[q21q13−q11q23]T 22
=[αa2(αb1+βa1)−αa1(αb2+βa2)]T1T2+[αa2βb1−αa1βb2]T 22
=[α2a2b1−α2a1b2]T1T2+[αβa2b1−αβa1b2]T 22
=(αT1+βT2)α[a2b1−a1b2]T2.

This is (αT1+βT2) times T2 up to a scalar multiple - from the coefficients of the form P, we may
thus directly reconstruct the vector

[

α β
]

up to a common factor and thus obtain a representation
for S, since the calculation of these coefficients did not depend on a priori knowledge about S.

If the estimation of the Σ̂i and thus of the qi is now endowed with noise, and we have more
than two epochs and polynomials, Algorithm 2 provides the possibility to perform this calculation
approximately. Namely, Algorithm 2 finds a linear combination of the qi which is approximately of
the form TD" with a linear form " in the variables T1,T2. The Young-Eckart Theorem guarantees that
we obtain a consistent and least-squares-optimal estimator for P, similarly to the exact case. The
reader is invited to check this by hand as an exercise.

Now the observant reader may object that we may have simply obtained the linear form (αT1+
βT2) and thus S directly from factoring q1 and q2 and taking the unique common factor. Note
however that this strategy can only be applied in the very special case D− d = 1. To illustrate the
additional difficulties in the general case, we repeat the above example for D= 4 and d = 2 for the
exact case:

Example 28 In this example, we need alreadyD(D+1)/2−d(d+1)/2= 7 polynomials q1, . . . ,q7
to solve the problem with Algorithm 1. As above, we can write

qi =qi1T 21 +qi2T1T2+qi3T1T3+qi4T1T4+qi5T 22
+qi6T2T3+qi7T2T4+qi8T 23 +qi9T3T4+qi,10T 24

for i = 1, . . . ,7, and again we can write this in a (7× 10) coefficient matrix Q = (qi j)i j. In Algo-
rithm 1, this matrix is brought into triangular form. The last row of this triangular matrix will thus
correspond to a polynomial of the form

P= p7T2T4+ p8T 23 + p9T3T4+ p10T 24

A polynomial of this form is not divisible by T4 in general. However, Proposition 22 guarantees us
that the coefficient p8 is always zero due to our assumptions. So we can divide out T4 to obtain a
linear form

p7T2+ p9T3+ p10T4.

This is one equation defining the linear space S. One obtains another equation in the variables
T1,T2,T3 if one, for example, inverts the numbering of the variables 1− 2− 3− 4 to 4− 3− 2− 1.
Two equations suffice to describe S, and so Algorithm 1 yields the correct solution.
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As in the example before, it can be checked by hand that the coefficient p7 indeed vanishes,
and the obtained linear equations define the linear subspace S. For this, one has to use the classical
result from algebraic geometry that every qi can be written as

qi = "1P1+ "2P2,

where the "i are fixed but arbitrary linear forms defining S as their common zero set, and the Pi are
some linear forms determined by qi and the "i (this is for example a direct consequence of Hilbert’s
Nullstellensatz). Caution is advised as the equations involved become very lengthy - while not too
complex - already in this simple example. So the reader may want to check only that the coefficient
p8 vanishes as claimed.

Appendix B. Algebraic Geometry of Genericity

In the paper, we have reformulated a problem of comparing probability distributions in algebraic
terms. For the problem to be well-defined, we need the concept of genericity for the cumulants.
The solution can then be determined as an ideal generated by generic homogenous polynomials
vanishing on a linear subspace. In this supplement, we will extensively describe this property which
we call genericity and derive some simple consequences.

Since genericity is an algebraic-geometric concept, knowledge about basic algebraic geometry
will be required for an understanding of this section. In particular, the reader should be at least
familiar with the following concepts before reading this section: polynomial rings, ideals, radicals,
factor rings, algebraic sets, algebra-geometry correspondence (including Hilbert’s Nullstellensatz),
primary decomposition, height resp. dimension theory in rings. A good introduction into the neces-
sary framework can be found in the book of Cox et al. (2007).

B.1 Definition of Genericity

In the algebraic setting of the paper, we would like to calculate the radical of an ideal

I = 〈q1, . . . ,qm−1, f1, . . . , fm−1〉.

This ideal I is of a special kind: its generators are random, and are only subject to the constraints
that they vanish on the linear subspace S to which we project, and that they are homogenous of
fixed degree. In order to derive meaningful results on how I relates to S, or on the solvability of the
problem, we need to model this kind of randomness.

In this section, we introduce a concept called genericity. Informally, a generic situation is a
situation without pathological degeneracies. In our case, it is reasonable to believe that apart from
the conditions of homogeneity and the vanishing on S, there are no additional degeneracies in the
choice of the generators. So, informally spoken, the ideal I is generated by generic homogenous
elements vanishing on S. This section is devoted to developing a formal theory in order to address
such generic situations efficiently.

The concept of genericity is already widely used in theoretical computer science, combinatorics
or discrete mathematics; there, it is however often defined inexactly or not at all, or it is only given as
an ad-hoc definition for the particular problem. On the other hand, genericity is a classical concept
in algebraic geometry, in particular in the theory of moduli. The interpretation of generic properties
as probability-one-properties is also a known concept in applied algebraic geometry, for example,
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algebraic statistics. However, the application of probability distributions and genericity to the setting
of generic ideals, in particular in the context of conditional probabilities, are original to the best of
our knowledge, though not being the first one to involve generic resp. general polynomials, see
Iarrobino (1984). Generic polynomials and ideals have been also studied by Fröberg and Hollman
(1994). A collection of results on generic polynomials and ideals which partly overlap with ours
may also be found in the recent paper of Pardue (2010).

Before continuing to the definitions, let us explain what genericity should mean. Intuitively,
generic objects are objects without unexpected pathologies or degeneracies. For example, if one
studies say n lines in the real plane, one wants to exclude pathological cases where lines lie on each
other or where many lines intersect in one point. Having those cases excluded means examining
the “generic” case, that is, the case where there are n(n+1)/2 intersections, n(n+1) line segments
and so forth. Or when one has n points in the plane, one wants to exclude the pathological cases
where for example there are three affinely dependent points, or where there are more sophisticated
algebraic dependencies between the points which one wants to exclude, depending on the problem.

In the points example, it is straightforward how one can define genericity in terms of sampling
from a probability distribution: one could draw the points under a suitable continuous probability
distribution from real two-space. Then, saying that the points are “generic” just amounts to examine
properties which are true with probability one for the n points. Affine dependencies for example
would then occur with probability zero and are automatically excluded from our interest. One can
generalize this idea to the lines example: one can parameterize the lines by a parameter space, which
in this case is two-dimensional (slope and ordinate), and then sample lines uniformly distributed in
this space (one has of course to make clear what this means). For example, lines lying on each other
or more than two lines intersecting at a point would occur with probability zero, since the part of
parameter space for this situation would have measure zero under the given probability distribution.

When we work with polynomials and ideals, the situation gets a bit more complicated but the
idea is the same. Polynomials are uniquely determined by their coefficients, so they can naturally
be considered as objects in the vector space of their coefficients. Similarly, an ideal can be specified
by giving the coefficients of some set of generators. Let us make this more explicit: suppose first
we have given a single polynomial f ∈ C[X1, . . .XD] of degree k.

In multi-index notation, we can write this polynomial as a finite sum

f = ∑
α∈ND

cαXα with cα ∈ C.

This means that the possible choices for f can be parameterized by the
(D+k

k
)

coefficients cI with
‖I‖1 ≤ k. Thus polynomials of degree k with complex coefficients can be parameterized by complex
(D+k

k
)

-space.
Algebraic sets can be similarly parameterized by parameterizing the generators of the corre-

sponding ideal. However, this correspondence is highly non-unique, as different generators may
give rise to the same zero set. While the parameter space can be made unique by dividing out
redundancies, which gives rise to the Hilbert scheme, we will instead use the redundant, though
pragmatic characterization in terms of a finite dimensional vector space over C of the correct di-
mension.

We will now fix notation for the parameter space of polynomials and endow it with algebraic
structure. The extension to ideals will then be derived later. Let us write Mk for complex

(D+k
k
)

-
space (we assume D as fixed), interpreting it as a parameter space for the polynomials of degree k as
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shown above. Since the parameter spaceMk is isomorphic to complex
(D+k

k
)

-space, we may speak
about algebraic sets in Mk. Also, Mk carries the complex topology induced by the topology on
R2k and by topological isomorphy the Lebesgue measure; thus it also makes sense to speak about
probability distributions and random variables on Mk. This dual interpretation will be the main
ingredient in our definition of genericity, and will allow us to relate algebraic results on genericity
to the probabilistic setting in the applications. As Mk is a topological space, we may view any
algebraic set inMk as an event if we randomly choose a polynomial inMk:

Definition 29 Let X be a random variable with values in Mk. Then an event for X is called al-
gebraic event or algebraic property if the corresponding event set in Mk is an algebraic set. It is
called irreducible if the corresponding event set inMk is an irreducible algebraic set.

If an event A is irreducible, this means that if we write A as the event “A1 and A2”, for algebraic
events A1,A2, then A= A1, or A= A2.We now give some examples for algebraic properties.

Example 30 The following events onMk are algebraic:

1. The sure event.

2. The empty event.

3. The polynomial is of degree n or less.

4. The polynomial vanishes on a prescribed algebraic set.

5. The polynomial is contained in a prescribed ideal.

6. The polynomial is homogenous.

7. The polynomial is a square.

8. The polynomial is reducible.

Properties 1-5 are additionally irreducible.
We now show how to prove these claims: 1-2 are clear, we first prove that properties 3-5 are

algebraic and irreducible. By definition, it suffices to prove that the subset of Mk corresponding
to those polynomials is an irreducible algebraic set. We claim: in any of those cases, the subset
in question is moreover a linear subspace, and thus algebraic and irreducible. This can be easily
verified by checking directly that if f1, f2 fulfill the property in question, then f1+α f2 also fulfills
the property.

Property 6 is algebraic, since it can be described as the disjunction of the properties “The poly-
nomial is homogenous and of degree n” for all n ≤ k. Those single properties can be described
by linear subspaces of Mk as above, thus property 6 is parameterized by the union of those linear
subspaces. In general, these are orthogonal, so property 6 is not irreducible.

Property 7 is algebraic, as we can check it through the vanishing of a system of generalized
discriminant polynomials. One can show that it is also irreducible since the subset ofMk in question
corresponds to the image of a Veronese map (homogenization to degree k is a strategy); however,
since we will not need such a result, we do not prove it here.

Property 8 is algebraic, since factorization can also be checked by sets of equations. One has to
be careful here though, since those equations depend on the degrees of the factors. For example, a
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polynomial of degree 4 may factor into two polynomials of degree 1 and 3, or in two polynomials
of degree 2 each. Since in general each possible combination defines different sets of equations and
thus different algebraic subsets ofMk, property 8 is in general not irreducible (for k ≤ 3 it is).

The idea defining a choice of polynomial as generic follows the intuition of the affirmed non-
sequitur: a generic, resp. generically chosen polynomial should not fulfill any algebraic property.
A generic polynomial, having a particular simple (i.e., irreducible) algebraic property, should not
fulfill any other algebraic property which is not logically implied by the first one. Here, algebraic
properties are regarded as the natural model for restrictive and degenerate conditions, while their
logical negations are consequently interpreted as generic, as we have seen in Example 30. These
considerations naturally lead to the following definition of genericity in a probabilistic context:

Definition 31 Let X be a random variable with values inMk. Then X is called generic, if for any
irreducible algebraic events A,B, the following holds:

The conditional probability PX(A|B) exists and vanishes if and only if B does not imply A.

In particular, B may also be the sure event.
Note that without giving a further explication, the conditional probability PX(A|B) is not well-

defined, since we condition on the event B which has probability zero. There is also no unique way
of remedying this, as for example the Borel-Kolmogorov paradox shows. In Section B.2, we will
discuss the technical notion which we adopt to ensure well-definedness.

Intuitively, our definition means that an event has probability zero to occur unless it is logically
implied by the assumptions. That is, degenerate dependencies between events do not occur.

For example, non-degenerate multivariate Gaussian distributions or Gaussian mixture distribu-
tions on Mk are generic distributions. More general, any positive continuous probability distribu-
tion which can be approximated by Gaussian mixtures is generic (see Example 37). Thus we argue
that non-generic random variables are very pathological cases. Note however, that our intention
is primarily not to analyze the behavior of particular fixed generic random variables (this is part
of classical statistics). Instead, we want to infer statements which follow not from the particular
structure of the probability function but solely from the fact that it is generic, as these statements
are intrinsically implied by the conditional postulate in Definition 31 alone. We will discuss the
definition of genericity and its implications in more detail in Section B.2.

With this definition, we can introduce the terminology of a generic object: it is a generic random
variable which is object-valued.

Definition 32 We call a generic random variable with values inMk a generic polynomial of degree
k.When the degree k is arbitrary but fixed (and still≥ 1), we will say that f is a generic polynomial,
or that f is generic, if it is clear from the context that f is a polynomial. If the degree k is zero, we
will analogously say that f is a generic constant.

We call a set of constants or polynomials f1, . . . , fm generic if they are generic and independent.

We call an ideal generic if it is generated by a set of m generic polynomials.

We call an algebraic set generic if it is the vanishing set of a generic ideal.
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Let P be an algebraic property on a polynomial, a set of polynomials, an ideal, or an algebraic
set (e.g., homogenous, contained in an ideal et.). We will call a polynomial, a set of polynomials,
or an ideal, a generic P polynomial, set, or ideal, if it the conditional of a generic random variable
with respect to P .

If A is a statement about an object (polynomial, ideal etc), and P an algebraic property, we will
say briefly “A generic P object is A” instead of saying “A generic P object is A with probability
one”.

Note that formally, these objects are all polynomial, ideal, algebraic set etc -valued random
variables. By convention, when we state something about a generic object, this will be an implicit
probability-one statement. For example, when we say

“A generic green ideal is blue”,

this is an abbreviation for the by definition equivalent but more lengthy statement

“Let f1, . . . , fm be independent generic random variables with values in Mk1 , . . . ,Mkm . If the
ideal 〈 f1, . . . , fm〉 is green, then with probability one, it is also blue - this statement is independent
of the choice of the ki and the choice of which particular generic random variables we use to sample.

On the other hand, we will use the verb “generic” also as a qualifier for “constituting generic
distribution”. So for example, when we say

“The Z of a generic red polynomial is a generic yellow polynomial”,

this is an abbreviation of the statement

“Let X be a generic random variable onMk, let X ′ be the yellow conditional of X . Then the Z
of X ′ is the red conditional of some generic random variable - in particular this statement is inde-
pendent of the choice of k and the choice of X .”

It is important to note that the respective random variables will not be made explicit in the fol-
lowing subsections, since the statements will rely only on its property of being generic, and not on
its particular structure which goes beyond being generic.

As an application of these concepts, we may now formulate the problem of comparing cumu-
lants in terms of generic algebra:

Problem 33 Let s= I(S), where S is an unknown d-dimensional subspace of CD. Let

I = 〈 f1, . . . , fm〉

with fi ∈ s generic of fixed degree each (in our case, one and two), such that
√
I = s.

Then determine a reduced Groebner basis (or another simple generating system) for s.

As we will see, genericity is the right concept to model random sampling of polynomials, as we
will derive special properties of the ideal I which follow from the genericity of the fi.
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B.2 Zero-Measure Conditionals, and Relation to Other Types of Genericity

In this section, se will discuss the definition of genericity in Definition 31 and ensure its well-
definedness. Then we will invoke alternative definitions for genericity and show their relation to
our probabilistic intuitive approach from section B.1. As this section contains technical details and
is not necessary for understanding the rest of the appendix, the reader may opt to skip it.

An important concept in our definition of genericity in Definition 31 is the conditional proba-
bility PX(A|B). As B is an algebraic set, its probability PX(B) is zero, so the Bayesian definition
of conditional cannot apply. There are several ways to make it well-defined; in the following, we
explain the Definition of conditional we use in Definition 31. The definition of conditional we use
is one which is also often applied in this context.

Remark 34 Let X be a real random variable (e.g., with values inMk) with probability measure µ.
If µ is absolutely continuous, then by the theorem of Radon-Nikodym, there is a unique continuous
density p such that

µ(U) =
∫
U
pdλ

for any Borel-measurable set U and the Lebesgue measure λ. If we assume that p is a continuous
function, it is unique, so we may define a restricted measure µB on the event set of B by setting

ν(U) =
∫
U
pdH,

for Borel subsets of U and the Hausdorff measure H on B. If ν(B) is finite and non-zero, that is, ν
is absolutely continuous with respect to H, then it can be renormalized to yield a conditional prob-
ability measure µ(.)|B = ν(.)/ν(B). The conditional probability PX(A|B) has then to be understood
as

PX(A|B) =
∫
B

(A∩B)dµ |B,

whose existence in particular implies that the Lebesgue integrals ν(B) are all finite and non-zero.

As stated, we adopt this as the definition of conditional probability for algebraic sets A and B. It
is important to note that we have made implicit assumptions on the random variable X by using the
conditionals PX(A|B) in Remark 34 (and especially by assuming that they exist): namely, the exis-
tence of a continuous density function and existence, finiteness, and non-vanishing of the Lebesgue
integrals. Similarly, by stating Definition 31 for genericity, we have made similar assumptions on
the generic random variable X , which can be summarized as follows:

Assumption 35 X is an absolutely continuous random variable with continuous density function
p, and for every algebraic event B, the Lebesgue integrals

∫
B
pdH,

where H is the Hausdorff measure on B, are non-zero and finite.

This assumption implies the existence of all conditional probabilities PX(A|B) in Definition 31,
and are also necessary in the sense that they are needed for the conditionals to be well-defined. On
the other hand, if those assumptions are fulfilled for a random variable, it is automatically generic:
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Remark 36 Let X be a Mk-valued random variable, fulfilling the Assumptions in 35. Then, the
probability density function of X is strictly positive. Moreover, X is a generic random variable.

Proof Let X be aMk-valued random variable fulfilling the Assumptions in 35. Let p be its contin-
uous probability density function.

We first show positivity: if X would not be strictly positive, then p would have a zero, say x.
Taking B= {x}, the integral

∫
B pdH vanishes, contradicting the assumption.

Now we prove genericity, that is, that for arbitrary irreducible algebraic properties A,B such
that B does not imply A, the conditional probability PX(A|B) vanishes. Since B does not imply
A, the algebraic set defined by B is not contained in A. Moreover, as B and A are irreducible
and algebraic, A∩B is also of positive codimension in B. Now by assumption, X has a positive
continuous probability density function f which by assumption restricts to a probability density on
B, being also positive and continuous. Thus the integral

PX(A|B) =
∫
B

A f (x)dH,

where H is the Hausdorff measure on B, exists. Moreover, it is zero, as we have derived that A has
positive codimension in B.

This means that already under mild assumptions, which merely ensure well-definedness of the
statement in the Definition 31 of genericity, random variables are generic. The strongest of the
comparably mild assumptions are the convergence of the conditional integrals, which allow us to
renormalize the conditionals for all algebraic events. In the following example, a generic and a
non-generic probability distribution are presented.

Example 37 Gaussian distributions and Gaussian mixture distributions are generic, since for any
algebraic set B, we have ∫

B
B(t) dH = O(tdimB),

where B(t) = {x ∈ Rn ; ‖x‖ < t} is the open disc with radius t. Note that this particular bound
is false in general and may grow arbitrarily large when we omit B being algebraic, even if B is a
smooth manifold. Thus PX(A|B) is bounded from above by an integral (or a sum) of the type

∫ ∞

0
exp(−t2)ta dt with a ∈ N

which is known to be finite.
Furthermore, sums of generic distributions are again generic; also, one can infer that any contin-

uous probability density dominated by the distribution of a generic density defines again a generic
distribution.

An example of a non-generic but smooth distribution is given by the density function

p(x,y) =
1
N
e−x

4y4

where N is some normalizing factor. While p is integrable on R2, its restriction to the coordinate
axes x= 0 and y= 0 is constant and thus not integrable.
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Now we will examine different known concepts of genericity and relate them briefly to the one
we have adopted.

A definition of genericity in combinatorics and geometry which can be encountered in different
variations is that there exist no degenerate interpolating functions between the objects:

Definition 38 Let P1, . . . ,Pm be points in the vector space Cn. Then P1, . . . ,Pm are general position
(or generic, general) if no n+1 points lie on a hyperplane. Or, in a stronger version: for any d ∈N,
no (possibly inhomogenous) polynomial of degree d vanishes on

(n+d
d
)

+1 different Pi.

AsMk is a finite dimensional C-vector space, this definition is in principle applicable to our situa-
tion. However, this definition is deterministic, as the Pi are fixed and no random variables, and thus
preferable when making deterministic statements. Note that the stronger definition is equivalent to
postulating general position for the points P1, . . . ,Pm in any polynomial kernel feature space.

Since not lying on a hyperplane (or on a hypersurface of degree d) inCn is a non-trivial algebraic
property for any point which is added beyond the n-th (resp. the

(n+d
d
)

-th) point Pi (interpreted as
polynomial in Mk), our definition of genericity implies general position. This means that generic
polynomials f1, . . . , fm ∈ Mk (almost surely) have the deterministic property of being in general
position as stated in Definition 38. A converse is not true for two reasons: first, the Pi are fixed and
no random variables. Second, even if one would define genericity in terms of random variables such
that the hyperplane (resp. hypersurface) conditions are never fulfilled, there are no statements made
on conditionals or algebraic properties other than containment in a hyperplane, also Lebesgue zero
sets are not excluded from occurring with positive probability.

Another example where genericity classically occurs is algebraic geometry, where it is defined
rather general for moduli spaces. While the exact definition may depend on the situation or the
particular moduli space in question, and is also not completely consistent, in most cases, genericity
is defined as follows: general, or generic, properties are properties which hold on a Zariski-open
subset of an (irreducible) variety, while very generic properties hold on a countable intersection
of Zariski-open subsets (which are thus paradoxically ”less” generic than general resp. generic
properties in the algebraic sense, as any general resp. generic property is very generic, while the
converse is not necessarily true). In our special situation, which is the affine parameter space of
tuples of polynomials, these definitions can be rephrased as follows:

Definition 39 Let B ⊆ Ck be an irreducible algebraic set, let P = ( f1, . . . , fm) be a tuple of poly-
nomials, viewed as a point in the parameter space B. Then a statement resp. property A of P is
called very generic if it holds on the complement of some countable union of algebraic sets in B. A
statement resp. property A of P is called general (or generic) if it holds on the complement of some
finite union of algebraic sets in B.

This definition is more or less equivalent to our own; however, our definition adds the practical
interpretation of generic/very generic/general properties being true with probability one, while their
negations are subsequently true with probability zero. In more detail, the correspondence is as
follows: If we restrict ourselves only to algebraic properties A, it is equivalent to say that the property
A is very generic, or general for the P in B, and to say with our original definition that a generic P
fulfilling B is also A; since if A is by assumption an algebraic property, it is both an algebraic set
and a complement of a finite (countable) union of algebraic sets in an irreducible algebraic set, so
A must be equal to an irreducible component of B; since B is irreducible, this implies equality of

890



ALGEBRAIC GEOMETRIC COMPARISON OF PROBABILITY DISTRIBUTIONS

A and B. On the other hand, if A is an algebraic property, it is equivalent to say that the property
not-A is very generic, or general for the P in B, and to say with our original definition that a generic
P fulfilling B is not A - this corresponds intuitively to the probability-zero condition P(A|B) = 0
which states that non-generic cases do not occur. Note that by assumption, not-A is then always the
complement of a finite union of algebraic sets.

B.3 Arithmetic of Generic Polynomials

In this subsection, we study how generic polynomials behave under classical operations in rings and
ideals. This will become important later when we study generic polynomials and ideals.

To introduce the reader to our notation of genericity, and since we will use the presented facts
and similar notations implicitly later, we prove the following

Lemma 40 Let f ∈ C[X1, . . . ,XD] be generic of degrees k. Then:
(i) The product α f is generic of degree k for any fixed α ∈ C\{0}.
(ii) The sum f +g is generic of degree k for any g ∈ C[X1, . . . ,XD] of degree k or smaller.
(iii) The sum f +g is generic of degree k for any generic g ∈C[X1, . . . ,XD] of degree k or smaller.

Proof (i) is clear since the coefficients of g1 are multiplied only by a constant. (ii) follows directly
from the definitions since adding a constant g only shifts the coefficients without changing generic-
ity. (iii) follows since f ,g are independently sampled: if there were algebraic dependencies between
the coefficients of f + g, then either f or g was not generic, or the f ,g are not independent, which
both would be a contradiction to the assumption.

Recall again what this Lemma means: for example, Lemma 40 (i) does not say, as one could
think:

“Let X be a generic random variable with values in the vector space of degree k polynomials.
Then X = αX for any α ∈ C\{0}.”

The correct translation of Lemma 40 (i) is:

“Let X be a generic random variable with values in the vector space of degree k polynomials.
Then X ′ = αX for any fixed α∈C\{0} is a generic random variable with values in the vector space
of degree k polynomials”

The other statements in Lemma 40 have to be interpreted similarly.

The following remark states how genericity translates through dehomogenization:

Lemma 41 Let f ∈ C[X1, . . . ,XD] be a generic homogenous polynomial of degree d.
Then the dehomogenization f (X1, . . . ,XD−1,1) is a generic polynomial of degree d in the polynomial
ring C[X1, . . . ,XD−1].
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Similarly, let s!C[X1, . . . ,XD] be a generic homogenous ideal. Let f ∈ s be a generic homoge-
nous polynomial of degree d.
Then the dehomogenization f (X1, . . . ,XD−1,1) is a generic polynomial of degree d in the dehomog-
enization of s.

Proof For the first statement, it suffices to note that the coefficients of a homogenous polynomial of
degree d in the variables X1, . . . ,XD are in bijection with the coefficients of a polynomial of degree
d in the variables X1, . . . ,XD−1 by dehomogenization. For the second part, recall that the dehomog-
enization of s consists exactly of the dehomogenizations of elements in s. In particular, note that the
homogenous elements of s of degree d are in bijection to the elements of degree d in the dehomog-
enization of s. The claims then follows from the definition of genericity.

B.4 Generic Spans and Generic Height Theorem

In this subsection, we will derive the first results on generic ideals. We will derive an statement about
spans of generic polynomials, and generic versions of Krull’s principal ideal and height theorems
which will be the main tool in controlling the structure of generic ideals. This has immediate
applications for the cumulant comparison problem.

Now we present the first result which can be easily formulated in terms of genericity:

Proposition 42 Let P be an algebraic property such that the polynomials with property P form a
vector space V . Let f1, . . . , fm ∈ C[X1, . . .XD] be generic polynomials satisfying P. Then

rankspan( f1, . . . , fm) =min(m,dimV ).

Proof It suffices to prove: if i≤M, then fi is linearly independent from f1, . . . fi−1 with probability
one. Assuming the contrary would mean that for some i, we have

fi =
i−1

∑
k=0

fkck for some ck ∈ C,

thus giving several equations on the coefficients of fi. But these are fulfilled with probability zero
by the genericity assumption, so the claim follows.

This may be seen as a straightforward generalization of the statement: the span of n generic
points in CD has dimension min(n,D).

We now proceed to another nontrivial result which will now allow us to formulate a generic
version of Krull’s principal ideal theorem:

Proposition 43 Let Z ⊆ CD be a non-empty algebraic set, let f ∈ C[X1, . . .XD] generic. Then f is
no zero divisor in O(Z) = C[X1, . . .XD]/ I(Z).

Proof We claim: being a zero divisor in O(Z) is an irreducible algebraic property. We will prove
that the zero divisors in O(Z) form a linear subspace ofMk, and linear spaces are irreducible.
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For this, one checks that sums and scalar multiples of zero divisors are also zero divisors: if
g1,g2 are zero divisors, there must exist h1,h2 such that g1h1 = g2h2 = 0. Now for any α ∈ C, we
have that

(g1+αg2)(h1h2) = (g1h1)h2+(g2h2)αh1 = 0.

This proves that (g1+αg2) is also a zero divisor, proving that the zero divisors form a linear sub-
space and thus an irreducible algebraic property.

To apply the genericity assumption to argue that this event occurs with probability zero, we
must exclude the possibility that being a zero divisor is trivial, that is, always the case. This is
equivalent to proving that the linear subspace has positive codimension, which is true if and only if
there exists a non-zero divisor in O(Z). But a non-zero divisor always exists since we have assumed
Z is non-empty: thus I(Z) is a proper ideal, and O(Z) contains C, which contains a non-zero divisor,
for example, the one element.

So by the genericity assumption, the event that f is a zero divisor occurs with probability zero,
that is, a generic f is not a zero divisor. Note that this does not depend on the degree of f .

Note that this result is already known, compare Conjecture B in Pardue (2010).
A straightforward generalization using the same proof technique is given by the following

Corollary 44 Let I !C[X1, . . . ,XD], let P be a non-trivial algebraic property. Let f ∈ C[X1, . . .XD]
be a generic polynomial with property P. If one can write f = f ′ + c, where f ′ is a generic
polynomial subject to some property P′, and c is a generic constant, then f is no zero divisor in
C[X1, . . . ,XD]/I .

Proof First note that f is a zero divisor in C[X1, . . . ,XD]/I if and only if f is a zero divisor in
C[X1, . . . ,XD]/

√
I . This allows us to reduce to the case that I = I(Z) for some algebraic set Z ⊆CD.

Now, as in the proof of Proposition 43, we see that being a zero divisor in O(Z) is an irreducible
algebraic property and corresponds to a linear subspace ofMk, where k = deg f . The zero divisors
with property P are thus contained in this linear subspace. Now let f be generic with property P as
above. By assumption, we may write f = f ′+ c. But c is (generically) no zero divisor, so f is also
not a zero divisor, since the zero divisors form a linear subspace of Mk. Thus f is no zero divisor.
This proves the claim.

Note that Proposition 43 is actually a special case of Corollary 44, since we can write any
generic polynomial f as f ′+ c, where f ′ is generic of the same degree, and c is a generic constant.

The major tool to deal with the dimension of generic intersections is Krull’s principal ideal
theorem:

Theorem 45 (Krull’s principal ideal theorem) Let R be a commutative ring with unit, let f ∈ R
be non-zero and non-invertible. Then

ht〈 f 〉 ≤ 1,

with equality if and only if f is not a zero divisor in R.

The reader unfamiliar with height theory may take

htI = codimV(I )

as the definition for the height of an ideal (caveat: codimension has to be taken in R).
Reformulated geometrically for our situation, Krull’s principal ideal theorem implies:
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Corollary 46 Let Z be a non-empty algebraic set in CD.Then

codim(Z∩V( f ))≤ codimZ+1.

Proof Apply Krull’s principal ideal theorem to the ring R= O(Z) = C[X1, . . . ,XD]/ I(Z).

Together with Proposition 43, one gets a generic version of Krull’s principal ideal theorem:

Theorem 47 (Generic principal ideal theorem) Let Z be a non-empty algebraic set inCD, let R=
O(Z), and let f ∈ C[X1, . . . ,XD] be generic. Then we have

ht〈 f 〉= 1.

In its geometric formulation, we obtain the following result.

Corollary 48 Consider an algebraic set Z ⊆ CD, and the algebraic set V( f ) for some generic
f ∈ C[X1, . . . ,XD]. Then

codim(Z∩V( f )) =min(codimZ+1, D+1).

Proof This is just a direct reformulation of Theorem 47 in the vein of Corollary 46. The only
additional thing that has to be checked is the case where codimZ = D+ 1, which means that Z is
the empty set. In this case, the equality is straightforward.

The generic version of the principal ideal theorem straightforwardly generalizes to a generic
version of Krull’s height theorem. We first mention the original version:

Theorem 49 (Krull’s height theorem) Let R be a commutative ring with unit, let I = 〈 f1, . . . , fm〉!
R be an ideal. Then

htI ≤ m,

with equality if and only if f1, . . . , fm is an R-regular sequence, that is, fi is not invertible and not a
zero divisor in the ring R/〈 f1, . . . , fi−1〉 for all i.

The generic version can be derived directly from the generic principal ideal theorem:

Theorem 50 (Generic height theorem) Let Z be an algebraic set in CD, let I = 〈 f1, . . . , fm〉 be a
generic ideal in C[X1, . . . ,XD]. Then

ht(I(Z)+ I ) =min(codimZ+m, D+1).

Proof We will write R= O(Z) for abbreviation.
First assume m ≤ D+ 1− codimZ. It suffices to show that f1, . . . , fm forms an R-regular se-

quence, then apply Krull’s height theorem. In Proposition 43, we have proved that fi is not a zero
divisor in the ring O(Z∩V( f1, . . . , fi−1)) (note that the latter ring is nonzero by Krull’s height the-
orem). By Hilbert’s Nullstellensatz, this is the same as the ring R/

√

〈 f1, . . . , fi−1〉. But by the defi-
nition of radical, this implies that fi is no zero divisor in the ring R/〈 f1, . . . , fi−1〉, since if fi ·h= 0
in the first ring, we have

( fi ·h)N = fi · ( f N−1i hN) = 0
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in the second. Thus the fi form an R-regular sequence, proving the theorem for the case m ≤
D+1− codimZ.

If nowm> k :=D+1−codimZ, the above reasoning shows that the radical of I(Z)+〈 f1, . . . , fk〉
is the module 〈1〉, which means that those are equal. Thus

I(Z)+ 〈 f1, . . . , fk〉= I(Z)+ 〈 f1, . . . , fm〉= 〈1〉,

proving the theorem.
Note that we could have proved the generic height theorem also directly from the generic prin-

cipal ideal theorem by induction.

Again, we give the geometric interpretation of Krull’s height theorem:

Corollary 51 Let Z1 be an algebraic set in CD, let Z2 be a generic algebraic set in CD. Then one
has

codim(Z1∩Z2) =min(codimZ1+ codimZ2, D+1).

Proof This follows directly from two applications of the generic height theorem 50: first for Z=CD

and Z2 =V(I ), showing that codimZ2 is equal to the number m of generators of I ; then, for Z = Z1
and Z2 = V(I ), and substituting m= codimZ2.

We can now immediately formulate a homogenous version of Proposition 51:

Corollary 52 Let Z1 be a homogenous algebraic set in CD, let Z2 be a generic homogenous alge-
braic set in CD. Then one has

codim(Z1∩Z2) =min(codimZ1+ codimZ2, D).

Proof Note that homogenization and dehomogenization of a non-empty algebraic set do not change
its codimension, and homogenous algebraic sets always contain the origin. Also, one has to note
that by Lemma 41, the dehomogenization of Z2 is a generic algebraic set in CD−1.

Finally, using Corollary 44, we want to give a more technical variant of the generic height
theorem, which will be of use in later proofs. First, we introduce some abbreviating notations:

Definition 53 Let f ∈ C[X1, . . .XD] be a generic polynomial with property P. If one can write
f = f ′+c, where f ′ is a generic polynomial subject to some property P′, and c is a generic constant,
we say that f has independent constant term. If c is generic and independent with respect to some
collection of generic objects, we say that f has independent constant term with respect to that
collection.

In this terminology, Corollary 44 rephrases as: a generic polynomial with independent constant term
is no zero divisor. Using this, we can now formulate the corresponding variant of the generic height
theorem:
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Lemma 54 Let Z be an algebraic set in CD. Let f1, . . . , fm ∈ C[X1, . . . ,XD] be generic, possibly
subject to some algebraic properties, such that fi has independent constant term with respect to Z
and f1, . . . , fi−1. Then

ht(I(Z)+ I ) =min(codimZ+m, D+1).

Proof Using Corollary 44, one obtains that fi is no zero divisor modulo I(Z)+ 〈 f1, . . . , fi+1〉. Using
Krull’s height theorem yields the claim.

B.5 Generic Ideals

The generic height theorem 50 has allowed us to make statements about the structure of ideals gener-
ated by generic elements without constraints. However, the ideal I in our the cumulant comparison
problem is generic subject to constraints: namely, its generators are contained in a prescribed ideal,
and they are homogenous. In this subsection, we will use the theory developed so far to study
generic ideals and generic ideals subject to some algebraic properties, for example, generic ideals
contained in other ideals. We will use these results to derive an identifiability result on the marginal-
ization problem which has been derived already less rigorously in the supplementary material of von
Bünau et al. (2009) for the special case of Stationary Subspace Analysis.

Proposition 55 Let s!C[X1, . . . ,XD] be an ideal, having an H-basis g1, . . . ,gn. Let

I = 〈 f1, . . . , fm〉, m≥max(D+1,n)

with generic fi ∈ s such that

deg fi ≥max
j

(degg j) for all 1≤ i≤ m.

Then I = s.

Proof First note that since the gi form a degree-first Groebner basis, a generic f ∈ s is of the form

f =
n

∑
k=1

gkhk with generic hk,

where the degrees of the hk are appropriately chosen, that is, deghk ≤ deg f −deggk.
So we may write

fi =
n

∑
k=1

gkhki with generic hki,

where the hki are generic with appropriate degrees, and independently chosen. We may also assume
that the fi are ordered increasingly by degree.

To prove the statement, it suffices to show that g j ∈ I for all j. Now the height theorem 50
implies that

〈h11, . . .h1m〉= 〈1〉,
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since the hki were independently generic, and m ≥ D+ 1. In particular, there exist polynomials
s1, . . . ,sm such that

m

∑
i=1

sih1i = 1.

Thus we have that
m

∑
i=1

si fi =
m

∑
i=1

si
n

∑
k=1

gkhki =
n

∑
k=1

gk
m

∑
i=1

sihki

= g1+
n

∑
k=2

gk
m

∑
i=1

sihki =: g1+
n

∑
k=2

gkh′k.

Subtracting a suitable multiple of this element from the f1, . . . , fm, we obtain

f ′i =
n

∑
k=2

gk(hki−h1ih′k) =:
n

∑
k=2

gkh′ki.

Wemay now consider h1ih′k as fixed, while the hki are generic. In particular, the h
′
ki have independent

constant term, and using Lemma 54, we may conclude that

〈h′21, . . . ,h′2m〉= 〈1〉,

allowing us to find an element of the form

g2+
n

∑
k=3

gk · . . .

in I . Iterating this strategy by repeatedly applying Lemma 54, we see that gk is contained in I ,
because the ideals I and s have same height. Since the numbering for the g j was arbitrary, we have
proved that g j ∈ I , and thus the proposition.

The following example shows that we may not take the degrees of the fi completely arbitrary in the
proposition, that is, the condition on the degrees is necessary:

Example 56 Keep the notations of Proposition 55. Let s = 〈X2−X21 ,X3〉, and fi ∈ s generic of
degree one. Then

〈 f1, . . . , fm〉= 〈X3〉.

This example can be generalized to yield arbitrarily bad results if the condition on the degrees is not
fulfilled.

However note that when s is generated by linear forms, as in the marginalization problem, the
condition on the degrees vanishes.

We may use Proposition 55 also in another way to derive a more detailed version of the generic
height theorem for constrained ideals:

Proposition 57 LetV be a fixed complete intersection set inCD, i.e. an algebraic set of codimension
d such that there exist d generators g1, . . . ,gd for I(V ). Let f1, . . . , fm be generic forms in I(V ) such
that deg fi ≥ max j (degg j) for 1 ≤ i ≤ m. Then we can write V( f1, . . . , fm) = V ∪U with U an
algebraic set of

codimU ≥min(m, D+1),

the equality being strict for m< d.
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KIRÁLY, VON BÜNAU, MEINECKE, BLYTHE AND MÜLLER

Proof If m≥ D+1, this is just a direct consequence of Proposition 55.
First assume m = d. Consider the situation modulo Xm, . . . ,XD. This corresponds to looking at

the situation
V( f1, . . . , fm)∩H ⊆ H ∼= C

m−1,

where H is the linear subspace given by Xm = · · · = XD = 0. Since the coordinate system was
generic, the elements fi will be also generic modulo X, . . . ,XD, and we have by Proposition 55
that V( f1, . . . , fm)∩H = V ∩H. Also, the H can be regarded as a generic linear subspace, thus by
Corollary 51, we see that V( f1, . . . , fm) consists of V and possibly components of equal or higher
codimension. This proves the claim for m= codimV.

The case m < d follows from Krull’s principal ideal theorem 45: it states that the codimension
of V( f1, . . . , fi) increases at most by one when increasing i by one; above, we have proved equality
for i = d. Thus, the codimension of V( f1, . . . , fi) must have been i for every i ≤ d. This yields the
claim.

Nowwe prove the remaining casem≥ d.Wewill assume thatm=D+1 and prove the statement
for the sets V( f1, . . . , fi),d ≤ i≤ m. By the Lasker-Noether-Theorem, we may write

V( f1, . . . , fd) =V ∪Z1∪ · · ·∪ZN

for finitely many irreducible components Zj with codimZj ≥ d. Proposition 55 states that

V( f1, . . . , fm) =V.

For i≥ d, write now
Zji = Zj ∩V( f1, . . . , fi) = Zj ∩V( fd+1, . . . , fi).

With this, we have the equalities

V( f1, . . . , fi) = V( f1, . . . , fd)∩V( fd+1, . . . , fi)
=V ∪ (Z1∩V( fd+1, . . . , fi))∪ · · ·∪ (ZN ∩V( fd+1, . . . , fi))
=V ∪Z1i∪ · · ·∪ZNi.

for i ≥ d. Thus, reformulated, Proposition 55 states that Zjm = ∅ for any j. We can now infer by
Krull’s principal ideal theorem 45 that

codimZji ≤ codimZj,i−1+1

for any i, j. But since codimZjm=D+1, and codimZjd ≥ d, this can only happen when codimZji≥
i for any d ≤ i≤ m. Thus we may write

V( f1, . . . , fi) =V ∪U withU = Z1i∪ · · ·∪ZNi

with codimU ≥ i, which proves the claim for m≥ codimV.

Note that depending on V and the degrees of the fi, it may happen that even in the generic case,
the equality in Proposition 57 is not strict for m≥ codimV :
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Example 58 Let V be a generic linear subspace of dimension d in CD, let f1, . . . , fm ∈ I(V ) be
generic with degree one. Then V( f1, . . . , fm) is a generic linear subspace of dimension max(D−
m,d) containing V. In particular, if m ≥ D− d, then V( f1, . . . , fm) = V. In this example, U =
V( f1, . . . , fm), if m < codimV, with codimension m, and U = ∅, if m ≥ codimV, with codimen-
sion D+1.

Similarly, one may construct generic examples with arbitrary behavior for codimU when m ≥
codimV, by choosing V and the degrees of fi appropriately.

Algebraic sets which are not complete intersection sets are still contained in a complete inter-
section set of same dimension, so the following similar result holds for arbitrary algebraic sets:

Corollary 59 Let V be a fixed algebraic set in CD, of codimension d; let g1, . . . ,gd be a regular
sequence in I(V ), let n be the cardinality of some H-basis of I(V ). Let f1, . . . , fm be generic forms in
I(V ) such that deg fi ≥max j (degg j) for 1≤ i≤ m. Then we can write V( f1, . . . , fm) =V ∪U with
an algebraic set U whose codimension satisfies

codimU = m if m≤ d
codimU ≥min(D+1+m−n,m,D+1) if m≥ d.

Proof This follows in analogy to Proposition 57.

Similarly as in the geometric version for the height theorem, we may derive the following geo-
metric interpretation of this result:

Corollary 60 Let V ⊆ Z1 be fixed algebraic sets in CD. Let Z2 be a generic algebraic set in CD

containing V. Then

codim(Z1∩Z2 \V )≥min(codim(Z1 \V )+ codim(Z2 \V ), D+1).

Informally, we have derived a height theorem type result for algebraic sets under the constraint that
they contain another prescribed algebraic set V .

We also give a homogenous version of Proposition 57, since the ideals we will consider are
homogenous complete intersection:

Corollary 61 Let V be a fixed homogenous complete intersection set in CD. Let f1, . . . , fm be
generic homogenous forms in I(V ), satisfying the degree condition as in Proposition 57. Then
V( f1, . . . , fm) =V +U with U an algebraic set fulfilling

codimU ≥min(m, D).

In particular, if m>D, then V( f1, . . . , fm) =V. Also, the maximal dimensional part of V( f1, . . . , fm)
equals V if and only if m> D−dimV.

Proof This follows immediately by dehomogenizing, applying Proposition 57, and homogenizing
again.
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From this Corollary, we now can directly derive a statement on the necessary number of epochs
for the identifiability of the projection making several random variables appear identical. For the
convenience of the reader, we recall the setting and then explain what identifiability means. The
problem we consider in the main part of the paper can be described as follows:

Problem 62 Let X1, . . . ,Xm be random variables, let

qi = [T1, . . . ,TD]◦ (κ2(Xi)−κ2(Xm)) , 1≤ i≤ m−1

and
fi = [T1, . . . ,TD]◦ (κ1(Xi)−κ1(Xm)) , 1≤ i≤ m−1

be the corresponding cumulant polynomials in the formal variables T1, . . . ,TD. What can one say
about the set

S′ = V(q1, . . . ,qm−1, f1, . . . , fm−1).

If there is a linear subspace S on which the cumulants agree, then the qi, fi vanish on S. If we assume
that this happens generically, the problem reformulates to

Problem 63 Let S be a d-dimensional linear subspace of CD, let s = I(S), and let f1, . . . , fN be
generic homogenous quadratic or linear polynomials in s. How does S′ = V( f1, . . . , fN) relate to
S?.

Before giving bounds on the identifiability, we first begin with a direct consequence of Corol-
lary 61:

Remark 64 The highest dimensional part of S′ = V( f1, . . . , fN) is S if and only if

N > D−d.

For this, remark that I(S) is generated in degree one, and thus the degree condition in Corollary 61
becomes empty.

We can now also get an identifiability result for S:

Proposition 65 Let f1, . . . , fN be generic homogenous polynomials of degree one or two, vanishing
on a linear space S of dimension d > 0. Then S is identifiable from the fi alone if

N ≥ D−d+1.

Moreover, if all fi are quadrics, then S is identifiable from the fi alone only if

N ≥ 2.

Proof Note that the f1, . . . , fN are generic polynomials contained in s := I(S).
First assume N ≥ D− d+ 1.We prove that S is identifiable: using Corollary 61, one sees now

that the common vanishing set of the fi is S up to possible additional components of dimension
d−1 or less; that is, the radical of the ideal generated by the fi has a prime decomposition

√

〈 f1, . . . , fN〉= s∩p1∩ · · ·∩pk,
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where the pi are of dimension d− 1 or less, while s has dimension d. So one can use one of the
existing algorithms calculating primary decomposition to identify s as the unique component of the
highest dimensional part, which proves identifiability if N ≥ D−d+1.

Now we prove the only if part: assume that N = 1, that is, we have only a single f1. Since f1 is
generic with the property of vanishing on S, we have

f1 =
D−d

∑
i=1

gihi,

where g1, . . . ,gD−d is some homogenous linear generating set for I(S), and h1, . . . ,hD−d are generic
homogenous linear forms. Thus, the zero set V( f1) also contains the linear space S′=V(h1, . . . ,hD−d)
which is a generic d-dimensional linear space in CD and thus different from S; no algorithm can
decide whether S or S′ is the correct solution, so S is not identifiable.

Note that there is no obvious reason for the lower bound N ≥ D−d+1 given in Proposition 65
to be strict. While it is most probably the best possible bound which is in D and d, in general it may
happen that S can be reconstructed from the ideal 〈 f1, . . . , fN〉 directly. The reason for this is that a
generic homogenous variety of high enough degree and dimension does not need to contain a linear
subspace of fixed dimension d in general.
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Ronald A. Fisher. The use of multiple measurements in taxonomic problems. Annals Eugen., 7:
179–188, 1936.

Jerome H. Friedman and John W. Tukey. A projection pursuit algorithm for exploratory data anal-
ysis. Computers, IEEE Transactions on, C-23(9):881 – 890, 9 1974. ISSN 0018-9340. doi:
10.1109/T-C.1974.224051.
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Abstract
High density clusters can be characterized by the connected components of a level set L(λ) =
{x : p(x) > λ} of the underlying probability density function p generating the data, at some ap-
propriate level λ ≥ 0. The complete hierarchical clustering can be characterized by a cluster tree
T =

⋃
λL(λ). In this paper, we study the behavior of a density level set estimate L̂(λ) and cluster

tree estimate T̂ based on a kernel density estimator with kernel bandwidth h. We define two no-
tions of instability to measure the variability of L̂(λ) and T̂ as a function of h, and investigate the
theoretical properties of these instability measures.
Keywords: clustering, density estimation, level sets, stability, model selection

1. Introduction

A common approach to identifying high density clusters is based on using level sets of the density
function (see, for instance, Hartigan, 1975; Rigollet and Vert, 2009). Let X1, . . . ,Xn be a random
sample from a distribution P on Rd with density p. For λ > 0 define the level set L(λ) = {x :
p(x) > λ}. Assume that L(λ) can be decomposed into disjoint, connected sets L(λ) =

⋃N(λ)
j=1 Cj.

Following Hartigan (1975), we refer to Cλ = {C1, . . . ,CN(λ)} as the density clusters at level λ. We
call the collection of clusters

T =
⋃
λ≥0

Cλ

the cluster tree of the density p. Note that T does indeed have a tree structure: if A,B ∈ T then
either, A ⊂ B, or B ⊂ A or A∩ B = /0. The cluster tree summarizes the cluster structure of the
distribution; see Stuetzle and Nugent (2009).
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It is also possible to index the level sets by probability content. For 0< α< 1, define the level
set M(α) = L(λα), where

λα = sup{λ : P(L(λ))≥ α}.

If the density does not contain any jumps or flat parts, then there is a one-to-one correspondence
between the level sets indexed by the density level and the probability content. The cluster tree
obtained from the clusters of M(α) for 0 ≤ α ≤ 1 is equivalent to T . Relabeling the tree in terms
of α may be convenient because α is more interpretable than λ, but the tree is the same. Figure 1
shows the cluster tree for a density estimate of a mixture of three normals (using a reference rule
bandwidth). The cluster tree’s two splits and subsequent three leaves correspond to the density
estimate’s modes. The tree is also indexed by λ, the density estimate’s height, on the left and α,
the probability content, on the right. For example, the second split corresponds to λ = 0.086 and
α= 0.257. We note here that determining the true clusters for even this seemingly simple univariate
distribution is not trivial for all λ; in particular, values of λ near 0.04 and 0.09 will give ambiguous
results.

Figure 1: The cluster tree for a Gaussian kernel density estimate (normal reference rule bandwidth)
of a sample from the mixture (4/7)N(0,1)+ (2/7)N(3.5,1)+ (1/7)N(7,1); the tree is
indexed by both λ (left) and α (right). The dashed curve indicates the true underlying
density. The gray lines indicate L(0.04), L(0.09).

In this paper we study some properties of clusters defined by density level sets and cluster trees.
In particular, we consider their estimators based on a kernel density estimate and show how the
bandwidth h of the kernel affects the risk of these estimators. Then we investigate the notion of
stability for density-based clustering. Specifically, we propose two measures of instability. The
first, denoted by Ξλ,n(h), measures the instability of a given level set. The second, denoted by
Γn(h), is a more global measure of instability.
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Investigation of the stability properties of density clusters is the main focus of the paper. Stabil-
ity has become an increasingly popular tool for choosing tuning parameters in clustering; see von
Luxburg (2009), Lange et al. (2004), Ben-David et al. (2006), Ben-Hur et al. (2002), Carlsson and
Memoli (2010), Meinshausen and Bühlmann (2010), Fischer and Buhmann (2003), and Rinaldo
and Wasserman (2010). The basic idea is this: clustering procedures inevitably depend on one or
more tuning parameters. If we choose a good value of the tuning parameter, then we expect that
the clusters from different subsets of the data should be similar. While this idea sounds simple, the
reality is rather complex. Figure 2 shows a plot of Ξn and Γn for our example. We see that Ξλ,n(h)
is a complicated function of h while Γn(h) is much simpler. Our results will explain this behavior.

Figure 2: Plots of the fixed-λ instability (top) Ξλ,n(h) for λ= 0.09 and of the total variation instabil-
ity Γn(h) (bottom) for the mixture distribution in Figure 1 as functions of the bandwidth
h.

Below we briefly describe our contributions.

• We consider plug-in estimates of the level sets L(λ) corresponding to fixed density levels λ
and also to the level sets L(λα) corresponding to fixed probability contents α using kernel
density estimators. We analyze the statistical properties of these plug-in estimates and for-
mulate conditions on the density of the data generating distribution and on the kernel that
guarantee accurate recovery of the level sets as n becomes large.
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• We formulate a notion of cluster stability of the level sets based on a splitting of the the data
that quantifies the variability of the level set estimators we consider. We construct an esti-
mator of the cluster instability and analyze its performance as n become large, and argue that
stability can provide a guidance on the optimal choice of the bandwidth parameter. As a result
of our analysis, we are able to provide a rigorous characterization of the levels sets for which
the the uncertainty is larger and, therefore, for which the cluster tree can be estimated with
a smaller degree of accuracy. Our results suggest that the sample complexity for successful
reconstruction of the cluster tree may vary significantly depending on whether we estimating
a portion of the tree that is far removed from a branching region or not, and for those portion
of the tree we provide some rates.

• We formulate and analyze a stronger notion of cluster stability that is based on the total
variation distance between kernel density estimates computed over different data subsamples.
This second kind of stability is more global and has natural and interesting connections with
the problem of optimally estimating a density in L1 norm.

After the writing of the first draft of this paper we learned of the interesting and relevant contri-
butions by Chaudhuri and Dasgupta (2010), Kpotufe and von Luxburg (2011) and Steinwart (2011)
who all consider the problem of estimating the cluster tree. Our results provide a different per-
spective on this issue as we concern ourselves with quantifying, based on stability criteria, the
uncertainty of the cluster tree estimate. Furthermore, these papers only characterize the optimal
scaling of parameters to guarantee cluster tree recovery and do not provide a data-driven way to
choose these parameters. In this paper, we investigate stability as a means for data-adaptive choice
of parameters such as the kernel bandwidth.

The paper is organized as follows. In Section 2 we describe the assumptions on the density
and recall some facts about kernel density estimation. In Section 3 we construct plug-in estimates
L̂(λ) of the level set L(λ), T̂ of the cluster tree T , and M̂(α) of the level set indexed by probability
content M(α). In Section 4 we define and study a notion of the stability of L̂(λ) and extend it to T̂ .
We also consider an alternative version of our results when the level sets are indexed by probability
content. We then describe another notion of stability of cluster trees based on total variation that
leads to a constructive procedure for selecting the kernel bandwidth. In Section 5 we consider some
numerical examples. Section 6 contains a discussion of the results and the proofs are in Section
A. Throughout, we use symbols like c,c1,c2, . . . ,C,C1,C2, . . . , to denote various positive constants
whose value can change in different expressions.

2. Preliminaries

In this section we introduce some notation, state the assumptions on the density we will be using
throughout and review some useful facts about kernel density estimation.

2.1 Notation

For x ∈ Rd , let ‖x‖ denote its Euclidean norm. Let B(x,ε) = {y : ||x− y||≤ ε} ⊂ Rd denote a ball
centered at x with radius ε. For two sets A and B in Rd , their Hausdorff distance is

d∞(A,B) = inf{ε : A⊂ (B⊕ ε) and B⊂ (A⊕ ε)},
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where A⊕ ε=
⋃
x∈AB(x,ε), and

A∆B= (A∩Bc)
⋃

(Ac∩B)

denotes the symmetric set difference. Finally, we let vd = πd/2

Γ( d2+1)
be the volume of the d-dimensional

Euclidean unit ball.
For sequences of real numbers {an} and {bn}, we write an = O(bn) if there exists a C > 0 such

that |an| ≤ C|bn| for all n large enough, and we will write an = ω(bn) if there exists a constant
C > 0 such that |an| ≥C|bn| for all n large enough. When {an} and {bn} are sequences of random
variables described by a probability measure P, we will write an = OP(bn) if, for any ε > 0, there
exists a constantC> 0 such that |an|≤C|bn| with P-probability at least 1−ε for all n large enough.

We will be considering samples of n independent and identically distributed random vectors
from an unknown probability measure P on Rd with Lebesgue density p. If X and Y are such
samples, we will denote with PX ,Y the probability measures associated to them and with EX ,Y the
corresponding expectation operator. Thus, if A is an event depending on X and Y , we will write
PX ,Y (A) for its probability. Finally, for a sample X = (X1, . . . ,Xn), we will denote with P̂X the
empirical measure associated with it; explicitly, for any measurable set A⊂ Rd ,

P̂X(A) =
1
n

n

∑
i=1

I(Xi ∈ A).

2.2 Assumptions

Wewill use the following assumptions on the density p and its local behavior around a given density
level λ.

(A0) Compact Support - The support S of p is compact.

(A1) Lipschitz Density - Assume that

p ∈ Σ(A)≡

{

p : |p(x)− p(y)|≤ A||x− y||, for all x,y ∈ S

}

for some A> 0.

(A2) Local density regularity at λ- For a given density level of interest λ, there exist constants
0< κ1 ≤ κ2 < ∞ and 0< ε0 such that, for all ε< ε0,

κ1ε≤ P({x : |p(x)−λ|≤ ε})≤ κ2ε.

It is possible to formulate condition (A2) more generally in terms of powers of ε, that is εa.
However, as argued in Rinaldo and Wasserman (2010), the above statement typically holds with
a= 1 for almost all λ.

Assumptions (A1) and (A2) impose some mild regularity conditions on the density: (A1) im-
plies that the density cannot change drastically anywhere, while (A2) implies that the density cannot
be too flat or steep locally around the level set. In particular, (A2) is necessary to ensure that small
error in estimating the density level does not translate into a huge error in localizing the level set.
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We remark that this assumption is an extension of the Tsybakov noise-margin condition for classifi-
cation (see Mammen and Tsybakov, 1999; Tsybakov, 2004) to the density level set context and has
been used in other work on density level-set estimation, such as Polonik (1995), Tsybakov (1997),
Cuevas et al. (2006), Rigollet and Vert (2009), Singh et al. (2009) and Rinaldo and Wasserman
(2010). Finally notice that (A0) and (A1) together imply that the density p is bounded by some
positive constant pmax < ∞. These assumptions are stronger than necessary, but they simplify the
proofs. Notice in particular, that assumptions (A1) and (A2) each rule out the case of sharp clusters,
in which S is the disjoint union of a finite number of compact sets over which p is bounded from
below by a positive constant. Finally, we remark that some of our results will only require a subset
of these assumptions.

2.3 Estimating the Density

To estimate the density p based on the i.i.d. sample X = (X1, . . . ,Xn), we use the kernel density
estimator

p̂h,X(u) =
1
n

n

∑
i=1

1
hd
K
(
u−Xi
h

)
, u ∈ R

d ,

where the kernel K is a symmetric, non-negative function with compact support such that∫
Rd K(z)dz= 1 and h> 0 is the bandwidth. In some results we will consider specifically the spher-
ical kernel K(u) = IB(0,1)(u)

vd , u ∈ Rd , where IB(0,1)(·) denotes the indicator function of the Euclidean
ball B(0,1).

For h > 0, let ph(u) = EX [ p̂h,X(u)]. Note that ph is the Lebesgue density of the probability
measure

Ph = P∗Kh,

where ∗ denotes convolution of probability measures and Kh denotes the probability measure of a
random variable with density Kh(z) = h−dK(z/h), z ∈ Rd .

We note that the compactness of K and assumption (A0) on p imply that the support of Ph is
compact, while assumption (A1) on p further yields that ph ∈ Σ(A), both statements holding for all
h≥ 0 (for a formal proof of the second claim, see the end of the proof of Lemma 5). Below, we will
be concerned with given values of the density level λ and of the probability parameter α ∈ (0,1)
and will impose the following assumptions.

(B2) Local density regularity at λ- For a given density level λ, there exist positive constants κ′1 ≤
κ′2, ε0 and H bounded away from 0 and ∞, such that, for all 0≤ ε< ε0,

κ′1ε≤ inf
0≤h≤H

P({x : |ph(x)−λ|≤ ε})≤ sup
0≤h≤H

P({x : |ph(X)−λ|≤ ε})≤ κ′2ε.

(B3) Local density regularity at α- For a given probability value α, there exist positive constants
κ3, η0 and H bounded away from 0 and ∞, such that, for all 0≤ η< |η0|,

sup
0≤h≤H

d∞(Mh(α),Mh(α+η))≤ κ3|η|,

where Mh(α) = {u : ph(u)> λα}.
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Conditions (B2) and (B3) are used only for some specific results from Section 4.1 and Section
3.2, respectively. This will be explicitly mentioned in the statement of such results. In particular,
condition (B2) is needed in order to explicitly state the behavior of the instability measure we define
below. We conjecture that (B2) follows from condition (A2) on the true density p and using kernels
with compact support. This assumption holds for all density levels that are not too close to a local
maxima or minima of the density. Assumption (B3) characterizes the regularity of the level sets of
ph and essentially states that the boundary of these level sets is well-behaved and not space-filling
(see Tsybakov, 1997; Singh et al., 2009, for analogous conditions). Both assumptions (B2) and (B3)
could be stated more generally by assuming some uniformity over λ and α respectively, but for the
sake of readability we state them as point-wise conditions.

Our analysis depends crucially on the quantity ‖ p̂h,X − ph‖∞ = supu∈Rd | p̂h,X(u)− ph(u)|, for
which we use a probabilistic upper established by Giné and Guillou (2002), to which the reader is
referred for details. To this end, we will make the following assumption on the kernel K:

(VC) The class of functions

F =

{
K
(
x− ·
h

)
,x ∈ R

d ,h> 0
}

satisfies, for some positive numbers V and v,

sup
P
N(Fh,L2(P),ε‖F‖L2(P))≤

(
V
ε

)v
,

where N(T ;d;ε) denotes the ε-covering number of the metric space (T,d), F is the envelope
function of F and the supremum is taken over the set of all probability measures P on Rd .
The quantities V and v are called the VC characteristics of F .

Assumption (VC) holds for a large class of kernels, including, any compactly supported polynomial
kernel and the Gaussian kernel. The lemma below follows from Giné and Guillou (2002) (see also
Rinaldo and Wasserman, 2010).

Lemma 1 Assume that the kernel satisfies the VC property, and that

sup
t∈Rd

sup
h>0

∫
Rd
K2h (t− x)dP(x)< B< ∞.

There exist positive constants K1, K2 and C, which depends on B and the VC characteristic of K
such that the following hold:

1. For every ε> 0 and h> 0, there exists n(ε,h) such that, for all n≥ n(ε,h)

PX (‖p̂h,X − ph‖∞ > ε)≤ K1e−K2nε
2hd . (1)

2. Let hn → 0 as n→ ∞ in such a way that

nhdn
logn

→ ∞. (2)

Then, there exist a constant K3 and a number n0 ≡ n0(d,K3) such that, setting εn =
√

K3 logn
nhdn

,

PX (‖p̂hn,X − phn‖∞ > εn)≤
1
n
, (3)

for all n≥ n0(d,K3).
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The numbers n(ε,h) and n0 depend also on the VC characteristic of K and on B. Furthermore,
n(ε,h) is decreasing in both ε and h.

This result requires virtually no assumptions on p and only minimal assumptions on the kernel,
which are satisfied by the most commonly used kernels.

The constraint in Equation (2), which in general cannot be dispensed with, has a subtle but
important implication for our later results on instability. In fact, it implies that the bandwidth pa-

rameter hn is only allowed to vanish at a slower rate than
(
logn
n

)1/d
. As a result, our measures

of instability defined in Sections 4.1 and 3.2 can be reliably estimated for values of the bandwidth

h .
(
logn
n

)1/d
. Indeed, the threshold value

(
logn
n

)1/d
is of the same order of magnitude of the

maximal spacing among the points in a sample of size n from P (see, for instance, Penrose, 2003).

3. Estimating the Level Set and Cluster Tree

For a given density level λ and kernel bandwidth h, the estimated level set is L̂h,X(λ)= {x : p̂h,X(x)>
λ}. The clusters (connected components) of L̂h,X(λ) are denoted by Ĉh,λ and the estimated cluster
tree is

T̂h =
⋃
λ≥0

Ĉh,λ.

3.1 Fixed λ

We measure the quality of L̂h,X(λ) as an estimator of L(λ) using the loss function

L(h,X ,λ) =
∫
L(λ)∆L̂h,X (λ)

p(u)du,

where we recall that ∆ denotes the symmetric set difference. The performance of plug-in estimators
of density level sets has been studied earlier, but we state the results here in a form that provides
insights into the performance of instability measures proposed in the next section.

Theorem 2 Assume that the density p satisfies conditions (A0) and (A1) and let D =
∫
‖z‖K(z)dz

(which is finite by compactness of K). For any sequence hn = ω((logn/n)1/d), let

εn =

√
K3 logn
nhdn

and
rhn,εn,λ = P({u : |p(u)−λ|< ADhn+ εn}) .

Then, for all n≥ n(n0,λ,A,D,d),

PX
(
L(hn,X ,λ)≤ rhn,εn,λ

)
≥ 1−

1
n
.

If assumption (A2) holds for the density level λ, then for all n≥ n(n0,λ,A,D,ε0,d),

PX

(
L(hn,X ,λ)≤ κ2(ADhn+ εn)

)
≥ 1−

1
n
.
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The following corollary characterizes the optimal scaling of the bandwidth parameter hn that
balances the approximation and estimation errors.

Corollary 3 The value of h that minimizes the bound on L is

h∗n = c
(

n
logn

)− 1
d+2

,

where c> 0 is an appropriate constant.

3.2 Fixed α

Often it is more natural to index the density clusters by the probability mass contained in the cor-
responding high-density regions, instead of the associated density levels. The level set estimator
indexed by the probability content α ∈ (0,1) is given as

M̂h,X(α) = L̂h,X (̂λh,α,X),

where

λ̂h,α,X = sup

{

λ : P̂X({u : p̂h,X(u)> λ})≥ α

}

(4)

and p̂h,X is the kernel density estimate computed using the data X with bandwidth h. This estimator
was studied by Cadre et al. (2009), though using different techniques and in different settings than
ours.

Let α ∈ (0,1) be fixed and define

λh,α = sup{λ : P(ph(X)> λ)≥ α}.

We first show that the deviation |λh,α−λα| is of order h, uniformly over α, under the very general
assumption that the true density p is Lipschitz.

Lemma 4 Assume the true density p satisfies the conditions (A0) and (A1). Then, for any h> 0,

sup
α∈(0,1)

|λh,α−λα|≤ ADh,

where D=
∫
Rd ‖z‖K(z)dz.

Remark: More generally, if p is assumed to be Hölder continuous with parameter β then, under
additional mild integrability conditions on K, it can be shown that |λh,α−λα| = O(hβ), uniformly
in α.

The following lemma bounds the deviation of |̂λh,α,X −λh,α|.

Lemma 5 Assume that the true density satisfies (A0)-(A1) and the density level sets of ph corre-
sponding to probability content α satisfy (B3). Then, for any 0< h≤ H, any ε< η0−1/n, and all
n≥ n(ε,h),

PX

(
|̂λh,α,X −λh,α|≥ ε(Aκ3+1)+Aκ3/n

)
≤ K1e−K2nh

dε2 +8ne−nε
2/32, (5)

where A is the Lipschitz constant and κ3 is the constant in (B3).
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Using Lemma 4 and Lemma 5, we immediately obtain the following bound on the deviation of
the estimated level λ̂h,α,X from the true density level λα corresponding to probability content α.

Corollary 6 Under the same conditions of Lemma 5,

PX

(
|̂λh,α,X −λα|≥ ADh+ ε(Aκ3+1)+Aκ3/n

)
≤ K1e−K2nh

dε2 +8ne−nε
2/32.

We now study the performance of the level set estimator indexed by probability content using
the following loss function

L∗(h,X ,α) = P(M(α)∆M̂h,X(α)) =
∫
M(α)∆M̂h,X (α)

p(u)du.

Theorem 7 Assume that the density p satisfies conditions (A0) and (A1) and the level set of ph
indexed by probability content α satisfies (B3). For any sequence hn = ω((logn/n)1/d), let

εn =

√
K3 logn
nhdn

and set
C1,n = ADhn+ εn, C2,n = ADhn+(Aκ3+1)εn+Aκ3/n

and
rhn,εn,α = P({u : |p(u)−λα|≤C1,n+C2,n}) .

Then, for hn = ω((logn/n)1/d) and hn ≤ H, we have for all n≥ n(n0,η0,K3,d),

PX(L
∗(hn,X ,α)≤ rhn,εn,α)≥ 1−

2
n
.

In particular, if assumption (A2) also holds for density level λα, then, for all n≥ n(n0,η0,K3),

PX (L
∗(hn,X ,α)≤ κ2(C1,n+C2,n))≥ 1−

2
n
.

Corollary 8 The value of h that minimizes the upper bound on L is

h∗n,α = c
(

n
logn

)− 1
d+2

where c> 0 is a constant.

4. Stability

The loss L is a useful theoretical measure of clustering accuracy. Balancing the terms in the upper
bound on the loss gives an indication of the optimal scaling behavior of h. But estimating the loss
is difficult and the value of the constant c in the expression for h∗n is unknown. Thus, in practice,
we need an alternative method to determine h. Instead of minimizing the loss, we consider using
the stability of L̂h,X(λ) and T̂h to choose h. As we discussed in the introduction, stability ideas have
been used for clustering before. But the behavior of stability measures can be quite complicated. For
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example, in the context of k-means clustering and related methods, Ben-David et al. (2006) showed
that minimizing instability leads to poor clustering. On the other hand, Rinaldo and Wasserman
(2010) showed that, for density-based clustering, stability-based methods can sometimes lead to
good results. This motivates us to take a deeper look at stability for density clustering. In this
section, we investigate two measures of cluster stability.

The first measure of cluster stability we analyze is the level set stability, which we denote, for a
fixed density level λ and a varying bandwidth value h, with Ξλ,n(h). Assuming for convenience that
the sample size is 3n, we randomly split the data into three pieces (X ,Y,Z) each of size n. Let p̂h,X
be the density estimator constructed from X and p̂h,Y be the density estimator constructed from Y .
The sample instability statistic is

Ξλ,n(h) = P̂Z(L̂h,X(λ)∆L̂h,Y (λ)), (6)

where P̂Z denote the empirical measure induced by Z. The measure Ξλ,n(h) is the stability of a fixed
level set, as a function of h. We will see that Ξn has surprisingly complex behavior. See Figure
2. First of all, Ξn(0) = 0. This is an artifact and is due to the fact that the level sets get small as
h→ 0. As h increases, Ξλ,n(h) first increases and then gets smaller. Once it gets small enough, the
level sets have become stable and we have reached a good value of h. However, after this point,
Ξλ,n(h) continues to rise and fall. The reason is that, as h gets larger, ph(x) decreases. Every time
we reach a value of h such that a mode of ph has height λ, Ξλ,n(h) will increase. Ξλ,n(h) is thus
a non-monotonic function whose mean and variance become large at particular values of h. This
behavior will be described explicitly in the theory and simulations that follow. As a practical matter,
since Ξλ,n(h) vanishes for very small values of h, we recommend to exclude all values of h before
the first local maximum of Ξλ,n(h). Then, a reasonable choice of h is the smallest value h∗ for
which Ξλ,n(h) remains less than some maximal pre-specified probability value β for the empirical
instability, such as 5% or 10%, for all h≥ h∗. The parameter β is an entirely subjective quantity to
be chosen by the practitioner, akin to the type-I-error parameter in standard hypothesis testing, and
quantifies the maximal amount of empirical instability that one is willing to accept.

The second measure of cluster stability we consider is the total variation stability, denoted, for a
varying value of the bandwidth h, as Γn(h). Assuming again for simplicity that the sample is of size
2n, we randomly split the data into two parts (X ,Y ) of equal sizes n. Then, for a given bandwidth
h, we compute separately on each of the two samples X and Y the kernel density estimates p̂h,X and
p̂h,Y , respectively. The total variation stability is defined to be the quantity

Γn(h)≡ sup
B∈B

∣∣∣∣
∫
B
p̂h,X(u)du−

∫
B
p̂h,Y (u)du

∣∣∣∣=
1
2

∫
| p̂h,X(u)− p̂h,Y (u)|du, (7)

where the supremum is over all Borel sets B. Note that the total variation stability is a function of h.
Unlike the level set stability, the total variation stability is a global measure of cluster stability in the
sense that it takes into account the difference between p̂h,X and p̂h,Y overall all measurable sets, not
just over the level sets. Thus, total variation stability is a much stronger notion of cluster stability.
In fact, when Γn(h) is small, the whole cluster tree is stable. It turns out that the behavior of Γn(h)
is much simpler. It is monotonically decreasing as a function of h. In this case we recommend
choosing h to be the smallest bandwidth value h∗ for which the instability is no larger than a pre-
specified probability values β ∈ (0,1), that is Γn(h∗)≤ β.

The motivation for choosing the bandwidth parameter h in the way described above is as follows.
We cannot estimate loss exactly. But we can use the instability to estimate variability. Our choice of
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h corresponds to making the bias as small as possible while maintaining control over the variability.
This is very much in the spirit of the Neyman-Pearson approach to hypothesis testing where one tries
to make the power of a test as large as possible while controlling the probability of false positives.
Put another way, Ph = P∗Kh has a blurred version of the shape information in P. We are choosing
the smallest h such that the shape information in Ph can be reliably recovered.

Before getting into the details, which turn out to be somewhat technical, here is a very loose
description of the results. For large h, Γn(h)≈ 1/

√
nhd . On the other hand, Ξλ,n(h) tends to oscillate

up and down corresponding to the presence of modes of the density. In regions where it is small, it
also behaves like 1/

√
nhd .

4.1 Level Set Stability

For the analysis of the level set stability we focus on a single level set indexed by some density level
value λ≥ 0. Consider two independent samples X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) and set

ξλ,n(h) = EXY

(
P
(
L̂h,X(λ)∆L̂h,Y (λ)

))
.

The quantity ξλ,n(h) measures the expected disagreement between level sets based on two samples
as a function of the bandwidth h.

The definition of ξλ,n depends on P which, of course, we do not know. To estimate ξλ,n(h) we
use the sample instability statistic defined above in Equation (6), where it was assumed for simplicity
that the sample size is 3n and the data were randomly split into three pieces (X ,Y,Z) each of size n.
It is immediate to see that the expectation of the sample instability statistic is precisely ξλ,n(h), that
is

ξλ,n(h) = EX ,Y,Z[Ξλ,n(h)].

Note that since we are using the empirical distribution P̂Z , the sample instability can be rewritten
as

Ξλ,n(h) =
1
n

n

∑
i=1

I(Zi ∈ (L̂h,X(λ)∆L̂h,Y (λ)))

=
1
n

n

∑
i=1

I(sign( p̂h,X(Zi)−λ) 1= sign( p̂h,Y (Zi)−λ)).

The above equation show that, for a fixed λ, Ξλ,n(h) is obtained as the fraction of the observations
in Z where p̂h,X(Zi)< λ< p̂h,Y (Zi) or p̂h,X(Zi)> λ> p̂h,Y (Zi). This representation is closely tied to
the use of the sample level sets to construct the cluster tree (Stuetzle and Nugent, 2009) where each
level set is represented only by the observations associated with its connected components rather
than the feature space. Using the empirical distribution P̂Z also removes the need to determine the
exact shape of the level sets of the density estimate. The top graph of Figure 2 shows the sample
instability as a function of h for λ = 0.09 for our example distribution depicted in Figure 1. Note
that the instability initially drops and then oscillates before dropping to zero at h= 7.08, indicating
the multi-modality seen in Figure 1. More discussion of this example is in Section 5.

As mentioned at the end of section 2.3, for values of h2
(
logn
n

)1/d
, the kernel density estimate

p̂h is no longer a reliable estimate of ph. The following simple but important boundary properties of
Ξn and ξ describes the behavior of the empirical and expected instability when h is either too small
or too large.
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Lemma 9 For fixed n and λ> 0,

lim
h→0

ξλ,n(h) = lim
h→∞

ξλ,n(h) = lim
h→0

Ξλ,n(h) = lim
h→∞

Ξλ,n(h) = 0,

where the last two limits occurs almost surely. In particular, ξλ,n(h) = O(hd), as h→ 0.

We now study the behavior of the mean function ξλ,n(h). Let u ∈ Rd , h > 0 and ε > 0, and
define

πh(u) = PX( p̂h,X(u)> λ) and Uh,ε = {u : |ph(u)−λ|< ε}. (8)

Theorem 10 Let u ∈ Rd, h> 0 and ε> 0.

1. The following identity holds:

ξλ,n(h) = 2
∫
Rd
πh(u)(1−πh(u))dP(u).

2. Also, for all n≥ n(ε,h),

rh,ε Ah,ε ≤ ξλ,n(h)≤ rh,ε Ah,ε+2K1e−K2nh
dε2 ,

where rh,ε = P(Uh,ε),
Ah,ε = sup

u∈Uh,ε
2πh(u)(1−πh(u))

and
Ah,ε = inf

u∈Uh,ε
2πh(u)(1−πh(u)).

Part 2 of the previous theorem implies that the behavior of ξ is essentially captured by the
behavior of the probability content rh,ε. This quantity is, in general, a complicated function of both
h and ε. While it is easy to see that, for fixed h and a sufficiently well-behaved density p, rh,ε → 0 as
ε→ 0, for fixed ε, rh,ε can instead be a non-monotonic function of h. See, for example, the bottom
right plot in Figure 3, which displays the values rh,ε as a function of h ∈ [0,4.5] and for ε equal
to 0.02, 0.05 and 0.1 for the mixture density of Figure 1. In particular, the fluctuations of rh,ε as
a function of h are related to the values of h for which the critical points of ph are in the interval
[λ− ε,λ+ ε]. The main point to notice is that rh,ε is a complicated, non-monotonic function of h.
This explains why Ξn(h) is non-monotonic in h.

We now provide an upper and lower bound on the values of Ah,ε and Ah,ε, respectively, under the
simplifying assumption that K is the spherical kernel. Notice that, while Ah,ε remains bounded away
from ∞ for any sequence εn → 0 and hn = ω(n−1/d), the same is not true for Ah,ε, which remains
bounded away from 0 as long as εn = Θ( 1

nhdn
) and hn = ω(n−1/d).

Lemma 11 Assume that K is the spherical kernel and let 0< ε≤ λ/2. For a given δ ∈ (0,1), let

h(δ,ε) = sup
{
h : sup

u∈Uh,ε
P(B(u,h))≤ 1−δ

}
.
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Figure 3: Top plots and left bottom plot: two densities ph corresponding to the mixture distribution
of Figure 1 for h= 0, the true density (in black) and h= 4.5 (in red); the horizontal lines
indicate the level set value of λ= 0.09, λ+ ε and λ− ε, for ε equal to 0.02, 0.05 and 0.1.
Right bottom plot: probability content values rh,ε as a function of h ∈ [0,4.5] for the three
values of ε.

Then, for all h≤ h(δ,ε),

Ah,ε ≤ 2
(
1−Φ

(
−
√
nhdε

2vd
3λ

)
+
C(δ,λ)√
nhd

)2
,

and

Ah,ε ≥ 2
(
1−Φ

(√
nhdε

2vd
δλ

)
−
C(δ,λ)√
nhd

)2
,

where Φ denote the cumulative distribution function of a standard normal random variable and

C(δ,λ) =
33
4

√
2

δvdλ
.
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The dips in Figure 2 correspond to values for which ph does not have a mode at height λ. In this
case, (B2) holds and we have rh,ε = Θ(ε). Now choosing ε ≈

√
logn/(nhd) for the upper bound

and ε ≈
√
1/(nhd) for the lower bound, we have that Ah,ε and Ah,ε are bounded, and the theorem

yields √
C1
nhd

≤ ξλ,n(h)≤
√
C2 logn
nhd

.

Next we investigate the extent to which Ξλ,n(h) is concentrated around its mean ξλ,n(h) =
E[Ξλ,n(h)]. We first point out that, for any fixed h, the variance of the instability can be bounded by
ξλ,n(h)(1/2−ξλ,n(h)).

Lemma 12 For any h> 0,

Var[Ξλ,n(h)]≤ ξλ,n(h)
(
n+1
2n

−ξλ,n(h)
)
≈ ξλ,n(h)

(
1
2
−ξλ,n(h)

)
.

The previous results highlight the interesting feature that the empirical instability will be less
variable around the values of h for which the expected instability is very small (close to 0) or very
large (close to 1/2).

Lemma 13 Suppose that h> 0, ε> 0, η ∈ (0,1) and t > 0 are such that

t(1−η)≥ rh,ε+2K1e−K2nε
2hd , (9)

where rh,ε = P(Uh,ε). Then, for all n≥ n(ε,h),

PX ,Y,Z
(∣∣Ξλ,n(h)−ξλ,n(h)

∣∣> t
)
≤ e−ntCη +2K1e−nK2h

dε2

where

Cη = 9(1−η)

(
3−2η
3(1−η)

−

√
3−η
3(1−η)

)

.

4.2 Stability of Level Sets Indexed by Probability Content

As in the fixed-λ case, we assume for simplicity that the sample has size 3n and split it equally in
three parts: X , Y and Z. We now define the fixed-α instability as

Ξα,n(h) = P̂Z(M̂h,X(α)∆M̂h,Y (α)),

where
M̂h,X(α) = {x : p̂h,X(x)> λ̂h,α,X},

with λ̂h,α,X estimated as in (4) using the points in X ; we similarly estimate M̂h,Y (α). As before, P̂Z
denote the empirical measure arising from Z. Again, we use the observations to represent M̂h,X ,
M̂h,Y as done for Ξλ,n(h) for a fixed λ. Examples of Ξα,n(h) as a function of h,α can be seen in
Section 5.

The expected instability is
ξα,n(h) = EX ,Y,Z[Ξα,n(h)].

We begin by studying the behavior of the expected instability.
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Theorem 14 Let u ∈ Rd, h> 0 and ε> 0, and set

πh,α(u) = PX( p̂h,X(u)> λ̂h,α,X) and Uh,2ε,α = {u : |ph(u)−λα,h|≤ 2ε}.

1. The expected instability can be expressed as

ξα,n(h) = EX ,Y,Z[Ξα,n(h)] = 2
∫
Rd
πh,α(u)(1−πh,α(u))dP(u).

2. Let ε< η0−1/n and ε̃= ε(Aκ3+1)+Aκ3/n. Then, for all n≥ n(ε,h),

P(Uh,2ε̃,α)Ah,ε,α ≤ ξλ,n(h)≤ P(Uh,2ε̃,α)Ah,ε,α+4K1e−K2nh
dε2 +16ne−nε

2/32,

where
Ah,ε,α = sup

u∈Uh,2ε̃,α
2πh,α(u)(1−πh,α(u))

and
Ah,ε,α = inf

u∈Uh,2ε̃,α
2πh,α(u)(1−πh,α(u)).

3. Assume in addition that K is the spherical kernel and that ε̃≤ infh
λh,α
4 . For a given δ ∈ (0,1),

let
h(δ,ε,α) = sup

{
h : sup

u∈Uh,̃ε,α
P(B(u,h))≤ 1−δ

}
.

Then, for all h≤ h(δ,ε,α),

Ah,ε,α ≤ 2
(
1−Φ

(
−3

√
nhd ε̃

2vd
3λh,α

)
+
C(δ,λh,α)√

nhd
+4K1e−K2nh

dε2 +16ne−nε
2/32
)2

,

and

Ah,ε,α ≥ 2
(
1−Φ

(
3
√
nhd ε̃

2vd
δλh,α

)
−
C(δ,λh,α)√

nhd
−4K1e−K2nh

dε2 −16ne−nε
2/32
)2

,

where Φ denote the cumulative distribution function of a standard normal random variable
and

C(δ,λh,α) =
33
4

√
2

δvdλh,α
.

As for the fluctuations of Ξα,n(h) around its mean, we can easily obtain a result similar to the
one we obtain in Lemma 13.

Lemma 15 Let h> 0, ε> 0, η ∈ (0,1) and t be such that

t(1−η)≥ rh,ε,α+4K1e−K2nh
dε2 +16ne−nε

2/32,

where rh,ε,α = P({u : |ph(u)−λh,α|≤ 2ε̃}), with ε̃= ε(Aκ3+1)+Aκ3/n. Then, for all n≥ n(ε,h),

PX ,Y,Z (|Ξα,n(h)−ξα,n(h)|> t)≤ e−ntCη +4K1e−K2nh
dε2 +16ne−nε

2/32,

where

Cη = 9(1−η)

(
3−2η
3(1−η)

−

√
3−η
3(1−η)

)

.

The proof is basically the same as the proof of Lemma 13, except that we have to restrict our
analysis to the event described in Equation (29). We omit the details.
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4.3 Stability for Density Cluster Trees

The stability properties of the cluster tree can be easily derived from the results we have established
so far. To this end, for a fixed h> 0, define the level set of ph

Lh(λ) = {u : ph(u)> λ}

and recall its estimator based on the kernel density estimator p̂h,X :

L̂h,X(λ) = {u : p̂h,X(u)> λ}.

Let Nh(λ), N̂h,X(λ) be the number of connected components of the sets Lh(λ) and L̂h,X(λ), respec-
tively. Notice that L̂h,X(λ) is a random set. Also, denote with C1, . . . ,CNh(λ) and Ĉ1, . . . ,ĈN̂h,X (λ) the
connected components of Lh(λ) and L̂h,X(λ), respectively.

When building cluster trees, the value of the bandwidth h is kept fixed and the values of the
level λ vary instead. It has been observed empirically (see, for instance Stuetzle and Nugent, 2009)
that the uncertainty of cluster tree estimators depend on the particular value of λ at which the tree
is observed. In order to characterize the behavior of the cluster tree, we propose the following
definition, which formalize the case in which the clusters C1, . . . ,CNh(λ′) persist for each λ

′ in a
neighborhood of λ.

Definition 16 A level set value λ is (h,ε)-stable, with ε> 0 and h> 0, if

Nh(λ) = Nh(λ′), ∀λ′ ∈ (λ− ε,λ+ ε)

and, for any λ− ε< λ1 < λ2 < λ+ ε,

Ci(λ2)⊆Ci(λ1), ∀i= 1, . . . ,Nh(λ).

If the level λ is (h,ε)-stable, then the cluster tree estimate at level λ is an accurate estimate of the
true cluster tree, in a sense made precise by the following result, whose proof follows easily from
the proofs of our previous results and Lemma 2 in Rinaldo and Wasserman (2010).

Lemma 17 If λ is (h,ε)-stable, then, for all large n≥ n(ε,λ), with probability at least 1− 1
n ,

1. Nh(λ) = N̂h,X(λ);

2. there exists a permutation σ on {1, . . . ,Nh(λ)} such that, for every connected component Cj

of Lh(λ− ε) there exists one Ĉσ( j) for which

Cj ⊆ Ĉσ( j);

3. P(L̂h,X(λ)∆Lh(λ))≤ P({u : |ph(u)−λ|< ε}).
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Remarks.

1. If ph is smooth (which is the case if, for instance, the kernel or p are smooth), the values of
λ which are not (h,ε)-stable are values for which the setUλ′,h,ε contains critical points of ph,
that is

inf
u∈Uλ′,h,ε

‖∇ph(u)‖= 0 for some λ′ ∈ (λ− ε,λ+ ε),

where ∇ph denotes the gradient of p. For those values, the probability of Nh(λ) 1= N̂h,X(λ)
can be quite large, since the set L̂h,X∆Lh(λ) may have a relatively large P-mass.

2. Conversely, if ph is smooth (which is the case if, for instance, the kernel or p are smooth) and
infu∈Uλ,h,ε ‖∇ph(u)‖> δ, then λ is (h,ε)-stable for a small enough ε.

The above result has a somewhat limited practical value, because the notion of a (h,ε)-stable λ
depends on the unknown density ph. In order to get a better sense of which λ’s are (h,ε)-stable or
not, we once again resort to evaluate the instability of the clustering solution via data splitting. In
fact, essentially all of our previous results about instability from section 4.1 carry over to these new
settings by treating h fixed and letting λ vary. To express this changes explicitly, we will adopt a
slightly different notation for quantities we have already considered. In particular, we let

Uλ,ε = {u : |ph(u)−λ|< ε},
rλ,ε = P(Uλ,ε),

πλ(u) = PX( p̂h,X(u)> λ),
Aλ,ε = supu∈Uλ,ε 2πλ(u)(1−πλ(u))

and
Aλ,ε = inf

u∈Uλ,ε
2πλ(u)(1−πλ(u)).

We divide the sample size into three distinct groups, X , Y and Z, of equal sizes n. For a fixed
bandwidth h, we define the instability of the density cluster tree as the random function Th,n : R≥0 5→
[0,1] given by

λ→ P̂Z(L̂h,X(λ)∆L̂h,Y (λ))

and denote its expectation by
τh,n(λ) = EX ,Y,Z[Th,n(λ)].

For any fixed h, the behavior of Th,n(λ) and τh,n(λ) is essentially governed by rλ,ε. The following
result describes some of the properties of the density tree instability. We omit its proof, because it
relies essentially on the same arguments from the proofs of the results described in section 4.1.

Corollary 18

1. For any λ> 0, the expected cluster tree instability can be expressed as

τh,n(λ) = 2
∫
πλ(u)(1−πλ(u))dP(u).

2. For any ε> 0 and λ> 0,

Aλ,εrλ,ε ≤ τh,n(λ)≤ Aλ,εrλ,ε+2K1e−K2nh
dε2 ,

for all n large enough.
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3. Assume that K is the spherical kernel. For any λ> 0, let 0< ε≤ λ
2 and let

δ= 1− sup
u
P(B(u,h)).

Then,

Aλ,ε ≤ 2
(
1−Φ

(
−
√
nhdε

2vd
3λ

)
+
C(δ,λ)√
nhd

)2
,

and

Aλ,ε ≥ 2
(
1−Φ

(√
nhdε

2vd
δλ

)
−
C(δ,λ)√
nhd

)2
,

where Φ denote the cumulative distribution function of a standard normal random variable
and

C(δ,λ) =
33
4

√
2

δvdλ
.

4. For any h> 0, ε> 0, η ∈ (0,1) let t by such that

t(1−η)≥ rλ,ε+2K1e−K2nε
2hd ,

Then, for all n≥ n(ε,h),

PX ,Y,Z (|Th,n(λ)− τh,n(λ)|> t)≤ e−ntCη +2K1e−nK2h
dε2 .

with

Cη = 9(1−η)

(
3−2η
3(1−η)

−

√
3−η
3(1−η)

)

.

Collectively, the results above results show that the cluster tree of ph can be estimated more
accurately for values of λ for which the quantity rλ,ε remain small, with ε a term vanishing in n. In
particular, the level sets λ with larger instability are then the ones that are close to a critical level
of ph or for which the gradient of ph is not defined, vanishes of has infinite norm for some points
in {x : ph(x) = λ}. This suggests that the sample complexity for accurately reconstructing of the
cluster tree may vary significantly depending on the particular level of the tree, with levels closer to
a branching point exhibiting a higher degree of uncertainty and, therefore, requiring larger sample
sizes.

4.4 Total Variation Stability

In the previous section, we established stability of the cluster tree for a fixed h and all levels λ
that are (h,ε)-stable. A more complete measure of stability would be to establish stability of the
entire cluster tree. However, it appears that this is not feasible. Here we investigate an interesting
alternative: we compare the entire distribution p̂h,X to the entire distribution p̂h,Y . The idea is that
if these two distributions are stable over all measurable sets, then this implies it is stable over any
class of subsets, including all clusters.

More precisely, we consider the stronger notion of instability corresponding to the total variation
stability as defined in (7). Recall that we assume that the data have sample size 2n and we randomly
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split them into two sets of size n, X and Y , with which we compute the he kernel density estimates
p̂h,X and p̂h,Y , for a given value of the bandwidth h. Then, the total variation stability is defined as

Γn(h)≡ sup
B∈B

∣∣∣∣
∫
B
p̂h,X(u)du−

∫
B
p̂h,Y (u)du

∣∣∣∣=
1
2

∫
| p̂h,X(u)− p̂h,Y (u)|du

where where the supremum is over all Borel sets B and the second equality is a standard identity.
Requiring Γn(h) to be small is a more demanding type of stability. In particular, B includes all
level sets for all λ. Thus, when Γn(h) is small, the entire cluster tree is stable. Note that Γn(h) is
easy to interpret: it is the maximum difference in probability between the two density estimators.
And of course 0≤ Γn(h)≤ 1. The bottom graph in Figure 2 shows the total variation instability for
our example distribution in Figure 1. Note that Γn(h) first drops drastically as h increases and then
continues to smoothly decrease.

We now discuss the properties of Γn(h). Note first that Γn(h)≈ 1 for small h so the behavior as
h gets large is most relevant.

Theorem 19 Let Hn be a finite set of bandwidths such that |Hn| = Hna, for some positive H and
a ∈ (0,1). Fix a δ ∈ (0,1).

1. (Upper bound.) There exists a constant C such that, for all n ≥ n0 ≡ n0(δ,H,a), and such
that δ> H/n,

PX ,Y (Γn(h)≤ th for all h ∈Hn)> 1−δ,

where th =
√

C logn
nhd .

2. (Lower bound.) Suppose that K is the spherical kernel and that the probability distribution P
satisfies the conditions

a1hdvd ≤ inf
u∈S

P(B(u,h))≤ sup
u∈S

P(B(u,h))≤ hdvda2, ∀h> 0, (10)

for some positive constants a1 < a2, where S denotes the support of P. Let h∗ be such that
supu P(B(u,h∗)) < 1− δ. There exists a t, depending on δ but not on h, such that, for all
h< h∗ and for n≥ n0 ≡ n0(a,a1,a2,h,delta)

PX ,Y

(

Γn(h)≥ t
√

1
nhd

)

> 1−δ.

3. Γn(0) = 1 and Γn(∞) = 0.

Remarks.

1. Note that the upper bound is uniform in h while the lower bound is pointwise in h. Making
the lower bound uniform is an open problem. However, if we place a nonzero lower bound on
the bandwidths in Hn then the bound could be made uniform. The latter approach was used
in Chaudhuri and Marron (2000).
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2. Conditions (10) are quite standard in support set estimation. In particular, when the lower
bound holds, the support S is said to be standard. See, for instance, Cuevas and Rodrı́guez-
Casal (2004).

In low dimensions, we can compute Γn(h) by numerically evaluating the integral

1
2

∫
|p̂h,X(u)− p̂h,Y (u)|du.

In high dimensions it may be easier to use importance sampling as follows. Let g(u) =
(1/2)( p̂h,X(u)+ p̂h,Y (u)). Then,

Γn(h) =
1
2

∫ | p̂h,X(u)− p̂h,Y (u)|
g(u)

g(u)du≈
1
N

N

∑
i=1

| p̂h,X(Ui)− p̂h,Y (Ui)|
| p̂h,X(Ui)+ p̂h,Y (Ui)|

,

whereU1, . . . ,UN is a random sample from g. We can thus estimate Γn(h) with the following algo-
rithm:

1. Draw Bernoulli(1/2) random variables Z1, . . . ,ZN .
2. DrawU1, . . . ,UN as follows:

(a) If Zi = 1: draw X randomly from X1, . . . ,Xn. DrawW ∼ K. SetUi = X+hW .
(b) If Zi = 0: draw Y randomly from Y1, . . . ,Yn. DrawW ∼ K. SetUi = Y +hW .

3. Set

Γ̂n(h) =
1
N

N

∑
i=1

| p̂h,X(Ui)− p̂h,Y (Ui)|
| p̂h,X(Ui)+ p̂h,Y (Ui)|

.

It is easy to see that Ui has density g and that Γ̂n(h)−Γn(h) = OP(1/
√
N) which is negligible

for large N.

5. Examples

We present results for two examples where, although the dimensionality is low, estimating the con-
nected components of the true level sets is surprisingly difficult. For the first example, we begin
by illustrating how the instability changes for given values of λ,α and then split each data set 200
times to find point-wise confidence bands for Ξλ,n(h) for fixed λ,α and for Γn(h). We then present
selected results for a bivariate example.

5.1 Instability as Function of h for Fixed λ

Returning to the example distribution in Section 1, 600 observations were sampled from the fol-
lowing mixture of normals: (4/7)N(0,1)+ (2/7)N(3.5,1)+ (1/7)N(7,1). The original sample is
randomly split into three samples of 200. All kernel density estimates use the Epanechnikov kernel
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Figure 4: Comparing L̂h,X(0.02) and L̂h,Y (0.02) with h = 0.15 (top left), h = 0.35 (top right),
h = 0.75 (bottom left) and h = 0.95 (bottom right) for data sampled from the mixture
distribution of Figure 1. The two kernel density estimates are obtained using the X sam-
ple (solid line) and the Y sample (dotted line). Points in the Z sample are showed as short
vertical lines on the x-axis, and are colored in red when they belong to L̂h,X(λ)∆L̂h,Y (λ).

(Scott, 1992). We examine the stability at λ = 0.02, a height at which the true density’s connected
components should be unambiguous, and λ= 0.09, the height used in our earlier motivating graphs.

We start by illustrating the instability for selected values of h in Figures 4, 5. In each subfigure,
p̂h,X , p̂h,Y are graphed for the Z set of observations. Levels λ = 0.02,0.09 are marked respectively
with a horizontal line. Those observations in Z that belong to L̂h,X(λ) and not to L̂h,Y (λ) (or vice
versa) are marked in red; the overall fraction of these observations is Ξλ,n(h). In general, we can
see that as h increases, the number of the red Z observations decreases. For λ= 0.02, note that the
location that most contributes to the instability is the valley around Z = 5. Once h is large enough to
smooth this valley to have height above λ= 0.02, the instability is negligible. Turning to λ= 0.09
(Figure 5), even for larger values of h, the differences between the two density estimates can be
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Figure 5: Comparing L̂h,X(0.09) and L̂h,Y (0.09) for h= 0.5 (top left), h= 1.75 (top right), h= 3.75
(bottom left) and h = 6 (bottom right) for data sampled from the mixture distribution of
Figure 1. The two kernel density estimates are obtained using the X sample (solid line)
and the Y sample (dotted line). Points in the Z sample are showed as short vertical lines
on the x-axis, and are colored in red when they belong to L̂h,X(λ)∆L̂h,Y (λ).

quite large. When h is large enough such that both density estimates lie entirely below λ = 0.09,
our instability drops to and remains at zero.

Figure 6 shows the overall behavior of Ξλ,n(h) as a function of h. As expected, for λ = 0.02,
Ξλ,n(h) jumps for the first non-zero h and then quickly drops to almost zero by h= 1 (Figure 6, left).
At λ = 0.09, a height with a wide range of possible level sets (depending on the density estimate
and the value of h), Ξλ,n(h) first drops and then oscillates as previously described as h increases,
indicating multi-modality (Figure 6, right).
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Figure 6: Ξλ,n(h) as a function of the bandwidth h for λ = 0.02 (left) and 0.09 (right) for data
sampled from the mixture distribution of Figure 1.

5.2 Instability as Function h for Fixed α

In Section 4.2 we consider the sample instability Ξα,n(h) as a function of h and α. As done before,
we show Ξα,n(h) for selected values of h and α = 0.50 and 0.95 in Figure 7. In each subfigure,
p̂h,X , p̂h,Y again are graphed for the Z set of observations. The probability content of the density
estimates are respectively indicated on the left and right axes. The values α = 0.50,0.95 are also
marked with solid and dashed horizontal lines for the two density estimates. Those observations in
Z that belong to M̂h,X(α) and not to M̂h,Y (α) (or vice versa) are marked in red; the overall fraction
of these observations is Ξα,n(h). In general, we can see that as h increases (for both values of α),
the number of red Z observations decreases. This decrease happens more quickly for higher values
of α (as expected).

In Figure 8, we display Ξn(h,α) as a function of h for α= 0.50,0.95. For level sets that contain
at least 50% probability content, such as M̂h,X(0.50), the instability quickly drops as h increases
and then oscillates as h approaches values that correspond to density estimates with uncertainty at
those levels. Again, this ambiguity occurs due to the presence of the second mode (we would see
similar behavior with respect to the smallest mode if α ≈ 0.80). As h continues to increase, the
density estimates become smooth enough that there is very little difference between Mh,X(0.50),
Mh,Y (0.50). This behavior also occurs when α = 0.95 albeit more quickly (Figure 8, top right)
since level sets that contain at least 95% probability content occur at lower heights and are more
stable.

Figure 8c is the corresponding heat map for α = 0,0.01, . . . ,1.0 and h = 0,0.01, . . . ,10. White
sections indicate Ξα,n(h) ≈ 0; black sections indicate higher instability values. In this particular
example, the maximum instability of 0.425 is found at h = 0.03,α = 0.46. Note that around h =
3, we have very low instability values for almost all values of α, and hence this value of kernel
bandwidth would be a good choice that yields stable clustering.
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Figure 7: Top: comparing M̂h,X(0.50) and M̂h,Y (0.50) for h = 2 (left) and h = 5 right). Bottom:
comparing M̂h,X(0.95) and M̂h,Y (0.95) for h = 0.4 (left) and h = 3.5 (right). The data
were sampled from the mixture distribution of Figure 1. The two kernel density estimates
are obtained using the X sample (solid line) and the Y sample (dotted line). Points in the
Z sample are showed as short vertical lines on the x-axis, and are colored in red when
they belong to M̂h,X(α)∆M̂h,Y (α).

5.3 Instability Confidence Bands

The results in the previous subsections were for splitting the original sample one time into three
groups of 200 observations. Here we briefly include a snapshot of what the distribution of our
instability measures look like over repeated splits. For computational reasons, we used the binned
kernel density estimate, again with the Epanechnikov kernel, and discretize the feature space over
200 bins; see Wand (1994). Increasing the number of bins improves the approximation to the kernel
density estimate; the use of two hundred bins was found to give almost identical results to the
original kernel density estimate (results not shown). We split the original sample 200 times and
find 95% point-wise confidence intervals for Ξλ,n(h), Γn(h), and Ξα,n(h) for α = 0.50,0.95 and as
a function of h. The results are depicted in Figure 9. The confidence bands are plotted in red, the
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Figure 8: Top: Ξn(h,α = 0.50) (left) and Ξn(h,α = 0.95) (right) as a function of h. Bottom: heat
map of Ξα,n(h) as function of h,α for the example of Figure 1. The data were sampled
from the mixture distribution of Figure 1.

medians in black. The distribution of the instability measures for each value of h is also plotted
using density strips (see Jackson, 2008); on the grey-scale, darker colors indicate more common
instability values. The density strips allow us to see how the distribution changes (not just the 50,
95% percentiles). For example, for the plot on the top left in Figure 9, note that right before h= 2,
the upper half of the distribution of Ξλ,n(h) is more concentrated. This shift corresponds to the
increase in instability in the presence of the additional modes.

5.4 Bivariate Moons

We also include a bivariate example with two equal-sized moons; this data set with seemingly simple
structure can be quite difficult to analyze. The scatterplot of the data on the left in Figure 10 show
two clusters, each shaped like a half moon. Each cluster contains 300 data points. The plot on the
right in Figure 10b shows a two-dimensional kernel density estimate using a Epanechnikov kernel
with h= 0.60 (for illustrative purposes) and 10,000 evaluation points. We can see that while levels
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Figure 9: 95% point-wise confidence bands for Ξλ,n(h) (top left), Γn(h) (top right), Ξn(h,α= 0.50)
(bottom left) and Ξn(h,α = 0.95) (bottom right) for data sampled from the mixture dis-
tribution of Figure 1.

around λ= 0.012 show clear multi-modality, the connectedness of the level sets around λ= 0.01 is
less clear.

To examine instability, we use a product Epanechnikov kernel density estimate with the same
bandwidth h for both dimensions. Figure 11 shows the sample instability Ξλ,n(h) as a function of h
for λ= 0.10,0.20,0.30 as well as the total variation instability Γn(h) as a function of h. As expected,
the higher the λ, the more quickly the sample instability drops. We also see the possible presence of
multi-modality for all three values of λ in Ξλ,n(h). On the other hand, the total variation instability
drops smoothly as h increases.

Figure 12 contains the instability as a function of h and probability content α for all values of
h, α (Figure 12d) and specifically for α = 0.50,0.075,0.95. Again, as expected, Ξn(h,α) drops
as h increases for smaller values of α. Note that for α = 0.95, the instability remains relatively
low regardless of the value of h. When examining the heat map, we see that for small values of
h, level sets corresponding to probability content around 0.4-0.6 are very unstable. This behavior
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Figure 10: Bivariate moons (left) and contours of a Epanechnikov kernel density estimate (right)
for the example discussed in Section 5.4.

is not unexpected given that the moons are of equal sizes and difficult to separate due to sampling
variability. We would expect to have difficulty finding stable level sets “in the middle”.

6. Discussion

We have investigated the properties of the density level set and cluster tree estimator based on kernel
density estimates, and we have proposed and analyzed various measures of instability for these
quantities. We believe these measures of instability can be of guidance in choosing the bandwidth
parameter and also as exploratory tools to gain insights into the properties and shape of the data-
generating distribution.

Our analysis leaves some some open questions that we think deserve further attention. First,
we have focused on kernel density estimators but the same ideas can be used with other density
estimators or more, generally, with other clustering methods for which underlying tuning parameters
have to be chosen in a data-driven fashion. See, for instance, Meinshausen and Bühlmann (2010)
for a related stability-based approach to clustering.

We have assumed the existence of the Lebesgue density p but this assumption can be relaxed
using methods in Rinaldo and Wasserman (2010) to allow for distributions supported on lower-
dimensional, well-behaved subsets. This extension is potentially important because it would allows
us to include cases where the distribution has positive mass on lower dimensional structures such as
points and manifolds.

We have formulated our assumptions and results about stability of the level sets and of the cluster
tree in a point-wise manner, for given values of λ and α. As suggested by a reviewer, it would be
desirable to extend them to hold uniformly across level sets. This can be achieved by requiring (A2),
(B2) and (B3) to hold uniformly over values of λ and α. In fact, we believe that it is likely that,
for most densities, such uniform assumptions hold for a wide range of λ’s but certainly they cannot
hold for all λ’s. Indeed, our results indicate that these uniformity assumptions are reasonable only
for level sets λ for which the function rh,ε(λ) remains small and does not fluctuate too wildly.
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Figure 11: Ξλ,n(h) as a function of h for λ= 0.10 (top left) 0.20 (top right) and 0.30 (bottom left).
Γn(h) as a function of h (bottom right) for the data depicted in Figure 10.

Finally, in computing the various measures of instability, we have considered just a single split
of the data into non-overlapping sub-samples. In fact, one can randomly repeat the splitting process
and combine over many splits, which is how we obtained the confidence bands of Figure 9. Though
the increase in the computational costs may be significant, repeated sub-sampling would yield a
reliable estimate of the uncertainty of the chosen instability measures and would therefore be highly
informative about the sample. We believe that the properties of Ξn can be established using the
theory of U-statistics.
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Figure 12: Ξα,n(h) as a function of h for α= 0.50 (top left) 0.75 (top right) and 0.95 (bottom left).
Heat Map of Ξα,n(h) as function of h and α; for readability, values of Ξα,n(h) smaller
than 0.045 are displayed in white (bottom right).

Appendix A. Proofs

Proof of Theorem 2: Let Ahn,εn denote the event that ‖p̂hn,X − phn‖∞ ≤ εn. Then, for all n≥ n0, by
Equation (3), PX(Ahn,εn) ≥ 1− 1

n . Also observe that Assumption (A1) implies that, for any h > 0,
the sup-norm density approximation error can be bounded as

‖ph− p‖∞ = sup
x

∣∣∣∣
∫ 1
hd
K
(
x− y
h

)
p(y)dy− p(x)

∣∣∣∣

≤ sup
x

∫ 1
hd
K
(
x− y
h

)
A‖x− y‖dy

= ADh. (11)

The second step in the previous display follows since
∫
K(z)dz = 1 and using the Lipschitz as-

sumption (A1) on the density, and the last step since
∫
‖z‖K(z)dz = D. Putting the estimation and
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approximation error together, and using the triangle inequality, we obtain that, on the event Ahn,εn ,

‖p̂hn,X − p‖∞ ≤ ADhn+ εn, (12)

for all n≥ n0. Using Equation (12), we have that, on Ahn,εn and for all n≥ n1(n0,λ) so that ADhn+
εn < λ, the set

L(λ)∆L̂hn,X(λ) = {u : p(u)> λ, p̂hn,X(u)≤ λ}∪{u : p(u)≤ λ, p̂hn,X(u)> λ}

is contained in

{u : p(u)> λ, p(u)≤ λ+ADhn+ εn}∪{u : p(u)≤ λ, p(u)> λ−ADhn− εn},

which is equal to
{u : |p(u)−λ|< ADhn+ εn}.

Then, on Ahn,εn and for all n≥ n1(n0,λ) large enough

L(hn,X ,λ) = P(L(λ)∆L̂hn,X(λ))≤ rhn,εn,λ,

so that, PX (L(hn,X ,λ)≤ rn)≥ PX (Ahn,εn)≥ 1− 1
n , as claimed.

If (A2) is in force for the density level λ, then for all n≥ n2(n0,λ,A,D,ε0) so that ADhn+ εn ≤
ε0, we have rhn,εn,λ ≤ κ2(ADhn+ εn), which proves the second claim.
Proof of Lemma 4: Using (A1) and the fact that

∫
Rd K(z)dz = 1, Equation (11) states that for any

h> 0
‖ph− p‖∞ ≤ ADh.

Then, for any α ∈ (0,1) and h> 0,

{u : p(u)> λh,α+ADh}⊆ {u : ph(u)> λh,α}⊆ {u : p(u)> λh,α−ADh}.

And as a result,

P({u : p(u)> λh,α+ADh})≤ P({u : ph(u)> λh,α})≤ P({u : p(u)> λh,α−ADh}).

Since P({u : p(u)> λα}) = α= P({u : ph(u)> λh,α}), we have

P({u : p(u)> λh,α+ADh})≤ P({u : p(u)> λα})≤ P({u : p(u)> λh,α−ADh}).

Consequently,
λh,α+ADh≥ λα ≥ λh,α−ADh.

It follows that for any α ∈ (0,1) and h> 0

|λh,α−λα|≤ ADh.

Proof of Lemma 5: Let Ch =
{
{u : ph(u) > λ},λ > 0

}
denote the class of level sets of ph and

define the events

Ph,ε =

{

sup
C∈Ch

|P̂X(C)−P(C)|≤ ε

}

and Ah,ε = {|| p̂h,X − ph||∞ ≤ ε} .
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Then, since the n-th shatter coefficients (see, for instance, Devroye et al., 1996) of Ch is n,

PX(P
c
h,ε)≤ 8ne

−nε2/32 and PX(A
c
h,ε)≤ K1e−K2nε

2hd , (13)

where the first inequality follows from the VC inequality (see, for instance, Devroye et al., 1996)
and the second inequality is just (1). Then, on Ah,ε, we obtain

{u : ph(u)> λ+ ε}⊆ {u : p̂h,X(u)> λ}⊆ {u : ph(u)> λ− ε}, ∀λ> 0.

Thus, on Ah,ε,

P̂X({u : ph(u)> λ+ ε})≤ P̂X({u : p̂h,X(u)> λ})≤ P̂X({u : ph(u)> λ− ε}),

uniformly over all λ> 0. In particular, the previous inequality hold also for λ̂α,h,X (which is positive
with probability one) for any α ∈ (0,1) and h> 0.

Recalling that, by definition,

|P̂X({u : p̂h,X(u)> λ̂h,α,X})−α|≤ 1/n,

we obtain, on the events Ph,ε and Ah,ε,

P({u : ph(u)> λ̂h,α,X + ε})−
1
n
− ε≤ α≤ P{u : ph(u)> λ̂h,α,X − ε})+

1
n
+ ε. (14)

Since α= P({u : ph(u)> λh,α}), the first inequality in (14) can be written as

α+
1
n
+ ε= P({u : ph(u)> λh,α+ 1

n+ε
})≥ P({u : ph(u)> λ̂h,α,X + ε})

and the second one as

α−
1
n
− ε= P({u : ph(u)> λh,α− 1

n−ε
})≤ P{u : ph(u)> λ̂h,α,X − ε}),

both holding on the events Ph,ε and Ah,ε. Combining the last two expressions, we obtain, on the
same events, for any α ∈ (0,1) and h> 0,

λh,α+ 1
n+ε

− ε≤ λ̂h,α,X ≤ λh,α− 1
n−ε

+ ε. (15)

We will now show that, for level sets of ph indexed by α satisfying (B3), and for any η ∈ (−η0,η0)
and 0< h≤ H,

|λh,α+η−λh,α|≤ Aκ3|η|. (16)

Recalling that ε+1/n< η0, Equations (15) and (16) will then imply

λh,α−Aκ3
(
ε+

1
n

)
− ε≤ λ̂h,α,X ≤ λh,α+Aκ3

(
ε+

1
n

)
+ ε,

on the events Ph,ε and Ah,ε, for level sets of ph indexed by α satisfying (B3) and with 0 < h ≤ H.
Finally, using (13), the claim will follow.
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In order to show (16), for a set A ⊂ Rd , let ∂A denote its boundary. Then, notice that, be-
cause ph is Lipschitz and hence continuous, for every x ∈ ∂Mh(α), ph(x) = λh,α and, for every
y ∈ ∂Mh(α+ η), ph(y) = λh,α+η. Furthermore, for any point x ∈ ∂Mh(α), there exists a point
y= y(x) = infz∈∂Mh(α+η) ‖x− z‖. Thus, for |η|< η0,

‖x− y‖ ≤ d∞(Mh(α),Mh(α+η))≤ κ3|η|,

where the last inequality follows for level sets of ph indexed by α that satisfy (B3) and 0< h≤ H.
Therefore,

|λh,α+η−λh,α|= |ph(y)− ph(x)|≤ A‖x− y‖ ≤ Aκ3|η|,

where in the first inequality we used the fact that, by (A1), ph is Lipschitz with constant A. Indeed,
for any x 1= y, using the Lipschitz assumption (A1) on p,

|ph(x)− ph(y)|≤
∫
Rd

|p(x+ zh)− p(y+ zh)|K(z)dz≤ A‖x− y‖
∫
Rd
K(z)dz= A‖x− y‖.

Proof of Theorem 7: Let Ahn,εn be event defined in the proof of Theorem 2, and recall that for all
n≥ n0, by Equation (3), PX(Ac

hn,εn)≤ 1/n and that, Equation (12) states that

‖p̂h,X − p‖∞ ≤C1,n (17)

on that event, for all n≥ n0. Also, let Phn,εn be the event defined in Lemma 5 such that PX(P c
hn,εn)≤

8ne−nε2n/32. Then from the proof of Lemma 5, we have that on the event Ahn,εn ∩Phn,εn , for hn =
ω((logn/n)1/d) and hn ≤ H,

|̂λhn,α,X −λα|≤C2,n (18)

for all n≥ n3(n0,η0,K3). Also, since n is large enough, we have

8ne−nε
2
n/32 ≤

1
n
.

Therefore, for all such large n, both (17) and (18) hold with probability at least

PX (Ahn,εn ∩Phn,εn)≥ 1−
2
n
.

Thus, onAhn,εn∩Phn,εn , for hn=ω((logn/n)1/d) and hn≤H, we have that, for all n≥ n3(n0,η0,K3),
the set

M(α)∆M̂h,X(α) = {u : p(u)> λα, p̂h,X(u)≤ λ̂h,α,X}∪{u : p(u)≤ λα, p̂h,X(u)> λ̂h,α,X}.

is contained in

{u : p(u)> λα, p(u)≤ λ̂h,α,X +C1,n}∪{u : p(u)≤ λα, p(u)> λ̂h,α,X −C1,n}.

which, in turn, is a subset of

{u : p(u)> λα, p(u)≤ λα+C1,n+C2,n}∪{u : p(u)≤ λα, p(u)> λα−C1,n−C2,n}.
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The final set is just {u : |p(u)− λα| ≤ C1,n+C2,n}. Therefore, for for hn = ω((logn/n)1/d) and
hn ≤ H, we have, for all n≥ n3(n0,η0,K3),

PX (L
∗(hn,X ,α)≤ rhn,εn,α)≥ PX (Ahn,εn ∩Phn,εn)≥ 1−

2
n
.

Proof of Lemma 9: We only prove the second claim, since the proof of the limits is straightforward.
For simplicity, we will provide the proof for the case of a spherical kernel: K(x) = 1‖x‖≤1, x ∈ Rd .
The extension to other compactly supported kernels is analogous.

Let h be strictly smaller than

min
{
min
i1= j

||Xi−Xj||,min
i1= j

||Yi−Yj||,min
i, j

||Xi−Yj||
}
.

For many distributions, this occurs almost surely for h = O
(
1/nd

)
(see, e.g., Penrose, 2003; De-

heuvels et al., 1988). By the compactness of the support of K, for any such h, the sets

B(X1,h), . . . ,B(Xn,h),B(Y1,h), . . . ,B(Yn,h)

are disjoint. Therefore, p̂h,X(u) = 1/(nhd) if and only if u ∈ B(Xi,h) for one i and, similarly,
p̂h,Y (u) = 1/(nhd) if and only if u ∈ B(Yj,h) for one j. Furthermore,

L̂h,X∆L̂h,Y =

(⋃
i
B(Xi,h)

)⋃(⋃
j
B(Yj,h)

)

.

As a result, Ξλ,n(h) is the fraction of Zi’s contained in (∪iB(Xi,h))
⋃
(∪iB(Yi,h)). Thus,

Ξλ,n(h) = P̂Z(L̂h,X∆L̂h,Y |X ,Y )
d
= B/n,

where d
= denotes equality in distribution and B∼ Binomial(n, p0), with 0≤ p0 ≤ 2n pmaxvdhd and

pmax = ‖p‖∞. Therefore, EZ[Ξλ,n(h)|X ,Y ]≤ 2pmaxvdnhd and hence it follows that

ξλ,n(h) = EX ,Y,Z[Ξλ,n(h)]≤ 2pmaxvdnhd = O(hd),

as h→ 0.
Proof of Theorem 10:

1. Since X , Y and Z are independent samples from the same distribution, p̂h,X(u) and p̂h,Y (u)
are independent and identically distributed, for any u ∈ Rd and h > 0. Also, notice that for
every measurable set A, EZ(P̂Z(A)) = P(A). Thus,

ξλ,n(h) = EX ,Y,Z[P̂Z({u : p̂h,X(u)> λ}∆{u : p̂h,Y (u)> λ})]
= EX ,Y [P({u : p̂h,X(u)> λ, p̂h,Y (u)≤ λ})+P({u : p̂h,X(u)≤ λ, p̂h,Y (u)> λ})]
= 2EX ,Y [P({u : p̂h,X(u)> λ, p̂h,Y (u)≤ λ})]

= 2
∫
Rd

PX ,Y (p̂h,X(u)> λ, p̂h,Y (u)≤ λ)dP(u), (19)
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where the last identity follows from Fubini theorem. The integrand in the last equation can
be written as

PX ,Y (p̂h,X(u)> λ, p̂h,Y (u)≤ λ) = PX (p̂h,X(u)> λ)PY (p̂h,Y (u)≤ λ)
= PX (p̂h,X(u)> λ)PX (p̂h,X(u)≤ λ)
= πh(u)(1−πh(u)),

from which (8) follows.

2. Let Ah,ε denote the event

‖ph− p̂h,X‖∞∨‖ph− p̂h,Y‖∞ ≤ ε. (20)

By (1), PX ,Y (Ac
h,ε) ≤ 2K1e−K2nh

dε2 . Letting 1Ah,ε denote the indicator function of the event
Ah,ε,

ξλ,n(h)≤ EX ,Y,Z[P̂Z({u : p̂h,X(u)> λ}∆{u : p̂h,Y (u)> λ})1Ah,ε(X ,Y )]+PX ,Y (A
c
h,ε),

and, using the same reasoning that led to (19),

ξλ,n(h)≤ 2
∫
Rd

PX ,Y ({ p̂h,X(u)> λ, p̂h,Y (u)≤ λ}∩Ah,ε)dP(u)+PX ,Y (A
c
h,ε)

Notice that, on Ah,ε,

{u : p̂h,X(u)> λ, p̂h,Y (u)≤ λ}⊆ {u : λ− ε≤ ph(u)≤ λ+ ε}=Uh,ε,

and therefore, sign( p̂h,X(u)− λ) = sign(ph(u)− λ) for all u 1∈Uh,ε. Thus, the previous ex-
pression for ξλ,n(h) is upper bounded by

2
∫
Uh,ε

PX ,Y ({ p̂h,X(u)> λ, p̂h,Y (u)≤ λ}∩Ah,ε)dP(u)+2K1e−K2nh
dε2

which, using independence, is no larger than

2
∫
Uh,ε

πh(u)(1−πh(u))dP(u)+2K1e−K2nh
dε2 ≤ P(Uh,ε)Ah,ε+2K1e−K2nh

dε2 .

As for the lower bound, from (19) we obtain, trivially,

ξλ,n(h)≥ 2
∫
Uh,ε

πh(u)(1−πh(u))dP(u)≥ P(Uh,ε)Ah,ε.

Proof of Lemma 11. If K is the spherical kernel, note that p̂h,X(u) = n−1∑n
i=1Bi(u), where

Bi = h−dK
(
u−Xi
h

)
=
IB(u,h)(Xi)
(hdvd)

,

with IB(u,h)(·) denoting the indicator function of the ball B(u,h). Let σ2(u,h) = Var(Bi(u)) and
µ3(u,h) = E|Bi(u)− µ(u,h)|3 where µ(u,h) = E(Bi(u)) = ph(u). Finally, let pu,h = P(B(u,h)).
Then,

σ2(u,h) =
pu,h(1− pu,h)

(hdvd)2
(21)
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and

µ3(u,h) =
pu,h(1− pu,h)

[
(1− pu,h)2+ p2u,h

]

(hdvd)3
≤
pu,h(1− pu,h)

(hdvd)3
,

where the last inequality holds since (1− pu,h)2+ p2u,h ≤ 1, for all u and h. As a result,

µ3(u,h)
σ3(u,h)

≤ (pu,h(1− pu,h))−1/2 .

By assumption, h < h(δ,ε) and ε ≤ λ/2. In order to avoid trivialities, we further assume that
P(Uh,ε)> 0. Then, uniformly over all u inUh,ε,

(λ− ε)vdhd ≤ pu,h ≤ (λ+ ε)vdhd

and
(1− pu,h)≥ δ.

Thus,
µ3(u,h)
σ3(u,h)

≤

√
1

δvdhd(λ− ε)
≤
√

2
hdδvdλ

,

with the last inequality holding because of our assumption ε≤ λ/2. From (21), we then obtain

δ(λ− ε)
vdhd

≤ σ2(u,h)≤
(λ+ ε)
vdhd

.

Thus,
a1
hd

≤ σ2(u,h)≤
a2
hd

,

where
a1 =

δλ
2vd

and a2 =
3λ
2vd

, (22)

uniformly over u ∈Uh,ε.
Writing σ2(u,h) = a(u,h)/hd and using the Berry-Esséen bound (Wasserman, 2004, p. 78), we

obtain

sup
t

∣∣∣∣∣P

(√
nhd( p̂h,X(u)− ph(u))

a(u,h)
≤ t

)

−Φ(t)

∣∣∣∣∣≤
33
4

µ3(u,h)
σ3(u,h)

√
n
=

√
C(δ,λ)
nhd

,

where Φ is the cumulative distribution function of the standard Normal distribution.
Now,

πh(u) = PX( p̂h,X(u)> λ) = PX

(√
nhd( p̂h,X(u)− ph(u))

a(u,h)
>

√
nhd(λ− ph(u))

a(u,h)

)

.

Hence,

1−Φ

(√
nhd(λ− ph(u))

a(u,h)

)

−
C(δ,λ)√
nhd

≤ πh(u)≤ 1−Φ

(√
nhd(λ− ph(u))

a(u,h)

)

+
C(δ,λ)√
nhd

.
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Using the fact that u ∈ Uh,ε, and taking advantage of the uniform bounds a1 ≤ a(u,h) ≤ a2, the
previous inequalities imply

1−Φ

(√
nhdε
a1

)

−
C(δ,λ)√
nhd

≤ πh(u)≤ 1−Φ

(

−
√
nhdε
a2

)

+
C(δ,λ)√
nhd

.

Using the inequalities

1−Φ

(√
nhdε
a1

)

=Φ

(

−
√
nhdε
a1

)

≥Φ

(

−
√
nhdε
a2

)

and

1−Φ

(

−
√
nhdε
a2

)

=Φ

(√
nhdε
a2

)

≤Φ

(√
nhdε
a1

)

,

we obtain the bounds

Φ

(

−
√
nhdε
a2

)

−
C(δ,λ)√
nhd

≤ πh(u)≤ 1−Φ

(

−
√
nhdε
a2

)

+
C√
nhd

(23)

and

1−Φ

(√
nhdε
a1

)

−
C(δ,λ)√
nhd

≤ πh(u)≤Φ

(√
nhdε
a1

)

+
C√
nhd

, (24)

respectively. Thus, uniformly over all ε≤ λ/2 and all h< h(δ,ε), Equations (23) and (24) yield

Ah,ε = 2 sup
u∈Uh,ε

πh(u)(1−πh(u)) ≤ 2

(

1−Φ

(

−
√
nhdε
a2

)

+
C(δ,λ)√
nhd

)2
,

and

Ah,ε = 2 infu∈Uh,ε
πh(u)(1−πh(u)) ≥ 2

(

1−Φ

(√
nhdε
a1

)

−
C(δ,λ)√
nhd

)2
,

respectively, where a1 and a2 are given in (22).

Proof of Lemma 12. Letting 1i = 1{Zi∈L̂X ,h∆L̂Y,h}, we have

Ξλ,n(h) =
1
n

n

∑
i=1
1i.

where, conditionally on X and Y , the 1i’s are independent and identically distributed Bernoulli
random variables with EZ[1i|X ,Y ] = P(L̂h,X∆L̂h,Y ). Thus

V
[
Ξλ,n(h)

]
= EX ,Y,Z

[
Ξ2n(h)

]
−ξ2(h)

= 1
n2EXY [EZ

[
(∑n

i=1 1i+∑ j 1=k 1 j1k)|X ,Y ]
]
−ξ2(h)

=
ξλ,n(h)
n + n−1

2n EX ,Y

[
P2(L̂h,X∆L̂h,Y )

]
−ξ2(h)

≤ ξλ,n(h)
n + n−1

2n EX ,Y

[
P(L̂h,X∆L̂h,Y )

]
−ξ2(h)

=
ξλ,n(h)
n + n−1

2n ξλ,n(h)−ξ2(h)
= ξλ,n(h)

(n+1
2n −ξλ,n(h)

)
.
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Proof of Lemma 13.
Let ξ(h,X ,Y ) = EZ[Ξλ,n(h)|X ,Y ] and let Ah,ε be the event given in (20), where ε,h> 0, so that

PX ,Y (Ac
h,ε)≤ 2K1 exp

{
−nK2hdε2

}
by (1). Then, we can write

PX ,Y,Z
(∣∣Ξλ,n(h)−ξλ,n(h)

∣∣> t
)
= PX ,Y,Z

(∣∣Ξλ,n(h)−ξ(h,X ,Y )+ξ(h,X ,Y )−ξλ,n(h)
∣∣> t

)
,

which is therefore upper bounded by

PX ,Y,Z
(∣∣Ξλ,n(h)−ξ(h,X ,Y )+ξ(h,X ,Y )−ξλ,n(h)

∣∣> t;Ah,ε
)
+2K1 exp

{
−nK2hdε2

}
.

The first term in the previous expression is no larger than the sum of

EX ,Y

[
PZ

(∣∣Ξλ,n(h)−ξ(h,X ,Y )
∣∣> tη

∣∣∣X ,Y
)
;Ah,ε

]
, (25)

and
PX ,Y

(∣∣ξ(h,X ,Y )−ξλ,n(h)
∣∣> t(1−η);Ah,ε

)
, (26)

for any η ∈ (0,1). We will first show that, if (9) is satisfied, the probability (26) is zero. Indeed, first
observe that

EZ[Ξλ,n(h)|X ,Y ] = P(L̂h,X∆L̂h,Y )

and that, on Ah,ε,

L̂h,X∆L̂h,Y = {u : p̂h,X(u)> λ, p̂h,Y (u)≤ λ}∪{u : p̂h,X(u)≤ λ, p̂h,Y (u)> λ}
⊆ {u : ph(u)> λ− ε, ph(u)≤ λ+ ε}
= {u : |ph(u)−λ|≤ ε}
= Uh,ε,

Therefore, on Ah,ε,
ξ(h,X ,Y ) = EZ[Ξλ,n(h)|X ,Y ]≤ rh,ε ≤ t(1−η). (27)

By part 2 of Theorem 10, (9) further implies that t(1 − η) ≥ ξλ,n(h). As a result, on
Ah,ε,

∣∣ξ(h,X ,Y )−ξλ,n(h)
∣∣≤ t(1−η), which yields

PX ,Y
(∣∣ξ(h,X ,Y )−ξλ,n(h)

∣∣> t(1−η);Ah,ε
)
= 0,

as claimed.
We now proceed to bound from above (25). Since

Ξλ,n(h) =
1
n

n

∑
i=1
1{Zi∈L̂h,X∆L̂h,Y },

Bernstein’s inequality (see, for instance, Massart, 2006, Proposition 2.9) yields that, for any t > 0
and conditionally on X and Y ,

PZ

(∣∣Ξλ,n(h)−ξ(h,X ,Y )
∣∣> tη

∣∣∣X ,Y
)
≤ exp

{
−9σ2(X ,Y,h)g

(
ntη

3σ2(X ,Y,h)

)}
(28)

942



STABILITY OF DENSITY-BASED CLUSTERING

where g(u) = 1+u−
√
1+2u for all u> 0, and

σ2(X ,Y,h) = VarZ[Ξλ,n(h)|X ,Y ].

It is easy to see that
σ2(X ,Y,h)≤ EZ

[
Ξλ,n(h)|X ,Y

]
= nξ(h,X ,Y )

and, therefore, restricting to the event Ah,ε, σ2(X ,Y,h)≤ nt(1−η), just like in (27).
Using the fact that e−9xg(

nt
3x) is increasing in x for x> 0, we conclude that, on the event Ah,ε, the

right hand side of (28) is bounded from above by

exp
{
−9nt(1−η)g

(
η

3(1−η)

)}
,

which is independent of X and Y . Thus, the previous expression is an upper bound for (25) and,
therefore, for PX ,Y,Z

(∣∣Ξλ,n(h)−ξλ,n(h)
∣∣> t

)
. The claim now follows from simple algebra.

Proof of Theorem 14.

1. The proof is almost the same as the proof of part 1 of Theorem 10 and is therefore omitted.

2. Let Ah,̃ε denote the event

max
{
|| p̂h,X − ph||∞, |λh,α− λ̂h,α,X |, || p̂h,Y − ph||∞, |λh,α− λ̂h,α,Y |

}
≤ ε̃, (29)

where ε̃ = ε(Aκ3+1)+Aκ3/n. Then, using (1), (5) and the fact that ε < ε̃, the union bound
yields

PX ,Y (A
c
h,̃ε)≤ 4K1e

−K2nhdε2 +16ne−nε
2/32 ≡C(h,ε,n) (30)

Now, on Ah,̃ε, {u : p̂h,X(u)> λ̂h,α,X , p̂h,Y (u)≤ λ̂h,α,Y} is a subset of

{u : ph(u)> λ̂h,α,X − ε̃, ph(u)≤ λ̂h,α,Y + ε̃},

which is equal to
{u : |ph(u)−λh,α|≤ 2ε̃}=Uh,̃ε,α.

Therefore, sign( p̂h,X(u)− λ̂h,α,X) = sign(ph(u)−λh,α) for all u /∈Uh,2ε̃,α. Next, just like in
the proof of part 2 of theorem 10, using this fact and the result of the first part we have that
ξα,n(h) is no larger than

EX ,Y,Z[P̂Z({u : p̂h,X(u)> λ̂h,α,X}∆{u : p̂h,Y (u)> λ̂h,α,Y})1Ah,̃ε(X ,Y )]+PX ,Y (A
c
h,̃ε).

The previous expression can be written as

2
∫
Rd

PX ,Y ({p̂h,X(u)> λ̂h,α,X , p̂h,Y (u)≤ λ̂h,α,Y}∩Ah,̃ε)dP(u)+PX ,Y (A
c
h,̃ε),

which is less than

2
∫
Uh,2ε̃,α

PX ,Y ({p̂h,X(u)> λ̂h,α,X , p̂h,Y (u)≤ λ̂h,α,Y}∩Ah,̃ε)dP(u)+C(h,ε,n).
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This quantity is bounded from above by

2
∫
Uh,2ε̃,α

PX ,Y ( p̂h,X(u)> λ̂h,α,X , p̂h,Y (u)≤ λ̂h,α,Y )dP(u)+C(h,ε,n),

which is finally smaller than

2
∫
Uh,2ε̃,α

πh,α(u)(1−πh,α(u))dP(u)+C(h,ε,n)≤ P(Uh,2ε̃,α)Ah,ε,α+C(h,ε,n).

As for the lower bound, from the result of first part we obtain, trivially,

ξα,n(h) ≥ 2
∫
Uh,2ε̃,α πh,α(u)(1−πh,α(u))dP(u)

≥ P(Uh,2ε̃,α)Ah,ε,α.

3. To compute an upper bound for Ah,ε,α and a lower bound for Ah,ε,α, we use the Berry-Esséen
bound and the stated assumptions. The proof is very similar to the proof of lemma 11, except
that the result holds only on the event Ah,̃ε. Therefore, we only provide a sketch of the
arguments.

The assumptions that ε̃≤ infh
λα,h
4 , implies that, for any u ∈Uh,2ε̃,α,

1
hd
δλα,h
2vd

≤
δ(λα,h−2ε̃)

hdvd
≤ σ2(u,h)≤

(λα,h+2ε̃)
hdvd

≤
1
hd
3λα,h
2vd

.

Because of this and the fact that, on Ah,̃ε, |ph(u)− λ̂h,α,X | ≤ 3ε̃ for all u ∈Uh,2ε̃,α, the same
Berry-Esseen arguments used in the proof of lemma 11 yield

1−Φ

(
3ε̃
√
nhd

a1

)

−
C(δ,λh,α)√

nhd
≤ πh,α,̃ε(u)≤ 1−Φ

(

−
3ε̃
√
nhd

a2

)

+
C(δ,λh,α)√

nhd
.

where πh,α,̃ε(u) = PX

(
{ p̂h,X(u)> λ̂h,α,X}∩Ah,̃ε

)
, a1 = δλh,α/(2vd), a2 = 3λh,α/(2vd), and

C(δ,λh,α) = 33
4

√
2

δvdλh,α . Now notice that

πh,α(u)≥ πh,α,̃ε(u)≥ 1−Φ

(
3ε̃
√
nhd

a1

)

−
C(δ,λh,α)√

nhd

and

πh,α(u)≤ πh,α,̃ε(u)+P(Ac
h,̃ε)≤ 1−Φ

(

−
3ε̃
√
nhd

a2

)

+
C(δ,λh,α)√

nhd
+C(h,ε,n).

where C(h,ε,n) is defined in (30). Therefore,

Ah,ε,α ≤ 2

(

1−Φ

(

−
3ε̃
√
nhd

a2

)

+
C(δ,λh,α)√

nhd
+C(h,ε,n)

)2
,

and

Ah,ε,α ≥ 2

(

1−Φ

(
3ε̃
√
nhd

a1

)

−
C(δ,λh,α)√

nhd
−C(h,ε,n)

)2
.
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Proof of Theorem 19. (1) Since the sample space is compact, µ(S) < ∞, where S denotes the
support of P and µ denotes the Lebesgue measure. Therefore, we obtain the inequality

Γn(h) ≤
µ(S)
2

|| p̂h,X − p̂h,Y ||∞ ≤
µ(S)
2

|| p̂h,X − ph||∞+
µ(S)
2

|| p̂h,Y − ph||∞
d
= µ(S)|| p̂h,X − ph||∞.

Next, letC = (µ(S))2(a+2)
K2 , so that for n> K1

th >

√
µ(S)2 log(na+1K1)

K2nhd
.

Then,

PX ,Y (Γn(h)> th for some h ∈Hn) ≤ PX

(
|| p̂h,X − ph||∞ >

th
µ(S)

for some h ∈Hn

)

≤ ∑
h∈Hn

PX

(
|| p̂h,X − ph||∞ >

th
µ(S)

)

≤ ∑
h∈Hn

K1 exp{−K2nt2hhd/(µ(S)2)}

≤ Hna
1

na+1
=
H
n

≤ δ,

where the third inequality stems from (1) and the assumption that n ≥ n0 is large enough, and the
last inequality follows from the assumed condition on δ.
(2) Consider any h≤ h∗. Note that

Γn(h)≥ Γn,S(h)≡
1
2

∫
S
| p̂h,X(u)− p̂h,Y (u)|du.

Let
D(u) =

√
nhd( p̂h,X(u)− p̂h,Y (u)).

The variance of D(u) is

Var
(√

nhd( p̂h,X(u)− p̂h,Y (u))
)

= nhd (Var( p̂h,X(u))+Var( p̂h,Y (u)))

= 2nhdVar( p̂h,X(u))

= 2nhdVar

(
1

nhdvd

n

∑
i=1

I(||Xi−u||≤ h)

)

=
2n2hd

n2h2dv2d
Var(I(||Xi−u||≤ h))

=
2

v2dhd
P(B(u,h))(1−P(B(u,h))).
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Now, for u ∈ S, by (10),

P(B(u,h))(1−P(B(u,h)))≤ P(B(u,h))≤ a2hdvd

and
P(B(u,h))(1−P(B(u,h)))≥ P(B(u,h))δ≥ a1hdvdδ.

Hence,
2a1vdδ≤ Var(D(u))≤ 2a2vd , ∀u ∈ S,

which shows that the variance of D(u) is bounded above and below by positive functions that do not
depend on h. By a similar calculation, Cov(D(u),D(v)) is bounded above and below by functions
that do not depend on h, for all u,v ∈ S.

Now, for any u,

D(u) = D1(u)−D2(u)≡
√
nhd(Pn−P)( fu)−

√
nhd(Qn−P)( fu)

where Pn is the empirical measure based on X1, . . . ,Xn, Qn is the empirical measure based on
Y1, . . . ,Yn, and fu(·) = h−dK(||u− ·||/h). Note that D1 and D2 are independent, mean 0 stochas-
tic processes. We can regard {

√
nhd(Pn−P)( f ) : f ∈ F } as an empirical process, where F = { fu :

u ∈ S} and similarly for {
√
nhd(Qn−P)( f ) : f ∈ F }. For fixed h, the collection F is a Donsker

class. Hence, for every u ∈ S, D1(u) and D2(u) converge to two independent mean 0 Gaussian pro-
cesses. By the continuous mapping theorem, for every u ∈ S, D(u) converges to a mean 0 Gaussian
process G with some covariance kernel κ. By the calculations above, there exist positive bounded
functions r(u,v) ≤ s(u,v) such that r(u,v) ≤ κ(u,v) ≤ s(u,v) and such that neither r nor s depend
on h. Hence

PX ,Y

(

Γn(h)≥ t
√

1
nhd

)

≥ PX ,Y

(

Γn,S(h)≥ t
√

1
nhd

)

= PX ,Y

(√
nhdΓn,S(h)≥ t

)

= PX ,Y

(
1
2

∫
S
|D(u)|du≥ t

)

= P

(
1
2

∫
|G(u)|du≥ t

)
+o(1),

where the last probability is the law of the Gaussian process G. The o(1) term is less than δ/2
when n ≥ n0. Since G has strictly positive variance, P(

∫
|G|≥ 0) = 1. Clearly, P(

∫
|G|≥ 2t) is

decreasing in t. Hence, for each δ, there is a positive t such that P
(1
2
∫
|G|≥ t

)
≥ 1−δ/2.

(3) The proof of this part is straightforward and is omitted.
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Abstract
This paper proposes several novel methods, based on machine learning, to detect malware in ex-
ecutable files without any need for preprocessing, such as unpacking or disassembling. The basic
method (Mal-ID) is a new static (form-based) analysis methodology that uses common segment
analysis in order to detect malware files. By using common segment analysis, Mal-ID is able to
discard malware parts that originate from benign code. In addition, Mal-ID uses a new kind of
feature, termed meta-feature, to better capture the properties of the analyzed segments. Rather than
using the entire file, as is usually the case with machine learning based techniques, the new ap-
proach detects malware on the segment level. This study also introduces two Mal-ID extensions
that improve the Mal-ID basic method in various aspects. We rigorously evaluated Mal-ID and its
two extensions with more than ten performance measures, and compared them to the highly rated
boosted decision tree method under identical settings. The evaluation demonstrated that Mal-ID
and the two Mal-ID extensions outperformed the boosted decision tree method in almost all re-
spects. In addition, the results indicated that by extracting meaningful features, it is sufficient to
employ one simple detection rule for classifying executable files.
Keywords: computer security, malware detection, common segment analysis, supervised learning

1. Introduction

Nowadays the use of the Internet has become an integral part of modern life and Internet browsers
are downloading to users a wide variety of content, including new computer software. One conse-
quence of this widespread use is that many computer systems are vulnerable to and infected with
malware—malicious software. Malware can be categorized into several groups:

1. Viruses—computer programs that are able to replicate themselves and infect files including
the operating systems (OS);

2. Worms—self-replicating computer software that is able to send itself to other computers on a
network or the Internet;

c©2012 Gil Tahan, Lior Rokach and Yuval Shahar.



TAHAN, ROKACH AND SHAHAR

3. Trojans—a software that appears to perform the desired functionally but is actually imple-
menting other hidden operations such as facilitating unauthorized access to a computer sys-
tem;

4. Spyware—a software installed on a computer system without the user’s knowledge to collect
information about the user.

The rate of malware attacks and infections is not yet leveling. In fact, according to O’Farrell
(2011) and Symantec Global Internet Security Threat Report Trends for 2010 (Symantec, 2010),
attacks against Web browsers and malicious code variants installed by means of these attacks have
increased.

There are many ways to mitigate malware infection and spread. Tools such as anti-virus and
anti-spyware are able to identify and block or identify malware based on its behavior (Franc and
Sonnenburg, 2009) or static features (see Table 1 below). A static feature may be a rule or a signature
that uniquely identifies a malware or malware group. While the tools mitigating malware may vary,
at their core there must be some classification method to distinguish malware files from benign files.

Warrender et al. (1999) laid the groundwork for using machine learning for intrusions detection.
In particular, machine learning methods have been used to analyze binary executables. For example,
Wartell el al. (2011) introduce a machine learning-based disassembly algorithm that segments bina-
ries into subsequences of bytes and then classifies each subsequence as code or data. In this paper,
the term segment refers to a sequence of bytes of certain size that was extracted from an executable
file. While it sequentially scans an executable, it sets a breaking point at each potential code-to-code
and code-to-data/data-to-code transition. In addition, in recent years many researchers have been
using machine learning (ML) techniques to produce a binary classifier that is able to distinguish
malware from benign files.

The techniques use three distinct stages:

1. Feature Extraction for file representation—The result of the feature extraction phase is a vec-
tor containing the features extracted. An executable content is reduced or transformed into a
more manageable form such as:

(a) Strings—a file is scanned sequentially and all plain-text data is selected.

(b) Portable Executable File Format Fields—information embedded in Win32 and Win64-
bit executables. The information is necessary for the Windows OS loader and applica-
tion itself. Features extracted from PE executables may include all or part of the follow-
ing pieces of information: attribute certificate—similar to checksum but more difficult to
forge; date/time stamp; file pointer—a position within the file as stored on disk; linker
information; CPU type; Portable Executable (PE) logical structure (including section
alignment, code size, debug flags); characteristics—flags that indicate attributes of the
image file; DLL import section—list of DLLs and functions the executable uses; export
section—which functions can be imported by other applications; resource directory—
indexed by a multiple-level binary-sorted tree structure (resources may include all kinds
of information. For example, strings for dialogs, images, dialog structures; version in-
formation, build information, original filename, etc.); relocation table; and many other
features.
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(c) n-gram—segments of consecutive bytes from different locations within the executables
of length n. Each n-gram extracted is considered a feature (Rokach et al., 2008).

(d) Opcode n-gram—Opcode is a CPU specific operational code that performs specific ma-
chine instruction. Opcode n-gram refers to the concatenation of Opcodes into segments.

2. Feature Selection (or feature reduction)—During this phase the vector created in phase 1 is
evaluated and redundant and irrelevant features are discarded. Feature selection has many
benefits including: improving the performance of learning modules by reducing the number
of computations and as a result the learning speed; enhancing generalization capability; im-
proving the interpretability of a model, etc. Feature selection can be done using a wrapper
approach or a correlation-based filter approach (Mitchell, 1997). Typically, the filter approach
is faster than the wrapper approach and is used when many features exist. The filter approach
uses a measure to quantify the correlation of each feature, or a combination of features, to a
class. The overall expected contribution to the classification is calculated and selection is done
according to the highest value. The feature selection measure can be calculated using many
techniques, such as gain ratio (GR); information-gain (IG); Fisher score ranking technique
(Golub et al., 1999) and hierarchical feature selection (Henchiri and Japkowicz, 2006).

3. The last phase is creating a classifier using the reduced features vector created in phase 2 and a
classification technique. Among the many classification techniques, most of which have been
implemented in the Weka platform (Witten and Frank, 2005), the following have been used in
the context of benign/malware files classification: artificial neural networks (ANNs) (Bishop,
1995) , decision tree (DT) learners (Quinlan, 1993), nave-Bayes (NB) classifiers (John and
Langley, 1995), Bayesian networks (BN) (Pearl, 1987), support vector machines (SVMs)
(Joachims, 1999), k-nearest neighbor (KNN) (Aha et al., 1991), voting feature intervals (VFI)
(Demiröz and Güvenir, 1997), OneR classifier (Holte, 1993), Adaboost (Freund and Schapire,
1999), random forest (Breiman, 2001), and other ensemble methods (Menahem et al., 2009;
Rokach, 2010).

To test the effectiveness of ML techniques, in malware detection, the researchers listed in Table
1 conducted experiments combining various feature extraction methods along with several feature
selection and classification algorithms.

Ye et al. (2009) suggested using a mixture of features in the malware-detection process. The
features are called Interpretable Strings as they include both programs’ strings and strings repre-
senting the API execution calls used. The assumption is that the strings capture important semantics
and can reflect an attacker’s intent and goal. The detection process starts with a feature parser that
extract the API function calls and looks for a sequence of consecutive bytes that forms the strings
used. Strings must be of the same encoding and character set. The feature-parser uses a corpus of
natural language to filter and remove non-interpretable strings. Next, the strings are ranked using
the Max-Relevance algorithm. Finally, a classification model is constructed from SVM ensemble
with bagging.

Ye et al. (2010) presented a variation of the method, presented above, that uses Hierarchical
Associative Classifier (HAC) to detect malware from a large imbalanced list of applications. The
malware in the imbalanced list were the minority class. The HAC methodology also uses API
calls as features. Again, the associative classifiers were chosen due to their interpretability and
their capability to discover interesting relationships among API calls. The HAC uses two stages:
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to achieve high recall, in the first stage, high precision rules for benign programs (majority class)
and low precision rules for minority class are used, then, in the second stage, the malware files are
ranked and precision optimization is performed.

Instead of relying on unpacking methods that may fail, Dai et al. (2009) proposed a malware-
detection system, based on a virtual machine, to reveal and capture the needed features. The system
constructs classification models using common data mining approaches. First, both malware and
benign programs are executed inside the virtual machine and the instruction sequences are collected
during runtime. Second, the instruction sequence patterns are abstracted. Each sequence is treated
as a feature. Next, a feature selection process in performed. In the last stage a classification model
is built. In the evaluation the SVM model performed slightly better then the C4.5 model.

Yu et al. (2011) presented a simple method to detect malware variants. First, a histogram is
created by iterating over the suspected file binary code. An additional histogram is created for
the base sample (the known malware). Then, measures are calculated to estimate the similarity
between the two histograms. Yu et al. (2011) showed that when the similarity is high, there is a high
probability that the suspected file is a malware variant.

The experiments definitely proved that is possible to use ML techniques for malware detection.
Short n-gram were most commonly used as features and yielded the best results. However, the
researchers listed did not use the same file sets and test formats and therefore it is very difficult or
impossible to compare the results and to determine what the best method under various conditions
is. Table 2 presents predictive performance results from various researches.

When we examined the techniques, several insights emerged:

1. All applications (i.e., software files tested in the studies) that were developed using a higher
level development platforms (such as Microsoft Visual Studio, Delphi, Microsoft.Net) contain
common code and resources that originate from common code and resource libraries. Since
most malware are also made of the same common building blocks, we believe it would be
reasonable to discard the parts of a malware that are common to all kinds of software, leaving
only the parts that are unique to the malware. Doing so should increase the difference between
malware files and benign files and therefore should result in a lower misclassification rate.

2. Long n-gram create huge computational loads due to the number of features. This is known
as the curse of dimensionality (Bellman et al., 1966). All surveyed n-gram experiments were
conducted with n-gram length of up to 8 bytes (in most cases 3-byte n-gram) despite the
fact that short n-gram cannot be unique by themselves. In many cases 3- to 8-byte n-gram
cannot represent even one line of code composed with a high level language. In fact, we
showed in a previous paper (Tahan et al., 2010) that an n-gram should be at least 64 bytes
long to uniquely identify a malware. As a result, current techniques using short n-gram rely
on complex conditions and involve many features for detecting malware files.

The goal of this paper is to develop and evaluate a novel methodology and supporting algorithms
for detecting malware files by using common segment analysis. In the proposed methodology we
initially detect and nullify, by zero patching, benign segments and therefore resolve the deficiency
of analyzing files with segments that may not contribute or even hinder classification. Note that,
when a segment represents at least one line of code developed using a high level language; it can
address the second deficiency of using short features that may be meaningless when considered
alone. Additionally, we suggest using meta-features instead of using plain features such as n-gram.
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Study Feature Rep-
resentation

Feature Se-
lection

Classifiers

Schultz et al.
(2001)

PE, Strings,
n-gram

NA RIPPER, Nave Bayes, and
Multi-Nave Bayes

Kolter and Mal-
oof (2004)

n-gram NA TFIDF, Nave Bayes, SVM,
Decision Trees, Boosted
Decision Trees, Boosted
Nave Bayes, and Boosted
SVM

Abou-Assaleh
et al. (2004)

n-gram NA K-Nearest Neighbors

Kolter and Mal-
oof (2006)

n-gram Information-
Gain

K-Nearest Neighbors, Nave
Bayes, SVM, Decision
Trees, Boosted Decision
Trees, Boosted Nave Bayes,
and Boosted SVM.

Henchiri and
Japkowicz
(2006)

n-gram Hierarchical
feature se-
lection

Decision Trees, Nave
Bayes, and SVM

Zhang et al.
(2007)

n-gram Information-
Gain

Probabilistic Neural Net-
work

Elovici et al.
(2007)

PE and
n-gram

Fisher
Score

Bayesian Networks, Artifi-
cial Neural Networks, and
Decision Trees

Ye et al. (2008) PE Max-
Relevance

Classification Based on As-
sociation (CBA)

Dai et al. (2009) instruction
sequence

Contrast
measure

SVM

Ye et al. (2009) PE (API) Max-
Relevance

SVM ensemble with bag-
ging

Ye et al. (2010) PE (API) Max-
Relevance

Hierarchical Associative
Classifier (HAC)

Yu et al. (2011) histogram NA Nearest Neighbors

Table 1: Recent research in static analysis malware detection in chronological order.

A meta-feature is a feature that captures the essence of plain feature in a more compact form. Using
those meta-features, we are able to refer to relatively long sequences (64 bytes), thus avoiding the
curse of dimensionality.

2. Methods

As explained in Section 1, our basic insight is that almost all modern computer applications are
developed using higher level development platforms such as: Microsoft Visual Studio, Embarcadero
Delphi, etc. There are a number of implications associated with using these development platforms:
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Method Study Features Feature
selection

FPR TPR Acc AUC

Artificial Neural
Network

Elovici
et al.
(2007)

5grams Fisher
Score top
300

0.038 0.89 0.94 0.96

Bayesian Network Elovici
et al.
(2007)

5grams Fisher
Score top
300

0.206 0.88 0.81 0.84

Bayesian Network Elovici
et al.
(2007)

PE n/a 0.058 0.93 0.94 0.96

Decision Tree Elovici
et al.
(2007)

5grams Fisher
Score top
300

0.039 0.87 0.93 0.93

Decision Tree Elovici
et al.
(2007)

PE n/a 0.035 0.92 0.95 0.96

Classification
Based on Associa-
tion

Ye et al.
(2008)

PE Max-
Relevance

0.125 0.97 0.93 —–

Boosted Decision
Tree

Kolter
and
Maloof
(2006)

4grams Gain Ratio —– —– —– 0.99

Table 2: Comparison of several kinds of machine learning methods. FPR, TPR, ACC and AUC
refers to False Positive Rate, True Positive Rate, Accuracy and the Area Under Receiver
Operating Characteristic (ROC) Curve as defined in Section 3.2.

1. Since application development is fast with these platforms, both legitimate developers and
hackers tend to use them. This is certainly true for second-stage malware.

2. Applications share the same libraries and resources that originated from the development plat-
form or from third-party software companies. As a result, malware that has been developed
with these tools generally resembles benign applications. Malware also tends, to a certain
degree, to use the same specialized libraries to achieve a malicious goal (such as attachment
to a different process, hide from sight with root kits, etc). Therefore it may be reasonable to
assume that there will be resemblances in various types of malware due to sharing common
malware library code or even similar specific method to perform malicious action. Of course
such malware commonalities cannot be always guaranteed.

3. The size of most application files that are being produced is relatively large. Since many
modern malware files are in fact much larger than 1 MB, analysis of the newer applications is
much more complex than previously when the applications themselves were smaller as well
as the malware attacking them.
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The main idea presented in this paper is to use a new static analysis methodology that uses
common segment analysis in order to detect files containing malware. As noted above, many ap-
plications and malware are developed using the development platforms that include large program
language libraries. The result is that large portions of executable code originate from the program
language libraries. For example, a worm malware that distributes itself via email may contain a
benign code for sending emails. Consequently, since the email handling code is not malicious and
can be found in many legitimate applications, it might be a good idea to identify code portions that
originate from a benign source and disregard them when classifying an executable file. In other
words, when given an unclassified file, the first step would be to detect the file segments that origi-
nated from the development platform or from a benign third party library (termed here the Common
Function) and then disregard those segments. Finally, the remaining segments would be compared
to determine their degree of resemblance to a collection of known malwares. If the resemblance
measure satisfies a predetermined threshold or rule then the file can be classified as malware.

To implement the suggested approach, two kinds of repositories are defined:

1. CFL—Common Function Library. The CFL contains data structures constructed from
benign files.

2. TFL—Threat Function Library. The TFL contains data structures constructed from mal-
ware without segments identified as benign (i.e., segments that appears in benign files).

Figure 1 presents the different stages required to build the needed data structures and to classify
an application file. As can be seen in this figure, our Mal-ID methodology uses two distinct stages
to accomplish the malware detection task: setup and detection. The setup stage builds the CFL. The
detection phase classifies a previously unseen application as either malware or benign. Each stage
and each sub-stage is explained in detail in the following subsections. The Mal-ID pseudo code is
presented in Figure 2.

2.1 The Setup Phase

The setup phase involves collecting two kinds of files: benign and malware files. The benign files
can be gathered, for example, from installed programs, such as programs located underWindows XP
program files folders. The malware files can, for example, be downloaded from trusted dedicated
Internet sites, or by collaborating with an anti-virus company. In this study the malware collection
was obtained from trusted sources. In particular, Ben-Gurion University Computational Center
provided us malware that were detected by them over time. Each and every file from the collection is
first broken into 3-grams (three consecutive bytes) and then an appropriate repository is constructed
from the 3-grams. The CFL repository is constructed from benign files and the TFL repository is
constructed from malware files. These repositories are later used to derive the meta-features—as
described in Section 2.2.

Note that in the proposed algorithm, we are calculating the distribution of 3-grams within each
file and across files, to make sure that a 3-gram belongs to the examined segment and thus associate
the segment to either benign (CFL) or malware (TFL). Moreover, 3-grams that seem to appear
approximately within the same offset in all malware can be used to characterize the malware. Before
calculating the 3-grams, the training files are randomly divided into 64 groups.

The CFL and TFL repositories share the same data structure:
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12

Figure 1: The Mal-ID method for detecting new malware applications. 

Setup phase:

Build Common Function Library (CFL)

Build Threats Function Library (TFL)

Malware Detection Phase: 

xBreak the file into segments. 
xCalculate segment entropy 
x Extract features (3-grams) for 

each segment. 

For each file segment:

xAggregate the features using the 

CFL to creates indices 

For each file segment:

xAggregate the features using the 

TFL to creates indices 

Filter segments using the 

computed indices 

Second level index aggregation  

Classify the file  

Figure 1: The Mal-ID method for detecting new malware applications.

1. 3-gram-files-association: 224 entries, each of 64 bits. A bit value of 1 in a cell (i, j) indicates
the appearance of a specific 3-gram i in the jth group of files. The 64-bit entry size was
selected since a previous study showed that this size is the most cost effective in terms of
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detection performance vs. storage complexity (Tahan et al., 2010). Other implementations
may use larger entries.

1. 3-gram-relative-position-within-file: 224 entries, each of 64 bits. A bit value of 1 in a cell (i,
j) indicates the appearance of 3-gram i in the jth internal segment of a file (assuming the file
is divided into 64 equal length segments).

The CFL is constructed first and then the TFL:

1. Each file from the malware collection is broken into segments. The Mal-ID implementation
has used 64-byte segments.

2. Each segment is broken into 3grams and then tested against the CFL using the algorithm and
features described next. Segments that are not in the CFL are added to the TFL.

It is important to note that the end result is the TFL, a repository made of segments found only
in malware and not in benign files.

2.2 The Detection Phase

The Mal-ID basic is a feature extraction process followed by a simple static decision rule.
It operates by analyzing short segments extracted from the file examined. Each segment com-

prises a number of 3-grams depending on the length of the segment (e.g., a segment of length 4
bytes is comprised from two 3-grams that overlap by two bytes). Three features can be derived for
each segment: Spread, MFG, and Entropy. The Spread and the MFG features are derived using the
data structures prepared in the setup stage described in Section 2.1 above.

The definition and motivation behind the new features are hereby provided:

1. Spread: Recall that in the Mal-ID setup phase each file in the training set has been divided
into 64 relative-position-areas. The Spread feature represents the spread of the signature’s
3-grams along the various areas for all the files in a given repository. The Spread feature can
be calculated as follows: for each 3-gram, first retrieve the 3-gram-relative-position-within-
file bit-field, and then perform ‘And’ operations over all the bit-fields and count the resulting
number of bits that are equal to 1. In other words, spread approximates the maximum number
of occurrences of a segment within different relative locations in train sets. For example, a
Spread equal to 1 means that the segment appears (at most) in one relative location in all the
files.

2. MFG: the maximum total number of file-groups that contain the segment. The MFG is calcu-
lated using the 3-gram-files-association bit-field, in the same manner that spread is calculated.

3. Entropy: the entropy measure of the bytes within a specific segment candidate. In addition to
the new estimators presented above, the entropy feature is also used to enable to identification
of compressed areas (such as embedded JPEG images) and long repeating sequences that
contain relatively little information.

Note that the features, as described above, are in factmeta-features as they are used to represent
features of features (features of the basic 3-grams). As explained next, using these meta-features,
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Mal-ID can refer to relatively long sequences (64 bytes), thus avoiding the data mining problem
known as “the curse of dimensionality”, and other problems caused when using short n-gram as
features. The advantages of using Mal-ID meta-features will be demonstrated in the evaluation
results section and in the discussion section.

2.3 The Mal-ID Basic Detection Algorithm

The input for the Mal-ID method is an unclassified executable file of any size. Once the setup phase
has constructed the CFL and the TFL, it is possible to classify a file F as benign or as malware using
the algorithm presented in Figure 2.

1. Line 1. Divide file F into S segments of length L. All segments are inserted into a collection
and any duplicated segments are removed. The end result is a collection of unique segments.
The Mal-ID implementation uses 2000 segments that are 64-bytes in length.

2. Line 3. For each segment in the collection:

(a) Line 5. Calculate the entropy for the bytes within the segment.
(b) Line 6. The algorithm gets two parameters EntropyLow and EntropyHigh. The entropy

thresholds are set to disregard compressed areas (such as embedded JPEG images) and
long repeating sequences that contain relatively little information. In this line we check
if the entropy is smaller than EntropyLow threshold or entropy is larger than Entropy-
High. Is so then discard the segment and continue segment iteration. Preliminary eval-
uation has found the values of EntropyLow=0.5 and EntropyHigh=0.675 maximize the
number of irrelevant segments that can be removed.

(c) Line 9. Extract all 3-grams using 1 byte shifts.
(d) Line 11. Using the CFL, calculate the CFL-MFG index.
(e) Line 12. If the CFL-MFG index is larger than zero, then discard the segment and con-

tinue segment iteration. The segment is disregarded since it may appear in benign files.
(f) Line 14. Using the TFL, calculate the TFL-MFG index
(g) Line 15. The algorithm gets the ThreatThreshold parameter which indicates the mini-

mum occurrences a segment should appear in the TFL in order to be qualified as mal-
ware indicator. In this line we check if the TFL-MFG index is smaller or equal to the
ThreatThreshold. If so then discard the segment and continue with segment iteration. In
the Mal-ID implementation only segments that appear two times or more remain in the
segment collection. Obviously a segment that does not appear in any malware cannot
be used to indicate that the file is a malware.

(h) Line 17. Using the TFL calculate the TFL-Spread index
(i) Line 18. The algorithm gets the SR parameter which indicates the Spread Range re-
quired. If the TFL-Spread index equals zero or if it is larger than what we term SR
threshold, then discard the segment and continue segment iteration. The purpose of
these conditions is to make sure that all 3-grams are located in at least 1 segment in at
least 1 specific relative location. If a segment is present in more than SR relative loca-
tions it is less likely to belong to a distinct library function and thus should be discarded.
In our Mal-ID implementation, SR was set to 9.
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(j) Lines 21-25 (optional stage, aimed to reduce false malware detection). A segment that
meets all of the above conditions is tested against the malware file groups that contain
all 3-gram segments. As a result, only segments that actually reside in the malware are
left in the segment collection. Preliminary evaluation showed that there is no significant
performance gain performing this stage more than log (SegmentLen) * NumberOfMal-
wareInTraining iterations.

3. Lines 28-30. Second level index aggregation—Count all segments that are found in malware
and not in the CFL.

4. Line 32. Classify—If there are at least X segments found in the malware train set (TFL)
and not in the CFL then the file is malware; otherwise consider the file as benign. We have
implemented Mal-Id with X set to 1.

Please note that the features used by Mal-ID algorithm described above are in fact meta-features
that describe the 3-grams features. The advantages of using Mal-ID meta-features will be described
in the following sections.

2.3.1 MAL-ID COMPLEXITY

Proposition 1 The computational complexity of the algorithm in Figure 2 is O(SN+ log(SL) ·M ·
MaxMalSize) where SN denotes the number of segments; SL denotes segment length; M denotes the
number of malware in the training set; and MaxMalSize denotes the maximum length of a malware.

Proof The computational complexity of the algorithm in Figure 2 is computed as follows: the
GenerateSegmentCollection complexity is O(SN); the complexity of loop number 1 (lines 3-26) is
O(SN+ log(SL) ·M ·MaxMalSize); the complexity of loop number 2 (lines 29-30) is O(SN). Thus,
the overall complexity is O(SN+ log(SL) ·M ·MaxMalSize).

2.4 Combining Mal-ID With ML Generated Models

We attempted to improve theMal-ID basicmethod by usingMal-ID features with various classifiers,
but instead of using the Mal-ID decision model described in Section 2, we let various ML algorithms
build the model using the following procedure:

1. We apply the common segment analysis method on the training set and obtain a collection of
segments for both the CFL and the TFL as explained in Section 2.

2. For each file’s segment, we calculated the CFL-MFG, TFL-MFG and the TFL-spread based
on the CFL and TFL. The entropy measure is calculated as well.

3. We discretized the numeric domain of the above features using the supervised procedure of
Fayyad and Irani (1993). Thus for each feature we found the most representative sub-domains
(bins).

4. For each file we count the number of segments associated with each bin. Each frequency
count is represented twice: once as absolute numbers (number of segments) and then as a
proportional distribution.
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SegmentColl=GenerateSegmentCollection(FileContent,SegmentsRequired,SegmentLen);
SegmentCheck=0; 
ForEach Segment in SegmentColl do 

{ 
Entropy  = Entropy(Segment.string); 
If (Entropy<=EntropyLow) or (Entropy>= EntropyHigh) then  
    {SegmentColl.delete(Segment); continue; } 

Segment3Grams:=SegmentTo3Grams(Segment); 

CFL_MFG = CFL.Count_Files_With_All_3gram (Segment3Grams) 
If (CFL_MFG>0) then { SegmentColl.delete(Segment); continue; } 

TFL_MFG = TFL.Count_Files_With_All_3gram (Segment3Grams) 
If (TFL_MFG< ThreatsThreshold) then { SegmentColl.delete(Segment); continue; } 

TFL_spread   = TFL.CalcSpread (Segment3Grams); 
If (TFL_spread =0) or  (TFL_spread >SR)  then   
    {SegmentColl.delete(Segment); continue; } 

// optional stage 
SegmentCheck++; 
If (SegmentCheck>log(SegmentLen)*NumberOfMalwareInTraining) then continue; 
InMalwareFile  = TFL.SearchInMalwareFiles(Segment);  //search by bit-fields 
If  not InMalwareFile  then { SegmentColl.delete(Segment); continue; } 
} 

SegmentsInMalwareOnly = 0; 
ForEach Segment in SegmentColl do 

{ SegmentsInMalwareOnly  = SegmentsInMalwareOnly +1; } 

Malware_Classfication_Result = SegmentsInMalwareOnly > ThreatSegmentThreshold; 

Figure 2: Mal-ID pseudo code. 

Mal-ID basic

Figure 2: Mal-ID pseudo code.

5. An induction algorithm is trained over the training set to generate a classifier.

We compare the following three machine learning induction algorithms:

1. C4.5—Single Decision Tree

2. RF—Rotation Forest (Rodriguez et al., 2006) using J48 decision tree as base classifier. The
algorithm was executed with 100 iterations and the PCA method for projecting the data in
every iteration.

3. NN—A multilayer perception with one hidden layer trained over 500 epochs using back-
propagation.
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Finally, using the model is used to detect the malware among the files in the test set.

2.5 Combining Mal-ID With ML Models Post Processing

We have attempted to improve theMal-ID basic method by using the following procedure:

1. First, theMal-ID basicmethod is used to construct the CFL and TFL. This stage is performed
only once before the file classification starts.

2. Next, zero patch each malware in the training set as follows: Iterate over all of the file seg-
ments and perform common segment analysis to detect the segments that appear in the CFL.
The benign segments (the segments that appear in the CFL) are zero patched in an attempt to
reduce the number of n-gram that are clearly not relevant for detecting segments that appear
only in malware. The end result is a new file with the same length that has zeros in the benign
segments.

3. Finally, construct a classification model using Rotation Forest using J48 decision tree as base
classifier. The patched malware collection and the unchanged benign file collection are used
for training.

To classify a file we first have to zero-patch the file as explained above then use the classification
model created earlier.

3. Experimental Evaluation

In order to evaluate the performance of the proposed methods for detecting malwares, a comparative
experiment was conducted on benchmark data sets. The proposed methods were compared with
the method presented in the research of Kolter and Maloof (2004). The research of Kolter and
Maloof (2006) found that the combination of 500 4-grams with gain ratio feature selection and
boosted decision tree provides the best performance over many other evaluated method variations.
We will refer to our variation of Kolter and Maloof method as GR500BDT as it uses Gain Ratio
feature selection, 500 4-grams, and Boosted Decision Tree classifier. The GR500BDT method was
specifically selected because it was the best method known to us.

The following terms will be used when referring to the various methods:

1. GR500BDT—Our baseline method, which is described above.

2. Mal-IDP+GR500BDT—As explained in Section 2.5, we use Mal-ID to zero patch common
segments in the test files, and then use GR500BDT as usual.

3. Mal-ID basic—Mal-ID basic method as explained in Section 2.

4. Mal-IDF+<induction algorithm>—as detailed in Section 2.4, Mal-ID features will be used
by induction algorithm.

(a) Mal-IDF+RF—Mal-ID features with Rotation Forest classification
(b) Mal-IDF+C4.5—Mal-ID features with C4.5
(c) Mal-IDF+NN—Mal-ID features with a multilayer perception.
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Specifically, the experimental study had the following goals:

1. To examine whether the proposed basic methods, could detect malware while keeping the
false alarm rate as small as possible.

2. Compare the performance of the variousMal-ID basic extensions.

3. To analyze the effect of the common library size (benign and malware) on performance.

The following subsections describe the experimental set-up and the results that were obtained.

3.1 Experimental Process

The main aim of this process was to estimate the generalized detection performance (i.e., the prob-
ability that a malware was detected correctly). The files repository was randomly partitioned into
training and test sets. The process was repeated 10 times and we report the average result. The same
train-test partitioning was used for all algorithms.

For evaluating the proposed methodology 2627 benign files were gathered from programs in-
stalled under Windows XP program files folders, with lengths ranging from 1Kb to 24MB. An
additional 849 malware files were gathered from the Internet with lengths ranging from 6Kb to
4.25MB (200 executables were above 300KB). The detailed list of examined executables can be
obtained in the following URL: http://www.ise.bgu.ac.il/faculty/liorr/List.rar. The
malware and benign file sets were used without any decryption, decompression or any other pre-
processing. The malware types and frequencies are presented in Figure 3. The evaluation computer
used an Intel Q6850 CPU with 4GB of RAM. The processing time was measured using only 1 CPU
core, although the implemented algorithm natively supported multiple cores.

3.2 Evaluation Measures

We used the following performance measures:

• TP = true positive

• FP = false positive

• TN = true negative

• FN = false negative

• FPR = FP / N = FP / (FP + TN) = false positive rate

• TPR = TP / P = TP / (TP + FN) = true positive rate (also known as sensitivity)

• PPV = TP / (TP + FP) = positive predictive value

• NPV = TN / (TN + FN) = negative predictive value

• ACC = (TP + TN) / (P + N) = accuracy

• BER = 0.5(FN/P + FP/N) = balanced error rate
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Figure 3: Distribution of malware types in dataset.
Figure 3: Distribution of malware types in data set.

• BCR = 1- BER = balanced correctness rate

• AUC = area under receiver operating characteristic (ROC) curve

Our measures, such as PPV versus NPV, as well as BER or BCR, try to address the important
case of an unbalanced positive/negative instance case mix, which is often ignored in the literature.
Given the low rate of malware versus benign code, accuracy might be a misleading measure. For
example, a “Maximal Class Probability” (MPC) classifier is a classifier that always predicts the most
frequent class. Thus, an MPC predicting “BENIGN” for every instance in an environment where
99% of the files are benign would, indeed, be 99% accurate. That would also be its NPV, since
there is a 99% probability that the MPC is right when it predicts that the file is benign. However,
its PPV would be 0, or rather, undefined, since it never predicts a positive class; in other words, its
sensitivity to positive examples is 0.

Furthermore, unlike many studies in the information security literature, we use the cross-entropy
as one of our major performance measures. The cross-entropy described by Caruana et al. (2004). It
is also referred in the literature by the terms negative log-likelihood or log-loss. Let p(xi) represents
the posterior probability of the instance xi to be associated with the malware class according to the
classifier. The average cross-entropy is defined as the average over all m test instances:

Entropy=
1
m

m

∑
i=1

I(xi)
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where the cross-entropy for a certain case is defined as:

I (xi) =
{

−logP(xi) if xi is malware,
−log(1−P(xi)) otherwise.

The use of cross-entropy as a measure of knowledge gain allows us to plot the improvement
in a learning process, given an increasing number of examples, by noting whether there is a posi-
tive information gain (i.e., a reduction in the entropy after learning, compared to the entropy of the
previous learning phase). In particular, we would expect an algorithm that really learns something
about the classification of both the positive and negative cases to demonstrate a positive monotonic
improvement in the cross-entropy measure. It is important to show this positive monotonic im-
provement since we would prefer an algorithm that generates classifiers in a stable fashion. Such an
algorithm can be considered as more trustworthy than an algorithm whose learning curve might be
chaotic.

3.3 Results

The following sections describe various Mal-ID evaluation results starting with the Mal-ID basic
model followed by the results of two enhancements aimed to improve Mal-ID performance.

3.3.1 RESULTS OF MAL-ID BASIC MODEL

Table 3 presents the detection performance of the proposed method for 70% of the benign files and
90% of the malware files that are used for training.

TPR FPR PPV NPV Accuracy AUC BCR BER
0.909 0.006 0.944 0.99 0.986 0.951 0.952 0.048

Table 3: Predictive Performance ofMal-ID basic.

Kolter and Maloof (2006) conducted rigorous research to find the best combination of n-gram
length, n-gram number, features selection and classification method. They reported that the combi-
nation of five hundred 4-grams, gain ratio feature selection and boosted decision tree (AdaBoost.M1
with J48 as a base classifier) produced excellent results where the AUC was over 0.99. As you re-
call, we reproduced the work of Kolter and Maloof (gain ratio, 500 4-grams with boosted decision
tree; referred to as GR500BDT) to objectively compare the performance of our methods and theirs
under the same conditions such as data set content, data set training size, etc. A preliminary evalua-
tion indicated that Rotation Forest (RF) boosting method (Rodriguez et al., 2006) performed better
than AdaBoost.M1 and many other non-boosting methods such as J48, therefore RF was selected
for our evaluation. The results of the evaluation are presented in Table 4 below.

Method Features Feature selection FPR TPR Acc AUC
GR500BDT 4grams Gain Ratio 0.094 0.959 0.948 0.929
Mal-ID Mal-ID - 0.006 0.909 0.986 0.951

Table 4: Comparison between Mal-ID and GR500BDT.
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3.3.2 RESULTS OF COMBINING MAL-ID WITH ML GENERATED MODELS

As you recall we attempted to improve the Mal-ID basic method by using Mal-ID features with
various classifiers. The following figures show comparison of various detection performance mea-
sures. Many detection performance measures were recorded and reported as presented in the figures
below. Please note that ”TrainPercentage” refers to the percentage of benign data sets and ranges
from 30 to 70 percent. Malware data set percentages range from 40 to 90 percent. The ratio between
malware and benign was kept fixed for all cases.

Figure 4 reports the average cross-entropy for a classifier by averaging the entropy of the pos-
teriori probability that it outputs to all test instances. As expected, we see that the cross-entropy
decreases as the training set size increases. For the largest training set, Mal-ID basic shows the best
decrease in a posteriori cross-entropy.

Figure 5 presents the accuracy of theMal-ID basic model as well that of theMal-IDF+NN and
Mal-IDF+RF models. As expected, the accuracy increases almost linearly as the training set size
increases. For small training set sizes, Mal-IDF+RF outperforms the other methods. However, for
the largest training set, the Mal-ID basic model eventually achieves the best results.

Figure 6 presents the TPR of all methods. Mal-IDF+C4.5 demonstrates the lowest TPR. The
Mal-IDF+NN and Mal-IDF+RF models perform the best. The Mal-ID basic model benefits the
most from increasing the training set size. In small training sets, the difference between theMal-ID
basic model and either Mal-IDF+NN or Mal-IDF+RF are statistically significant. However, for
larger training sets the differences are no longer significant.

28

Mal-ID basic

Figure 4: Comparing the a posteriori cross-entropy of various detection modules as a function of
training set percentage increase.
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28

Mal-ID basicFigure 5: Comparing the accuracy performance of theMal-ID basicmodel with the machine learn-
ing methods on various training set size percentages.

Figure 7 presents the FPR of all methods. The Mal-ID basic model demonstrates the best
performance. Mal-IDF+C4.5, on the other hand, demonstrates the lowest FPR. The performance of
Mal-IDF+NN does not improve as the training set increases. TheMal-ID basic model significantly
outperforms Mal-IDF+C4.5 and Mal-IDF+NN. Additionally, a paired t-test indicates the Mal-ID
basic’s FPR is significantly lower than the FPR ofMal-IDF+RF with p< 0.0001.

Figure 8 presents the area under the ROC curve for theMal-ID basic model,Mal-IDF+NN and
Mal-IDF+RF. All models improve as the training set increases. The Mal-ID basic model shows
the lowest AUC but also benefits the most from increasing the training set size. The lower AUC of
the Mal-ID basic model can be explained by the fact that contrary to the other models, the Mal-ID
basic model is a discrete classifier. Discrete classifiers produce only a single point in ROC space
(Fawcett, 2004) and therefore their calculated AUC appears lower.

When we examined the balanced error rate (BER) for Mal-ID basic, Mal-IDF+NN and Mal-
IDF+RF Models, we noticed that the BER measure decreases for all models as the training set
increases. Mal-ID basic demonstrated a significant and sharp decline in the BER as the training set
increases. In almost all cases, the Mal-IDF+RF achieved the lowest BER. With the largest training
set there is no significant difference between theMal-ID basic model and theMal-IDF+RF model.

When we compared the NPV of theMal-ID basicmodel with the NPV of theMal-IDF+NN and
Mal-IDF+RF, we noticed, as expected, that the NPV increases almost linearly as the training set
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Figure 6: Comparing the true positive rate of the Mal-ID basic model with the machine learning
methods on various training set size percentages.

size increases. For small training set sizes, Mal-IDF+RF and Mal-IDF+NN outperform the other
methods. Eventually, however, there is no statistically significant difference for the largest training
set.

When we compared the PPV of theMal-ID basicmodel with the PPV of theMal-IDF+NN,Mal-
IDF+C4.5 and Mal-IDF+RF, we found out that Mal-ID basic has the best PPV for all training set
sizes. TheMal-IDF+RF performed better than theMal-IDF+NN and theMal-IDF+NN performed
better thanMal-IDF+C4.5.

To sum up, in many cases Mal-ID basic outperforms the methods that use Mal-ID features
combined with a ML classifier and we conclude that a simple decision rule is sufficient.

3.3.3 COMBINING MAL-ID WITH ML MODELS POST PROCESSING

As you recall, we have attempted to improve the Mal-ID basic method by using the method to
zero-patch the benign common library parts. To measure and compare the effect of the Mal-ID
patching prior to classifying, we preformed an evaluation using four methods: GR500BDT, Mal-
IDP+GR500BDT,Mal-ID basic, and Mal-IDF+RF.

Figure 9 compares the accuracy performance using various training set sizes. The results show
that with Mal-IDP+GR500BDT we were able to improve performance but only on relatively small
training sets. However, compared to the known GR500BDT, Mal-IDP+GR500BDT show signif-
icant and consistent improvements in accuracy by about 2%. All Mal-ID variations were able to

967



TAHAN, ROKACH AND SHAHAR
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Mal-ID basic

Mal-ID basic

Figure 7: Comparing the false positive rate of the Mal-ID basic model with the machine learning
methods on various training set size percentages.

outperform GR500BDT regardless of training set size. It should be noted that on the one hand we
should have expected to an improvement in the predictive performance when the training set size
increases. On the other hand because we also increase the imbalance ratio between benign and mal-
ware therefore we should have expected to a decrease in the predictive performance. Eventually we
observe that accuracy of GR500BDT remains almost constant.

Figure 10 compares FPR performance under various training set sizes. The results indicate that
there is slight but constant improvement in terms of FPR when first performing a patch with Mal-ID
(Mal-IDP+GR500BDT) instead of using n-gram without patching (GR500BDT). The performance
of all n-gram-based methods decreases sharply when the training set consists of more than 50%
benign files. The graph shows that in terms of FPR, the Mal-ID basic method always performs
slightly better than the Mal-IDF+RF method and both methods perform significantly better than
n-gram based methods. In other words, the graph shows that in terms of FPR, there is a significant
difference between methods that use n-gram features and those that use the Mal-ID meta-features.

Table 5 summarizes the detection performance results for the various Mal-ID methods and the
GR500BDT baseline and can help in choosing the best method when considering detection perfor-
mance only. Other important considerations will be discussed below. The results demonstrate that
Mal-IDP+GR500BDT always outperforms GR500BDT baseline andMal-IDP+GR500BDT should
be used when the highest TPR is desired and a high FPR is acceptable. However Mal-ID basic and
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Mal-ID basic

Mal-ID basicFigure 8: Comparing the AUC of the Mal-ID basic model with the machine learning methods on
various training set size percentages.

Mal-IDF+RF seems to be the best choice for more balanced performance with extremely low FPR
and for achieving the highest accuracy.

Method Feature selection FPR TPR Acc AUC
GR500BDT (un-patched + RF) Gain Ratio 0.094 0.959 0.948 0.929
Mal-IDP+GR500BDT
(patched + RF)

Gain Ratio 0.093 0.977 0.963 0.946

Mal-ID basic Mal-ID 0.006 0.909 0.986 0.951
Mal-IDF+RF (Mal-ID features
+ RF)

None 0.006 0.916 0.985 0.995

Table 5: A comparison of various Mal-ID methods and RF when using maximum training size.

Table 6 presents the training time (in seconds) and detection time (in ms) of all examined meth-
ods. The evaluation computer used an Intel Q6850 CPU with 4GB of RAM. All times were mea-
sured using only 1 CPU core. The training time of Mal-ID based methods does not include building
the CFL and TFL which took around 30 seconds. As expected the training time increases with the
training size. In addition, GR500BDT training time does not include the n-gram feature extraction
and selection (which took more than ten minutes). The Mal-ID basic and Mal-IDF+C4.5 methods
demonstrated the best training time performance with less than one second. The detection time
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Figure 9: Comparing the accuracy of various Mal-ID-based methods and the n-gram method on
various training set size percentages.

seems almost constant regardless of training set size. The only exception is Mal-IDF+RF in which
detection time increases almost linearly as the training set increases. Note that the size of the trees
(number of nodes) which constitute the rotation forest usually increases with the training set. This
can be explained by the fact that the number of leaves in the tree is bounded by the training set size.
Larger trees require a longer traversal time and features calculation. Recall that in rotation forest,
the features used in the various nodes are linear combination of the original features.

Table 7 reports the mean TPR of Mal-ID basic for small malwares (size<=350K) and large
malware (size>350K) using the largest training set. Note that the FPR is kept as reported in Table
5 (i.e., FPR=0.006). The results show that the TPR for both small and large group is very similar
indicating that MAL ID is not affected by the size of the examined malware.

In order to estimate the effect of obfuscation on detection rate, we have divided the tested mal-
ware into two groups—obfuscated and non-obfuscated. Because we were not informed which exe-
cutable was obfuscated, we have used the following method. We compressed the executables using
Zip and sorted them according to the compression ratio. We used a threshold of 50% compression
ratio to decide which executable is probably obfuscated. The selection of this threshold was based
on experiments of compressing non- obfuscated executables. According to this threshold, about
37.5% of the malware are considered to be obfuscated. Table 8 reports the mean TPR of Mal-ID
basic for obfuscated and non-obfuscated groups using the largest training set. Note that the FPR is
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Figure 10: Comparing the FPR of various Mal-ID-based methods and the n-gram method on vari-
ous training set size percentages.

kept as reported in Table 5 (i.e., FPR=0.006). The results show that the TPR for both obfuscated
and non-obfuscated group is very similar with slight advantage to detecting obfuscated malwares.

4. Discussion

This paper proposes a new approach for automatically detecting executable malwares of all kinds
and sizes. The results show that using the Mal-ID basic and other Mal-ID variants are useful in
detecting malware. As can be seen from Table 3, the Mal-ID basic method performs very well in
respect to all measures. Not only is the accuracy very high (0.986), but the FPR is remarkably low
(0.006). In addition, the low Mal-ID BER indicates that the errors are almost uniformly distributed
among the malicious and benign files.

As explained in Section 3.3.1, we choose to implement GR500BDT as a baseline for comparing
the performance of theMal-ID basicmethod. GR500BDT is very similar to the method proposed by
Kolter and Maloof (2006). The evaluation shows that GR500BDT performed well, but was unable
to achieve the AUC of 0.995 that Kolter and Maloof reported. This was probably due to differences
in data set content, training size, the benign and malware ratio and possibly other factors. As can
be seen from Table 4, under identical conditions the Mal-ID methodology was able to outperform
GR500BDT in terms of FPR, accuracy and AUC. The FPR of GR500BDT method came to almost
10%; Mal-ID FPR was more than 15 times lower.
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Train Percentage
Method 30 40 50 60 70

Training MalID-Basic 0.05 0.08 0.11 0.15 0.21
Time Mal-IDF+RF 17.19 26.00 36.35 45.78 83.50
(in sec) Mal-IDF+C4.5 0.12 0.17 0.22 0.33 0.43

Mal-IDF+NN 24.33 32.16 40.33 48.37 56.93
GR500BDT 21.74 34.91 59.86 64.88 75.19
Mal-IDP+GR500BDT 20.93 31.42 42.96 55.65 63.43

Detection MalID-Basic 27.86 27.86 27.86 27.86 27.86
Time Mal-IDF+RF 49.17 54.69 63.66 73.95 95.82
per file Mal-IDF+C4.5 27.86 27.86 27.86 27.86 27.86
(in ms) Mal-IDF+NN 27.92 27.92 27.90 27.89 27.88

GR500BDT 29.63 29.83 29.83 29.85 29.83
Mal-IDP+GR500BDT 29.01 29.01 29.02 28.98 28.97

Table 6: Training and Detection Time.

Malware Size TPR Number of Mal-
wares

Mean Size

Small 0.909 675 96K
Large 0.908 174 554K

Table 7: A comparison of TPR (True Positive Rate) Mal-ID basic for small and large malwares
when using maximum training size.

Malware type TPR Mean Compression
Ratio

Obfuscated 0.932 41%
Non-obfuscated 0.893 62%

Table 8: A comparison of TPR (True Positive Rate) Mal-ID basic for obfuscated and non-
obfuscated malware when using maximum training size.

Once it was established that theMal-ID basic method performs well (in fact better than the best
baseline method) we wanted to examine Mal-ID behavior with different train sizes to test ifMal-ID
basic performs in a stable and “trustworthy” manner. In addition, it was interesting to determine if
combining Mal-ID basic with ML-generated models, as explained in Section 3.3.2, would yield a
better performing malware detection method.

The results presented in Figure 4 to Figure 8 show that combining Mal-ID with ML-based
models enabled us to improve many aspects of the Mal-ID basic method when training sets are
not maximal. However, as training set size increases, the benefit of combining Mal-ID basic with
ML-based models diminishes. At maximal training set size, the Mal-ID basic method almost al-
ways demonstrates the best performance or a performance that is statistically equal to the combined
methods. It is also important to note that, contrary to the other methods, all measures that we im-

972



AUTOMATIC MALWARE DETECTION

plemented indicated that theMal-ID basicmethod benefited the most from training set increase and
always performed in an expected manner. Thus, it may be considered more stable and “trustworthy”
than the other methods.

It is interesting to note that while the performance of non-n-gram methods (Mal-ID basic and
Mal-IDF+RF) continues to improve as more training data become available, the n-gram based
methods show a sharp decrease in performance in terms of FPR (see Figure 10). This can be
explained by the fact that n-gram methods induce relatively simple patterns that can be learned with
comparatively small training sets (30%). The potential benefit of additional training data is nullified
by the undesirable increase in the probability that relevant n-gram will be mistakenly considered
as non-contributing features. In fact, it is well known that decision trees increase their chances of
overfitting when they have more nodes. But in order to have more nodes, they need a larger training
set. Thus a larger data set might increase the chance of overfitting especially in cases were there are
many irrelevant and noisy features.

The comparison of our two additional methods, Mal-IDF+RF and Mal-IDP+GR500BDT, with
a GR500BDT baseline is very important in proving the validity of Mal-ID itself and explaining its
excellent performance:

1. (a) Under identical conditions, boosted decision tree, operating on Mal-ID basic meta-
features (Mal-IDF+RF), outperformed boosted decision tree operating on n-gram
(GR500BDT). The comparison suggests that Mal-ID meta-features are useful in con-
tributing to malware detection and probably more meaningful than simple n-gram in
capturing a file’s essence.

(b) Under identical conditions, boosted decision tree operating on Mal-ID basic patched
files (Mal-IDP+GR500BDT) outperformed boosted decision tree operating on non-
patched files (GR500BDT). The comparison suggests that the novel Mal-ID common
segment analysis approach is better than the common approach that treats files as black
boxes or which interprets files PE header only.

SinceMal-ID basic andMal-IDF+RF methods benefit from both more meaningful features and
common segment analysis, they are able to achieve a better overall performance than state-of-the-art
GR500BDT.

Considering detection performance only when choosing a malware detection method may not
be enough; it is important to consider other aspects as well.

4.1 Model Interpretability

Mal-ID basic uses only one static interpretable classification model and therefore experts in the
field can be more confident when accepting or rejecting a classification. For instance, once Mal-ID
basic has detected a yet unknown malware, it is possible to support or reject the classification. The
reason is that each detected segment, that passed the Mal-ID filter stage as explained in Section 2,
can be tracked back to a specific malware or malware group. Moreover, the specific offset location
were the segments appear can be examined to determine the precise nature of the threat, if any
exists. Disassembly or reverse engineering of the whole malware is no longer required. Even
without examining the segment code, one can make an educated guess about the nature of the threat
by examining the list of known malwares that the segment appears in. The other methods do not
provide such benefits.
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4.2 Incremental

As more malwares are discovered, it is important to update the models from time to time. With
Mal-ID basic it is particularly easy. Since the model is static, no reconstruction is necessary; all
that is required is to just to add or subtract files from the TFL. The CFL can be updated in a similar
manner.

4.3 Anytime Detection

Recall that both Mal-ID basic and Mal-IDF+RF operates on segments. Because Mal-ID basic and
Mal-IDF+RF use relatively large segments and the model is not comprised of combined features
from the whole file, it is possible to stop detection at anytime during file scan and determine if the
scanned part is malicious. n-gram-based methods are not designed to diagnose part of file but rather
whole files only.

4.4 Default Signature For Real-time Malware Detection Hardware

The end result of applying Mal-ID basic method is a file segment or segments that appear in mal-
ware files only and thus may be used as a signature for anti-virus tools. The detected malware seg-
ments can be used, as described by Filiol (2006), to generate signatures resistant against black-box
analysis. Moreover, because Mal-ID basic produces a simple signature and has anytime detection
traits, the signature can be used with commercially available real-time intrusion prevention systems
(IPS). IPSs require the anytime detection trait to act as real-time malware filtering devices and thus
promote and provide users with default protection. Having both malware detection and signature
generation could help shorten the window of vulnerability. Tahan et al. (2010) have presented a
methodology with complete implementation for automatic signature generation, using similar and
compatible techniques, which archived excellent results in the evaluation. Thus, the method pre-
sented by Tahan et al. (2010) can be easily adopted to produce signature upon detection for the
solution presented in this paper.

4.5 Large Files Scalability

Nowadays it’s quite common to embed large resources such as JPEG pictures and small animations
into executables. This inflation is also true for malware. It is estimated1 that the mean malware size
has increased from 150K (in 2005) to 350K (in 2010). As files become larger, the effectiveness of
classification with small n-gram should decrease due to the increase in file entropy. In other words,
the more n-gram with equal appearance probability, the greater the misclassification probability
becomes. Since Mal-ID basic and Mal-IDF+RF use relatively large segments (64 bytes) and in
addition filter-out high entropy parts, they should be less susceptible to misclassification caused by
large files or files with high entropy traits. Figure 10 shows that the Mal-ID methods that operate on
large segments (of 64 bytes) has less FPR misclassification then the method that operated on small
n-gram (of 4 bytes). We further examined this hypothesis in Table 7.

1. See http://nakedsecurity.sophos.com/2010/07/27/large-piece-malware/.
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4.6 Analysis of Mal-ID Performance on Obfuscated Malware

Based on the results presented so far, we hypothesize that the proposed Mal-ID method performs
well in a mixed environment where both obfuscated (including compressed or encrypted) and plain
executable files exist. In this sense, we referred to malware as they are found “in the Wild”.

There might be several reasons that can explain why the TPR of obfuscated binaries appears
to be higher than the TPR of non-obfuscated binaries. One reason can be that many obfuscated
malwares are generated by automated tools that have distinctive properties. For example, malware
developers are sharing tools for facilitating the generation of new malwares. For example, in the
web site http://vx.netlux.org/, one can find many tools (such as Falckon Encrypter that is used
for obfuscation) that can be used by the malware developers but are not used by benign software
developers. All malware that use the Falckon Encrypter, share the same decryption segment.

The results of Table 8 agree with the previously-made observation that ML techniques can
classify malware that are obfuscated (compressed or encrypted or both). For example, Kolter and
Maloof (2006) have noted that ML can detect obfuscated malware. In this paper, we have inde-
pendently reconfirmed the validity of the above observation using our method. In this experiment,
we succeeded to keep FPR relatively low (FPR=0.006), however it should be noted that this value
was obtained when our corpus contained 2,627 benign files and 849 malware files (i.e., a benign to
malware ratio of 3:1). In reality this ratio can be much higher and therefore one should expect to
obtain elevated FPR values.

There seem to be previously suggested explanations to this phenomenon. According to Kolter
and Maloof (2006), the success in detecting obfuscated malware relies on learning certain forms of
obfuscation such as run-time decompression. Kolter and Maloof (2006) conclude that “. . . this does
not seem problematic as long as those forms are correlated with malicious executables”.

Additional explanations can be suggested to the ability to identify obfuscated malware. Studies
such as that presented by Newsome and Song, or by Newsome et al. (2005) noticed that in many
cases malware requires fixed sequences to be used in the body of the malware (which must exist
before self-decryption or self-decompression) in order to exploit a specific vulnerability and self-
propagate. Such fixed sequences can be used for detection. This might explain the success in
detecting obfuscated malware.

Because the performance of MAL ID is achieved with no disassembly, Op-Code analysis, ex-
ecutable header analysis, unpacking nor any other preprocessing, we hypothesize that the method
should be scalable to other Operating Systems and hardware types. Still one can think on cases
where preprocessing will be required. Theoretically an attacker can specifically design a malware
that will make it hard for MAL ID to detect it. In particular, if a malware is designed such that the
entropy measure will be high for all segments, it will be undiscovered by the Mal-ID basic method.
In this case Mal-ID can be extended by incorporating an unpacker operating before it, such as those
that are incorporated into anti-viruses tools (Kasparsky). However, similar to Kolter and Maloof
(2006), we decided to evaluate the raw power of our methods without any use of an unpacker.

5. Summary and Future Work

In this paper we have described novel methods based on machine learning to detect malware in
executable files without any need for preprocessing the executables. The basic method that we
presented works on the segment level for detecting new malware instead of using the entire file
as usually done in machine learning based techniques. The Mal-ID basic method and its derived
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variants were rigorously tested to evaluate their effectiveness under many conditions using a wide
variety of measures. The results demonstrate the effectiveness of the methods. In all cases, most
of the performance measures showed that the proposed methods significantly outperformed the
baseline method GR500BDT which is known for its excellent performance (Kolter and Maloof,
2004, 2006). For each method we have pinpointed its strong points and suggested cases where it
should be preferred over the others.

We believe this study has made several contributions to malware detection research, including
the introduction of:

1. a new and effective method for malware detection based on common segment analysis and
supporting algorithms. The importance of common segment analysis to the process of mal-
ware detection was identified and demonstrated. The results suggest the method can boost
performance for many methods that use n-gram.

2. new kinds of features—Mal-ID basicmeta-features. The results suggest that the meta-features
are much more effective than the commonly used n-gram and probably more meaningful in
terms of file representation. We believe that Mal-ID basic meta-features could inspire many
kinds of additional meta-features that could prove useful.

3. BCR, BER, PPV, NPV and entropy decrease for measuring the performance of malware de-
tection methods. Using these measures, in addition to the commonly used performance mea-
sures (TPR, FPR, accuracy and AUC), is not generally practiced. However, these features are
helpful in describing the behavior of a new method, particularly when it is not possible to
compare results under identical settings and data set imbalance.

The results also indicate that by extracting meaningful features, it is sufficient to employ one
simple detection rule for classifying unknown executables.

In the future, we aim to examine the effect of systematically collecting and choosing the benign
file set on the performance of the proposed methods. In the evaluations that were conducted for this
study, the benign file set was collected randomly and the files used may have had a large degree of
similarity. It is our assumption that systematically collecting and choosing common segments will
provide a better representation of benign common segments and a more robust and lower FPR. A
robust and low FPR will enable the use of more sensitive malware detection methods (or parameters
that affect malware detection) without increasing the FPR too much. As a result, we hope to see
further increase in the AUC measure. Finally the Mal-ID basic method was developed as a crisp
classifier. Additional research is required for developing a method for ranking the examined files
according to their presumed threat level. One straightforward measure is the ratio between the
segments found in the TFL and the segments found in the CFL. In addition, it will be interesting to
test the proposed method on live network data and on an institutional network and determine if it
detects malware that is not detected by other means. Finally, future work may repeat the evaluation
Mal-ID on a larger scale with thousands of malware samples and tens of thousands of non-malware
samples. For this purpose, we might need to upscale software components to accommodate large
data set and suitable hardware. In addition, in order to use the proposed method in practice by the
industry, fine tuning of the various parameters might be required.

Additional studies might be needed to fully evaluate the performance of Mal-ID under various
obfuscation scheme, including use of recursive unpacking. In this paper we focused only on “pure”
Mal-ID methods and therefore we did not investigate the proper means to incorporate unpacker.
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Abstract
The Nyström method is an efficient technique to generate low-rank matrix approximations and is
used in several large-scale learning applications. A key aspect of this method is the procedure
according to which columns are sampled from the original matrix. In this work, we explore the
efficacy of a variety of fixed and adaptive sampling schemes. We also propose a family of ensem-
ble-based sampling algorithms for the Nyström method. We report results of extensive experiments
that provide a detailed comparison of various fixed and adaptive sampling techniques, and demon-
strate the performance improvement associated with the ensemble Nyström method when used in
conjunction with either fixed or adaptive sampling schemes. Corroborating these empirical find-
ings, we present a theoretical analysis of the Nyström method, providing novel error bounds guar-
anteeing a better convergence rate of the ensemble Nyström method in comparison to the standard
Nyström method.
Keywords: low-rank approximation, nyström method, ensemble methods, large-scale learning

1. Introduction

A common problem in many areas of large-scale machine learning involves deriving a useful and
efficient approximation of a large matrix. This matrix may be a kernel matrix used with support
vector machines (Cortes and Vapnik, 1995; Boser et al., 1992), kernel principal component analysis
(Schölkopf et al., 1998) or manifold learning (Platt, 2004; Talwalkar et al., 2008). Large matrices
also naturally arise in other applications, for example, clustering, collaborative filtering, matrix
completion, robust PCA, etc. For these large-scale problems, the number of matrix entries can be
in the order of tens of thousands to millions, leading to difficulty in operating on, or even storing
the matrix. An attractive solution to this problem involves using the Nyström method to generate a
low-rank approximation of the original matrix from a subset of its columns (Williams and Seeger,
2000). A key aspect of the Nyström method is the procedure according to which the columns are
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sampled. This paper presents an analysis of different sampling techniques for the Nyström method
both empirically and theoretically.1

In the first part of this work, we focus on various fixed sampling methods. The Nyström method
was first introduced to the machine learning community (Williams and Seeger, 2000) using uni-
form sampling without replacement, and this remains the sampling method most commonly used
in practice (Talwalkar et al., 2008; Fowlkes et al., 2004; de Silva and Tenenbaum, 2003; Platt,
2004). More recently, the Nyström method has been theoretically analyzed assuming sampling
from fixed, non-uniform distributions over the columns (Drineas and Mahoney, 2005; Belabbas and
Wolfe, 2009; Mahoney and Drineas, 2009). In this work, we present novel experiments with several
real-world data sets comparing the performance of the Nyström method when used with uniform
versus non-uniform sampling distributions. Although previous studies have compared uniform and
non-uniform distributions in a more restrictive setting (Drineas et al., 2001; Zhang et al., 2008), our
results are the first to compare uniform sampling with the sampling technique for which the Nyström
method has theoretical guarantees. Our results suggest that uniform sampling, in addition to being
more efficient both in time and space, produces more effective approximations. We further show
the benefits of sampling without replacement. These empirical findings help motivate subsequent
theoretical analyses.

The Nyström method has also been studied empirically and theoretically assuming more sophis-
ticated iterative selection techniques (Smola and Schölkopf, 2000; Fine and Scheinberg, 2002; Bach
and Jordan, 2002). In the second part of this work, we provide a survey of adaptive techniques that
have been suggested for use with the Nyström method, and present an empirical comparison across
these algorithms. As part of this work, we build upon ideas of Deshpande et al. (2006), in which
an adaptive, error-driven sampling technique with relative error bounds was introduced for the re-
lated problem of matrix projection (see Kumar et al. 2009b for details). However, this technique
requires the full matrix to be available at each step, and is impractical for large matrices. Hence,
we propose a simple and efficient algorithm that extends the ideas of Deshpande et al. (2006) for
adaptive sampling and uses only a small submatrix at each step. Our empirical results suggest a
trade-off between time and space requirements, as adaptive techniques spend more time to find a
concise subset of informative columns but provide improved approximation accuracy.

Next, we show that a new family of algorithms based on mixtures of Nyström approximations,
ensemble Nyström algorithms, yields more accurate low-rank approximations than the standard
Nyström method. Moreover, these ensemble algorithms naturally fit within distributed comput-
ing environments, where their computational costs are roughly the same as that of the standard
Nyström method. This issue is of great practical significance given the prevalence of distributed
computing frameworks to handle large-scale learning problems. We describe several variants of
these algorithms, including one based on simple averaging of p Nyström solutions, an exponential
weighting method, and a regression method which consists of estimating the mixture parameters of
the ensemble using a few columns sampled from the matrix. We also report the results of extensive
experiments with these algorithms on several data sets comparing different variants of the ensem-
ble Nyström algorithms and demonstrating the performance improvements gained over the standard
Nyström method.

1. Portions of this work have previously appeared in the Conference on Artificial Intelligence and Statistics (Kumar
et al., 2009a), the International Conference on Machine Learning (Kumar et al., 2009b) and Advances in Neural
Information Processing Systems (Kumar et al., 2009c).
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Finally, we present a theoretical analysis of the Nyström method, namely bounds on the recon-
struction error for both the Frobenius norm and the spectral norm. We first present a novel bound
for the Nyström method as it is often used in practice, that is, using uniform sampling without re-
placement. We next extend this bound to the ensemble Nyström algorithms, and show these novel
generalization bounds guarantee a better convergence rate for these algorithms in comparison to the
standard Nyström method.

The remainder of the paper is organized as follows. Section 2 introduces basic definitions,
provides a short survey on related work and gives a brief presentation of the Nyström method. In
Section 3, we study various fixed sampling schemes used with the Nyström method. In Section 4,
we provide a survey of various adaptive techniques used for sampling-based low-rank approxima-
tion and introduce a novel adaptive sampling algorithm. Section 5 describes a family of ensemble
Nyström algorithms and presents extensive experimental results. We present novel theoretical anal-
ysis in Section 6.

2. Preliminaries

Let T ∈ Ra×b be an arbitrary matrix. We define T( j), j = 1 . . .b, as the jth column vector of T,
T(i), i = 1 . . .a, as the ith row vector of T and ‖·‖ the l2 norm of a vector. Furthermore, T(i: j)

refers to the ith through jth columns of T and T(i: j) refers to the ith through jth rows of T. If
rank(T) = r, we can write the thin Singular Value Decomposition (SVD) of this matrix as T =
UTΣTV%T where ΣT is diagonal and contains the singular values of T sorted in decreasing order
and UT ∈ Ra×r and VT ∈ Rb×r have orthogonal columns that contain the left and right singular
vectors of T corresponding to its singular values. We denote by Tk the ‘best’ rank-k approximation
to T, that is, Tk=argminV∈Ra×b,rank(V)=k‖T−V‖ξ, where ξ ∈ {2,F} and ‖·‖2 denotes the spectral
norm and ‖·‖F the Frobenius norm of a matrix. We can describe this matrix in terms of its SVD as
Tk = UT,kΣT,kV%T,k where ΣT,k is a diagonal matrix of the top k singular values of T and UT,k and
VT,k are the matrices formed by the associated left and right singular vectors.

Now let K ∈ Rn×n be a symmetric positive semidefinite (SPSD) kernel or Gram matrix with
rank(K) = r ≤ n, that is, a symmetric matrix for which there exists an X ∈ RN×n such that K =
X%X. We will write the SVD of K as K = UΣU%, where the columns of U are orthogonal and
Σ = diag(σ1, . . . ,σr) is diagonal. The pseudo-inverse of K is defined as K+ = ∑r

t=1σ
−1
t U(t)U(t)%,

andK+ =K−1 whenK is full rank. For k< r,Kk =∑k
t=1σtU(t)U(t)%=UkΣkU%k is the ‘best’ rank-k

approximation to K, that is, Kk=argminK′∈Rn×n,rank(K′)=k‖K−K′‖ξ∈{2,F}, with ‖K−Kk‖2 = σk+1

and ‖K−Kk‖F =
√
∑r
t=k+1σ

2
t (Golub and Loan, 1983).

We will be focusing on generating an approximation K̃ of K based on a sample of l ) n of
its columns. For now, we assume that the sample of l columns is given to us, though the focus of
this paper will be on various methods for selecting columns. Let C denote the n× l matrix formed
by these columns and W the l× l matrix consisting of the intersection of these l columns with the
corresponding l rows of K. Note that W is SPSD since K is SPSD. Without loss of generality, the
columns and rows of K can be rearranged based on this sampling so that K and C be written as
follows:

K=

[
W K%21
K21 K22

]
and C=

[
W
K21

]
. (1)
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2.1 Nyström Method

The Nyström method uses W and C from (1) to approximate K. Assuming a uniform sampling of
the columns, the Nyström method generates a rank-k approximation K̃ of K for k < n defined by:

K̃nys
k = CW+

k C
% ≈K,

whereWk is the best k-rank approximation ofW with respect to the spectral or Frobenius norm and
W+

k denotes the pseudo-inverse ofWk. The Nyström method thus approximates the top k singular
values (Σk) and singular vectors (Uk) of K as:

Σ̃
nys
k =

(n
l

)
ΣW,k and Ũnysk =

√
l
n
CUW,kΣ

+
W,k. (2)

When k= l (or more generally, whenever k≥ rank(C)), this approximation perfectly reconstructs
three blocks of K, and K22 is approximated by the Schur Complement ofW in K:

K̃nys
l = CW+C% =

[
W K%21
K21 K21W+K21

]
. (3)

Since the running time complexity of SVD onW is inO(kl2) and matrix multiplication withC takes
O(kln), the total complexity of the Nyström approximation computation is in O(kln).

2.2 Related Work

There has been a wide array of work on low-rank matrix approximation within the numerical lin-
ear algebra and computer science communities, much of which has been inspired by the celebrated
result of Johnson and Lindenstrauss (1984), which showed that random low-dimensional embed-
dings preserve Euclidean geometry. This result has led to a family of random projection algorithms,
which involves projecting the original matrix onto a random low-dimensional subspace (Papadim-
itriou et al., 1998; Indyk, 2006; Liberty, 2009). Alternatively, SVD can be used to generate ‘optimal’
low-rank matrix approximations, as mentioned earlier. However, both the random projection and
the SVD algorithms involve storage and operating on the entire input matrix. SVD is more com-
putationally expensive than random projection methods, though neither are linear in n in terms of
time and space complexity. When dealing with sparse matrices, there exist less computationally in-
tensive techniques such as Jacobi, Arnoldi, Hebbian and more recent randomized methods (Golub
and Loan, 1983; Gorrell, 2006; Rokhlin et al., 2009; Halko et al., 2009) for generating low-rank
approximations. These methods require computation of matrix-vector products and thus require op-
erating on every non-zero entry of the matrix, which may not be suitable for large, dense matrices.
Matrix sparsification algorithms (Achlioptas and Mcsherry, 2007; Arora et al., 2006), as the name
suggests, attempt to sparsify dense matrices to speed up future storage and computational burdens,
though they too require storage of the input matrix and exhibit superlinear processing time.

Alternatively, sampling-based approaches can be used to generate low-rank approximations.
Research in this area dates back to classical theoretical results that show, for any arbitrary matrix,
the existence of a subset of k columns for which the error in matrix projection (as defined in Kumar
et al., 2009b) can be bounded relative to the optimal rank-k approximation of the matrix (Ruston,
1962). Deterministic algorithms such as rank-revealing QR (Gu and Eisenstat, 1996) can achieve
nearly optimal matrix projection errors. More recently, research in the theoretical computer science
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community has been aimed at deriving bounds on matrix projection error using sampling-based
approximations, including additive error bounds using sampling distributions based on the squared
L2 norms of the columns (Frieze et al., 1998; Drineas et al., 2006; Rudelson and Vershynin, 2007);
relative error bounds using adaptive sampling techniques (Deshpande et al., 2006; Har-peled, 2006);
and, relative error bounds based on distributions derived from the singular vectors of the input
matrix, in work related to the column-subset selection problem (Drineas et al., 2008; Boutsidis
et al., 2009). These sampling-based approximations all require visiting every entry of the matrix in
order to get good performance guarantees for any matrix. However, as discussed in Kumar et al.
(2009b), the task of matrix projection involves projecting the input matrix onto a low-rank subspace,
which requires superlinear time and space with respect to n and is not always feasible for large-scale
matrices.

There does exist, however, another class of sampling-based approximation algorithms that only
store and operate on a subset of the original matrix. For arbitrary rectangular matrices, these al-
gorithms are known as ‘CUR’ approximations (the name ‘CUR’ corresponds to the three low-rank
matrices whose product is an approximation to the original matrix). The theoretical performance of
CUR approximations has been analyzed using a variety of sampling schemes, although the column-
selection processes associated with these analyses often require operating on the entire input matrix
(Goreinov et al., 1997; Stewart, 1999; Drineas et al., 2008; Mahoney and Drineas, 2009).

In the context of symmetric positive semidefinite matrices, the Nyström method is a commonly
used algorithm to efficiently generate low-rank approximations. The Nyström method was initially
introduced as a quadrature method for numerical integration, used to approximate eigenfunction
solutions (Nyström, 1928; Baker, 1977). More recently, it was presented in Williams and Seeger
(2000) to speed up kernel algorithms and has been studied theoretically using a variety of sampling
schemes (Smola and Schölkopf, 2000; Drineas and Mahoney, 2005; Zhang et al., 2008; Zhang and
Kwok, 2009; Kumar et al., 2009a,b,c; Belabbas and Wolfe, 2009; Belabbas and Wolfe, 2009; Cortes
et al., 2010; Talwalkar and Rostamizadeh, 2010). It has also been used for a variety of machine
learning tasks ranging from manifold learning to image segmentation (Platt, 2004; Fowlkes et al.,
2004; Talwalkar et al., 2008). A closely related algorithm, known as the Incomplete Cholesky
Decomposition (Fine and Scheinberg, 2002; Bach and Jordan, 2002, 2005), can also be viewed as a
specific sampling technique associated with the Nyström method (Bach and Jordan, 2005). As noted
by Candès and Recht (2009) and Talwalkar and Rostamizadeh (2010), the Nyström approximation
is related to the problem of matrix completion (Candès and Recht, 2009; Candès and Tao, 2009),
which attempts to complete a low-rank matrix from a random sample of its entries. However,
the matrix completion attempts to impute a low-rank matrix from a subset of (possibly perturbed)
matrix entries, rather than a subset of matrix columns. This problem is related to, yet distinct from
the Nyström method and sampling-based low-rank approximation algorithms in general, that deal
with full-rank matrices that are amenable to low-rank approximation. Furthermore, when we have
access to the underlying kernel function that generates the kernel matrix of interest, we can generate
matrix entries on-the-fly as desired, providing us with more flexibility accessing the original matrix.

3. Fixed Sampling

Since the Nyström method operates on a small subset of K, that is, C, the selection of columns can
significantly influence the accuracy of the approximation. In the remainder of the paper, we will
discuss various sampling options that aim to select informative columns from K. We begin with the

985



KUMAR, MOHRI AND TALWALKAR

most common class of sampling techniques that select columns using a fixed probability distribu-
tion. The most basic sampling technique involves uniform sampling of the columns. Alternatively,
the ith column can be sampled non-uniformly with weight proportional to either its corresponding
diagonal element Kii (diagonal sampling) or the L2 norm of the column (column-norm sampling)
(Drineas et al., 2006; Drineas and Mahoney, 2005). There are additional computational costs as-
sociated with these non-uniform sampling methods: O(n) time and space requirements for diago-
nal sampling and O(n2) time and space for column-norm sampling. These non-uniform sampling
techniques are often presented using sampling with replacement to simplify theoretical analysis.
Column-norm sampling has been used to analyze a general SVD approximation algorithm. Further,
diagonal sampling with replacement was used by Drineas and Mahoney (2005) and Belabbas and
Wolfe (2009) to bound the reconstruction error of the Nyström method.2 In Drineas and Mahoney
(2005) however, the authors suggest that column-norm sampling would be a better sampling as-
sumption for the analysis of the Nyström method. We also note that Belabbas and Wolfe (2009)
proposed a family of ‘annealed determinantal’ distributions for which multiplicative bounds on
reconstruction error were derived. However, in practice, these distributions cannot be efficiently
computed except for special cases coinciding with uniform and column-norm sampling. Similarly,
although Mahoney and Drineas (2009) present multiplicative bounds for the CUR decomposition
(which is quite similar to the Nyström method) when sampling from a distribution over the columns
based on ‘leverage scores,’ these scores cannot be efficiently computed in practice for large-scale
applications.

In the remainder of this section we present novel experimental results comparing the perfor-
mance of these fixed sampling methods on several data sets. Previous studies have compared uni-
form and non-uniform in a more restrictive setting, using fewer types of kernels and focusing only
on column-norm sampling (Drineas et al., 2001; Zhang et al., 2008). However, in this work, we pro-
vide the first comparison that includes diagonal sampling, which is the non-uniform distribution that
is most scalable for large-scale applications and which has been used in some theoretical analyses
of the Nyström method.

3.1 Data Sets

We used 5 data sets from a variety of applications, for example, computer vision and biology, as
described in Table 1. SPSD kernel matrices were generated by mean centering the data sets and
applying either a linear kernel or RBF kernel. The diagonals (respectively column norms) of these
kernel matrices were used to calculate diagonal (respectively column-norm) distributions. Note that
the diagonal distribution equals the uniform distribution for RBF kernels since diagonal entries of
RBF kernel matrices always equal one.

3.2 Experiments

We used the data sets described in the previous section to test the approximation accuracy for each
sampling method. Low-rank approximations of K were generated using the Nyström method along
with these sampling methods, and we measured the accuracy of reconstruction relative to the optimal

2. Although Drineas and Mahoney (2005) claim to weight each column proportionally to K2
ii, they in fact use the

diagonal sampling we present in this work, that is, weights proportional to Kii (Drineas, 2008).
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Name Type n d Kernel
PIE-2.7K faces (profile) 2731 2304 linear
PIE-7K faces (front) 7412 2304 linear
MNIST digit images 4000 784 linear

ESS proteins 4728 16 RBF
ABN abalones 4177 8 RBF

Table 1: Description of the data sets and kernels used in fixed and adaptive sampling experiments
(Sim et al., 2002; LeCun and Cortes, 1998; Gustafson et al., 2006; Asuncion and Newman,
2007). ‘d’ denotes the number of features in input space.
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l/n Data Set Uniform+Rep Diag+Rep Col-Norm+Rep
PIE-2.7K 38.8 (±1.5) 38.3 (±0.9) 37.0 (±0.9)
PIE-7K 55.8 (±1.1) 46.4 (±1.7) 54.2 (±0.9)

5% MNIST 47.4 (±0.8) 46.9 (±0.7) 45.6 (±1.0)
ESS 45.1 (±2.3) - 41.0 (±2.2)
ABN 47.3 (±3.9) - 44.2 (±1.2)

PIE-2.7K 72.3 (±0.9) 65.0 (±0.9) 63.4 (±1.4)
PIE-7K 83.5 (±1.1) 69.8 (±2.2) 79.9 (±1.6)

20% MNIST 80.8 (±0.5) 79.4 (±0.5) 78.1 (±0.5)
ESS 80.1 (±0.7) - 75.5 (±1.1)
ABN 77.1 (±3.0) - 66.3 (±4.0)

(b)

Figure 1: (a) Nyström relative accuracy for various sampling techniques on PIE-7K. (b) Nyström
relative accuracy for various sampling methods for two values of l/nwith k= 100. Values
in parentheses show standard deviations for 10 different runs for a fixed l. ‘+Rep’ denotes
sampling with replacement. No error (‘-’) is reported for diagonal sampling with RBF
kernels since diagonal sampling is equivalent to uniform sampling in this case.
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rank-k approximation, Kk, as:

relative accuracy =
‖K−Kk‖F
‖K− K̃k‖F

×100. (4)

Note that the relative accuracy is lower bounded by zero and will approach one for good approxi-
mations. We fixed k=100 for all experiments, a value that captures more than 90% of the spectral
energy for each data set. We first compared the effectiveness of the three sampling techniques using
sampling with replacement. The results for PIE-7K are presented in Figure 1(a) and summarized
for all data sets in Figure 1(b). The results across all data sets show that uniform sampling outper-
forms all other methods, while being much cheaper computationally and space-wise. Thus, while
non-uniform sampling techniques may be effective in extreme cases where a few columns of K
dominate in terms of ‖·‖2, this situation does not tend to arise with real-world data, where uniform
sampling is most effective.
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Data Set 5% 10% 15% 30%
PIE-2.7K 0.8 (±.6) 1.7 (±.3) 2.3 (±.9) 4.4 (±.4)
PIE-7K 0.7 (±.3) 1.5 (±.3) 2.1 (±.6) 3.2 (±.3)
MNIST 1.0 (±.5) 1.9 (±.6) 2.3 (±.4) 3.4 (±.4)

ESS 0.9 (±.9) 1.8 (±.9) 2.2 (±.6) 3.7 (±.7)
ABN 0.7 (±1.2) 1.3 (±1.8) 2.6 (±1.4) 4.5 (±1.1)

(b)

Figure 2: Comparison of uniform sampling with and without replacement measured by the differ-
ence in relative accuracy. (a) Improvement in relative accuracy for PIE-7K when sam-
pling without replacement. (b) Improvement in relative accuracy when sampling without
replacement across all data sets for various l/n percentages.

Next, we compared the performance of uniform sampling with and without replacement. Fig-
ure 2(a) illustrates the effect of replacement for the PIE-7K data set for different l/n ratios. Similar
results for the remaining data sets are summarized in Figure 2(b). The results show that uniform
sampling without replacement improves the accuracy of the Nyström method over sampling with re-
placement, even when sampling less than 5% of the total columns. In summary, these experimental
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show that uniform sampling without replacement is the cheapest and most efficient sampling tech-
nique across several data sets (it is also the most commonly used method in practice). In Section 6,
we present a theoretical analysis of the Nyström method using precisely this type of sampling.

4. Adaptive Sampling

In Section 3, we focused on fixed sampling schemes to create low-rank approximations. In this
section, we discuss various sampling options that aim to select more informative columns from K,
while storing and operating on only O(ln) entries of K. The Sparse Matrix Greedy Approximation
(SMGA) (Smola and Schölkopf, 2000) and the Incomplete Cholesky Decomposition (ICL) (Fine
and Scheinberg, 2002; Bach and Jordan, 2002) were the first such adaptive schemes suggested for
the Nyström method. SMGA is a matching-pursuit algorithm that randomly selects a new sample
at each round from a random subset of s) n samples, with s= 59 in practice as per the suggestion
of Smola and Schölkopf (2000). The runtime to select l columns is O(sl2n), which is of the same
order as the Nyström method itself when s is a constant and k = l (see Section 2.1 for details).

Whereas SMGA was proposed as a sampling scheme to be used in conjunction with the Nyström
method, ICL generates a low-rank factorization of K on-the-fly as it adaptively selects columns
based on potential pivots of the Incomplete Cholesky Decomposition. ICL is a greedy, deterministic
selection process that generates an approximation of the form K̃icl = X̃X̃% where X̃ ∈ Rn×l is low-
rank. The runtime of ICL is O(l2n). Although ICL does not generate an approximate SVD of K,
it does yield a low-rank approximation of K that can be used with the Woodbury approximation.
Moreover, when k = l, the Nyström approximation generated from the l columns of K associated
with the pivots selected by ICL is identical to K̃icl (Bach and Jordan, 2005). Related greedy adaptive
sampling techniques were proposed by Ouimet and Bengio (2005) and Liu et al. (2006) in the
contexts of spectral embedding and spectral mesh processing, respectively.

More recently, Zhang et al. (2008) and Zhang and Kwok (2009) proposed a technique to gen-
erate informative columns using centroids resulting from K-means clustering, with K = l. This
algorithm, which uses out-of-sample extensions to generate a set of l representative columns of
K, has been shown to give good empirical accuracy (Zhang et al., 2008). Finally, an adaptive
sampling technique with strong theoretical foundations (adaptive-full) was proposed in Deshpande
et al. (2006). It requires a full pass through K in each iteration and is thus inefficient for large K. In
the remainder of this section, we first propose a novel adaptive technique that extends the ideas of
Deshpande et al. (2006) and then present empirical results comparing the performance of this new
algorithm with uniform sampling as well as SMGA, ICL, K-means and the adaptive-full techniques.

4.1 Adaptive Nyström Sampling

Instead of sampling all l columns from a fixed distribution, adaptive sampling alternates between
selecting a set of columns and updating the distribution over all the columns. Starting with an initial
distribution over the columns, s < l columns are chosen to form a submatrix C′. The probabilities
are then updated as a function of previously chosen columns and s new columns are sampled and
incorporated in C′. This process is repeated until l columns have been selected. The adaptive
sampling scheme in Deshpande et al. (2006) is detailed in Figure 3. Note that the sampling step,
UPDATE-PROBABILITY-FULL, requires a full pass over K at each step, and hence O(n2) time
and space.
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Input: n×n SPSD matrix (K), number columns to be chosen (l), initial distribution over columns
(P0), number columns selected at each iteration (s)
Output: l indices corresponding to columns of K

SAMPLE-ADAPTIVE(K,n, l,P0,s)
1 R← set of s indices sampled according to P0
2 t← l

s −1 ! number of iterations
3 for i ∈ [1 . . .t] do
4 Pi← UPDATE-PROBABILITY-FULL(R)
5 Ri← set of s indices sampled according to Pi
6 R← R∪Ri
7 return R

UPDATE-PROBABILITY-FULL(R)
1 C′ ← columns of K corresponding to indices in R
2 UC′ ← left singular vectors of C′
3 E←K−UC′U%C′K
4 for j ∈ [1 . . .n] do
5 if j ∈ R then
6 Pj← 0
7 else Pj← ||Ej||22
8 P← P

||P||2
9 return P

Figure 3: The adaptive sampling technique (Deshpande et al., 2006) that operates on the entire
matrix K to compute the probability distribution over columns at each adaptive step.

We propose a simple sampling technique (adaptive-partial) that incorporates the advantages
of adaptive sampling while avoiding the computational and storage burdens of the adaptive-full
technique. At each iterative step, we measure the reconstruction error for each row of C′ and the
distribution over corresponding columns of K is updated proportional to this error. We compute the
error for C′, which is much smaller than K, thus avoiding the O(n2) computation. As described in
(3), if k′ is fixed to be the number of columns in C′, it will lead to C′nys = C′ resulting in perfect
reconstruction of C′. So, one must choose a smaller k′ to generate non-zero reconstruction errors
from which probabilities can be updated (we used k′ = (# columns in C′)/2 in our experiments).
One artifact of using a k′ smaller than the rank ofC′ is that all the columns ofKwill have a non-zero
probability of being selected, which could lead to the selection of previously selected columns in the
next iteration. However, sampling without replacement strategy alleviates this problem. Working
with C′ instead of K to iteratively compute errors makes this algorithm significantly more efficient
than that of Deshpande et al. (2006), as each iteration takes O(nlk′+ l3) time and requires at most
the storage of l columns ofK. The details of the proposed sampling technique are outlined in Figure
4.
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UPDATE-PROBABILITY-PARTIAL(R)
1 C′ ← columns of K corresponding to indices in R
2 k′ ← CHOOSE-RANK() ! low-rank (k) or |R|

2
3 Σ̃

nys
k′ , Ũ

nys
k′ ← DO-NYSTRÖM (C′,k′) ! see Equation (2)

4 C′nys← Spectral reconstruction using Σ̃
nys
k′ , Ũ

nys
k′

5 E← C′ −C′nys
6 for j ∈ [1 . . .n] do
7 if j ∈ R then
8 Pj← 0 ! sample without replacement
9 else Pj← ||E( j) ||22

10 P← P
||P||2

11 return P

Figure 4: The proposed adaptive sampling technique that uses a small subset of the original matrix
K to adaptively choose columns. It does not need to store or operate on K.

l/n% Data Set Uniform ICL SMGA Adapt-Part K-means Adapt-Full
PIE-2.7K 39.7 (0.7) 41.6 (0.0) 54.4 (0.6) 42.6 (0.8) 61.3 (0.5) 44.2 (0.9)
PIE-7K 58.6 (1.0) 50.1 (0.0) 68.1 (0.9) 61.4 (1.1) 71.0 (0.7) -

5% MNIST 47.5 (0.9) 41.5 (0.0) 59.2 (0.5) 49.7 (0.9) 72.9 (0.9) 50.3 (0.7)
ESS 45.7 (2.6) 25.2 (0.0) 61.9 (0.5) 49.3 (1.5) 64.2 (1.6) -
ABN 47.4 (5.5) 15.6 (0.0) 64.9 (1.8) 23.0 (2.8) 65.7 (5.8) 50.7 (2.4)

PIE-2.7K 58.2 (1.0) 61.1 (0.0) 72.7 (0.2) 60.8 (1.0) 73.0 (1.1) 63.0 (0.3)
PIE-7K 72.4 (0.7) 60.8 (0.0) 74.5 (0.6) 77.0 (0.6) 82.8 (0.7) -

10% MNIST 66.8 (1.4) 58.3 (0.0) 72.2 (0.8) 69.3 (0.6) 81.6 (0.6) 68.5 (0.5)
ESS 66.8 (2.0) 39.1 (0.0) 74.7 (0.5) 70.0 (1.0) 81.6 (1.0) -
ABN 61.0 (1.1) 25.8 (0.0) 67.1 (0.9) 33.6 (6.7) 79.8 (0.9) 57.9 (3.9)

PIE-2.7K 75.2 (1.0) 80.5 (0.0) 86.1 (0.2) 78.7 (0.5) 85.5 (0.5) 80.6 (0.4)
PIE-7K 85.6 (0.9) 69.5 (0.0) 79.4 (0.5) 86.2 (0.3) 91.9 (0.3) -

20% MNIST 83.6 (0.4) 77.9 (0.0) 78.7 (0.2) 84.0 (0.6) 88.4 (0.5) 80.4 (0.5)
ESS 81.4 (2.1) 55.3 (0.0) 79.4 (0.7) 83.4 (0.3) 90.0 (0.6) -
ABN 80.8 (1.7) 41.2 (0.0) 67.2 (2.2) 44.4 (6.7) 85.1 (1.6) 62.4 (3.6)

Table 2: Nyström spectral reconstruction accuracy for various sampling methods for all data sets for
k= 100 and three l/n percentages. Numbers in parenthesis indicate the standard deviations
for 10 different runs for each l. Numbers in bold indicate the best performance on each
data set, that is, each row of the table. Dashes (‘-’) indicate experiments that were too
costly to run on the larger data sets (ESS, PIE-7K).

4.2 Experiments

We used the data sets in Table 1, and compared the effect of different sampling techniques on the
relative accuracy of Nyström spectral reconstruction for k = 100. All experiments were conducted
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l/n% Data Set Uniform ICL SMGA Adapt-Part K-means Adapt-Full
PIE-2.7K 0.03 0.56 2.30 0.43 2.44 22.54
PIE-7K 0.63 44.04 59.02 6.56 15.18 -

5% MNIST 0.04 1.71 7.57 0.71 1.26 20.56
ESS 0.07 2.87 62.42 0.85 3.48 -
ABN 0.06 3.28 9.26 0.66 2.44 28.49

PIE-2.7K 0.08 2.81 8.44 0.97 3.25 23.13
PIE-7K 0.63 44.04 244.33 6.56 15.18 -

10% MNIST 0.20 7.38 28.79 1.51 1.82 21.77
ESS 0.29 11.01 152.30 2.04 7.16 -
ABN 0.23 10.92 33.30 1.74 4.94 35.91

PIE-2.7K 0.28 8.36 38.19 2.63 5.91 27.72
PIE-7K 0.81 141.13 1107.32 13.80 12.08 -

20% MNIST 0.46 16.99 51.96 4.03 2.91 26.53
ESS 0.52 34.28 458.23 5.90 14.68 -
ABN 1.01 38.36 199.43 8.54 12.56 97.39

Table 3: Run times (in seconds) corresponding to Nyström spectral reconstruction results in Table
2. Dashes (‘-’) indicate experiments that were too costly to run on the larger data sets
(ESS, PIE-7K).

in Matlab on an x86−64 architecture using a single 2.4 Ghz core and 30GB of main memory. We
used an implementation of ICL from Cawley and Talbot (2004) and an implementation of SMGA
code from Smola (2000), using default parameters as set by these implementations. We wrote
our own implementation of the K-means method using 5 iterations of K-means and employing an
efficient (vectorized) function to compute L2 distances between points and centroids at each iteration
(Bunschoten, 1999).3 Moreover, we used a random projection SVD solver to compute truncated
SVD, using code by Tygert (2009).

The relative accuracy results across data sets for varying values of l are presented in Table 2,
while the corresponding timing results are detailed in Table 3. The K-means algorithm was clearly
the best performing adaptive algorithm, generating the most accurate approximations in almost all
settings in roughly the same amount of time (or less) as other adaptive algorithms. Moreover,
the proposed Nyström adaptive technique, which is a natural extension of an important algorithm
introduced in the theory community, has performance similar to this original algorithm at a fraction
of the cost, but it is nonetheless outperformed by the K-means algorithm. We further note that ICL
performs the worst of all the adaptive techniques, and it is often worse than random sampling (this
observation is also noted by Zhang et al. 2008).

The empirical results also suggest that the performance gain due to adaptive sampling is in-
versely proportional to the percentage of sampled columns—random sampling actually outper-
forms many of the adaptive approaches when sampling 20% of the columns. These empirical re-
sults suggest a trade-off between time and space requirements, as noted by Schölkopf and Smola
(2002)[Chapter 10.2]. Adaptive techniques spend more time to find a concise subset of informa-
tive columns, but as in the case of the K-means algorithm, can provide improved approximation
accuracy.

3. Note that Matlab’s built-in K-means function is quite inefficient.
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5. Ensemble Sampling

In this section, we slightly shift focus, and discuss a meta algorithm called the ensemble Nyström
algorithm. We treat each approximation generated by the Nyström method for a sample of l columns
as an expert and combine p≥ 1 such experts to derive an improved hypothesis, typically more
accurate than any of the original experts.

The learning set-up is defined as follows. We assume a fixed kernel function K : X×X→R that
can be used to generate the entries of a kernel matrix K. The learner receives a set S of l p columns
randomly selected from matrix K uniformly without replacement. S is decomposed into p subsets
S1,. . .,Sp. Each subset Sr, r∈ [1, p], contains l columns and is used to define a rank-k Nyström
approximation K̃r.4 Dropping the rank subscript k in favor of the sample index r, K̃r can be written
as K̃r=CrW+

r C%r , where Cr andWr denote the matrices formed from the columns of Sr andW+
r is

the pseudo-inverse of the rank-k approximation ofWr. The learner further receives a sample V of s
columns used to determine the weight µr∈R attributed to each expert K̃r. Thus, the general form of
the approximation, Kens, generated by the ensemble Nyström algorithm, with k≤ rank(Kens)≤ pk,
is

K̃ens =
p

∑
r=1

µrK̃r

=




C1

. . .
Cp








µ1W+

1
. . .

µpW+
p








C1

. . .
Cp





%

. (5)

As noted by Li et al. (2010), (5) provides an alternative description of the ensemble Nyström
method as a block diagonal approximation of W+

ens, where Wens is the l p× l p SPSD matrix as-
sociated with the l p sampled columns. Moreover, Li et al. (2010) further argues that computing
W+

ens would be preferable to making this block diagonal approximation and subsequently uses a
random projection SVD solver to speed up computation of W+

ens (Halko et al., 2009). However,
this analysis is misleading as these two orthogonal approaches should not be viewed as competing
methods. Rather, one can always use the ensemble based approach along with fast SVD solvers.
This approach is most natural to improve performance on large-scale problems, and is precisely the
approach we adopt in our experiments.

The mixture weights µr can be defined in many ways. The most straightforward choice consists
of assigning equal weight to each expert, µr=1/p, r∈ [1, p]. This choice does not require the ad-
ditional sample V , but it ignores the relative quality of each Nyström approximation. Nevertheless,
this simple uniform method already generates a solution superior to any one of the approximations
K̃r used in the combination, as we shall see in the experimental section.

Another method, the exponential weight method, consists of measuring the reconstruction er-
ror ε̂r of each expert K̃r over the validation sample V and defining the mixture weight as µr =
exp(−ηε̂r)/Z, where η>0 is a parameter of the algorithm and Z a normalization factor ensuring that
the vector µ=(µ1, . . . ,µp) belongs to the unit simplex ∆ of Rp: ∆={µ∈ Rp : µ≥ 0∧∑p

r=1µr = 1}.
The choice of the mixture weights here is similar to those used in the Weighted Majority algorithm

4. In this study, we focus on the class of base learners generated from Nyström approximation with uniform sampling
of columns or from the adaptive K-means method. Alternatively, these base learners could be generated using other
(or a combination of) sampling schemes discussed in Sections 3 and 4.
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(Littlestone and Warmuth, 1994). Let KV denote the matrix formed by using the samples from
V as its columns and let K̃Vr denote the submatrix of K̃r containing the columns corresponding to
the columns in V . The reconstruction error ε̂r=‖K̃Vr −KV‖ can be directly computed from these
matrices.

A more general class of methods consists of using the sample V to train the mixture weights µr
to optimize a regression objective function such as the following:

min
µ

λ‖µ‖2
2 +‖

p

∑
r=1

µrK̃Vr −KV‖2
F ,

where λ>0. This can be viewed as a ridge regression objective function and admits a closed form
solution. We will refer to this method as the ridge regression method. Note that to ensure that the
resulting matrix is SPSD for use in subsequent kernel-based algorithms, the optimization problem
must be augmented with standard non-negativity constraints. This is not necessary however for
reducing the reconstruction error, as in our experiments. Also, clearly, a variety of other regression
algorithms such as Lasso can be used here instead.

The total complexity of the ensemble Nyström algorithm is O(pl3+plkn+Cµ), where Cµ is
the cost of computing the mixture weights, µ, used to combine the p Nyström approximations.
The mixture weights can be computed in constant time for the uniform method, in O(psn) for the
exponential weight method, or in O(p3+ p2ns) for the ridge regression method where O(p2ns)
time is required to compute a p× p matrix and O(p3) time is required for inverting this matrix.
Furthermore, although the ensemble Nyström algorithm requires p times more space and CPU
cycles than the standard Nyström method, these additional requirements are quite reasonable in
practice. The space requirement is still manageable for even large-scale applications given that p is
typically O(1) and l is usually a very small percentage of n (see Section 5.2 for further details). In
terms of CPU requirements, we note that the algorithm can be easily parallelized, as all p experts
can be computed simultaneously. Thus, with a cluster of p machines, the running time complexity
of this algorithm is nearly equal to that of the standard Nyström algorithm with l samples.

5.1 Ensemble Woodbury Approximation

The Woodbury approximation is a useful tool to use alongside low-rank approximations to effi-
ciently (and approximately) invert kernel matrices. We are able to apply the Woodbury approxima-
tion since the Nyström method represents K̃ as the product of low-rank matrices. This is clear from
the definition of the Woodbury approximation:

(A+BCD)−1 = A−1−A−1B(C−1 +DA−1B)−1DA−1, (6)

where A = λI and K̃ = BCD in the context of the Nyström method. In contrast, the ensemble
Nyström method represents K̃ as the sum of products of low-rank matrices, where each of the p
terms corresponds to a base learner. Hence, we cannot directly apply the Woodbury approximation
as presented above. There is however, a natural extension of the Woodbury approximation in this
setting, which at the simplest level involves running the approximation p times. Starting with p
base learners with their associated weights, that is, K̃r and µr for r∈ [1, p], and defining T0 = λI, we
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perform the following series of calculations:

T−1
1 = (T0 +µ1K̃1)

−1,

T−1
2 = (T1 +µ2K̃2)

−1,

· · ·

T−1
p = (Tp−1 +µpK̃p)

−1 .

To compute T−1
1 , notice that we can use Woodbury approximation as stated in (6) since we can

express µ1K̃1 as the product of low-rank matrices and we know that T−1
0 = 1

λI. More generally, for
1≤ i≤ p, given an expression of T−1

i−1 as a product of low-rank matrices, we can efficiently compute
T−1
i using the Woodbury approximation (we use the low-rank structure to avoid ever computing or

storing a full n× n matrix). Hence, after performing this series of p calculations, we are left with
the inverse of Tp, which is exactly the quantity of interest since Tp = λI+∑

p
r=1µrK̃r. Although this

algorithm requires p iterations of the Woodbury approximation, these iterations can be parallelized
in a tree-like fashion. Hence, when working on a cluster, using an ensemble Nyström approximation
along with the Woodbury approximation requires only a log2(p) factor more time than using the
standard Nyström method.5

5.2 Experiments

In this section, we present experimental results that illustrate the performance of the ensemble
Nyström method. We again work with the data sets listed in Table 1, and compare the perfor-
mance of various methods for calculating the mixture weights (µr). Throughout our experiments,
we measure performance via relative accuracy (defined in (4)). For all experiments, we fixed the
reduced rank to k=100, and set the number of sampled columns to l=3%×n.6

5.2.1 ENSEMBLE NYSTRÖM WITH VARIOUS MIXTURE WEIGHTS

We first show results for the ensemble Nyström method using different techniques to choose the
mixture weights, as previously discussed. In these experiments, we focused on base learners gener-
ated via the Nyström method with uniform sampling of columns. Furthermore, for the exponential
and the ridge regression variants, we sampled a set of s= 20 columns and used an additional 20
columns (s′) as a hold-out set for selecting the optimal values of η and λ. The number of ap-
proximations, p, was varied from 2 to 25. As a baseline, we also measured the maximum relative
accuracy across the p Nyström approximations used to construct K̃ens. We also calculated the per-
formance when using the optimal µ, that is, we used least-square regression to find the best possible
choice of combination weights for a fixed set of p approximations by setting s=n. The results of
these experiments are presented in Figure 5.7 These results clearly show that the ensemble Nyström
performance is significantly better than any of the individual Nyström approximations. We further
note that the ensemble Nyström method tends to converge very quickly, and the most significant
gain in performance occurs as p increases from 2 to 10.

5. Note that we can also efficiently obtain singular values and singular vectors of the low-rank matrix Kens using
coherence-based arguments, as in Talwalkar and Rostamizadeh (2010).

6. Similar results (not reported here) were observed for other values of k and l as well.
7. Similar results (not reported here) were observed when measuring relative accuracy using the spectral norm instead

of the Frobenium norm.
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Base Learner Method PIE-2.7K PIE-7K MNIST ESS ABN
Average Base Learner 26.9 46.3 34.2 30.0 38.1
Best Base Learner 29.2 48.3 36.1 34.5 43.6

Uniform Ensemble Uniform 33.0 57.5 47.3 43.9 49.8
Ensemble Exponential 33.0 57.5 47.4 43.9 49.8
Ensemble Ridge 35.0 58.5 54.0 44.5 53.6
Average Base Learner 47.6 62.9 62.5 42.2 60.6
Best Base Learner 48.4 66.4 63.9 47.1 72.0

K-means Ensemble Uniform 54.9 71.3 76.9 52.2 76.4
Ensemble Exponential 54.9 71.4 77.0 52.2 78.3
Ensemble Ridge 54.9 71.6 77.2 52.7 79.0

Table 4: Relative accuracy for ensemble Nyström method with Nyström base learners generated
with uniform sampling of columns or via the K-means algorithm.

5.2.2 EFFECT OF RANK

As mentioned earlier, the rank of the ensemble approximations can be p times greater than the rank
of each of the base learners. Hence, to validate the results in Figure 5, we performed a simple
experiment in which we compared the performance of the best base learner to the best rank k ap-
proximation of the uniform ensemble approximation (obtained via SVD of the uniform ensemble
approximation). We again used base learners generated via the Nyström method with uniform sam-
pling of columns. The results of this experiment, presented in Figure 6, suggest that the performance
gain of the ensemble methods is not due to this increased rank.

5.2.3 EFFECT OF RIDGE

Figure 5 also shows that the ridge regression technique is the best of the proposed techniques, and
generates nearly the optimal solution in terms of relative accuracy using the Frobenius norm. We
also observed that when s is increased to approximately 5% to 10% of n, linear regression without
any regularization performs about as well as ridge regression for both the Frobenius and spectral
norm. Figure 7 shows this comparison between linear regression and ridge regression for varying
values of s using a fixed number of experts (p= 10). In these experiments, we again used base
learners generated via the Nyström method with uniform sampling of columns.

5.2.4 ENSEMBLE K-MEANS NYSTRÖM

In the previous experiments, we focused on base learners generated via the Nyström method with
uniform sampling of columns. In light of the performance of the K-means algorithm in Section 4,
we next explored the performance of this algorithm when used in conjunction with the ensemble
Nyström method. We fixed the number of base learners to p= 10 and when using ridge regression
to learn weights, we set s= s′ = 20. As shown in Table 4, similar performance gains in comparison
to the average or best base learner can be seen when using an ensemble of base learners derived
from the K-means algorithm. Consistent with the experimental results of Section 4, the accuracy
values are higher for K-means relative to uniform sampling, though as noted in the previous section,
this increased performance comes with an added cost, as the K-means step is more expensive than
random sampling.
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Figure 5: Relative accuracy for ensemble Nyström method using uniform (‘uni’), exponential
(‘exp’), ridge (‘ridge’) and optimal (‘optimal’) mixture weights as well as the best (‘best
b.l.’) of the p base learners used to create the ensemble approximations.

6. Theoretical Analysis

We now present theoretical results that compare the quality of the Nyström approximation to the
‘best’ low-rank approximation, that is, the approximation constructed from the top singular values
and singular vectors of K. This work, related to work by Drineas and Mahoney (2005), provides
performance bounds for the Nyström method as it is often used in practice, that is, using uniform
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Figure 6: Relative accuracy for ensemble Nyström method using uniform (‘uni’) mixture weights,
the optimal rank-k approximation of the uniform ensemble result (‘uni rank-k’) as well as
the best (‘best b.l.’) of the p base learners used to create the ensemble approximations.

sampling without replacement, and holds for both the standard Nyström method as well as the
ensemble Nyström method discussed in Section 5.

Our theoretical analysis of the Nyström method uses some results previously shown by Drineas
and Mahoney (2005) as well as the following generalization of McDiarmid’s concentration bound
to sampling without replacement (Cortes et al., 2008).

Theorem 1 Let Z1, . . . ,Zl be a sequence of random variables sampled uniformly without replace-
ment from a fixed set of l+u elements Z, and let φ : Zl→R be a symmetric function such that for all
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Figure 7: Comparison of relative accuracy for the ensemble Nyström method with p=10 experts
with weights derived from linear (‘no-ridge’) and ridge (‘ridge’) regression. The dotted
line indicates the optimal combination. The relative size of the validation set equals
s/n×100.

i∈ [1, l] and for all z1, . . . ,zl ∈Z and z′1, . . . ,z′l ∈Z, |φ(z1, . . . ,zl)−φ(z1, . . . ,zi−1,z′i,zi+1, . . . ,zl)|≤ c.
Then, for all ε>0, the following inequality holds:

Pr
[
φ−E[φ]≥ ε

]
≤ exp

[ −2ε2

α(l,u)c2

]
,

where α(l,u) = lu
l+u−1/2

1
1−1/(2max{l,u}) .
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We define the selection matrix corresponding to a sample of l columns as the matrix S∈Rn×l

defined by Sii=1 if the ith column of K is among those sampled, Si j=0 otherwise. Thus, C=KS
is the matrix formed by the columns sampled. Since K is SPSD, there exists X ∈ RN×n such that
K = X%X. We shall denote by Kmax the maximum diagonal entry of K, Kmax =maxiKii, and by
dKmax the distance maxi j

√
Kii+K j j−2Ki j.

6.1 Standard Nyström Method

The following theorem gives an upper bound on the norm-2 error of the Nyström approximation
of the form ‖K− K̃‖2/‖K‖2 ≤ ‖K−Kk‖2/‖K‖2 +O(1/

√
l) and an upper bound on the Frobenius

error of the Nyström approximation of the form ‖K− K̃‖F/‖K‖F ≤ ‖K−Kk‖F/‖K‖F +O(1/l 1
4 ).

Theorem 2 Let K̃ denote the rank-k Nyström approximation of K based on l columns sampled
uniformly at random without replacement from K, and Kk the best rank-k approximation of K.
Then, with probability at least 1−δ, the following inequalities hold for any sample of size l:

‖K− K̃‖2 ≤ ‖K−Kk‖2 +
2n√
l
Kmax

[
1+

√
n−l
n−1/2

1
β(l,n) log 1

δ d
K
max/K

1
2
max

]
,

‖K− K̃‖F ≤ ‖K−Kk‖F+
[64k

l
] 1

4 nKmax

[
1+

√
n−l
n−1/2

1
β(l,n) log 1

δ d
K
max/K

1
2
max

] 1
2
,

where β(l,n) = 1− 1
2max{l,n−l} .

Proof To bound the norm-2 error of the Nyström method in the scenario of sampling without re-
placement, we start with the following general inequality given by Drineas and Mahoney (2005)[Proof
of Lemma 4]:

‖K− K̃‖2 ≤ ‖K−Kk‖2 +2‖XX%−ZZ%‖2,

where Z=
√n

l XS. We then apply the McDiarmid-type inequality of Theorem 1 to φ(S)=‖XX%−
ZZ%‖2. Let S′ be a sampling matrix selecting the same columns as S except for one, and let Z′
denote

√ n
l XS

′. Let z and z′ denote the only differing columns of Z and Z′, then

|φ(S′)−φ(S)|≤ ‖z′z′% − zz%‖2 = ‖(z′ − z)z′%+ z(z′ − z)%‖2

≤ 2‖z′ − z‖2 max{‖z‖2,‖z′‖2}.

Columns of Z are those of X scaled by
√
n/l. The norm of the difference of two columns of X

can be viewed as the norm of the difference of two feature vectors associated to K and thus can be
bounded by dK. Similarly, the norm of a single column of X is bounded by K

1
2
max. This leads to the

following inequality:
|φ(S′)−φ(S)|≤

2n
l
dKmaxK

1
2
max. (7)

The expectation of φ can be bounded as follows:

E[Φ] = E[‖XX%−ZZ%‖2]≤ E[‖XX%−ZZ%‖F ]≤
n√
l
Kmax, (8)

where the last inequality follows Corollary 2 of Kumar et al. (2009a). The inequalities (7) and (8)
combined with Theorem 1 give a bound on ‖XX%−ZZ%‖2 and yield the statement of the theorem.
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The following general inequality holds for the Frobenius error of the Nyström method (Drineas
and Mahoney, 2005):

‖K− K̃‖2
F ≤ ‖K−Kk‖2

F +
√

64k‖XX%−ZZ%‖2
F nKmax

ii . (9)

Bounding the term ‖XX%−ZZ%‖2
F as in the norm-2 case and using the concentration bound of

Theorem 1 yields the result of the theorem.

6.2 Ensemble Nyström Method

The following error bounds hold for ensemble Nyström methods based on a convex combination of
Nyström approximations.

Theorem 3 Let S be a sample of pl columns drawn uniformly at random without replacement from
K, decomposed into p subsamples of size l, S1, . . . ,Sp. For r ∈ [1, p], let K̃r denote the rank-k
Nyström approximation of K based on the sample Sr, and let Kk denote the best rank-k approxima-
tion of K. Then, with probability at least 1−δ, the following inequalities hold for any sample S of
size pl and for any µ in the unit simplex ∆ and K̃ens = ∑

p
r=1µrK̃r:

‖K− K̃ens‖2 ≤ ‖K−Kk‖2+

2n√
l
Kmax

[
1+µmaxp

1
2

√
n−pl
n−1/2

1
β(pl,n) log 1

δ d
K
max/K

1
2
max

]
,

‖K− K̃ens‖F ≤ ‖K−Kk‖F+
[ 64k

l
] 1

4 nKmax

[
1+µmaxp

1
2

√
n−pl
n−1/2

1
β(pl,n) log 1

δ d
K
max/K

1
2
max

] 1
2
,

where β(pl,n) = 1− 1
2max{pl,n−pl} and µmax = maxpr=1µr.

Proof For r ∈ [1, p], let Zr =
√
n/lXSr, where Sr denotes the selection matrix corresponding to

the sample Sr. By definition of K̃ens and the upper bound on ‖K− K̃r‖2 already used in the proof of
theorem 2, the following holds:

‖K− K̃ens‖2 =
∥∥∥

p

∑
r=1

µr(K− K̃r)
∥∥∥

2
≤

p

∑
r=1

µr‖K− K̃r‖2

≤
p

∑
r=1

µr
(
‖K−Kk‖2 +2‖XX%−ZrZ%r ‖2

)

= ‖K−Kk‖2 +2
p

∑
r=1

µr‖XX%−ZrZ%r ‖2.

We apply Theorem 1 to φ(S)=∑p
r=1µr‖XX%−ZrZ%r ‖2. Let S′ be a sample differing from S by only

one column. Observe that changing one column of the full sample S changes only one subsample
Sr and thus only one term µr‖XX% −ZrZ%r ‖2. Thus, in view of the bound (7) on the change to
‖XX%−ZrZ%r ‖2, the following holds:

|φ(S′)−φ(S)|≤
2n
l
µmaxdKmaxK

1
2
max, (10)
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The expectation of Φ can be straightforwardly bounded by:

E[Φ(S)] =
p

∑
r=1

µrE[‖XX%−ZrZ%r ‖2]≤
p

∑
r=1

µr
n√
l
Kmax =

n√
l
Kmax

using the bound (8) for a single expert. Plugging in this upper bound and the Lipschitz bound (10)
in Theorem 1 yields the norm-2 bound for the ensemble Nyström method.

For the Frobenius error bound, using the convexity of the Frobenius norm square ‖·‖2
F and the

general inequality (9), we can write

‖K− K̃ens‖2
F =

∥∥∥
p

∑
r=1

µr(K− K̃r)
∥∥∥

2

F
≤

p

∑
r=1

µr‖K− K̃r‖2
F

≤
p

∑
r=1

µr
[
‖K−Kk‖2

F +
√

64k‖XX%−ZrZ%r ‖F nKmax
ii

]
.

= ‖K−Kk‖2
F +
√

64k
p

∑
r=1

µr‖XX%−ZrZ%r ‖F nKmax
ii .

The result follows by the application of Theorem 1 to ψ(S)=∑
p
r=1µr‖XX% −ZrZ%r ‖F in a way

similar to the norm-2 case.

The bounds of Theorem 3 are similar in form to those of Theorem 2. However, the bounds for
the ensemble Nyström are tighter than those for any Nyström expert based on a single sample of
size l even for a uniform weighting. In particular, for µi=1/p for all i, the last term of the ensemble
bound for norm-2 is smaller by a factor larger than µmaxp

1
2 = 1/√p.

7. Conclusion

A key aspect of sampling-based matrix approximations is the method for the selection of repre-
sentative columns. We discussed both fixed and adaptive methods for sampling the columns of a
matrix. We saw that the approximation performance is significantly affected by the choice of the
sampling algorithm and also that there is a tradeoff between choosing a more informative set of
columns and the efficiency of the sampling algorithm. Furthermore, we introduced and discussed
a new meta-algorithm based on an ensemble of several matrix approximations that generates fa-
vorable matrix reconstructions using base learners derived from either fixed or adaptive sampling
schemes, and naturally fits within a distributed computing environment, thus making it quite effi-
cient even in large-scale settings. We concluded with a theoretical analysis of the Nyström method
(both the standard approach and the ensemble method) as it is often used in practice, namely using
uniform sampling without replacement.
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Abstract

The success of many machine learning and pattern recognition methods relies heavily upon the
identification of an appropriate distance metric on the input data. It is often beneficial to learn such a
metric from the input training data, instead of using a default one such as the Euclidean distance. In
this work, we propose a boosting-based technique, termed BOOSTMETRIC, for learning a quadratic
Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing
the constraint that the matrix parameter to the metric remains positive semidefinite. Semidefinite
programming is often used to enforce this constraint, but does not scale well and is not easy to
implement. BOOSTMETRIC is instead based on the observation that any positive semidefinite ma-
trix can be decomposed into a linear combination of trace-one rank-one matrices. BOOSTMETRIC
thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable
boosting-based learning process. The resulting methods are easy to implement, efficient, and can
accommodate various types of constraints. We extend traditional boosting algorithms in that its
weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier
or regressor. Experiments on various data sets demonstrate that the proposed algorithms compare
favorably to those state-of-the-art methods in terms of classification accuracy and running time.

Keywords: Mahalanobis distance, semidefinite programming, column generation, boosting, La-
grange duality, large margin nearest neighbor

1. Introduction

The identification of an effective metric by which to measure distances between data points is an
essential component of many machine learning algorithms including k-nearest neighbor (kNN), k-
means clustering, and kernel regression. These methods have been applied to a range of problems,
including image classification and retrieval (Hastie and Tibshirani, 1996; Yu et al., 2008; Jian and
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Vemuri, 2007; Xing et al., 2002; Bar-Hillel et al., 2005; Boiman et al., 2008; Frome et al., 2007)
amongst a host of others.

The Euclidean distance has been shown to be effective in a wide variety of circumstances.
Boiman et al. (2008), for instance, showed that in generic object recognition with local features,
kNN with a Euclidean metric can achieve comparable or better accuracy than more sophisticated
classifiers such as support vector machines (SVMs). The Mahalanobis distance represents a gen-
eralization of the Euclidean distance, and offers the opportunity to learn a distance metric directly
from the data. This learned Mahalanobis distance approach has been shown to offer improved per-
formance over Euclidean distance-based approaches, and was particularly shown by Wang et al.
(2010b) to represent an improvement upon the method of Boiman et al. (2008). It is the prospect
of a significant performance improvement from fundamental machine learning algorithms which
inspires the approach presented here.

If we let ai, i = 1,2 · · · , represent a set of points in RD, then the Mahalanobis distance, or
Gaussian quadratic distance, between two points is

‖ai−a j‖X =
√

(ai−a j)$X(ai−a j),

where X ! 0 is a positive semidefinite (p.s.d.) matrix. The Mahalanobis distance is thus param-
eterized by a p.s.d. matrix, and methods for learning Mahalanobis distances are therefore often
framed as constrained semidefinite programs. The approach we propose here, however, is based
on boosting, which is more typically used for learning classifiers. The primary motivation for the
boosting-based approach is that it scales well, but its efficiency in dealing with large data sets is also
advantageous. The learning of Mahalanobis distance metrics represents a specific application of a
more general method for matrix learning which we present below.

We are interested here in the case where the training data consist of a set of constraints upon the
relative distances between data points,

I = {(ai,a j,ak) |disti j < distik}, (1)

where disti j measures the distance between ai and a j. Each such constraint implies that “ai is
closer to a j than ai is to ak”. Constraints such as these often arise when it is known that ai and a j
belong to the same class of data points while ai,ak belong to different classes. These comparison
constraints are thus often much easier to obtain than either the class labels or distances between data
elements (Schultz and Joachims, 2003). For example, in video content retrieval, faces extracted from
successive frames at close locations can be safely assumed to belong to the same person, without
requiring the individual to be identified. In web search, the results returned by a search engine
are ranked according to the relevance, an ordering which allows a natural conversion into a set of
constraints.

The problem of learning a p.s.d. matrix such as X can be formulated in terms of estimating a
projection matrix L where X = LL$. This approach has the advantage that the p.s.d. constraint
is enforced through the parameterization, but the disadvantage is that the relationship between the
distance measure and the parameter matrix is less direct. In practice this approach has lead to local,
rather than globally optimal solutions, however (see Goldberger et al., 2004 for example).

Methods such as Xing et al. (2002), Weinberger et al. (2005), Weinberger and Saul (2006) and
Globerson and Roweis (2005) which seek X directly are able to guarantee global optimality, but
at the cost of a heavy computational burden and poor scalability as it is not trivial to preserve the

1008



METRIC LEARNING USING BOOSTING-LIKE ALGORITHMS

semidefiniteness of X during the course of learning. Standard approaches such as interior-point (IP)
Newton methods need to calculate the Hessian. This typically requiresO(D4) storage and has worst-
case computational complexity of approximately O(D6.5) where D is the size of the p.s.d. matrix.
This is prohibitive for many real-world problems. An alternating projected (sub-)gradient approach
is adopted in Weinberger et al. (2005), Xing et al. (2002) and Globerson and Roweis (2005). The
disadvantages of this algorithm, however, are: 1) it is not easy to implement; 2) many parameters
are involved; 3) usually it converges slowly.

We propose here a method for learning a p.s.d. matrix labeled BOOSTMETRIC. The method
is based on the observation that any positive semidefinite matrix can be decomposed into a lin-
ear positive combination of trace-one rank-one matrices. The weak learner in BOOSTMETRIC is
thus a trace-one rank-one p.s.d. matrix. The proposed BOOSTMETRIC algorithm has the following
desirable properties:

1. BOOSTMETRIC is efficient and scalable. Unlike most existing methods, no semidefinite pro-
gramming is required. At each iteration, only the largest eigenvalue and its corresponding
eigenvector are needed.

2. BOOSTMETRIC can accommodate various types of constraints. We demonstrate the use of
the method to learn a Mahalanobis distance on the basis of a set of proximity comparison
constraints.

3. Like AdaBoost, BOOSTMETRIC does not have any parameter to tune. The user only needs to
know when to stop. Also like AdaBoost it is easy to implement. No sophisticated optimiza-
tion techniques are involved. The efficacy and efficiency of the proposed BOOSTMETRIC is
demonstrated on various data sets.

4. We also propose a totally-corrective version of BOOSTMETRIC. As in TotalBoost (Warmuth
et al., 2006) the weights of all the selected weak learners (rank-one matrices) are updated at
each iteration.

Both the stage-wise BOOSTMETRIC and totally-corrective BOOSTMETRIC methods are very
easy to implement.

The primary contributions of this work are therefore as follows: 1) We extend traditional boost-
ing algorithms such that each weak learner is a matrix with the trace and rank of one—which must
be positive semidefinite—rather than a classifier or regressor; 2) The proposed algorithm can be
used to solve many semidefinite optimization problems in machine learning and computer vision.
We demonstrate the scalability and effectiveness of our algorithms on metric learning. Part of this
work appeared in Shen et al. (2008, 2009). More theoretical analysis and experiments are included
in this version. Next, we review some relevant work before we present our algorithms.

1.1 Related Work

Distance metric learning is closely related to subspace methods. Principal component analysis
(PCA) and linear discriminant analysis (LDA) are two classical dimensionality reduction tech-
niques. PCA finds the subspace that captures the maximum variance within the input data while
LDA tries to identify the projection which maximizes the between-class distance and minimizes the
within-class variance. Locality preserving projection (LPP) finds a linear projection that preserves
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the neighborhood structure of the data set (He et al., 2005). Essentially, LPP linearly approximates
the eigenfunctions of the Laplace Beltrami operator on the underlying manifold. The connection
between LPP and LDA is also revealed in He et al. (2005). Wang et al. (2010a) extended LPP to
supervised multi-label classification. Relevant component analysis (RCA) (Bar-Hillel et al., 2005)
learns a metric from equivalence constraints. RCA can be viewed as extending LDA by incorpo-
rating must-link constraints and cannot-link constraints into the learning procedure. Each of these
methods may be seen as devising a linear projection from the input space to a lower-dimensional
output space. If this projection is characterized by the matrix L, then note that these methods may
be related to the problem of interest here by observing X = LL$. This typically implies that X is
rank-deficient.

Recently, there has been significant research interest in supervised distance metric learning using
side information that is typically presented in a set of pairwise constraints. Most of these methods,
although appearing in different formats, share a similar essential idea: to learn an optimal dis-
tance metric by keeping training examples in equivalence constraints close, and at the same time,
examples in in-equivalence constraints well separated. Previous work of Xing et al. (2002), Wein-
berger et al. (2005), Jian and Vemuri (2007), Goldberger et al. (2004), Bar-Hillel et al. (2005) and
Schultz and Joachims (2003) fall into this category. The requirement that X must be p.s.d. has led
to the development of a number of methods for learning a Mahalanobis distance which rely upon
constrained semidefinite programing. This approach has a number of limitations, however, which
we now discuss with reference to the problem of learning a p.s.d. matrix from a set of constraints
upon pairwise-distance comparisons. Relevant work on this topic includes Bar-Hillel et al. (2005),
Xing et al. (2002), Jian and Vemuri (2007), Goldberger et al. (2004), Weinberger et al. (2005) and
Globerson and Roweis (2005) amongst others.

Xing et al. (2002) first proposed the idea of learning a Mahalanobis metric for clustering using
convex optimization. The inputs are two sets: a similarity set and a dis-similarity set. The algorithm
maximizes the distance between points in the dis-similarity set under the constraint that the distance
between points in the similarity set is upper-bounded. Neighborhood component analysis (NCA)
(Goldberger et al., 2004) and large margin nearest neighbor (LMNN) (Weinberger et al., 2005)
learn a metric by maintaining consistency in data’s neighborhood and keep a large margin at the
boundaries of different classes. It has been shown in Weinberger and Saul (2009); Weinberger et al.
(2005) that LMNN delivers the state-of-the-art performance among most distance metric learning
algorithms. Information theoretic metric learning (ITML) learns a suitable metric based on infor-
mation theoretics (Davis et al., 2007). To partially alleviate the heavy computation of standard IP
Newton methods, Bregman’s cyclic projection is used in Davis et al. (2007). This idea is extended
in Wang and Jin (2009), which has a closed-form solution and is computationally efficient.

There have been a number of approaches developed which aim to improve the scalability of
the process of learning a metric parameterized by a p.s.d. metric X. For example, Rosales and Fung
(2006) approximate the p.s.d. cone using a set of linear constraints based on the diagonal dominance
theorem. The approximation is not accurate, however, in the sense that it imposes too strong a con-
dition on the learned matrix—one may not want to learn a diagonally dominant matrix. Alternative
optimization is used in Xing et al. (2002) and Weinberger et al. (2005) to solve the semidefinite
problem iteratively. At each iteration, a full eigen-decomposition is applied to project the solu-
tion back onto the p.s.d. cone. BOOSTMETRIC is conceptually very different to this approach, and
additionally only requires the calculation of the first eigenvector. Tsuda et al. (2005) proposed to
use matrix logarithms and exponentials to preserve positive definiteness. For the application of
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semidefinite kernel learning, they designed a matrix exponentiated gradient method to optimize von
Neumann divergence based objective functions. At each iteration of matrix exponentiated gradient,
a full eigen-decomposition is needed. In contrast, we only need to find the leading eigenvector.

The approach proposed here is directly inspired by the LMNN proposed in Weinberger and Saul
(2009); Weinberger et al. (2005). Instead of using the hinge loss, however, we use the exponential
loss and logistic loss functions in order to derive an AdaBoost-like (or LogitBoost-like) optimization
procedure. In theory, any differentiable convex loss function can be applied here. Hence, despite
similar purposes, our algorithm differs essentially in the optimization. While the formulation of
LMNN looks more similar to SVMs, our algorithm, termed BOOSTMETRIC, largely draws upon
AdaBoost (Schapire, 1999).

Column generation was first proposed by Dantzig and Wolfe (1960) for solving a particular
form of structured linear program with an extremely large number of variables. The general idea
of column generation is that, instead of solving the original large-scale problem (master problem),
one works on a restricted master problem with a reasonably small subset of the variables at each
step. The dual of the restricted master problem is solved by the simplex method, and the optimal
dual solution is used to find the new column to be included into the restricted master problem. LP-
Boost (Demiriz et al., 2002) is a direct application of column generation in boosting. Significantly,
LPBoost showed that in an LP framework, unknown weak hypotheses can be learned from the dual
although the space of all weak hypotheses is infinitely large. Shen and Li (2010) applied column
generation to boosting with general loss functions. It is these results that underpin BOOSTMETRIC.

The remaining content is organized as follows. In Section 2 we present some preliminary math-
ematics. In Section 3, we show the main results. Experimental results are provided in Section
4.

2. Preliminaries

We introduce some fundamental concepts that are necessary for setting up our problem. First, the
notation used in this paper is as follows.

2.1 Notation

Throughout this paper, a matrix is denoted by a bold upper-case letter (X); a column vector is
denoted by a bold lower-case letter (xxx). The ith row of X is denoted by Xi: and the ith column X:i.
111 and 000 are column vectors of 1’s and 0’s, respectively. Their size should be clear from the context.
We denote the space of D×D symmetric matrices by SD, and positive semidefinite matrices by SD+.
Tr(·) is the trace of a symmetric matrix and 〈X,Z〉 = Tr(XZ$) = ∑i jXi jZi j calculates the inner
product of two matrices. An element-wise inequality between two vectors like uuu≤ vvv means ui ≤ vi
for all i. We use X ! 0 to indicate that matrix X is positive semidefinite. For a matrix X ∈ SD, the
following statements are equivalent: 1) X ! 0 (X ∈ SD+); 2) All eigenvalues of X are nonnegative
(λi(X)≥ 0, i= 1, · · · ,D); and 3) ∀uuu ∈ RD, uuu$Xuuu≥ 0.

2.2 A Theorem on Trace-one Semidefinite Matrices

Before we present our main results, we introduce an important theorem that serves the theoretical
basis of BOOSTMETRIC.
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Definition 1 For any positive integer m, given a set of points {xxx1, ...,xxxm} in a real vector or matrix
space Sp, the convex hull of Sp spanned by m elements in Sp is defined as:

Convm(Sp) =
{

∑m
i=1wixxxi

∣
∣
∣wi ≥ 0,∑m

i=1wi = 1,xxxi ∈ Sp
}

.

Define the linear convex span of Sp as:1

Conv(Sp) =
⋃

m
Convm(Sp) =

{

∑m
i=1wixxxi

∣
∣
∣wi ≥ 0,∑m

i=1wi = 1,xxxi ∈ Sp,m ∈ Z+

}

.

Here Z+ denotes the set of all positive integers.

Definition 2 Let us define Γ1 to be the space of all positive semidefinite matrices X ∈ SD+ with trace
equaling one:

Γ1 = {X |X! 0,Tr(X) = 1} ;

and Ψ1 to be the space of all positive semidefinite matrices with both trace and rank equaling one:

Ψ1 = {Z |Z! 0,Tr(Z) = 1,Rank(Z) = 1} .

We also define Γ2 as the convex hull of Ψ1, that is,

Γ2 = Conv(Ψ1).

Lemma 3 LetΨ2 be a convex polytope defined asΨ2 = {λλλ ∈RD|λk ≥ 0, ∀k= 0, · · · ,D, ∑D
k=1λk =

1}, then the points with only one element equaling one and all the others being zeros are the extreme
points (vertexes) of Ψ2. All the other points can not be extreme points.

Proof Without loss of generality, let us consider such a point λλλ′ = {1,0, · · · ,0}. If λλλ′ is not an
extreme point of Ψ2, then it must be possible to express it as a convex combination of a set of
other points in Ψ2: λλλ′ = ∑m

i=1wiλλλ
i, wi > 0, ∑m

i=1wi = 1 and λλλi -= λλλ′. Then we have equations:
∑m
i=1wiλik = 0, ∀k = 2, · · · ,D. It follows that λik = 0, ∀i and k = 2, · · · ,D. That means, λi1 = 1 ∀i.

This is inconsistent with λλλi -= λλλ′. Therefore such a convex combination does not exist and λλλ′ must
be an extreme point. It is trivial to see that any λλλ that has more than one active element is an convex
combination of the above-defined extreme points. So they can not be extreme points.

Theorem 4 Γ1 equals to Γ2; that is, Γ1 is also the convex hull of Ψ1. In other words, all Z ∈ Ψ1,
form the set of extreme points of Γ1.

Proof It is easy to check that any convex combination ∑i wiZi, such that Zi ∈ Ψ1, resides in Γ1,
with the following two facts: 1) a convex combination of p.s.d. matrices is still a p.s.d. matrix; 2)
Tr

(

∑i wiZi
)

= ∑iwiTr(Zi) = 1.
By denoting λ1 ≥ · · · ≥ λD ≥ 0 the eigenvalues of a Z ∈ Γ1, we know that λ1 ≤ 1 because

∑D
i=1λi = Tr(Z) = 1. Therefore, all eigenvalues of Z must satisfy: λi ∈ [0,1], ∀i = 1, · · · ,D and

1. With slight abuse of notation, we also use the symbol Conv(·) to denote convex span. In general it is not a convex
hull.
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∑D
i λi = 1. By looking at the eigenvalues of Z and using Lemma 3, it is immediate to see that a

matrix Z such that Z! 0, Tr(Z) = 1 and Rank(Z)> 1 can not be an extreme point of Γ1. The only
candidates for extreme points are those rank-one matrices (λ1 = 1 and λ2,··· ,D = 0). Moreover, it is
not possible that some rank-one matrices are extreme points and others are not because the other
two constraints Z! 0 and Tr(Z) = 1 do not distinguish between different rank-one matrices.

Hence, allZ∈Ψ1 form the set of extreme points of Γ1. Furthermore, Γ1 is a convex and compact
set, which must have extreme points. The Krein-Milman Theorem (Krein and Milman, 1940) tells
us that a convex and compact set is equal to the convex hull of its extreme points.

This theorem is a special case of the results from Overton and Womersley (1992) in the context
of eigenvalue optimization. A different proof for the above theorem’s general version can also be
found in Fillmore and Williams (1971).

In the context of semidefinite optimization, what is of interest about Theorem 4 is as follows:
it tells us that a bounded p.s.d. matrix constraint X ∈ Γ1 can be equivalently replaced with a set of
constrains which belong to Γ2. At the first glance, this is a highly counterintuitive proposition be-
cause Γ2 involves many more complicated constraints. Both wi and Zi (∀i= 1, · · · ,m) are unknown
variables. Even worse, m could be extremely (or even infinitely) large. Nevertheless, this is the type
of problems that boosting algorithms are designed to solve. Let us give a brief overview of boosting
algorithms.

2.3 Boosting

Boosting is an example of ensemble learning, where multiple learners are trained to solve the same
problem. Typically a boosting algorithm (Schapire, 1999) creates a single strong learner by incre-
mentally adding base (weak) learners to the final strong learner. The base learner has an important
impact on the strong learner. In general, a boosting algorithm builds on a user-specified base learn-
ing procedure and runs it repeatedly on modified data that are outputs from the previous iterations.

The general form of the boosting algorithm is sketched in Algorithm 1. The inputs to a boosting
algorithm are a set of training example xxx, and their corresponding class labels y. The final output is
a strong classifier which takes the form

Fwww(xxx) = ∑J
j=1wjh j(xxx). (2)

Here h j(·) is a base learner. From Theorem 4, we know that a matrix X ∈ Γ1 can be decomposed as

X= ∑J
j=1wjZ j,Z j ∈ Γ2. (3)

By observing the similarity between Equations (2) and (3), we may view Z j as a weak classifier
and the matrix X as the strong classifier that we want to learn. This is exactly the problem that
boosting methods have been designed to solve. This observation inspires us to solve a special type
of semidefinite optimization problem using boosting techniques.

The sparse greedy approximation algorithm proposed by Zhang (2003) is an efficient method for
solving a class of convex problems, and achieves fast convergence rates. It has also been shown that
boosting algorithms can be interpreted within the general framework of Zhang (2003). The main
idea of sequential greedy approximation, therefore, is as follows. Given an initialization uuu0, which
is in a convex subset of a linear vector space, a matrix space or a functional space, the algorithm
finds uuui and λ ∈ (0,1) such that the objective function F((1−λ)uuui−1 +λuuui) is minimized. Then the
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Algorithm 1 The general framework of boosting.
Input: Training data.
Initialize a weight set uuu on the training examples;1

for j = 1,2, · · · , do2

··· Receive a weak hypothesis h j(·);3

··· Calculate wj > 0;4

··· Update uuu.5

Output: A convex combination of the weak hypotheses: Fwww(xxx) = ∑J
j=1wjh j(xxx).

solution uuui is updated as uuui = (1−λ)uuui−1 +λuuui and the iteration goes on. Clearly, uuui must remain in
the original space. As shown next, our first case, which learns a metric using the hinge loss, greatly
resembles this idea.

2.4 Distance Metric Learning Using Proximity Comparison

The process of measuring distance using a Mahalanobis metric is equivalent to linearly transforming
the data by a projection matrix L ∈RD×d (usually D≥ d) before calculating the standard Euclidean
distance:

dist2i j = ‖L$ai−L$a j‖2
2 = (ai−a j)$LL$(ai−a j) = (ai−a j)$X(ai−a j).

As described above, the problem of learning a Mahalanobis metric can be approached in terms
of learning the matrix L, or the p.s.d. matrix X. If X = I, the Mahalanobis distance reduces to the
Euclidean distance. IfX is diagonal, the problem corresponds to learning a metric in which different
features are given different weights, a.k.a., feature weighting. Our approach is to learn a full p.s.d.
matrix X, however, using BOOSTMETRIC.

In the framework of large-margin learning, we want to maximize the distance between disti j
and distik. That is, we wish to make dist2ik−dist2i j = (ai−ak)$X(ai−ak)− (ai−a j)$X(ai−a j) as
large as possible under some regularization. To simplify notation, we rewrite the distance between
dist2i j and dist2ik as dist2ik−dist2i j = 〈Ar,X〉, where

Ar = (ai−ak)(ai−ak)$− (ai−a j)(ai−a j)$, (4)

for r = 1, · · · , |I| and |I| is the size of the set of constraints I defined in Equation (1).

3. Algorithms

In this section, we define the optimization problems for metric learning. We mainly investigate the
cases using the hinge loss, exponential loss and logistic loss functions. In order to derive an efficient
optimization strategy, we look at their Lagrange dual problems and design boosting-like approaches
for efficiency.

3.1 Learning with the Hinge Loss

Our goal is to derive a general algorithm for p.s.d. matrix learning with the hinge loss function.
Assume that we want to find a p.s.d. matrix X! 0 such that a set of constraints

〈Ar,X〉> 0,r = 1,2, · · · ,
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are satisfied as well as possible. Here Ar is as defined in (4). These constraints need not all be
strictly satisfied and thus we define the margin ρr = 〈Ar,X〉, ∀r.

Putting it into the maximum margin learning framework, we want to minimize the following
trace norm regularized objective function: ∑r F(〈Ar,X〉)+vTr(X), with F(·) a convex loss function
and v a regularization constant. Here we have used the trace norm regularization. Of course a
Frobenius norm regularization term can also be used here. Minimizing the Frobenius norm ||X||2F,
which is equivalent to minimize the !2 norm of the eigenvalues of X, penalizes a solution that is far
away from the identity matrix. With the hinge loss, we can write the optimization problem as:

max
ρ,X,ξξξ

ρ− v∑|I|
r=1ξr, s.t.: 〈Ar,X〉 ≥ ρ−ξr,∀r;X! 0,Tr(X) = 1; ξξξ≥ 000. (5)

Here Tr(X) = 1 removes the scale ambiguity because the distance inequalities are scale invariant.
We can decompose X into: X = ∑J

j=1wjZ j, with wj > 0, Rank(Z j) = 1 and Tr(Z j) = 1, ∀ j.
So we have

〈Ar,X〉=
〈

Ar,∑J
j=1wjZ j

〉

= ∑J
j=1wj

〈

Ar,Z j
〉

= ∑J
j=1wjHr j =Hr:www,∀r. (6)

Here Hr j is a shorthand for Hr j =
〈

Ar,Z j
〉

. Clearly, Tr(X) = 111$www. Using Theorem 4, we replace
the p.s.d. conic constraint in the primal (5) with a linear convex combination of rank-one unitary
matrices: X= ∑ jw jZ j, and 111$www= 1. Substituting X in (5), we have

max
ρ,www,ξξξ

ρ− v∑|I|
r=1ξr, s.t.:Hr:www≥ ρ−ξr,(r = 1, . . . , |I|);www≥ 000,111$www= 1; ξξξ≥ 000. (7)

The Lagrange dual problem of the above linear programming problem (7) is easily derived:

min
π,uuu

π s.t.: ∑|I|
r=1urHr: ≤ π111$;111$uuu= 1,000 ≤ uuu≤ v111.

We can then use column generation to solve the original problem iteratively by looking at both the
primal and dual problems. See Shen et al. (2008) for the algorithmic details. In this work we are
more interested in smooth loss functions such as the exponential loss and logistic loss, as presented
in the sequel.

3.2 Learning with the Exponential Loss

By employing the exponential loss, we want to optimize

min
X,ρρρ

log
(

∑
|I|
r=1 exp(−ρr)

)

+ vTr(X)

s.t.:ρr = 〈Ar,X〉,r = 1, · · · , |I|, X! 0. (8)

Note that: 1) We are proposing a logarithmic version of the sum of exponential loss. This transform
does not change the original optimization problem of sum of exponential loss because the logarith-
mic function is strictly monotonically increasing. 2) A regularization term Tr(X) has been applied.
Without this regularization, one can always multiply X by an arbitrarily large scale factor in order
to make the exponential loss approach zero in the case of all constraints being satisfied. This trace-
norm regularization may also lead to low-rank solutions. 3) An auxiliary variable ρr,r= 1, . . . must
be introduced for deriving a meaningful dual problem, as we show later.
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We now derive the Lagrange dual of the problem that we are interested in. The original problem
(8) now becomes

min
ρρρ,www

log
(

∑
|I|
r=1 exp(−ρr)

)

+ v111$www

s.t.:ρr =Hr:www,r = 1, · · · , |I|;www≥ 000. (9)

We have used the Equation (6). In order to derive its dual, we write its Lagrangian

L(www,ρρρ,uuu) = log
(

∑
|I|
r=1 exp(−ρr)

)

+ v111$www+∑
|I|
r=1ur(ρr−Hr:www)− ppp$www,

with ppp≥ 0. The dual problem is obtained by finding the saddle point of L; that is, supuuu infwww,ρρρL.

inf
www,ρρρ

L= inf
ρρρ

L1
︷ ︸︸ ︷

log
(

∑
|I|
r=1 exp(−ρr)

)

+uuu$ρρρ+ inf
www

L2
︷ ︸︸ ︷

(v111$−∑
|I|
r=1urHr: − ppp$)www (10)

=−∑
|I|
r=1ur logur.

The infimum of L1 is found by setting its first derivative to zero and we have:

inf
ρρρ
L1 =

{

−∑rur logur if uuu≥ 000,111$uuu= 1,
−∞ otherwise.

The infimum is Shannon entropy. L2 is linear in www, hence it must be 000. It leads to

∑
|I|
r=1urHr: ≤ v111$. (11)

The Lagrange dual problem of (9) is an entropy maximization problem, which writes

max
uuu

−∑
|I|
r=1ur logur, s.t.: uuu≥ 000,111$uuu= 1,and (11). (12)

Weak and strong duality hold under mild conditions (Boyd and Vandenberghe, 2004). That means,
one can usually solve one problem from the other. The KKT conditions link the optimal between
these two problems. In our case, it is

u"r =
exp(−ρ"r )

∑
|I|
k=1 exp(−ρ"k)

,∀r. (13)

While it is possible to devise a totally-corrective column generation based optimization proce-
dure for solving our problem as the case of LPBoost (Demiriz et al., 2002), we are more interested in
considering one-at-a-time coordinate-wise descent algorithms, as the case of AdaBoost (Schapire,
1999). Let us start from some basic knowledge of column generation because our coordinate descent
strategy is inspired by column generation.

If we know all the bases Z j ( j = 1 . . .J) and hence the entire matrix H is known. Then either
the primal (9) or the dual (12) can be trivially solved (at least in theory) because both are convex
optimization problems. We can solve them in polynomial time. Especially the primal problem is
convex minimization with simple nonnegativeness constraints. Off-the-shelf software like LBFGS-
B (Zhu et al., 1997) can be used for this purpose. Unfortunately, in practice, we do not access all
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the bases: the possibility of Z is infinite. In convex optimization, column generation is a technique
that is designed for solving this difficulty.

Column generation was originally advocated for solving large scale linear programs (Lübbecke
and Desrosiers, 2005). Column generation is based on the fact that for a linear program, the number
of non-zero variables of the optimal solution is equal to the number of constraints. Therefore,
although the number of possible variables may be large, we only need a small subset of these in
the optimal solution. For a general convex problem, we can use column generation to obtain an
approximate solution. It works by only considering a small subset of the entire variable set. Once
it is solved, we ask the question:“Are there any other variables that can be included to improve
the solution?”. So we must be able to solve the subproblem: given a set of dual values, one either
identifies a variable that has a favorable reduced cost, or indicates that such a variable does not exist.
Essentially, column generation finds the variables with negative reduced costs without explicitly
enumerating all variables.

Instead of directly solving the primal problem (9), we find the most violated constraint in the
dual (12) iteratively for the current solution and adds this constraint to the optimization problem.
For this purpose, we need to solve

Ẑ= argmaxZ
{

∑
|I|
r=1ur

〈

Ar,Z
〉

, s.t.: Z ∈Ψ1

}

. (14)

We discuss how to efficiently solve (14) later. Now we move on to derive a coordinate descent
optimization procedure.

3.3 Coordinate Descent Optimization

We show how an AdaBoost-like optimization procedure can be derived.

3.3.1 OPTIMIZING FOR wj

Since we are interested in the one-at-a-time coordinate-wise optimization, we keepw1,w2, . . . , wj−1
fixed when solving for wj. The cost function of the primal problem is (in the following derivation,
we drop those terms irrelevant to the variable wj)

Cp(wj) = log
[

∑
|I|
r=1 exp(−ρ j−1

r ) · exp(−Hr jw j)
]

+ vwj.

Clearly, Cp is convex in wj and hence there is only one minimum that is also globally optimal. The
first derivative ofCp w.r.t. wj vanishes at optimality, which results in

∑
|I|
r=1(Hr j− v)u j−1

r exp(−wjHr j) = 0. (15)

IfHr j is discrete, such as {+1,−1} in standard AdaBoost, we can obtain a closed-form solution
similar to AdaBoost. Unfortunately in our case, Hr j can be any real value. We instead use bisection
to search for the optimal wj. The bisection method is one of the root-finding algorithms. It repeat-
edly divides an interval in half and then selects the subinterval in which a root exists. Bisection is
a simple and robust, although it is not the fastest algorithm for root-finding. Algorithm 2 gives the
bisection procedure. We have used the fact that the l.h.s. of (15) must be positive at wl . Otherwise
no solution can be found. When wj = 0, clearly the l.h.s. of (15) is positive.
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Algorithm 2 Bisection search for wj.

Input: An interval [wl,wu] known to contain the optimal value of wj and convergence
tolerance ε> 0.

repeat1

··· wj = 0.5(wl+wu);2

··· if l.h.s. of (15) > 0 then3

wl = wj;4

else5

wu = wj.6

until wu−wl < ε ;7

Output: wj.

3.3.2 UPDATING uuu

The rule for updating uuu can be easily obtained from (13). At iteration j, we have

u jr ∝ exp(−ρ jr) ∝ u j−1
r exp(−Hr jw j), and ∑|I|

r=1u
j
r = 1,

derived from (13). So once wj is calculated, we can update uuu as

u jr =
u j−1
r exp(−Hr jw j)

z
,r = 1, . . . , |I|, (16)

where z is a normalization factor so that ∑|I|
r=1u

j
r = 1. This is exactly the same as AdaBoost.

3.4 The Base Learning Algorithm

In this section, we show that the optimization problem (14) can be exactly and efficiently solved
using eigenvalue-decomposition (EVD).

From Z! 0 and Rank(Z) = 1, we know that Z has the format: Z= vvvvvv$, vvv∈RD; and Tr(Z) = 1
means ‖vvv‖2 = 1. We have

〈

∑
|I|
r=1urAr,Z

〉

= vvv
(

∑
|I|
r=1urAr

)

vvv$.

By denoting
Â= ∑

|I|
r=1urAr, (17)

the base learning optimization equals:

max
vvv

vvv$Âvvv, s.t.:‖vvv‖2 = 1. (18)

It is clear that the largest eigenvalue of Â, λmax(Â), and its corresponding eigenvector vvv1 gives the
solution to the above problem. Note that Â is symmetric.

λmax(Â) is also used as one of the stopping criteria of the algorithm. Form the condition (11),
λmax(Â)< vmeans that we are not able to find a new base matrix Ẑ that violates (11)—the algorithm
converges.
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Algorithm 3 Positive semidefinite matrix learning with stage-wise boosting.
Input:

• Training set triplets (ai,a j,ak) ∈ I; Compute Ar,r = 1,2, · · · , using (4).

• J: maximum number of iterations;

• (optional) regularization parameter v; We may simply set v to a very small value, for
example, 10−7.

Initialize: u0
r =

1
|I| ,r = 1 · · · |I|;1

for j = 1,2, · · · ,J do2

··· Find a new base Z j by finding the largest eigenvalue (λmax(Â)) and its eigenvector of3

Â in (17);
··· if λmax(Â)< v then4

break (converged);5

··· Compute wj using Algorithm 2;6

··· Update uuu to obtain u jr ,r = 1, · · · |I| using (16);7

Output: The final p.s.d. matrix X ∈ RD×D, X= ∑J
j=1wjZ j.

Eigenvalue decompositions is one of the main computational costs in our algorithm. There
are approximate eigenvalue solvers, which guarantee that for a symmetric matrix U and any ε >
0, a vector vvv is found such that vvv$Uvvv ≥ λmax − ε. To approximately find the largest eigenvalue
and eigenvector can be very efficient using Lanczos or power method. We can use the MATLAB
function eigs to calculate the largest eigenvector, which calls mex files of ARPACK. ARPACK is
a collection of Fortran subroutines designed to solve large scale eigenvalue problems. When the
input matrix is symmetric, this software uses a variant of the Lanczos process called the implicitly
restarted Lanczos method.

Another way to reduce the time for computing the leading eigenvector is to compute an approx-
imate EVD by a fast Monte Carlo algorithm such as the linear time SVD algorithm developed in
Drineas et al. (2004).

We summarize our main algorithmic results in Algorithm 3.

3.5 Learning with the Logistic Loss

We have considered the exponential loss in the last content. The proposed framework is so general
that it can also accommodate other convex loss functions. Here we consider the logistic loss, which
penalizes mis-classifications with more moderate penalties than the exponential loss. It is believed
on noisy data, the logistic loss may achieve better classification performance.

With the same settings as in the case of the exponential loss, we can write our optimization
problem as

min
ρρρ,www

∑
|I|
r=1logit(ρr)+ v1$www

s.t.:ρr =Hr:www,r = 1, · · · , |I|,www≥ 0. (19)
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Here logit(·) is the logistic loss defined as logit(z) = log(1+ exp(−z)). Similarly, we derive its
Lagrange dual as

min
uuu
∑
|I|
r=1logit∗(−ur)

s.t.:∑|I|
r=1urHr: ≤ v1$,

where logit∗(·) is the Fenchel conjugate function of logit(·), defined as

logit∗(−u) = u log(u)+(1−u) log(1−u),

when 0≤ u≤ 1, and∞ otherwise. So the Fenchel conjugate of logit(·) is the binary entropy function.
We have reversed the sign of uuu when deriving the dual.

Again, according to the KKT conditions, we have

u"r =
exp(−ρ"r )

1+ exp(−ρ"r )
, ∀r, (20)

at optimality. From (20) we can also see that u must be in (0,1).
Similarly, we want to optimize the primal cost function in a coordinate descent way. First, let

us find the relationship between u jr and u j−1
r . Here j is the iteration index. From (20), it is trivial to

obtain
u jr =

1
(1/u j−1

r −1)exp(Hr jw j)+1
, ∀r. (21)

The optimization of wj can be solved by looking for the root of

∑
|I|
r=1Hr ju jr− v= 0, (22)

where u jr is a function of wj as defined in (21).
Therefore, in the case of the logistic loss, to find wj, we modify the bisection search of Algo-

rithm 2:

• Line 3: if l.h.s. o f (22) > 0 then . . .

and Line 7 of Algorithm 3:

• Line 7: Update uuu using (21).

3.6 Totally Corrective Optimization

In this section, we derive a totally-corrective version of BOOSTMETRIC, similar to the case of Total-
Boost (Warmuth et al., 2006; Shen and Li, 2010) for classification, in the sense that the coefficients
of all weak learners are updated at each iteration.

Unlike the stage-wise optimization, here we do not need to keep previous weights of weak
learners w1,w2, . . . ,wj−1. Instead, the weights of all the selected weak learners w1,w2, . . . ,wj are
updated at each iteration j. As discussed, our learning procedure is able to employ various loss
functions such as the hinge loss, exponential loss or logistic loss. To devise a totally-corrective
optimization procedure for solving our problem efficiently, we need to ensure the object function
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Algorithm 4 Positive semidefinite matrix learning with totally corrective boosting.
Input:

• Training set triplets (ai,a j,ak) ∈ I; Compute Ar,r = 1,2, · · · , using (4).

• J: maximum number of iterations;

• Regularization parameter v.

Initialize: u0
r =

1
|I| ,r = 1 · · · |I|;1

for j = 1,2, · · · ,J do2

··· Find a new base Z j by finding the largest eigenvalue (λmax(Â)) and its eigenvector of3

Â in (17);
··· if λmax(Â)< v then4

break (converged);5

··· Optimize for w1,w2, · · · ,wj by solving the primal problem (9) when the exponential6

loss is used or (19) when the logistic loss is used;
··· Update uuu to obtain u jr ,r = 1, · · · |I| using (13) (exponential loss) or (20) (logistic loss);7

Output: The final p.s.d. matrix X ∈ RD×D, X= ∑J
j=1wjZ j.

to be differentiable with respect to the variables w1,w2, . . . ,wj. Here, we use the exponential loss
function and the logistic loss function. It is possible to use sub-gradient descent methods when a
non-smooth loss function like the hinge loss is used.

It is clear that solving forwww is a typical convex optimization problem since it has a differentiable
and convex function (9) when the exponential loss is used, or (19) when the logistic loss is used.
Hence it can be solved using off-the-shelf gradient-descent solvers like L-BFGS-B (Zhu et al.,
1997).

Since all the weights w1,w2, . . . ,wj are updated, u jr on r = 1 . . . |I| need not to be updated but
re-calculated at each iteration j. To calculate u jr , we use (13) (exponential loss) or (20) (logistic loss)
instead of (16) or (21) respectively. Totally-corrective BOOSTMETRIC methods are very simple to
implement. Algorithm 4 gives the summary of this algorithm. Next, we show the convergence
property of Algorithm 4. Formally, we want to show the following theorem.

Theorem 5 Algorithm 4 makes progress at each iteration. In other words, the objective value is
decreased at each iteration. Therefore, in the limit, Algorithm 4 solves the optimization problem (9)
(or (19)) globally to a desired accuracy.

Proof Let us consider the exponential loss case of problem (9). The proof follows the same discus-
sion for the logistic loss, or any other smooth convex loss function. Assume that the current solution
is a finite subset of base learners (rank-one trace-one matrices) and their corresponding linear coef-
ficients www. If we add a base matrix Ẑ that is not in the current subset, and the corresponding ŵ= 0,
then the objective value and the solution must remain unchanged. We can conclude that the current
learned base learners and www are the optimal solution already.

Consider the case that this optimality condition is violated. We need to show that we can find
a base learner Ẑ, which is not in the current set of all the selected base learners, such that ŵ > 0
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holds. Now assume that Ẑ is the base learner found by solving (18), and the convergence condition
λmax(Â)≤ v is not satisfied. So, we have λmax(Â) =

〈

∑
|I|
r=1urAr, Ẑ

〉

> v.

If, after this weak learner Ẑ is added into the primal problem, the primal solution remains
unchanged, that is, the corresponding ŵ= 0, then from the optimality condition that L2 in (10) must
be zero, we know that p̂= v−

〈

∑
|I|
r=1urAr, Ẑ

〉

< 0. This contradicts the fact the Lagrange multiplier
p̂≥ 0.

We can conclude that after the base learner Ẑ is added into the primal problem, its corresponding
ŵ must admit a positive value. It means that one more free variable is added into the problem and
re-solving the primal problem would reduce the objective value. Hence a strict decrease in the
objective is guaranteed. So Algorithm 4 makes progress at each iteration.

Furthermore, as the optimization problems involved are all convex, there are no local optimal
solutions. Therefore Algorithm 4 is guaranteed to converge to the global solution.

Note that the above proof establishes the convergence of Algorithm 4 but it remains unclear
about the convergence rate.

3.7 Multi-pass BOOSTMETRIC

In this section, we show that BOOSTMETRIC can use multi-pass learning to enhance the perfor-
mance.

Our BOOSTMETRIC uses training set triplets (ai,a j,ak) ∈ I as input for training. The Maha-
lanobis distance metricX can be viewed as a linear transformation in the Euclidean space by project-
ing the data using matrix L (X = LL$). That is, nearest neighbors of samples using Mahalanobis
distance metric X are the same as nearest neighbors using Euclidean distance in the transformed
space. BOOSTMETRIC assumes that the triplets of input training set approximately represent the
actual nearest neighbors of samples in the transformed space defined by the Mahalanobis metric.
However, even though the triplets of BOOSTMETRIC consist of nearest neighbors of the original
training samples, generated triplets are not exactly the same as the actual nearest neighbors of train-
ing samples in the transformed space by L.

We can refine the results of BOOSTMETRIC iteratively, as in the multiple-pass LMNN (Wein-
berger and Saul, 2009): BOOSTMETRIC can estimate the triplets in the transformed space under
a multiple-pass procedure as close to actual triplets as possible. The rule for multi-pass BOOST-
METRIC is simple. At each pass p (p= 1,2, · · ·), we decompose the learned Mahalanobis distance
metric Xp−1 of previous pass into transformation matrix Lp. The initial matrix L1 is an identity
matrix. Then we generate the training set triplets from the set of points {L$a1, . . . ,L$am} where
L= L1 ·L2 · · · ·Lp. The final Mahalanobis distance metric X becomes LL$ in Multi-pass BOOST-
METRIC.

4. Experiments

In this section, we present experiments on data visualization, classification and image retrieval tasks.
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Figure 1: The data are projected into 2D with PCA (left), LDA (middle) and BOOSTMETRIC
(right). Both PCA and LDA fail to recover the data structure. The local structure of
the data is preserved after projection by BOOSTMETRIC.

4.1 An Illustrative Example

We demonstrate a data visualization problem on an artificial toy data set (concentric circles) in Fig-
ure 1. The data set has four classes. The first two dimensions follow concentric circles while the left
eight dimensions are all random Gaussian noise. In this experiment, 9000 triplets are generated for
training. When the scale of the noise is large, PCA fails find the first two informative dimensions.
LDA fails too because clearly each class does not follow a Gaussian distraction and their centers
overlap at the same point. The proposed BOOSTMETRIC algorithm find the informative features.
The eigenvalues of X learned by BOOSTMETRIC are {0.542,0.414,0.007,0, · · · ,0}, which indi-
cates that BOOSTMETRIC successfully reveals the data’s underlying 2D structure. We have used
the exponential loss in this experiment.

4.2 Classification on Benchmark Data Sets

We evaluate BOOSTMETRIC on 7 data sets of different sizes. Some of the data sets have very
high dimensional inputs. We use PCA to decrease the dimensionality before training on these
data sets (MNIST, USPS and yFaces). PCA pre-processing helps to eliminate noises and speed
up computation. Table 1 summarizes the data sets in detail. We have used USPS and MNIST
handwritten digits, Yale face recognition data sets, and a few UCI machine learning data sets.2

Experimental results are obtained by averaging over 10 runs (except for large data sets MNIST
and Letter). We randomly split the data sets for each run. We have used the same mechanism
to generate training triplets as described in Weinberger et al. (2005). Briefly, for each training
point ai, k nearest neighbors that have same labels as yi (targets), as well as k nearest neighbors
that have different labels from yi (imposers) are found. We then construct triplets from ai and its
corresponding targets and imposers. For all the data sets, we have set k= 3 (3-nearest-neighbor). We
have compared our method against a few methods: RCA (Bar-Hillel et al., 2005), NCA (Goldberger
et al., 2004), ITML (Davis et al., 2007) and LMNN (Weinberger et al., 2005). Also in Table 1,
“Euclidean” is the baseline algorithm that uses the standard Euclidean distance. The codes for these
compared algorithms are downloaded from the corresponding author’s website. Experiment setting
for LMNN follows Weinberger et al. (2005). The slack variable parameter for ITML is tuned using

2. UCI data sets can be found at http://archive.ics.uci.edu/ml/.
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v 10−8 10−7 10−6 10−5 10−4

Bal 8.98 (2.59) 8.88 (2.52) 8.88 (2.52) 8.88 (2.52) 8.93 (2.52)
B-Cancer 2.11 (0.69) 2.11 (0.69) 2.11 (0.69) 2.11 (0.69) 2.11 (0.69)
Diabetes 26.0 (1.33) 26.0 (1.33) 26.0 (1.33) 26.0 (1.34) 26.0 (1.46)

Table 2: Test error (%) of a 3-nearest neighbor classifier with different values of the parameter v.
Each experiment is run 10 times. We report the mean and variance. As expected, as long
as v is sufficiently small, in a wide range it almost does not affect the final classification
performance.

cross validation over the values 0.01,0.1,1,10 as in Davis et al. (2007). For BOOSTMETRIC, we
have set v= 10−7, the maximum number of iterations J = 500.

BOOSTMETRIC has different variants which use 1) the exponential loss (BOOSTMETRIC-E), 2)
the logistic loss (BOOSTMETRIC-L), 3) multiple pass evaluation (MP) for updating triplets with the
exponential and logistic loss, and 4) two optimization strategies, namely, stage-wise optimization
and totally corrective optimization. The experiments are conducted by using Matlab and a C-mex
implementation of the L-BFGS-B algorithm.

As reported in Table 1, we can conclude: 1) BOOSTMETRIC consistently improves the accu-
racy of kNN classification using Euclidean distance on most data sets. So learning a Mahalanobis
metric based upon the large margin concept indeed leads to improvements in kNN classification.
2) BOOSTMETRIC outperforms other state-of-the-art algorithms in most cases (on 5 out of 7 data
sets). LMNN is the second best algorithm on these 7 data sets statistically. LMNN’s results are
consistent with those given in Weinberger et al. (2005). ITML is faster than BOOSTMETRIC on
most large data sets such as MNIST. However it has higher error rates than BOOSTMETRIC in our
experiment. 3) NCA can only be run on a few small data sets. In general NCA does not perform
well. Initialization is important for NCA because NCA’s objective function is highly non-convex
and can only find a local optimum.

In this experiment, LMNN solves for the global optimum (learning X) except for the Wine data
set. When the LMNN solver solves for X on the Wine data set, the error rate is large (20.77%±
14.18%). So instead we have solved for the projection matrix L on Wine. Also note that the number
of training data on Iris, Wine and Bal in Weinberger et al. (2005) are different from our experiment.
We have used these data sets from UCI. For the experiment on MNIST, if we deskew the handwritten
digits data first as in Weinberger and Saul (2009), the final accuracy can be slightly improved. Here
we have not deskewed the data.

4.2.1 INFLUENCE OF v

Previously, we claim that the stage-wise version of BOOSTMETRIC is parameter-free like AdaBoost.
However, we do have a parameter v. Actually, AdaBoost simply set v= 0. The coordinate-wise gra-
dient descent optimization strategy of AdaBoost leads to an !1-norm regularized maximum margin
classifier (Rosset et al., 2004). It is shown that AdaBoost minimizes its loss criterion with an !1 con-
straint on the coefficient vector. Given the similarity of the optimization of BOOSTMETRIC with
AdaBoost, we conjecture that BOOSTMETRIC has the same property. Here we empirically prove
that as long as v is sufficiently small, the final performance is not affected by the value of v. We have
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set v from 10−8 to 10−4 and run BOOSTMETRIC on 3 UCI data sets. Table 2 reports the final 3NN
classification error with different v. The results are nearly identical.

For the totally corrective version of BOOSTMETRIC, similar results are observed. Actually for
LMNN, it was also reported that the regularization parameter does not have a significant impact on
the final results in a wide range (Weinberger and Saul, 2009).

4.2.2 COMPUTATIONAL TIME

As we discussed, one major issue in learning a Mahalanobis distance is heavy computational cost
because of the semidefiniteness constraint.

We have shown the running time of the proposed algorithm in Table 1 for the classification
tasks.3 Our algorithm is generally fast. Our algorithm involves matrix operations and an EVD for
finding its largest eigenvalue and its corresponding eigenvector. The time complexity of this EVD
is O(D2) with D the input dimensions. We compare our algorithm’s running time with LMNN in
Figure 2 on the artificial data set (concentric circles). Our algorithm is stage-wise BOOSTMETRIC
with the exponential loss. We vary the input dimensions from 50 to 1000 and keep the number
of triplets fixed to 250. LMNN does not use standard interior-point SDP solvers, which do not
scale well. Instead LMNN heuristically combines sub-gradient descent in both the matrices L and
X. At each iteration, X is projected back onto the p.s.d. cone using EVD. So a full EVD with
time complexity O(D3) is needed. Note that LMNN is much faster than SDP solvers like CSDP
(Borchers, 1999). As seen from Figure 2, when the input dimensions are low, BOOSTMETRIC
is comparable to LMNN. As expected, when the input dimensions become large, BOOSTMETRIC
is significantly faster than LMNN. Note that our implementation is in Matlab. Improvements are
expected if implemented in C/C++.

4.3 Visual Object Categorization

In the following experiments, unless otherwise specified, BOOSTMETRIC means the stage-wise
BOOSTMETRIC with the exponential loss.

The proposed BOOSTMETRIC and the LMNN are further compared on visual object cate-
gorization tasks. The first experiment uses four classes of the Caltech-101 object recognition
database (Fei-Fei et al., 2006), including Motorbikes (798 images), Airplanes (800), Faces (435),
and Background-Google (520). The task is to label each image according to the presence of a par-
ticular object. This experiment involves both object categorization (Motorbikes versus Airplanes)
and object retrieval (Faces versus Background-Google) problems. In the second experiment, we
compare the two methods on the MSRC data set including 240 images.4 The objects in the images
can be categorized into nine classes, including building, grass, tree, cow, sky, airplane, face, car
and bicycle. Different from the first experiment, each image in this database often contains multiple
objects. The regions corresponding to each object have been manually pre-segmented, and the task
is to label each region according to the presence of a particular object. Some examples are shown
in Figure 3.

3. We have run all the experiments on a desktop with an Intel CoreTM2 Duo CPU, 4G RAM and Matlab 7.7 (64-bit
version).

4. See http://research.microsoft.com/en-us/projects/objectclassrecognition/.
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Figure 2: Computation time of the proposed BOOSTMETRIC (stage-wise, exponential loss) and the
LMNN method versus the input data’s dimensions on an artificial data set. BOOSTMET-
RIC is faster than LMNN with large input dimensions because at each iteration BOOST-
METRIC only needs to calculate the largest eigenvector and LMNN needs a full eigen-
decomposition.

Figure 3: Examples of the images in the MSRC data set and the pre-segmented regions labeled
using different colors.

4.3.1 EXPERIMENT ON THE CALTECH-101 DATA SET

For each image of the four classes, a number of interest regions are identified by the Harris-affine
detector (Mikolajczyk and Schmid, 2004) and each region is characterized by the SIFT descrip-
tor (Lowe, 2004). The total number of interest regions extracted from the four classes are about
134,000, 84,000, 57,000, and 293,000, respectively. To accumulate statistics, the images of two
involved object classes are randomly split as 10 pairs of training/test subsets. Restricted to the im-
ages in a training subset (those in a test subset are only used for test), their local descriptors are
clustered to form visual words by using k-means clustering. Each image is then represented by a
histogram containing the number of occurrences of each visual word.
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Figure 4: Test error (3-nearest neighbor) of BOOSTMETRIC on the Motorbikes versus Airplanes
data sets. The second plot shows the test error against the number of training triplets with
a 100-word codebook.

Motorbikes versus Airplanes This experiment discriminates the images of a motorbike from
those of an airplane. In each of the 10 pairs of training/test subsets, there are 959 training images
and 639 test images. Two visual codebooks of size 100 and 200 are used, respectively. With the
resulting histograms, the proposed BOOSTMETRIC and the LMNN are learned on a training subset
and evaluated on the corresponding test subset. Their averaged classification error rates are com-
pared in Figure 4 (left). For both visual codebooks, the proposed BOOSTMETRIC achieves lower
error rates than the LMNN and the Euclidean distance, demonstrating its superior performance.
We also apply a linear SVM classifier with its regularization parameter carefully tuned by 5-fold
cross-validation. Its error rates are 3.87%± 0.69% and 3.00%± 0.72% on the two visual code-
books, respectively. In contrast, a 3NN with BOOSTMETRIC has error rates 3.63%± 0.68% and
2.96%± 0.59%. Hence, the performance of the proposed BOOSTMETRIC is comparable to the
state-of-the-art SVM classifier. Also, Figure 4 (right) plots the test error of the BOOSTMETRIC
against the number of triplets for training. The general trend is that more triplets lead to smaller
errors.

Faces versus Background-Google This experiment uses the two object classes as a retrieval
problem. The target of retrieval is face images. The images in the class of Background-Google are
randomly collected from the Internet and they represent the non-target class. BOOSTMETRIC is
first learned from a training subset and retrieval is conducted on the corresponding test subset. In
each of the 10 training/test subsets, there are 573 training images and 382 test images. Again, two
visual codebooks of size 100 and 200 are used. Each face image in a test subset is used as a query,
and its distances from other test images are calculated by the proposed BoostMetric, LMNN and the
Euclidean distance, respectively. For each metric, the Precision of the retrieved top 5, 10, 15 and
20 images are computed. The Precision values from each query are averaged on this test subset and
then averaged over the 10 test subsets. The retrieval precision of these metrics is shown in Figure 5
(with a codebook size 100). As we can see that the BOOSTMETRIC consistently attains the highest
values on both visual codebooks, which again verifies its advantages over LMNN and Euclidean
distance. With a codebook size 200, very similar results are obtained.
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Figure 5: Retrieval accuracy of distance metric learning algorithms on the Faces versus Backgr-
ound-Google data set. Error bars show the standard deviation.

4.3.2 EXPERIMENT ON THE MSRC DATA SET

The 240 images of the MSRC database are randomly halved into 10 groups of training and test sets.
Given a set of training images, the task is to predict the class label for each of the pre-segmented
regions in a test image. We follow the work in Winn et al. (2005) to extract features and conduct
experiments. Specifically, each image is converted from the RGB color space to the CIE Lab color
space. First, three Gaussian low-pass filters are applied to the L, a, and b channels, respectively.
The standard deviation σ of the filters are set to 1, 2, and 4, respectively, and the filter size is defined
as 4σ. This step produces 9 filter responses for each pixel in an image. Second, three Laplacian
of Gaussian (LoG) filters are applied to the L channel only, with σ = 1,2,4,8 and the filter size
of 4σ. This step gives rise to 4 filter responses for each pixel. Lastly, the first derivatives of the
Gaussian filter with σ= 2,4 are computed from the L channel along the row and column directions,
respectively. This results in 4 more filter responses. After applying this set of filter banks, each
pixel is represented by a 17-dimensional feature vectors. All the feature vectors from a training set
are clustered using the k-means clustering with a Mahalanobis distance.5 By setting k to 2000, a
visual codebook of 2000 visual words is obtained. We implement the word-merging approach in
Winn et al. (2005) and obtain a compact and discriminative codebook of 300 visual words. Each
pre-segmented object region is then represented as a 300-dimensional histogram.

The proposed BOOSTMETRIC is compared with the LMNN algorithm as follows. With 10 near-
est neighbors information, about 20,000 triplets are constructed and used to train the BOOSTMET-
RIC. To ensure convergence, the maximum number of iterations is set as 5000 in the optimization of
training BOOSTMETRIC. The training of LMNN follows the default setting. kNN classifiers with
the two learned Mahalanobis distances and the Euclidean distance are applied to each training and
test group to categorize an object region. The categorization error rate on each test group is summa-
rized in Table 3. As expected, both learned Mahalanobis distances achieve superior categorization

5. Note that this Mahalanobis distance is different from the one that we are going to learn with the BOOSTMETRIC.
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group index Euclidean LMNN BOOSTMETRIC

1 9.19 6.71 4.59
2 5.78 3.97 3.25
3 6.69 2.97 2.60
4 5.54 3.69 4.43
5 6.52 5.80 4.35
6 7.30 4.01 3.28
7 7.75 2.21 2.58
8 7.20 4.17 4.55
9 6.13 3.07 4.21

10 8.42 5.13 5.86
average: 7.05 4.17 3.97

standard devision: 1.16 1.37 1.03

Table 3: Comparison of the categorization performance.

Figure 6: Four generated triplets based on the pairwise information provided by the LFW data set.
For the three images in each triplet, the first two belong to the same individual and the
third one is a different individual.

performance to the Euclidean distance. Moreover, the proposed BOOSTMETRIC achieves better
performance than the LMNN, as indicated by its lower average categorization error rate and the
smaller standard deviation. Also, the kNN classifier using the proposed BOOSTMETRIC achieves
comparable or even higher categorization performance than those reported in Winn et al. (2005).
Besides the categorization performance, we compare the computational efficiency of the BOOST-
METRIC and the LMNN in learning a Mahalanobis distance. The computational time result is based
on the Matlab codes for both methods. In this experiment, the average time cost by the BOOSTMET-
RIC for learning the Mahalanobis distance is 3.98 hours, whereas the LMNN takes about 8.06 hours
to complete this process. Hence, the proposed BOOSTMETRIC has a shorter training process than
the LMNN method. This again demonstrates the computational advantage of the BOOSTMETRIC
over the LMNN method.

4.4 Unconstrained Face Recognition

We use the “labeled faces in the wild” (LFW) data set (Huang et al., 2007) for face recognition in
this experiment.
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number of triplets 100D 200D 300D 400D
3,000 80.91 (1.76) 82.39 (1.73) 83.40 (1.46) 83.64 (1.66)
6,000 81.13 (1.76) 82.59 (1.84) 83.58 (1.25) 83.70 (1.73)
9,000 81.01 (1.69) 82.63 (1.68) 83.65 (1.70) 83.72 (1.47)
12,000 81.06 (1.63) 83.00 (1.38) 83.60 (1.89) 83.57 (1.47)
15,000 81.10 (1.71) 82.78 (1.83) 83.69 (1.62) 83.80 (1.85)
18,000 81.37 (2.15) 83.19 (1.76) 83.60 (1.66) 83.81 (1.55)

Table 4: Comparison of the face recognition accuracy (%) of our proposed BOOSTMETRIC on the
LFW data set by varying the PCA dimensionality and the number of triplets for each fold.

This is a data set of unconstrained face images, which has a large range of variations seen in real
world, including 13,233 images of 5,749 people collected from news articles on Internet. The face
recognition task here is pair matching—given two face images, to determine if these two images
are of the same individual. So we classify unseen pairs to determine whether each image in the pair
indicates the same individual or not, by applying MkNN of Guillaumin et al. (2009) instead of kNN.

Features of face images are extracted by computing 3-scale, 128-dimensional SIFT descriptors
(Lowe, 2004), which center on 9 points of facial features extracted by a facial feature descriptor,
same as described in Guillaumin et al. (2009). PCA is then performed on the SIFT vectors to reduce
the dimension to between 100 and 400.

Simple recognition systems with a single descriptor Table 4 shows our BOOSTMETRIC’s per-
formance by varying PCA dimensionality and the number of triplets. Increasing the number of
training triplets gives slight improvement of recognition accuracy. The dimension after PCA has
more impact on the final accuracy for this task.

In Figure 7, we have drawn ROC curves of other algorithms for face recognition. To obtain our
ROC curve, MkNN has moved the threshold value across the distributions of match and mismatch
similarity scores. Figure 7 (a) shows methods that use a single descriptor and a single classifier only.
As can be seen, our system using BOOSTMETRIC outperforms all the others in the literature with a
very small computational cost.

Complex recognition systems with one or more descriptors Figure 7 (b) plots the performance
of more complicated recognition systems that use hybrid descriptors or combination of classifiers.
See Table 5 for details. We can see that the performance of our BOOSTMETRIC is close to the
state-of-the-art.

In particular, BOOSTMETRIC outperforms the method of Guillaumin et al. (2009), which has a
similar pipeline but uses LMNN for learning a metric. This comparison also confirms the impor-
tance of learning an appropriate metric for vision problems.

5. Conclusion

We have presented a new algorithm, BOOSTMETRIC, to learn a positive semidefinite metric using
boosting techniques. We have generalized AdaBoost in the sense that the weak learner of BOOST-
METRIC is a matrix, rather than a classifier. Our algorithm is simple and efficient. Experiments
show its better performance over a few state-of-the-art existing metric learning methods. We are
currently combining the idea of on-line learning into BOOSTMETRIC to make it handle even larger
data sets.
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Figure 7: (top) ROC Curves that use a single descriptor and a single classifier, (bottom) ROC curves
that use hybrid descriptors are plotted. Our BOOSTMETRIC with a single classifier is
also plotted. Each point on the curves is the average over the 10 folds of rates for a fixed
threshold.

We also want to learn a metric using BOOSTMETRIC in the semi-supervised, and multi-task
learning setting. It has been shown in Weinberger and Saul (2009) that the classification perfor-
mance can be improved by learning multiple local metrics. We will extend BOOSTMETRIC to learn
multiple metrics. Finally, we will explore to generalize BOOSTMETRIC for solving more general
semidefinite matrix learning problems in machine learning.
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single descriptor + single classifier multiple descriptors/classifiers
Turk and Pentland (1991) 60.02 (0.79) -

‘Eigenfaces’
Nowak and Jurie (2007) 73.93 (0.49) -

‘Nowak-funneled’
Huang et al. (2008) 70.52 (0.60) 76.18 (0.58)

‘Merl’ ‘Merl+Nowak’
Wolf et al. (2008) - 78.47 (0.51)

‘Hybrid descriptor-based’
Wolf et al. (2009) 72.02 86.83 (0.34)

- ‘Combined b/g samples based’
Pinto et al. (2009) 79.35 (0.55) -

‘V1-like/MKL’
Taigman et al. (2009) 83.20 (0.77) 89.50 (0.40)

- ‘Multishot combined’
Kumar et al. (2009) - 85.29 (1.23)

‘attribute + simile classifiers’
Cao et al. (2010) 81.22 (0.53) 84.45 (0.46)

‘single LE + holistic’ ‘multiple LE + comp’
Guillaumin et al. (2009) 83.2 (0.4) 87.5 (0.4)

‘LDML’ ‘LMNN + LDML’
BOOSTMETRIC 83.81 (1.55) -

‘BOOSTMETRIC’ on SIFT

Table 5: Test accuracy in percentage (mean and standard deviation) on the LFW data set. ROC
curve labels in Figure 7 are described here with details.
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Abstract
Asymptotic properties of model selection criteria for high-dimensional regression models are stud-
ied where the dimension of covariates is much larger than the sample size. Several sufficient condi-
tions for model selection consistency are provided. Non-Gaussian error distributions are considered
and it is shown that the maximal number of covariates for model selection consistency depends on
the tail behavior of the error distribution. Also, sufficient conditions for model selection consistency
are given when the variance of the noise is neither known nor estimated consistently. Results of
simulation studies as well as real data analysis are given to illustrate that finite sample performances
of consistent model selection criteria can be quite different.
Keywords: model selection consistency, general information criteria, high dimension, regression

1. Introduction

Model selection is a fundamental task for high-dimensional statistical modeling where the number
of covariates can be much larger than the sample size. In such cases, classical model selection
criteria such as the Akaike information criterion or AIC (Akaike, 1973), the Bayesian information
criterion or BIC (Schwarz, 1978) and cross validations or generalized cross validation (Craven and
Wahba, 1979; Stone, 1974) tend to select more variables than necessary. See, for example, Broman
and Speed (2002) and Casella et al. (2009). Also, Yang and Barron (1998) discussed severe selection
bias of AIC which damages predictive performance for high-dimensional models.

Recently, various model selection criteria for high-dimensional models have been introduced.
Wang et al. (2009) proposed a modified BIC which is consistent when the dimension of covariates
is diverging slower than the sample size. Here, the consistency of a model selection criterion means
that the probability of the selected model being equal to the true model converges to 1. See Section 2
for a rigorous definition. The extended BIC by Chen and Chen (2008) and corrected RIC by Zhang
and Shen (2010) are shown to be consistent even when the dimension of covariates is larger than the
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sample size. Some sparse penalized approaches including the LASSO (Least Absolute Shrinkage
and Selection Operator) (Tibshirani, 1996) and SCAD (Smoothly Clipped Absolute Deviation) (Fan
and Li, 2001) are proven to be consistent for high-dimensional models. See Zhao and Yu (2006) for
the LASSO and Kim et al. (2008) for the SCAD.

In this paper, we study asymptotic properties of a large class of model selection criteria based
on the generalized information criterion (GIC) considered by Shao (1997). The class of GICs is
large enough to include many well known model selection criteria such as the AIC, BIC, modified
BIC by Wang et al. (2009), risk inflation criterion (RIC) by Foster and George (1994), modified risk
inflation criterion (MRIC) by Foster and George (1994), corrected RIC by Zhang and Shen (2010).
Also, as we will show, the extended BIC by Chen and Chen (2008) is asymptotically equivalent to
a GIC.

We give sufficient conditions for a given GIC to be consistent. Our sufficient conditions are
general enough to include cases where the error distribution can be other than Gaussian and the
variance of the error distribution is not consistently estimated. For a case of the Gaussian error
distribution with consistent estimator of the variance, our sufficient conditions include most of the
previously proposed consistent model selection criteria such as the modified BIC (Wang et al.,
2009), extended BIC (Chen and Chen, 2008) and corrected RIC (Zhang and Shen, 2010).

For high-dimensional models, it is not practically feasible to find the best model among all pos-
sible submodels since the number of submodels are too large. A simple remedy is to find a sequence
of submodels with increasing complexities (e.g., increasing number of covariates) and find the best
model among them using a given model selection criterion. Examples of constructing a sequence
of submodels are the forward selection procedure and solution paths of penalized regression ap-
proaches. Our sufficient conditions are still valid as long as the sequence of submodels includes the
true model with probability converging to 1. We discuss more on these issues in Section 4.1.

The paper is organized as follows. In Section 2, the GIC is introduced. In Section 3, sufficient
conditions for the consistency of GICs are given. Various remarks about application of GICs to
real data analysis are given in Section 4. In Section 5, results of simulations as well as a real data
analysis are presented, and concluding remarks follow in Section 6.

2. Generalized Information Criterion

Let L = {(y1,x1), . . . ,(yn,xn)} be a given data set of independent pairs of response and covariates,
where yi ∈ R and xi ∈ Rpn . Suppose the true regression model for (y,x) is given as

y= x
′
β∗+ ε,

where β∗ ∈Rpn ,E(ε)= 0 and Var(ε)=σ2. For simplicity, we assume that σ2 is known. For unknown
σ2, see Section 4.2.

Let Yn = (y1, . . . ,yn)
′ and Xn be the n× pn dimensional design matrix whose jth column is

X j
n = (x1 j, . . . ,xn j)

′
. For given β ∈ Rpn , let

Rn(β) = ‖Yn−Xnβ‖2,

where ‖ ·‖ is the Euclidean norm. For a given subset π⊂ {1, . . . , pn}, let

β̂π = argminβ:β j=0, j∈πcRn(β).

1038



CONSISTENT MODEL SELECTION CRITERIA ON HIGH DIMENSIONS

For a given sequence of positive numbers {λn}, the GIC indexed by {λn}, denoted by GICλn ,
gives a sequence of random subsets π̂λn of {1, . . . , pn} defined as

π̂λn = argminπ⊂{1,...,pn}Rn(β̂π)+λn|π|σ2,

where |π| is the cardinality of π. The AIC corresponds to λn = 2, the BIC to λn = logn, the RIC of
Foster and George (1994) to λn = 2log pn, the RIC of Zhang and Shen (2010) to λn = 2(log pn+
log log pn). Shao (1997) studied the asymptotic properties of the GIC focusing on the AIC and BIC.

When pn is large, it would not be wise to search all possible subsets of {1, . . . , pn}. Instead, we
set an upper bound on the cardinality of π, say sn and search the optimal model among submodels
whose cardinalities are smaller than sn. Chen and Chen (2008) considered a similar model selection
procedure. LetM sn = {π⊂ {1, . . . , pn} : |π|≤ sn}.We define the restricted GICλn as

π̂λn = argminπ∈M sn Rn(β̂π)+λn|π|σ2. (1)

The restricted GIC is the same as the GIC if sn = pn. In the following, we will only consider the
restricted GIC and suppress the term “restricted” unless there is any confusion.

3. Consistency of GIC on High Dimensions

Let π∗n = { j : |β∗j | *= 0}.We say that the GICλn is consistent if

Pr(π̂λn = π∗n)→ 1

as n→ ∞. In this section, we prove the consistency of the GICλn under regularity conditions.
For a given subset π of {1, . . . , pn}, let Xπ = (X j

n , j ∈ π) be the n× |π| matrix whose columns
consist of X j

n , j ∈ π. For a given symmetric matrix A, let ξ(A) be the smallest eigenvalue of A.

3.1 Regularity Conditions

We assume the following regularity conditions.

• A1 : There exists a positive constant M1 such that X j′
n X j

n/n≤M1 for all j = 1, . . . , pn and all
n.

• A2 : There is a positive constantM2 such that ξ(X
′
π∗n
Xπ∗n/n)≥M2 for all n.

• A3 : There exist positive constants c1 andM3 such that 0≤ c1 < 1/2 and ρn ≥M3n−c1 , where

ρn = inf
π:|π|≤sn

ξ(X
′

πXπ/n).

• A4 : There exist positive constants c2 andM4 such that 2c1 < c2 ≤ 1 and

n(1−c2)/2min
j∈π∗n

|β∗j |≥M4.

• A5 : qn = O(nc3) for some 0≤ c3 < c2, and qn ≤ sn, where qn = |π∗n|.
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Condition A1 assumes that the covariates are bounded. Condition A2 means that the design
matrix of the true model is well posed. Condition A3 is called the sparse Riesz condition and used
in Chen and Chen (2008), Zhang (2010) and Kim and Kwon (2012). Condition A4 and A5 allow
the nonzero regression coefficients to converge to 0 and the number of signal variables to diverge,
respectively.

Remark 1 Condition A3 implies that sn ≤ n.

3.2 The Main Theorem

The following theorem proves consistency of the GICλn . The proofs are deferred to Appendix.

Theorem 2 Suppose E(ε2k) < ∞ for some integer k > 0. If λn = o(nc2−c1) and pn/(λnρn)k → 0,
then the GICλn is consistent.

In Theorem 2, pn can diverge only polynomially fast in n since pn = o(λkn) = o(nkc2). Since k
can be considered as a degree of tail lightness of the error distribution, we can conclude that the
lighter the tail of the error distribution is, the more covariates the GICλn is consistent with. When
ε is Gaussian, the following theorem proves that the GICλn can be consistent when pn diverges
exponentially fast.

Theorem 3 Suppose ε ∼ N(0,σ2). If λn = o(nc2−c1),sn log pn = o(nc2−c1) and
λn−2log pn− log log pn → ∞, then the GICλn is consistent.

In the following, we give three examples for (i) fixed pn, (ii) polynomially diverging pn and
(iii) exponentially diverging pn. For simplicity, we let c1 = 0 (i.e., ρn ≥ M3 > 0), c2 = 1 (i.e.,
min j∈π∗n |β

∗
j |> 0) and c3 = 0 (i.e., qn is fixed). In addition, we let sn be fixed.

Example 1 Consider a standard case where pn is fixed and n goes to infinity. Theorem 2 implies
that the GICλn is consistent if λn/n → 0 and λn → ∞ regardless of the tail lightness (i.e., k) of
the error distribution, provided the variance exists. The BIC, which is the GIC with λn = logn,
satisfies these conditions and hence is consistent. Note that the AIC does not satisfy the conditions
in Theorem 2. Any GIC with λn = nc,0 < c < 1 is consistent, which suggests that the class of
consistent model selection criteria is quite large. See Shao (1997) for more discussions.

Example 2 Consider a case of pn = nγ,γ > 0. The GIC with λn = nξ,0 < ξ < 1 and γ < kξ is
consistent. That is, for larger pn, we need larger λn for consistency, which is reasonable because
we need to be more careful not to overfit when pn is large. When the error distribution is Gaussian,
Theorem 3 can be compared with other previous results of consistency. First, the BIC (i.e., the GIC
with λn = logn) is consistent when γ < 1/2. For 0 < γ < 1, Theorem 3 implies that the modified
BIC of Wang et al. (2009), which is a GIC with λn = log log pn logn, is consistent. Chen and Chen
(2008) proposed a model selection criterion called the extended BIC given by

π̂eBIC = argminπ⊂{1,...,pn},|π|≤KRn(β̂π)+ |π|σ2 logn+2κσ2 log
(

pn
|π|

)

for some K > 0 and 0≤ κ≤ 1, and proved that the extended BIC is consistent when κ> 1−1/(2γ).
Since log

(pn
|π|
)

. |π| log pn for |π|≤ K, we have

|π|σ2 logn+2γσ2 log
(

pn
|π|

)

. (logn+2κ log pn)|π|σ2.
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Hence, Theorem 3 confirms the result of Chen and Chen (2008).

Example 3 When the error distribution is Gaussian, the GIC can be consistent for exponentially
increasing pn (i.e., ultra-high dimensional cases). The GIC with λn = nξ,0 < ξ < 1 is consistent
when pn = O(exp(αnγ)) for 0 < γ < ξ and α > 0. Also, it can be shown by Theorem 3 that the
extended BIC with γ = 1 is consistent with pn = O(exp(αnγ)) for 0 < γ < 1/2. The consistency of
the corrected RIC of Zhang and Shen (2010) can be confirmed by Theorem 3, but the regularity
conditions for Theorem 3 are more general than those of Zhang and Shen (2010).

4. Remarks

Remarks regarding to applications of the GIC to real data analysis are given.

4.1 Construction of Sub-Models

For high-dimensional models, it is computationally infeasible to search the optimal model among all
possible submodels. A simple remedy is to construct a sequence of submodels and select the optimal
model among the sequence of submodels. Examples of constructing a sequence of submodels are
the forward selection (Wang, 2009) and the solution path of a sparse penalized estimator obtained
by, for example, the Lars algorithm (Efron et al., 2004) or the PLUS algorithm (Zhang, 2010). The
following algorithm exemplifies the model selection procedure with the GIC and a sparse penalized
regression approach.

• For a given sparse penalty Jη(t) indexed by η ≥ 0, find the solution path of a penalized
estimator {β̂(η) : η> 0}, where

β̂(η) = argminβ

(

Rn(β)+
p

∑
j=1

Jη(|β j|)

)

.

The LASSO corresponds to Jη(t) = ηt and the SCAD penalty corresponds to

Jη(t) = ηtI(0≤ 0< η)

+

{

aη(t−η)− (t2−η2)/2
a−1

+η2
}

I(η≤ t < aη)

+

{

(a−1)η2

2
+η2

}

I(t ≥ aη)

for some a> 2.

• Let S(η) = { j : β̂(η) j *= 0} and ϒ= {η : S(η) *= S(η−), |S(η)|≤ sn}.

• Apply the GICλn to S(η),η ∈ ϒ to select the optimal model. That is, let π̂λn = S(η∗) where

η∗ = argminη∈ϒ
(

Rn(β̂η)+λn|S(η)|
)

and
β̂η = argminβ:β j=0, j∈S(η)cRn(β).
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It is easy to see that a consistent GIC is still consistent with a sequence of sub-models as long as
the sequence of submodels includes the true model with probability converging to 1. For the LASSO
solution path, Zhao and Yu (2006) proved the selection consistency under the irrepresentable con-
dition, which is almost necessary (Zou, 2006). However, the irrepresentable condition is hardly
satisfied for high-dimensional models. The consistency of the solution path of a nonconvex penal-
ized estimator with either the SCAD penalty or minimax concave penalty is proved by Zhang (2010)
and Kim and Kwon (2012). By combining Theorem 4 of Kim and Kwon (2012) and Theorem 2
of the current paper, we can prove the consistency of the GIC with the solution path of the SCAD
penalty or minimax concave penalty, which is formally stated in the following theorem.

Theorem 4 Condition A3 is replaced by A3’, where

• A3’: There exist positive constants c1 and M3 such that 0≤ c1 < 1/2 and ρn ≥M3nc1/2.

Suppose E(ε2k)<∞ for some integer k> 0. If pn= o(nk(c2/2−c1)), the under the regularity conditions
A1 to A5 with A3 being replaced by A3’, the solution path of the SCAD or minimax concave penalty
included the true model with probability converging to 1, and hence the GICλn with λn = o(nc2−c1)
is consistent with the solution path of the SCAD or minimax concave penalty.

Remark 5 Condition A3’ is a technical modification needed for Theorem 4 of Kim and Kwon
(2012). Note that A3 is weaker than A3’, which is an advantage of using the l0 penalty rather
than nonconvex penalties which are linear around 0.

Remark 6 Theorem 3 can be modified similarly for the GIC with the solution path of the SCAD or
minimax concave penalty, since Theorem 4 of Kim and Kwon (2012) can be modified accordingly
for the Gaussian error distribution.

4.2 Estimation of the Variance

To use the GIC in practice, we need to know σ2. If σ2 is unknown, we can replace it by its estimate.
Theorems 2 and 3 are still valid as long as σ2 is estimated consistently. When pn is fixed, we can
estimate σ2 consistently by the mean squared error of the full model. For high-dimensional data, it
is not obvious how to estimate σ2. However, a weaker condition can be put on an estimator σ̂2 of
σ2 for the GIC to be consistent. Suppose that

0< rin f = liminf
σ̂2

σ2
≤ limsup

σ̂2

σ2
= rsup < ∞ (2)

with probability 1. This condition essentially assumes that σ̂2 is neither too small nor too large. It
is not difficult to show that Theorem 2 is still valid with σ̂2 satisfying (2). This, however, is not
true for Theorem 3. A slightly weak version of Theorem 3 which only requires (2) is given in the
following theorem.

Theorem 7 Suppose ε ∼ N(0,σ2). Let σ̂2 be an estimator of σ2 satisfying (2). If λn = o(nc2−c1)
and λn−2M1 log pn/ρnrin f → ∞, then the GICλn with the estimated variance is consistent.

The corrected RIC, the GIC with λn = 2(log pn+ log log pn), does not satisfy the condition in
Theorem 7, and hence may not be consistent with an estimated variance. On the other hand, the
GIC with λn = αn log pn is consistent as long as αn → ∞.
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4.3 The Size of sn
For condition A5, sn should be large enough so that qn ≤ sn. In many cases, sn can be sufficiently
large for practical purposes. For example, suppose {xi, i ≤ n} are independent and identically dis-
tributed pn dimensional random vectors such that E(x1) = 0 and Var(x1) = Σ = [σ jk]. For a given
ρ> 0, let s∗ be the largest integer such that the smallest eigenvalue of Ση = [σ jk, j,k ∈ η] is greater
than ρ for any η ⊂ {1, . . . , pn} with |η| ≤ s∗. For example, when Σ is compound symmetry, that
is σ j j = 1 and σ jk = ν for j *= k and ν ∈ [0,1), the smallest eigenvalue of Ση is 1− ν for all
η ⊂ {1, . . . , pn} and hence s∗ = pn if 1− ν > ρ. Let A = Ση−X

′
ηXη/n. By the inequality (2) in

Greenshtein and Ritov (2004), we have

sup
j,k

∣

∣

∣

∣

∣

n

∑
i=1

xi jxik/n−σ jk

∣

∣

∣

∣

∣

= Op

(

√

logn
n

)

,

and hence sup jk |a jk| = Op(
√

logn/n), where a jk is the ( j,k) entry of A. Since the largest eigen-
value of A is bounded by |η|Op(

√

logn/n), the smallest eigenvalue of Xη′Xη/n is greater than
ρ− |η|Op(

√

logn/n) if |η|≤ s∗. So, we can let sn =min{nc,s∗} for c< 1/2.

5. Numerical Analysis

In this section, we investigate finite sample performance of various GICs by simulation experiments
as well as real data analysis. We consider the five GICs whose corresponding λns are given as

• GIC1(=BIC) : λ
(1)
n = logn,

• GIC2 : λ
(2)
n = p1/3n ,

• GIC3 : λ
(3)
n = 2log pn,

• GIC4 : λ
(4)
n = 2(log pn+ log log pn),

• GIC5 : λ
(5)
n = log logn log pn,

• GIC6 : λ
(6)
n = logn log pn.

The GIC1 is the BIC. By Theorem 2, the GIC2 can be consistent when E(ε8) < ∞. That is, the
GIC2 can be consistent when the tail of the error distribution is heavier than that of the Gaussian
distribution. The GIC3 and GIC4 are the RIC of Foster and George (1994) and the corrected RIC of
Zhang and Shen (2010). The GIC5 and GIC6 are consistent when the error distribution is Gaussian.

5.1 Simulation 1

The first simulation model is
y= x

′
β∗+ ε

where x= (x1, . . . ,xp)
′ is a multivariate Gaussian random vector with mean 0 and covariances of xk

and xl being 0.5|k−l|. The ε is a random variable with mean 0 and σ2= 4. For β∗=(3,1.5,0,0,2,0′p−5)
′

with 0k denoting a k−dimensional vector of zeros. This simulation setup was considered in Fan and
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Li (2001). We consider two distributions for ε : the Gaussian distribution and the t-distribution with
3 degrees of freedom multiplied by a positive constant to make the variance be 4.

First, we compare performances of the GICs applied to all possible submodels with those ap-
plied to submodels constructed by the solution path of a sparse penalized approach. For a sparse
penalized approach, we use the SCAD penalty with the PLUS algorithm (Zhang, 2010). Table 1
summarizes the results when p= 10 and n= 100 based on 300 repetitions of the simulation. In the
table, ‘Signal’, ‘Noise’, ‘PTM’ and ‘Error (s.e.)’ represent the average number of variables included
in the selected model among the signal variables, the average number of variables included in the
selected model among noisy variables, the proportion of the true model being exactly identified,
and the average of the squared Euclidean distance of β̂π̂λn form β∗ with the standard error in the
parenthesis, respectively. From Table 1, we can see that the results based on the SCAD solution
path are almost identical to those based on the all possible search, which suggests that the model
selection with the SCAD solution path is a promising alternative to all possible search.

Submodels Criterion Signal Noise PTM Error (s.e.)
All GIC1 3 0.22 0.80 0.220 (0.013)

GIC2 3 0.92 0.39 0.371 (0.018)
GIC3 3 0.22 0.80 0.220 (0.013)
GIC4 3 0.09 0.91 0.190 (0.016)
GIC5 3 0.39 0.67 0.267 (0.016)
GIC6 3 0.02 0.98 0.158 (0.015)

SCAD GIC1 3 0.21 0.80 0.218 (0.013)
GIC2 3 0.93 0.40 0.367 (0.018)
GIC3 3 0.21 0.80 0.218 (0.013)
GIC4 3 0.10 0.90 0.191 (0.016)
GIC5 3 0.39 0.67 0.266 (0.016)
GIC6 3 0.03 0.97 0.163 (0.015)

Table 1: Comparison of the 6 GICs with the all possible search and SCAD solution path when
p= 10 and n= 100.

For simulation with high-dimensional models, we consider p= 500 and p= 3000. The results
of prediction accuracy and variable selectivity for n = 100 and n = 300 with the error distribution
being the Gaussian and t-distributions are presented in Tables 2 and 3, respectively. We use the
SCAD solution path to construct a sequence of submodels. The values are the averages based on
300 repetitions of the simulation.

First of all, the GIC1 (the BIC) is the worst in terms of prediction accuracy for p = 500 and
p= 3000. This is mainly because the GIC1 selects too many noisy variables compared to the other
selection criteria even though it detects signal variables well. The GIC4 is the best in terms of both
the prediction accuracy and variable selectivity for n = 100, and the GIC6 is the best for n = 300.
The GIC2, GIC3 and GIC5 perform reasonably well but tend to select variables more necessary.
By comparing the results of the Gaussian and t distributions, we have found that less signal and
more noisy variables are selected when the tail of the error distribution is heavier. However, the
relative performances of the model selection criteria are similar. That is, the GIC1 is the worst, the
GIC4 and GIC6 are the best and so on. Based on these observations, we conclude that (i) model
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n p Criterion Signal Noise PTM Error (s.e.)
100 500 GIC1 2.99 4.35 0.00 1.369 (0.039)

GIC2 2.98 1.25 0.26 0.706 (0.037)
GIC3 2.96 0.20 0.80 0.351 (0.036)
GIC4 2.95 0.05 0.90 0.289 (0.036)
GIC5 2.98 0.67 0.52 0.509 (0.035)
GIC6 2.81 0.00 0.81 0.620 (0.061)

3000 GIC1 2.99 5.69 0.00 1.667 (0.036)
GIC2 2.94 0.26 0.76 0.444 (0.047)
GIC3 2.92 0.14 0.82 0.431 (0.049)
GIC4 2.89 0.05 0.87 0.445 (0.053)
GIC5 2.95 0.58 0.55 0.569 (0.046)
GIC6 2.63 0.00 0.63 1.092 (0.075)

300 500 GIC1 3 4.89 0.00 0.561 (0.015)
GIC2 3 1.69 0.15 0.280 (0.010)
GIC3 3 0.17 0.84 0.083 (0.005)
GIC4 3 0.03 0.97 0.057 (0.004)
GIC5 3 0.40 0.66 0.119 (0.007)
GIC6 3 0.00 1.00 0.049 (0.002)

3000 GIC1 3 9.80 0.00 1.045 (0.018)
GIC2 3 0.38 0.67 0.136 (0.008)
GIC3 3 0.20 0.83 0.099 (0.007)
GIC4 3 0.02 0.98 0.057 (0.004)
GIC5 3 0.47 0.60 0.154 (0.009)
GIC6 3 0.00 1.00 0.050 (0.002)

Table 2: Comparison of the 6 GICs with Simulation 1 when the error follows the Gaussian distri-
bution.

selection criteria specialized for high-dimensional models are necessary for optimal prediction and
variable selection, (ii) finite sample performances of consistent GICs are quite different, and (iii)
the tail lightness of the error distribution does not affect seriously to relative performances of model
selection criteria.

5.2 Simulation 2

We consider a more challenging case by modifying the model for Simulation 1. We divide the p
components of β∗ into continuous blocks of size 20. We randomly select 5 blocks and assign the
value (3,1.5,0,0,2,0′15)/1.5 to each block. The entries in other blocks are set to be zero.

The results are summarized in Tables 4 and 5. We observe similar phenomena as in Simulation
1: the GIC1 is the worst, the GIC4 and GIC6 are the best and etc. However, when n= 100, the GIC1
is better in terms of prediction accuracy than some other GICs which are selection consistent, which
is an example of the conflict between selection consistency and prediction optimality.
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n p Criterion Signal Noise PTM Error (s.e.)
100 500 GIC1 2.98 4.27 0.09 2.236 (0.702)

GIC2 2.97 1.24 0.51 1.478 (0.696)
GIC3 2.96 0.48 0.81 1.224 (0.696)
GIC4 2.94 0.35 0.86 1.198 (0.695)
GIC5 2.97 0.82 0.68 1.348 (0.696)
GIC6 2.84 0.12 0.83 1.271 (0.692)

3000 GIC1 2.96 5.45 0.01 1.683 (0.106)
GIC2 2.92 0.51 0.74 0.701 (0.094)
GIC3 2.91 0.40 0.78 0.673 (0.088)
GIC4 2.88 0.22 0.82 0.619 (0.086)
GIC5 2.94 0.69 0.68 0.729 (0.093)
GIC6 2.59 0.03 0.59 1.273 (0.086)

300 500 GIC1 3 4.26 0.06 0.501 (0.034)
GIC2 3 1.52 0.38 0.261 (0.022)
GIC3 3 0.28 0.84 0.100 (0.013)
GIC4 3 0.08 0.95 0.063 (0.008)
GIC5 3 0.49 0.75 0.133 (0.016)
GIC6 3 0.00 1.00 0.044 (0.003)

3000 GIC1 3 9.58 0.00 1.057 (0.061)
GIC2 3 0.83 0.71 0.248 (0.043)
GIC3 3 0.59 0.81 0.205 (0.042)
GIC4 3 0.24 0.91 0.131 (0.029)
GIC5 3 0.90 0.68 0.262 (0.044)
GIC6 3 0.02 0.99 0.062 (0.019)

Table 3: Comparison of the 6 GICs with Simulation 1 when the error follows the t-distribution.

5.3 Real Data Analysis

We analyze the data set used in Scheetz et al. (2006), which consists of gene expression levels of
18,975 genes obtained from 120 rats. The main objective of the analysis is to find genes that are
correlated with gene TRIM32 known to cause Bardet-Biedl syndromes. As was done by Huang et al.
(2008), we first select 3000 genes with the largest variance in expression level, and then choose the
top p genes that have the largest absolute correlation with gene TRIM32 among the selected 3000
genes.

We compare prediction accuracies of the 6 GICs with the submodels obtained from the SCAD
solution path. Each data set was divided into two parts, training and test data sets, by randomly
selecting 2/3 observations and 1/3 observations, respectively. We use the training data set to select
the model and estimate the regression coefficients, and use the test data set to evaluate the prediction
performance.

For estimation of the error variance, Zou et al. (2007) used the mean squared error of the full
model when p< n. This approach, however, is not applicable to our data set since p> n.A heuristic
method is to set pmax first, and to select a model among the SCAD solution path whose number of
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n p Criterion Signal Noise PTM Error (s.e.)
100 500 GIC1 14.82 5.11 0.00 3.553 (0.225)

GIC2 14.67 2.39 0.14 3.211 (0.242)
GIC3 14.40 1.47 0.24 3.654 (0.285)
GIC4 14.17 1.16 0.25 4.212 (0.302)
GIC5 14.57 1.86 0.21 3.242 (0.254)
GIC6 13.04 0.72 0.16 7.758 (0.398)

3000 GIC1 12.08 12.19 0.00 20.192 (1.186)
GIC2 11.51 5.78 0.01 19.783 (1.061)
GIC3 11.36 5.34 0.01 20.051 (1.055)
GIC4 11.06 4.37 0.01 20.649 (1.021)
GIC5 11.68 6.62 0.01 19.616 (1.103)
GIC6 10.11 2.47 0.01 22.755 (0.894)

300 500 GIC1 15 4.56 0.00 0.795 (0.015)
GIC2 15 1.63 0.17 0.516 (0.013)
GIC3 15 0.19 0.82 0.311 (0.009)
GIC4 15 0.03 0.97 0.278 (0.007)
GIC5 15 0.39 0.68 0.345 (0.011)
GIC6 15 0.00 1.00 0.270 (0.006)

3000 GIC1 15 9.60 0.00 1.322 (0.020)
GIC2 15 0.32 0.72 0.340 (0.010)
GIC3 15 0.14 0.88 0.300 (0.008)
GIC4 15 0.01 0.99 0.267 (0.006)
GIC5 15 0.40 0.66 0.358 (0.010)
GIC6 15 0.00 1.00 0.264 (0.006)

Table 4: Comparison of the 6 GICs with Simulation 2 when the error follows the Gaussian distri-
bution.

nonzero coefficients is equal to pmax, and to estimate the error variance by the mean squared error
of the selected model. Following the results of Scheetz et al. (2006), Chiang et al. (2006), Huang
et al. (2008), and Kim et al. (2008), we guess that a reasonable model size would be in between 20
and 40. Table 6 compares the 6 GICs with the number of pre-screened genes being p = 500 and
p = 3000, when the error variance is estimated with pmax being 20, 30 and 40, respectively. All
values are the arithmetic means of the results from 100 replicated random partitions. In the table,
‘Nonzero’ denotes the number of nonzero coefficients in the selected model and ‘Error (s.e.)’ is
the prediction error on the test data set and the standard error in the parenthesis obtained on the test
data. For p= 500, the lowest prediction error is achieved by the GIC2 and the GIC3, GIC4 and GIC5
perform reasonably well with pmax = 20. For p = 3000, the lowest prediction error is achieved by
the GIC5 with pmax = 20. So, we choose pmax = 20 for estimation of the error variance.

As argued by Yang (2005), the standard error obtained by random partition could be misleading.
As a supplement, we draw the box plots of the 100 prediction errors of the 6 GICs with pmax = 20
obtained from 100 random partitions in Figure 1. The relative performances of the GICs with the
real data are different from those of the simulation studies in the previous subsections. The GIC2,
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n p Criterion Signal Noise PTM Error (s.e.)
100 500 GIC1 14.65 3.89 0.07 3.974 (0.401)

GIC2 14.55 2.07 0.35 3.686 (0.411)
GIC3 14.40 1.45 0.41 3.870 (0.421)
GIC4 14.17 1.10 0.41 4.378 (0.424)
GIC5 14.53 1.85 0.38 3.649 (0.412)
GIC6 13.00 0.59 0.25 7.848 (0.471)

3000 GIC1 11.99 9.41 0.02 19.768 (1.154)
GIC2 11.53 5.23 0.08 19.806 (1.066)
GIC3 11.47 4.78 0.08 19.641 (1.029)
GIC4 11.19 3.89 0.08 19.968 (0.959)
GIC5 11.61 5.92 0.08 19.96 (1.101)
GIC6 10.35 2.28 0.03 21.96 (0.899)

300 500 GIC1 14.99 4.81 0.05 0.990 (0.098)
GIC2 14.99 2.33 0.32 0.748 (0.098)
GIC3 14.99 0.75 0.78 0.519 (0.094)
GIC4 14.99 0.40 0.89 0.451 (0.090)
GIC5 14.99 1.00 0.66 0.565 (0.094)
GIC6 14.99 0.06 0.98 0.339 (0.053)

3000 GIC1 15 8.18 0.00 1.226 (0.051)
GIC2 15 0.58 0.73 0.420 (0.040)
GIC3 15 0.31 0.86 0.358 (0.037)
GIC4 15 0.12 0.95 0.314 (0.032)
GIC5 15 0.63 0.70 0.430 (0.041)
GIC6 15 0.01 0.99 0.272 (0.015)

Table 5: Comparison of the 6 GICs with Simulation 2 when the error follows the t-distribution.

GIC3 and GIC5 have lower prediction errors than the GIC4 and GIC6 while the formers tend to
select more variables than necessary in the simulation studies. This observation suggests that there
might be many signal genes whose impacts on the response variable are relatively small.

6. Concluding Remarks

The range of consistent model selection criteria is rather large, and it is not clear which one is better
with finite samples. It would be interesting to rewrite the class of GICs as {λn = αn log pn : αn >
0}. The GIC3, GIC5 and GIC6 correspond to αn = 2, αn = log logn and αn = logn, respectively.
When the rue model is expected to be very sparse, it would be better to let αn be rather large (e.g.,
αn = logn), while a smaller αn (e.g., αn = 2 or αn = log logn) would be better when many signal
covariates with small regression coefficients are expected to exist. The relation of the GICs with
larger αn with those with smaller αn would be similar to the relation between the AIC and BIC for
standard fixed dimensional models.
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pmax = 20
p

500 3000
Error (s.e.) Nonzero Error (s.e.) Nonzero

GIC1 0.742 (0.038) 15.91 0.766 (0.036) 18.62
GIC2 0.649 (0.028) 10.95 0.686 (0.035) 3.91
GIC3 0.656 (0.031) 6.99 0.697 (0.035) 3.69
GIC4 0.677 (0.034) 5.57 0.719 (0.037) 2.78
GIC5 0.664 (0.030) 9.76 0.667 (0.032) 4.92
GIC6 0.732 (0.038) 3.03 0.792 (0.039) 1.82

pmax = 30
p

500 3000
Error (s.e.) Nonzero Error (s.e.) Nonzero

GIC1 0.890 (0.035) 27.26 0.868 (0.039) 26.07
GIC2 0.825 (0.038) 21.77 0.698 (0.031) 14.04
GIC3 0.752 (0.029) 17.53 0.696 (0.031) 13.25
GIC4 0.722 (0.029) 15.19 0.691 (0.034) 10.76
GIC5 0.800 (0.030) 20.29 0.729 (0.032) 15.99
GIC6 0.688 (0.030) 11.31 0.683 (0.034) 5.53

pmax = 40
p

500 3000
Error (s.e.) Nonzero Error (s.e.) Nonzero

GIC1 1.040 (0.077) 34.54 0.936 (0.041) 33.80
GIC2 0.916 (0.036) 29.59 0.892 (0.041) 27.27
GIC3 0.859 (0.035) 25.10 0.878 (0.040) 26.37
GIC4 0.846 (0.039) 23.02 0.846 (0.038) 25.00
GIC5 0.890 (0.035) 28.20 0.910 (0.040) 28.60
GIC6 0.763 (0.029) 18.69 0.800 (0.037) 21.02

Table 6: Comparison of the 6 GICs with the gene expression data. The bold face numbers represent
the lowest prediction errors among the 6GICs.

Estimation of σ2 is an open question. We may use the BIC-like criterion by assuming the
Gaussian distribution:

π̂λn = argminπ⊂{1,...,pn} log(Rn(β̂π)/n)+λn|π|.

If Rn(β̂π)/n is bounded above from ∞ and below from 0 in probability (uniformly in π and n),
we could derive similar asymptotic properties for the BIC-like criteria as the GICs. We leave this
problem as future work.
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Figure 1: The boxplot of the prediction errors when (a) p= 500 and (b) p= 3000 with pmax = 20.

For consistency, the smallest eigenvalue of the design matrix of the true model is assumed to be
sufficiently large (i.e., condition A2). However, it is frequently observed for large dimensional data
that some covariates are highly correlated and they affect the output similarly. In this case, selecting
some covariates and ignoring the others, which is done by a standard model selection method, is not
optimal. See Zou and Hastie (2005) for an example. It would be interesting to develop consistent
model selection methods for such cases.
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Appendix A. Proof of Theorem 2

Without loss of generality, we let π∗n = {1, . . . ,qn}. Let β̂∗ = β̂π∗n . Let Ŷπ = Xnβ̂π and Ŷ
∗
n = Xnβ̂π∗n .

We let β∗ = (β(1)∗,β(2)∗), where β(1)∗ ∈ Rqn and β(2)∗ ∈ Rpn−qn . Let Cn = X
′
nXn/n and C

(i, j)
n =

X(i)′
n X( j)

n /n for i, j = 1,2.We need the following two lemmas.

Lemma 8
max
j≤qn

|β̂∗j −β∗j |= op(n−(1−c2)/2).

Proof. Let z j =
√
n(β̂∗j −β∗j). For proving Lemma 8, we will show

max
j≤qn

|z j|= op(nc2/2).
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Write

z= (C(1,1)
n )−1

X(1)′
n εn√
n

=H(1)′εn,

where z = (z1, . . . ,zqn)
′
,εn = (ε1, . . . ,εn)

′ and H(1)′ = (h(1)1 , . . . ,h(1)qn )
′
= (C(1,1)

n )−1X(1)′
n /

√
n. Since

H(1)′H(1) = (C(1,1)
n )−1,A2 of the regularity conditions implies ‖h(1)j ‖22≤ 1/M2 for all j≤ qn.Hence,

E(z j)2k < ∞ for all j ≤ qn since E(εi)2k < ∞. Thus

Pr(|z j|> t) = O(t−2k).

For any η> 0, we can write

Pr(|z j|> ηnc2/2 for some j = 1, . . . ,qn) ≤
qn

∑
j=1
Pr(|z j|> ηnc2/2)

≤
qn

∑
j=1

1
η
n−c2k

=
1
η
qnn−c2k ≤

1
η
n−(c2−c3)k → 0,

which completes the proof. !

Lemma 9
max

qn< j≤pn
|< Yn− Ŷ ∗

n ,X
j
n > |= op(

√

nλnρn).

Proof. Note that

(< Yn− Ŷ ∗
n ,X

j
n >, j = qn+1, . . . , pn)

= X(2)′
n

(

Yn−X
(1)
n β̂∗(1)

)

= X(2)′
n

(

Yn−X
(1)
n
1
n
(C(1,1)

n )−1X(1)′
n Yn

)

= X(2)′
n

(

X(1)
n β∗(1) + εn−X

(1)
n
1
n
(C(1,1)

n )−1X(1)′
n (X(1)

n β∗(1) + εn)

)

= X(2)′
n

(

I−
1
n
X(1)
n (C(1,1)

n )−1X(1)′
n

)

εn.

Hence, we have
< Yn− Ŷ ∗

n ,X
j
n > /

√
n= h(2)

′

j εn for j = qn+1, . . . , pn, (3)

where h(2)j is the j−qn column vector of H(2) and

H(2)′ = C(2,1)
n (C(1,1)

n )−1
1√
n
X(1)′
n −

1√
n
X(2)′
n .

Note that
H(2)′H(2) =

1
n
X(2)′
n

(

I−X(1)
n (X(1)′

n X(1)
n )−1X(1)′

n

)

X(2)
n .
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Since the all eigenvalues of I−X(1)
n (X(1)′

n X(1)
n )−1X(1)′

n are between 0 and 1, we have ‖h(2)j ‖22 ≤M1

for all j = qn+1, . . . , pn. Hence, E(ξ j)2k < ∞, where ξ j =< Yn− Ŷ ∗
n ,X

j
n > /

√
n, and so

Pr (|ξ j|> t) = O(t−2k).

Finally, for any η> 0,

Pr
(

|< Yn− Ŷ ∗
n ,X

j
n > |> η

√

nλnρn for some j = qn+1, . . . , pn
)

= Pr
(

|ξ j|> η
√

λnρn for some j = qn+1, . . . , pn
)

≤
pn

∑
j=qn+1

Pr
(

|ξ j|> η
√

λnρn
)

= (pn−qn)O
(

1
(λnρn)k

)

= O
(

pn
(λnρn)k

)

→ 0,

which completes the proof. !

Proof of Theorem 2. For any π, we can write

Rn(β̂π)+λn|π|σ2−Rn(β̂∗)−λn|π∗n|σ2

=−2∑pn
j=qn+1 β̂π, j < Yn− Ŷ ∗

n ,X j >+(β̂π− β̂∗)
′
(X′

nXn)(β̂π− β̂∗)+λn(|π|− |π∗n|)σ2.

By Condition A3,
(β̂π− β̂∗)

′
(X

′

nXn)(β̂π− β̂∗)≥ ∑
j∈π∪π∗

nρn(β̂π, j− β̂∗j)
2.

Hence, we have for any π ∈M sn ,

Rn(β̂π)+λn|π|σ2−Rn(β̂∗)−λn|π∗n|σ2 ≥ ∑
j∈π∪π∗n

w j,

where

wj =−2β̂π, j < Yn− Ŷ ∗
n ,X

j
n > I( j *∈ π∗n)+nρn(β̂π, j− β̂∗j)

2+λn(I( j ∈ π−π∗n)− I( j ∈ π∗n−π))σ2.

For j ∈ π∗n−π, we have wj = nρnβ̂∗2j −λnσ2. Let

An = {nρnβ̂∗2j −λnσ
2 > 0, j = 1, . . . ,qn}. (4)

Then, Pr(An)→ 1 by Lemma 8 and Conditions A3 and A4.
For j ∈ π−π∗n

w j = −2β̂π, j < Yn− Ŷ ∗
n ,X

j
n >+nρnβ̂2π, j+λnσ2

≥ −< Yn− Ŷ ∗
n ,X

j
n >

2 /(nρn)+λnσ
2.

Let
Bn = {−< Yn− Ŷ ∗

n ,X
j
n >

2 /(nρn)+λnσ
2 > 0, j = qn+1, . . . , pn}. (5)
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Then, Pr(Bn)→ 1 by Lemma 9.
For j ∈ π∩π∗n,

wj = nρn(β̂π, j− β̂∗j)
2 ≥ 0.

To sum up, on An∩Bn,

Rn(β̂π)+λn|π|σ2−Rn(β̂∗)−λn|π∗n|σ2 > 0

for all π *= π∗n. Since Pr(An∩Bn)→ 1, the proof is done. !

Appendix B. Proof of Theorem 3

For given π⊂ {1, . . . , pn}, letMπ be the projection operator onto the space spanned by (X ( j), j ∈ π).
That is,Mπ =Xπ(X

′
πXπ)−1X

′
π provided Xπ is of full rank. Let Xnβ∗n = µn and I be the n×n identity

matrix. Without loss of generality, we assume σ2 = 1.

Lemma 10 There exists η> 0 such that for any π ∈M sn with π∗n ! π,

µ
′

n(I−Mπ)µn ≥ η|π−|nc2−c1 ,

where π− = π∗n−π.
Proof. For given π ∈M sn with π∗n ! π, we have

µ
′

n(I−Mπ)µn
= inf

α∈R|π|
‖Xπ−β∗π− −Xπα‖

2

= inf
α∈R|π|

(β∗
′

π− ,α
′
)(Xπ− ,Xπ)

′
(Xπ− ,Xπ)(β∗

′

π− ,α
′
)
′

≥ n‖β∗π−‖
2ρn

≥ M3M4|π−|nc2−c1 ,

where β∗π− = (β∗j , j ∈ π−) and the last inequality is due to Condition A4. !

Lemma 11 For given π⊂ {1, . . . , pn}, let

Zπ =
µ′
n(I−Mπ)εn

√

µ′
n(I−Mπ)µn

.

Then
max
π∈M sn

|Zπ|= Op(
√

sn log pn).

Proof. Note that Zπ ∼ N(0,1) for all π ∈M sn . Since

Pr(|Zπ|> t)≤C exp(−t2/2) (6)
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for someC > 0, we have

Pr
(

max
π∈M sn

|Zπ|> t
)

≤ ∑
π∈M sn

C exp(−t2/2)

≤ Cpsnn exp(−t2/2).

Hence, if we let t =
√
wsn log pn,

Pr
(

max
π∈M sn

|Zπ|> t
)

≤C exp((−w/2+1)sn log pn)→ 0

as w→ ∞. !

Lemma 12
max
π∈M sn

ε
′

nMπεn = Op(sn log pn).

Proof. For given π ⊂ {1, . . . , pn}, let r(p) be the rank of Xπ. Note that ε
′
nMπεn ∼ χ2(r(π)) where

χ2(k) is the chi-square distribution with degree of freedom k. It is easy to see that (see, for example,
Yang 1999)

Pr(ε
′

nMπεn ≥ t)≤ exp
(

−
t− r(π)
2

)(

t
r(π)

)r(π)/2
. (7)

Hence

Pr
(

max
π∈M sn

ε
′

nMπεn ≥ t
)

≤
sn

∑
k=1

(

pn
k

)

Pr(Wk ≤ t),

whereWk ∼ χ2(k). Since Pr(Wk ≥ t)≤ Pr(Wsn ≥ t), we have

Pr
(

max
π∈M sn

e
′

nMπen ≥ t
)

≤ Pr(Wsn ≥ t)
sn

∑
k=1

(

pn
k

)

≤ Pr(Wsn ≥ t)psnn . (8)

The proof is done by applying (7) to (8). !

Proof of Theorem 3. First, we will show that Pr(π∗n ! π̂λn) → 0. For given π ⊂ {1, . . . , pn}, let
Rn(π) = Rn(β̂π). Note that Rn(π) = Y ′

n(I−Mπ)Yn. For π" π∗n, Lemmas 10, 11 and 12 imply

Rn(π)−Rn(π∗n)+λn(|π|− |π∗n|)σ2

= µ
′

n(I−Mπ)µn+2µ
′

n(I−Mπ)εn+ ε
′

n(Mπ∗ −Mπ)εn+λn(|π|− |π∗n|)σ2

≥ η|π−|nc2−c1 −2
√

η|π−|nc2−c1Op(
√

sn log pn)−Op(sn log pn)− |π−|λn,

where π− = π∗n−π. Since sn log pn ≤ o(nc2−c1) and λn = o(nc2−c1), the proof is done.
It remains to show that the probability of

inf
π∈M sn ,π#π∗n

Rn(π)−Rn(π∗n)+λn(|π|− |π∗n|)σ2 > 0 (9)
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converges to 1. By Theorem 1 of Zhang and Shen (2010), the probability of (9) is larger than

2−
(

1+ e1/2 exp
(

−
λn− logλn

2

))pn−qn
,

which converges to 1 when 2log pn−λn+ logλn →−∞. The equivalent condition with 2 log pn−
λn+ logλn →−∞ is λn−2log pn− log log pn → ∞. !

Appendix C. Proof of Theorem 4

By Theorem 4 of Kim and Kwon (2012), the solution path of the SCAD or minimax concave
penalty include the true model with probability converging to 1. Since condition A3’ is stronger
than condition A3, the GICλn with λn = o(nc2−c1) is consistent, and so is with the solution path of
the SCAD or minimax concave penalty.

Appendix D. Proof of Theorem 7

Let Ãn and B̃n be the sets defined in (4) and (5) except that σ2 is replaced by σ̂2. It suffices to show
that Pr(Ãn∩ B̃n)→ 1. It is not difficult to prove Pr(Ãn)→ 1 by Lemma 8 and (2).

For B̃n, since εi ∼ N(0,σ2), (3) implies

< Yn− Ŷ ∗
n ,X

j
n > /

√
n∼ N(0,σ2j)

where σ2j ≤ σ2M1. By (6), we have

Pr(B̃cn) ≤ Pr(< Yn− Ŷ ∗
n ,X

j
n >

2> nρnλnσ̂2 for some j = qn+1, . . . , pn)
≤ Cpn exp(−ρnrin fλn/2M1).

Hence, as long as 2M1 log pn/(ρnrin f )−λn →−∞, Pr(B̃cn)→ 0 and the proof is done. !
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Abstract
We describe an R package named huge which provides easy-to-use functions for estimating high
dimensional undirected graphs from data. This package implements recent results in the literature,
including Friedman et al. (2007), Liu et al. (2009, 2012) and Liu et al. (2010). Compared with the
existing graph estimation package glasso, the huge package provides extra features: (1) instead
of using Fortan, it is written in C, which makes the code more portable and easier to modify; (2)
besides fitting Gaussian graphical models, it also provides functions for fitting high dimensional
semiparametric Gaussian copula models; (3) more functions like data-dependent model selection,
data generation and graph visualization; (4) a minor convergence problem of the graphical lasso
algorithm is corrected; (5) the package allows the user to apply both lossless and lossy screening
rules to scale up large-scale problems, making a tradeoff between computational and statistical
efficiency.
Keywords: high-dimensional undirected graph estimation, glasso, huge, semiparametric graph
estimation, data-dependent model selection, lossless screening, lossy screening

1. Overview

Undirected graphs is a natural approach to describe the conditional independence among many
variables. Each node of the graph represents a single variable and no edge between two variables
implies that they are conditional independent given all other variables. In the past decade, signif-
icant progress has been made on designing efficient algorithms to learn undirected graphs from
high-dimensional observational data sets. Most of these methods are based on either the penalized
maximum-likelihood estimation (Friedman et al., 2007) or penalized regression methods (Mein-
shausen and Bühlmann, 2006). Existing packages include glasso, Covpath and CLIME. In particu-

∗. Also in the Department of Biostatistics.
†. Also in the Department of Machine Learning.

c©2012 Zhao, Liu, Roeder, Lafferty and Wasserman.
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lar, the glasso package has been widely adopted by statisticians and computer scientists due to its
friendly user-inference and efficiency.

In this paper1 we describe a newly developed R package named huge (High-dimensional Undi-
rected Graph Estimation) coded in C. The package includes a wide range of functional modules and
addresses some drawbacks of the graphical lasso algorithm. To gain more scalability, the package
supports two modes of screening, lossless (Witten et al., 2011) and lossy screening. When using
lossy screening, the user can select the desired screening level to scale up for high-dimensional
problems, but this introduces some estimation bias.

2. Software Design and Implementation

The package huge aims to provide a general framework for high-dimensional undirected graph
estimation. The package includes Six functional modules (M1-M6) facilitate a flexible pipeline for
analysis (Figure 1).

M1. Data Generator: The function huge.generator() can simulate multivariate Gaussian
data with different undirected graphs, including hub, cluster, band, scale-free, and Erdös-Rényi
random graphs. The sparsity level of the obtained graph and signal-to-noise ratio can also be set up
by users.

M2. Semiparametric Transformation: The function huge.npn() implements the nonparanor-
mal method (Liu et al., 2009, 2012) for estimating a semiparametric Gaussian copula model.The
nonparanormal family extends the Gaussian distribution by marginally transforming the variables.
Computationally, the nonparanormal transformation only requires one pass through the data matrix.

M3. Graph Screening: The scr argument in the main function huge() controls the use of large-
scale correlation screening before graph estimation. The function supports the lossless screening
(Witten et al., 2011) and the lossy screening. Such screening procedures can greatly reduce the
computational cost and achieve equal or even better estimation by reducing the variance at the
expense of increased bias.

Figure 1: The graph estimation pipeline.

M4. Graph Estimation: Similar to the glasso package, the method argument in the huge()
function supports two estimation methods: (i) the neighborhood pursuit algorithm (Meinshausen
and Bühlmann, 2006) and (ii) the graphical lasso algorithm (Friedman et al., 2007). We apply
the coordinate descent with active set and covariance update, as well as other tricks suggested in
Friedman et al. (2010). We modified the warm start trick to address the potential divergence problem
of the graphical lasso algorithm (Mazumder and Hastie, 2011). The code is also memory-optimized
using the sparse matrix data structure when estimating and storing full regularization paths for large

1. This paper is only a summary of the package huge. For more details please refer to the online vignette.
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data sets. we also provide a complementary graph estimation method based on thresholding the
sample correlation matrix, which is computationally efficient and widely applied in biomedical
research.

M5. Model Selection: The function huge.select() provides two regularization parameter
selection methods: the stability approach for regularization selection (StARS) (Liu et al., 2010);
and rotation information criterion (RIC). We also provide a likelihood-based extended Bayesian
information criterion.

M6. Graph Visualization: The plotting functions huge.plot() and plot() provide visualiza-
tions of the simulated data sets, estimated graphs and paths. The implementation is based on the
igraph package.

3. User Interface by Example

We illustrate the user interface by analyzing a stock market data which we contribute to the huge
package. We acquired closing prices from all stocks in the S&P 500 for all the days that the market
was open between Jan 1, 2003 and Jan 1, 2008. This gave us 1258 samples for the 452 stocks that
remained in the S&P 500 during the entire time period.

> library(huge)
> data(stockdata) # Load the data
> x = log(stockdata$data[2:1258,]/stockdata$data[1:1257,]) # Preprocessing
> x.npn = huge.npn(x, npn.func="truncation") # Nonparanormal
> out.npn = huge(x.npn,method = "glasso", nlambda=40,lambda.min.ratio = 0.4)

Here the data have been transformed by calculating the log-ratio of the price at time t to price at
time t−1. The nonparanormal transformation is applied to the data, and a graph is estimated using
the graphical lasso (the default is the Meinshausen-Bühlmann estimator). The program automati-
cally sets up a sequence of 40 regularization parameters and estimates the graph path. The lossless
screening method is applied by default.

4. Performance Benchmark

To compare huge with glasso (ver 1.4), we consider four scenarios with varying sample sizes n
and dimensionality d, as shown in Table 1. We simulate the data from a normal distribution with
the Erdös-Rényi random graph structure (sparsity 1%). Timings (in seconds) are computed over
10 values of the corresponding regularization parameter, and the range of regularization parameters
is chosen so that each method produced approximately the same number of non-zero estimates.
The convergence threshold of both glasso and huge is chosen to be 10−4. For these simulations,
CLIME (ver 1.0) and Covpath (ver 0.2) were unable to obtain timing results due to their numerical
instability.

For the neighborhood pursuit, we can see that huge achieves the best performance. In particular,
when the lossy screening rule is applied, huge automatically reduces each individual lasso problem
from the original dimension d to the sample size n, therefore a better efficiency can be achieved
when d is much larger than n. Based on our experiments, the speed up due to the lossy screening
rule can be up to more than 500%.
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Method d = 1000 d = 2000 d = 3000 d = 4000
n= 100 n= 150 n= 200 n= 300

huge-neighborhood pursuit (lossy) 3.246 (0.147) 13.47 (0.665) 35.87 (0.97) 247.2 (14.26)
huge-neighborhood pursuit 4.240 (0.288) 42.41 (2.338) 147.9 (4.102) 357.8 (28.00)
glasso-neighborhood pursuit 37.23 (0.516) 296.9 (4.533) 850.7 (8.180) 3095 (150.5)
huge-graphical lasso (lossy) 39.61 (2.391) 289.9 (17.54) 905.6 (25.84) 2370 (168.9)
huge-graphical lasso (lossless) 47.86 (3.583) 328.2 (30.09) 1276 (43.61) 2758 (326.2)
glasso-graphical lasso 131.9 (5.816) 1054 (47.52) 3463 (107.6) 8041 (316.9)

Table 1: Experimental Results

Unlike the neighborhood pursuit, the graphical lasso estimates the inverse covariance matrix.
The screening rule (Witten et al., 2011) greatly reduces the computation required by the graphical
lasso algorithm and gains an extra performance boost.

5. Summary and Acknowledgement

We developed a new package named huge for high dimensional undirected graph estimation. The
package is complementary to the existing glasso package by providing extra features and func-
tional modules. We plan to maintain and support this package in the future. Tuo Zhao is partially
supported by the Google Summer of Code program 2011. Han Liu, John Lafferty, and LarryWasser-
man are supported by NSF grant IIS-1116730 and AFOSR contract FA9550-09-1-0373. Kathryn
Roeder is supported by National Institute of Mental Health grant MH057881.
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Abstract
Random forests are a scheme proposed by Leo Breiman in the 2000’s for building a predictor
ensemble with a set of decision trees that grow in randomly selected subspaces of data. Despite
growing interest and practical use, there has been little exploration of the statistical properties of
random forests, and little is known about the mathematical forces driving the algorithm. In this
paper, we offer an in-depth analysis of a random forests model suggested by Breiman (2004),
which is very close to the original algorithm. We show in particular that the procedure is consistent
and adapts to sparsity, in the sense that its rate of convergence depends only on the number of strong
features and not on how many noise variables are present.
Keywords: random forests, randomization, sparsity, dimension reduction, consistency, rate of
convergence

1. Introduction

In a series of papers and technical reports, Breiman (1996, 2000, 2001, 2004) demonstrated that
substantial gains in classification and regression accuracy can be achieved by using ensembles of
trees, where each tree in the ensemble is grown in accordance with a random parameter. Final
predictions are obtained by aggregating over the ensemble. As the base constituents of the ensemble
are tree-structured predictors, and since each of these trees is constructed using an injection of
randomness, these procedures are called “random forests.”

1.1 Random Forests

Breiman’s ideas were decisively influenced by the early work of Amit and Geman (1997) on geomet-
ric feature selection, the random subspace method of Ho (1998) and the random split selection ap-
proach of Dietterich (2000). As highlighted by various empirical studies (see for instance Breiman,
2001; Svetnik et al., 2003; Diaz-Uriarte and de Andrés, 2006; Genuer et al., 2008, 2010), random
forests have emerged as serious competitors to state-of-the-art methods such as boosting (Freund
and Shapire, 1996) and support vector machines (Shawe-Taylor and Cristianini, 2004). They are
fast and easy to implement, produce highly accurate predictions and can handle a very large number
of input variables without overfitting. In fact, they are considered to be one of the most accurate
general-purpose learning techniques available. The survey by Genuer et al. (2008) may provide the
reader with practical guidelines and a good starting point for understanding the method.

∗. Also at DMA, Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France.
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In Breiman’s approach, each tree in the collection is formed by first selecting at random, at each
node, a small group of input coordinates (also called features or variables hereafter) to split on and,
secondly, by calculating the best split based on these features in the training set. The tree is grown
using CART methodology (Breiman et al., 1984) to maximum size, without pruning. This subspace
randomization scheme is blended with bagging (Breiman, 1996; Bühlmann and Yu, 2002; Buja and
Stuetzle, 2006; Biau et al., 2010) to resample, with replacement, the training data set each time a
new individual tree is grown.

Although the mechanism appears simple, it involves many different driving forces which make
it difficult to analyse. In fact, its mathematical properties remain to date largely unknown and, up
to now, most theoretical studies have concentrated on isolated parts or stylized versions of the algo-
rithm. Interesting attempts in this direction are by Lin and Jeon (2006), who establish a connection
between random forests and adaptive nearest neighbor methods (see also Biau and Devroye, 2010,
for further results); Meinshausen (2006), who studies the consistency of random forests in the con-
text of conditional quantile prediction; and Biau et al. (2008), who offer consistency theorems for
various simplified versions of random forests and other randomized ensemble predictors. Neverthe-
less, the statistical mechanism of “true” random forests is not yet fully understood and is still under
active investigation.

In the present paper, we go one step further into random forests by working out and solidifying
the properties of a model suggested by Breiman (2004). Though this model is still simple compared
to the “true” algorithm, it is nevertheless closer to reality than any other scheme we are aware of.
The short draft of Breiman (2004) is essentially based on intuition and mathematical heuristics,
some of them are questionable and make the document difficult to read and understand. However,
the ideas presented by Breiman are worth clarifying and developing, and they will serve as a starting
point for our study.

Before we formalize the model, some definitions are in order. Throughout the document, we
suppose that we are given a training sampleDn = {(X1,Y1), . . . ,(Xn,Yn)} of i.i.d. [0,1]d×R-valued
random variables (d ≥ 2) with the same distribution as an independent generic pair (X,Y ) satisfying
EY 2 < ∞. The space [0,1]d is equipped with the standard Euclidean metric. For fixed x ∈ [0,1]d ,
our goal is to estimate the regression function r(x) = E[Y |X= x] using the data Dn. In this respect,
we say that a regression function estimate rn is consistent if E[rn(X)− r(X)]2 → 0 as n→ ∞. The
main message of this paper is that Breiman’s procedure is consistent and adapts to sparsity, in the
sense that its rate of convergence depends only on the number of strong features and not on how
many noise variables are present.

1.2 The Model

Formally, a random forest is a predictor consisting of a collection of randomized base regression
trees {rn(x,Θm,Dn),m≥ 1}, where Θ1,Θ2, . . . are i.i.d. outputs of a randomizing variable Θ. These
random trees are combined to form the aggregated regression estimate

r̄n(X,Dn) = EΘ [rn(X,Θ,Dn)] ,

where EΘ denotes expectation with respect to the random parameter, conditionally onX and the data
set Dn. In the following, to lighten notation a little, we will omit the dependency of the estimates
in the sample, and write for example r̄n(X) instead of r̄n(X,Dn). Note that, in practice, the above
expectation is evaluated by Monte Carlo, that is, by generating M (usually large) random trees,
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and taking the average of the individual outcomes (this procedure is justified by the law of large
numbers, see the appendix in Breiman, 2001). The randomizing variable Θ is used to determine
how the successive cuts are performed when building the individual trees, such as selection of the
coordinate to split and position of the split.

In the model we have in mind, the variableΘ is assumed to be independent of X and the training
sampleDn. This excludes in particular any bootstrapping or resampling step in the training set. This
also rules out any data-dependent strategy to build the trees, such as searching for optimal splits by
optimizing some criterion on the actual observations. However, we allow Θ to be based on a second
sample, independent of, but distributed as, Dn. This important issue will be thoroughly discussed
in Section 3.

With these warnings in mind, we will assume that each individual random tree is constructed in
the following way. All nodes of the tree are associated with rectangular cells such that at each step of
the construction of the tree, the collection of cells associated with the leaves of the tree (i.e., external
nodes) forms a partition of [0,1]d . The root of the tree is [0,1]d itself. The following procedure is
then repeated (log2 kn) times, where log2 is the base-2 logarithm, (.) the ceiling function and kn ≥ 2
a deterministic parameter, fixed beforehand by the user, and possibly depending on n.

1. At each node, a coordinate of X = (X (1), . . . ,X (d)) is selected, with the j-th feature having a
probability pn j ∈ (0,1) of being selected.

2. At each node, once the coordinate is selected, the split is at the midpoint of the chosen side.

Each randomized tree rn(X,Θ) outputs the average over all Yi for which the corresponding
vectors Xi fall in the same cell of the random partition as X. In other words, letting An(X,Θ) be the
rectangular cell of the random partition containing X,

rn(X,Θ) =
∑n
i=1Yi1[Xi∈An(X,Θ)]
∑n
i=1 1[Xi∈An(X,Θ)]

1En(X,Θ),

where the event En(X,Θ) is defined by

En(X,Θ) =

[

n

∑
i=1
1[Xi∈An(X,Θ)] *= 0

]

.

(Thus, by convention, the estimate is set to 0 on empty cells.) Taking finally expectation with respect
to the parameter Θ, the random forests regression estimate takes the form

r̄n(X) = EΘ [rn(X,Θ)] = EΘ

[

∑n
i=1Yi1[Xi∈An(X,Θ)]
∑n
i=1 1[Xi∈An(X,Θ)]

1En(X,Θ)
]

.

Let us now make some general remarks about this random forests model. First of all, we note
that, by construction, each individual tree has exactly 2(log2 kn) (≈ kn) terminal nodes, and each leaf
has Lebesgue measure 2−(log2 kn) (≈ 1/kn). Thus, if X has uniform distribution on [0,1]d , there will
be on average about n/kn observations per terminal node. In particular, the choice kn = n induces
a very small number of cases in the final leaves, in accordance with the idea that the single trees
should not be pruned.

Next, we see that, during the construction of the tree, at each node, each candidate coordinate
X ( j) may be chosen with probability pn j ∈ (0,1). This implies in particular ∑d

j=1 pn j = 1. Although
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we do not precise for the moment the way these probabilities are generated, we stress that they may
be induced by a second sample. This includes the situation where, at each node, randomness is
introduced by selecting at random (with or without replacement) a small group of input features to
split on, and choosing to cut the cell along the coordinate—inside this group—which most decreases
some empirical criterion evaluated on the extra sample. This scheme is close to what the original
random forests algorithm does, the essential difference being that the latter algorithm uses the actual
data set to calculate the best splits. This point will be properly discussed in Section 3.

Finally, the requirement that the splits are always achieved at the middle of the cell sides is
mainly technical, and it could eventually be replaced by a more involved random mechanism—
based on the second sample—at the price of a much more complicated analysis.

The document is organized as follows. In Section 2, we prove that the random forests regression
estimate r̄n is consistent and discuss its rate of convergence. As a striking result, we show under a
sparsity framework that the rate of convergence depends only on the number of active (or strong)
variables and not on the dimension of the ambient space. This feature is particularly desirable in
high-dimensional regression, when the number of variables can be much larger than the sample
size, and may explain why random forests are able to handle a very large number of input variables
without overfitting. Section 3 is devoted to a discussion, and a small simulation study is presented
in Section 4. For the sake of clarity, proofs are postponed to Section 5.

2. Asymptotic Analysis

Throughout the document, we denote by Nn(X,Θ) the number of data points falling in the same cell
as X, that is,

Nn(X,Θ) =
n

∑
i=1
1[Xi∈An(X,Θ)].

We start the analysis with the following simple theorem, which shows that the random forests esti-
mate r̄n is consistent.

Theorem 1 Assume that the distribution of X has support on [0,1]d. Then the random forests
estimate r̄n is consistent whenever pn j logkn → ∞ for all j = 1, . . . ,d and kn/n→ 0 as n→ ∞.

Theorem 1 mainly serves as an illustration of how the consistency problem of random forests
predictors may be attacked. It encompasses, in particular, the situation where, at each node, the
coordinate to split is chosen uniformly at random over the d candidates. In this “purely random”
model, pn j = 1/d, independently of n and j, and consistency is ensured as long as kn → ∞ and
kn/n→ 0. This is however a radically simplified version of the random forests used in practice,
which does not explain the good performance of the algorithm. To achieve this goal, a more in-
depth analysis is needed.

There is empirical evidence that many signals in high-dimensional spaces admit a sparse rep-
resentation. As an example, wavelet coefficients of images often exhibit exponential decay, and a
relatively small subset of all wavelet coefficients allows for a good approximation of the original
image. Such signals have few non-zero coefficients and can therefore be described as sparse in
the signal domain (see for instance Bruckstein et al., 2009). Similarly, recent advances in high-
throughput technologies—such as array comparative genomic hybridization—indicate that, despite
the huge dimensionality of problems, only a small number of genes may play a role in determining
the outcome and be required to create good predictors (van’t Veer et al., 2002, for instance). Sparse
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estimation is playing an increasingly important role in the statistics and machine learning commu-
nities, and several methods have recently been developed in both fields, which rely upon the notion
of sparsity (e.g., penalty methods like the Lasso and Dantzig selector, see Tibshirani, 1996; Candès
and Tao, 2005; Bunea et al., 2007; Bickel et al., 2009, and the references therein).

Following this idea, we will assume in our setting that the target regression function r(X) =
E[Y |X], which is initially a function of X = (X (1), . . . ,X (d)), depends in fact only on a nonempty
subset S (for S trong) of the d features. In other words, letting XS = (Xj : j ∈ S) and S = Card S ,
we have

r(X) = E[Y |XS ]

or equivalently, for any x ∈ [0,1]d ,

r(x) = r!(xS ) µ-a.s., (1)

where µ is the distribution of X and r! : [0,1]S → R is the section of r corresponding to S . To
avoid trivialities, we will assume throughout that S is nonempty, with S ≥ 2. The variables in the
set W = {1, . . . ,d}− S (for W eak) have thus no influence on the response and could be safely
removed. In the dimension reduction scenario we have in mind, the ambient dimension d can be
very large, much larger than the sample size n, but we believe that the representation is sparse,
that is, that very few coordinates of r are non-zero, with indices corresponding to the set S . Note
however that representation (1) does not forbid the somehow undesirable case where S = d. As
such, the value S characterizes the sparsity of the model: The smaller S, the sparser r.

Within this sparsity framework, it is intuitively clear that the coordinate-sampling probabilities
should ideally satisfy the constraints pn j = 1/S for j ∈ S (and, consequently, pn j = 0 otherwise).
However, this is a too strong requirement, which has no chance to be satisfied in practice, except
maybe in some special situations where we know beforehand which variables are important and
which are not. Thus, to stick to reality, we will rather require in the following that pn j = (1/S)(1+
ξn j) for j ∈ S (and pn j = ξn j otherwise), where pn j ∈ (0,1) and each ξn j tends to 0 as n tends
to infinity. We will see in Section 3 how to design a randomization mechanism to obtain such
probabilities, on the basis of a second sample independent of the training set Dn. At this point,
it is important to note that the dimensions d and S are held constant throughout the document. In
particular, these dimensions are not functions of the sample size n, as it may be the case in other
asymptotic studies.

We have now enough material for a deeper understanding of the random forests algorithm. To
lighten notation a little, we will write

Wni(X,Θ) =
1[Xi∈An(X,Θ)]
Nn(X,Θ)

1En(X,Θ),

so that the estimate takes the form

r̄n(X) =
n

∑
i=1

EΘ [Wni(X,Θ)]Yi.

Let us start with the variance/bias decomposition

E [r̄n(X)− r(X)]2 = E [r̄n(X)− r̃n(X)]2+E [r̃n(X)− r(X)]2 , (2)
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where we set
r̃n(X) =

n

∑
i=1

EΘ [Wni(X,Θ)]r(Xi).

The two terms of (2) will be examined separately, in Proposition 2 and Proposition 4, respectively.
Throughout, the symbol V denotes variance.

Proposition 2 Assume that X is uniformly distributed on [0,1]d and, for all x ∈ Rd,

σ2(x) = V[Y |X= x]≤ σ2

for some positive constant σ2. Then, if pn j = (1/S)(1+ξn j) for j ∈ S ,

E [r̄n(X)− r̃n(X)]2 ≤Cσ2
(

S2

S−1

)S/2d

(1+ξn)
kn

n(logkn)S/2d
,

where

C =
288
π

(

π log2
16

)S/2d
.

The sequence (ξn) depends on the sequences {(ξn j) : j ∈ S} only and tends to 0 as n tends to infinity.

Remark 3 A close inspection of the end of the proof of Proposition 2 reveals that

1+ξn =∏
j∈S

[

(1+ξn j)
−1
(

1−
ξn j
S−1

)−1
]1/2d

.

In particular, if a< pn j < b for some constants a,b ∈ (0,1), then

1+ξn ≤

(

S−1
S2a(1−b)

)S/2d
.

The main message of Proposition 2 is that the variance of the forests estimate is
O(kn/(n(logkn)S/2d)). This result is interesting by itself since it shows the effect of aggregation
on the variance of the forest. To understand this remark, recall that individual (random or not) trees
are proved to be consistent by letting the number of cases in each terminal node become large (see
Devroye et al., 1996, Chapter 20), with a typical variance of the order kn/n. Thus, for such trees, the
choice kn = n (i.e., about one observation on average in each terminal node) is clearly not suitable
and leads to serious overfitting and variance explosion. On the other hand, the variance of the forest
is of the order kn/(n(logkn)S/2d). Therefore, letting kn= n, the variance is of the order 1/(logn)S/2d ,
a quantity which still goes to 0 as n grows! Proof of Proposition 2 reveals that this log term is a
by-product of the Θ-averaging process, which appears by taking into consideration the correlation
between trees. We believe that it provides an interesting perspective on why random forests are still
able to do a good job, despite the fact that individual trees are not pruned.

Note finally that the requirement that X is uniformly distributed on the hypercube could be
safely replaced by the assumption that X has a density with respect to the Lebesgue measure on
[0,1]d and the density is bounded from above and from below. The case where the density of X is
not bounded from below necessitates a specific analysis, which we believe is beyond the scope of
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the present paper. We refer the reader to Biau and Devroye (2010) for results in this direction (see
also Remark 10 in Section 5).

Let us now turn to the analysis of the bias term in equality (2). Recall that r! denotes the section
of r corresponding to S .

Proposition 4 Assume that X is uniformly distributed on [0,1]d and r! is L-Lipschitz on [0,1]S.
Then, if pn j = (1/S)(1+ξn j) for j ∈ S ,

E [r̃n(X)− r(X)]2 ≤
2SL2

k
0.75
S log2 (1+γn)
n

+

[

sup
x∈[0,1]d

r2(x)

]

e−n/2kn ,

where γn =min j∈S ξn j tends to 0 as n tends to infinity.

This result essentially shows that the rate at which the bias decreases to 0 depends on the number
of strong variables, not on d. In particular, the quantity kn−(0.75/(S log2))(1+γn) should be compared
with the ordinary partitioning estimate bias, which is of the order kn−2/d under the smoothness
conditions of Proposition 4 (see for instance Györfi et al., 2002). In this respect, it is easy to see that
kn−(0.75/(S log2))(1+γn) = o(kn−2/d) as soon as S ≤ -0.54d. (-.. is the integer part function). In other
words, when the number of active variables is less than (roughly) half of the ambient dimension, the
bias of the random forests regression estimate decreases to 0 much faster than the usual rate. The
restriction S ≤ -0.54d. is not severe, since in all practical situations we have in mind, d is usually
very large with respect to S (this is, for instance, typically the case in modern genome biology
problems, where d may be of the order of billion, and in any case much larger than the actual number
of active features). Note at last that, contrary to Proposition 2, the term e−n/2kn prevents the extreme
choice kn= n (about one observation on average in each terminal node). Indeed, an inspection of the
proof of Proposition 4 reveals that this term accounts for the probability that Nn(X,Θ) is precisely
0, that is, An(X,Θ) is empty.

Recalling the elementary inequality ze−nz ≤ e−1/n for z∈ [0,1], we may finally join Proposition
2 and Proposition 4 and state our main theorem.

Theorem 5 Assume that X is uniformly distributed on [0,1]d, r! is L-Lipschitz on [0,1]S and, for
all x ∈ Rd,

σ2(x) = V[Y |X= x]≤ σ2

for some positive constant σ2. Then, if pn j = (1/S)(1+ ξn j) for j ∈ S , letting γn = min j∈S ξn j, we
have

E [r̄n(X)− r(X)]2 ≤ Ξn
kn
n
+

2SL2

k
0.75
S log2 (1+γn)
n

,

where

Ξn =Cσ2
(

S2

S−1

)S/2d

(1+ξn)+2e−1
[

sup
x∈[0,1]d

r2(x)

]

and

C =
288
π

(

π log2
16

)S/2d
.

The sequence (ξn) depends on the sequences {(ξn j) : j ∈ S} only and tends to 0 as n tends to infinity.
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As we will see in Section 3, it may be safely assumed that the randomization process allows for
ξn j logn→ 0 as n→ ∞, for all j ∈ S . Thus, under this condition, Theorem 5 shows that with the
optimal choice

kn ∝ n1/(1+
0.75
S log2 ),

we get
E [r̄n(X)− r(X)]2 = O

(

n
−0.75

S log2+0.75
)

.

This result can be made more precise. Denote by FS the class of (L,σ2)-smooth distributions (X,Y )
such that X has uniform distribution on [0,1]d , the regression function r! is Lipschitz with constant
L on [0,1]S and, for all x ∈ Rd , σ2(x) = V[Y |X= x]≤ σ2.

Corollary 6 Let

Ξ=Cσ2
(

S2

S−1

)S/2d

+2e−1
[

sup
x∈[0,1]d

r2(x)

]

and

C =
288
π

(

π log2
16

)S/2d
.

Then, if pn j = (1/S)(1+ξn j) for j ∈ S , with ξn j logn→ 0 as n→ ∞, for the choice

kn ∝
(

L2

Ξ

)1/(1+ 0.75
S log2 )

n1/(1+
0.75
S log2 ),

we have

limsup
n→∞

sup
(X,Y )∈FS

E [r̄n(X)− r(X)]2
(

ΞL
2S log2
0.75

)
0.75

S log2+0.75 n
−0.75

S log2+0.75

≤ Λ,

where Λ is a positive constant independent of r, L and σ2.

This result reveals the fact that the L2-rate of convergence of r̄n(X) to r(X) depends only on the
number S of strong variables, and not on the ambient dimension d. The main message of Corollary 6
is that if we are able to properly tune the probability sequences (pn j)n≥1 and make them sufficiently
fast to track the informative features, then the rate of convergence of the random forests estimate
will be of the order n

−0.75
S log2+0.75 . This rate is strictly faster than the usual rate n−2/(d+2) as soon as

S ≤ -0.54d.. To understand this point, just recall that the rate n−2/(d+2) is minimax optimal for the
class Fd (see, for example Ibragimov and Khasminskii, 1980, 1981, 1982), seen as a collection of
regression functions over [0,1]d , not [0,1]S. However, in our setting, the intrinsic dimension of the
regression problem is S, not d, and the random forests estimate cleverly adapts to the sparsity of the
problem. As an illustration, Figure 1 shows the plot of the function S /→ 0.75/(S log2+0.75) for S
ranging from 2 to d = 100.

It is noteworthy that the rate of convergence of the ξn j to 0 (and, consequently, the rate at which
the probabilities pn j approach 1/S for j ∈ S ) will eventually depend on the ambient dimension d
through the ratio S/d. The same is true for the Lipschitz constant L and the factor supx∈[0,1]d r2(x)
which both appear in Corollary 6. To figure out this remark, remember first that the support of r is
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Figure 1: Solid line: Plot of the function S /→ 0.75/(S log2+0.75) for S ranging from 2 to d = 100.
Dotted line: Plot of the minimax rate power S /→ 2/(S+ 2). The horizontal line shows
the value of the d-dimensional rate power 2/(d+2)≈ 0.0196.

contained in RS, so that the later supremum (respectively, the Lipschitz constant) is in fact a supre-
mum (respectively, a Lipschitz constant) over RS, not over Rd . Next, denote by Cp(s) the collection
of functions η : [0,1]p → [0,1] for which each derivative of order s satisfies a Lipschitz condition.
It is well known that the ε-entropy log2(Nε) of Cp(s) is Φ(ε−p/(s+1)) as ε ↓ 0 (Kolmogorov and
Tihomirov, 1961), where an = Φ(bn) means that an = O(bn) and bn = O(an). Here we have an
interesting interpretation of the dimension reduction phenomenon: Working with Lipschitz func-
tions on RS (that is, s = 0) is roughly equivalent to working with functions on Rd for which all
[(d/S)− 1]-th order derivatives are Lipschitz! For example, if S = 1 and d = 25, (d/S)− 1 = 24
and, as there are 2524 such partial derivatives in R25, we note immediately the potential benefit of
recovering the “true” dimension S.

Remark 7 The reduced-dimensional rate n
−0.75

S log2+0.75 is strictly larger than the S-dimensional optimal
rate n−2/(S+2), which is also shown in Figure 1 for S ranging from 2 to 100. We do not know whether
the latter rate can be achieved by the algorithm.

Remark 8 The optimal parameter kn of Corollary 6 depends on the unknown distribution of (X,Y ),
especially on the smoothness of the regression function and the effective dimension S. To correct this
situation, adaptive (i.e., data-dependent) choices of kn, such as data-splitting or cross-validation,
should preserve the rate of convergence of the estimate. Another route we may follow is to analyse
the effect of bootstrapping the sample before growing the individual trees (i.e., bagging). It is our
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belief that this procedure should also preserve the rate of convergence, even for overfitted trees
(kn ≈ n), in the spirit of Biau et al. (2010). However, such a study is beyond the scope of the present
paper.

Remark 9 For further references, it is interesting to note that Proposition 2 (variance term) is a
consequence of aggregation, whereas Proposition 4 (bias term) is a consequence of randomization.

It is also stimulating to keep in mind the following analysis, which has been suggested to us by
a referee. Suppose, to simplify, that Y = r(X) (no-noise regression) and that ∑n

i=1Wni(X,Θ) = 1 a.s.
In this case, the variance term is 0 and we have

r̄n(X) = r̃n(X) =
n

∑
i=1

EΘ [Wni(Θ,X)]Yi.

Set Zn = (Y,Y1, . . . ,Yn). Then

E [r̄n(X)− r(X)]2 = E [r̄n(X)−Y ]2

= E

[

E

[

(r̄n(X)−Y )2 |Zn
]]

= E

[

E

[

(r̄n(X)−E[r̄n(X) |Zn])2 |Zn
]]

+E [E[r̄n(X) |Zn]−Y ]2 .

The conditional expectation in the first of the two terms above may be rewritten under the form

E
[

Cov
(

EΘ [rn(X,Θ)] ,EΘ′

[

rn(X,Θ′)
]

|Zn
)]

,

whereΘ′ is distributed as, and independent of,Θ. Attention shows that this last term is indeed equal
to

E
[

EΘ,Θ′Cov
(

rn(X,Θ),rn(X,Θ′) |Zn
)]

.

The key observation is that if trees have strong predictive power, then they can be unconditionally
strongly correlated while being conditionally weakly correlated. This opens an interesting line of
research for the statistical analysis of the bias term, in connection with Amit (2002) and Blanchard
(2004) conditional covariance-analysis ideas.

3. Discussion

The results which have been obtained in Section 2 rely on appropriate behavior of the probability
sequences (pn j)n≥1, j = 1, . . . ,d. We recall that these sequences should be in (0,1) and obey the
constraints pn j = (1/S)(1+ ξn j) for j ∈ S (and pn j = ξn j otherwise), where the (ξn j)n≥1 tend to 0
as n tends to infinity. In other words, at each step of the construction of the individual trees, the
random procedure should track and preferentially cut the strong coordinates. In this more informal
section, we briefly discuss a random mechanism for inducing such probability sequences.

Suppose, to start with an imaginary scenario, that we already knowwhich coordinates are strong,
and which are not. In this ideal case, the random selection procedure described in the introduction
may be easily made more precise as follows. A positive integer Mn—possibly depending on n—is
fixed beforehand and the following splitting scheme is iteratively repeated at each node of the tree:

1. Select at random, with replacement, Mn candidate coordinates to split on.
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2. If the selection is all weak, then choose one at random to split on. If there is more than one
strong variable elected, choose one at random and cut.

Within this framework, it is easy to see that each coordinate in S will be cut with the “ideal” proba-
bility

p!n =
1
S

[

1−
(

1−
S
d

)Mn
]

.

Though this is an idealized model, it already gives some information about the choice of the param-
eter Mn, which, in accordance with the results of Section 2 (Corollary 6), should satisfy

(

1−
S
d

)Mn

logn→ 0 as n→ ∞.

This is true as soon as
Mn → ∞ and

Mn

logn
→ ∞ as n→ ∞.

This result is consistent with the general empirical finding that Mn (called mtry in the R package
RandomForests) does not need to be very large (see, for example, Breiman, 2001), but not with the
widespread belief that Mn should not depend on n. Note also that if the Mn features are chosen at
random without replacement, then things are even more simple since, in this case, p!n = 1/S for all
n large enough.

In practice, we have only a vague idea about the size and content of the set S . However, to
circumvent this problem, we may use the observations of an independent second set D ′

n (say, of
the same size as Dn) in order to mimic the ideal split probability p!n. To illustrate this mechanism,
suppose—to keep things simple—that the model is linear, that is,

Y = ∑
j∈S

a jX ( j) + ε,

where X = (X (1), . . . ,X (d)) is uniformly distributed over [0,1]d , the a j are non-zero real numbers,
and ε is a zero-mean random noise, which is assumed to be independent of X and with finite vari-
ance. Note that, in accordance with our sparsity assumption, r(X) = ∑ j∈S a jX ( j) depends on XS

only.
Assume now that we have done some splitting and arrived at a current set of terminal nodes.

Consider any of these nodes, say A = ∏d
j=1Aj, fix a coordinate j ∈ {1, . . . ,d}, and look at the

weighted conditional variance V[Y |X ( j) ∈ Aj]P(X ( j) ∈ Aj). It is a simple exercise to prove that if X
is uniform and j ∈ S , then the split on the j-th side which most decreases the weighted conditional
variance is at the midpoint of the node, with a variance decrease equal to a2j/16 > 0. On the other
hand, if j ∈W , the decrease of the variance is always 0, whatever the location of the split.

On the practical side, the conditional variances are of course unknown, but they may be esti-
mated by replacing the theoretical quantities by their respective sample estimates (as in the CART
procedure, see Breiman, 2001, Chapter 8, for a thorough discussion) evaluated on the second sample
D ′
n. This suggests the following procedure, at each node of the tree:

1. Select at random, with replacement, Mn candidate coordinates to split on.
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2. For each of the Mn elected coordinates, calculate the best split, that is, the split which most
decreases the within-node sum of squares on the second sample D ′

n.

3. Select one variable at random among the coordinates which output the best within-node sum
of squares decreases, and cut.

This procedure is indeed close to what the random forests algorithm does. The essential dif-
ference is that we suppose to have at hand a second sample D ′

n, whereas the original algorithm
performs the search of the optimal cuts on the original observations Dn. This point is important,
since the use of an extra sample preserves the independence of Θ (the random mechanism) and Dn
(the training sample). We do not know whether our results are still true if Θ depends on Dn (as
in the CART algorithm), but the analysis does not appear to be simple. Note also that, at step 3,
a threshold (or a test procedure, as suggested in Amaratunga et al., 2008) could be used to choose
among the most significant variables, whereas the actual algorithm just selects the best one. In fact,
depending on the context and the actual cut selection procedure, the informative probabilities pn j
( j ∈ S ) may obey the constraints pn j → p j as n→∞ (thus, p j is not necessarily equal to 1/S), where
the p j are positive and satisfy ∑ j∈S p j = 1. This should not affect the results of the article.

This empirical randomization scheme leads to complicate probabilities of cuts which, this time,
vary at each node of each tree and are not easily amenable to analysis. Nevertheless, observing that
the average number of cases per terminal node is about n/kn, it may be inferred by the law of large
numbers that each variable in S will be cut with probability

pn j ≈
1
S

[

1−
(

1−
S
d

)Mn
]

(1+ζn j),

where ζn j is of the order O(kn/n), a quantity which anyway goes fast to 0 as n tends to infinity. Put
differently, for j ∈ S ,

pn j ≈
1
S
(1+ξn j) ,

where ξn j goes to 0 and satisfies the constraint ξn j logn → 0 as n tends to infinity, provided
kn logn/n → 0, Mn → ∞ and Mn/ logn → ∞. This is coherent with the requirements of Corol-
lary 6. We realize however that this is a rough approach, and that more theoretical work is needed
here to fully understand the mechanisms involved in CART and Breiman’s original randomization
process.

It is also noteworthy that random forests use the so-called out-of-bag samples (i.e., the boot-
strapped data which are not used to fit the trees) to construct a variable importance criterion, which
measures the prediction strength of each feature (see, e.g., Genuer et al., 2010). As far as we are
aware, there is to date no systematic mathematical study of this criterion. It is our belief that such
a study would greatly benefit from the sparsity point of view developed in the present paper, but is
unfortunately much beyond its scope. Lastly, it would also be interesting to work out and extend
our results to the context of unsupervised learning of trees. A good route to follow with this respect
is given by the strategies outlined in Section 5.5 of Amit and Geman (1997).

4. A Small Simulation Study

Even though the first vocation of the present paper is theoretical, we offer in this short section some
experimental results on synthetic data. Our aim is not to provide a thorough practical study of the
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random forests method, but rather to illustrate the main ideas of the article. As for now, we let
U([0,1]d) (respectively, N (0,1)) be the uniform distribution over [0,1]d (respectively, the standard
Gaussian distribution). Specifically, three models were tested:

1. [Sinus] For x ∈ [0,1]d , the regression function takes the form

r(x) = 10sin(10πx(1)).

We let Y = r(X)+ ε and X∼U([0,1]d) (d ≥ 1), with ε∼N (0,1).

2. [Friedman #1] This is a model proposed in Friedman (1991). Here,

r(x) = 10sin(πx(1)x(2))+20(x(3)− .05)2+10x(4) +5x(5)

and Y = r(X)+ ε, where X∼U([0,1]d) (d ≥ 5) and ε∼N (0,1).

3. [Tree] In this example, we let Y = r(X)+ ε, where X∼U([0,1]d) (d ≥ 5), ε∼N (0,1) and
the function r has itself a tree structure. This tree-type function, which is shown in Figure 2,
involves only five variables.

Figure 2: The tree used as regression function in the model Tree.

We note that, although the ambient dimension d may be large, the effective dimension of model
1 is S= 1, whereas model 2 and model 3 have S= 5. In other words, S = {1} for model 1, whereas
S = {1, . . . ,5} for model 2 and model 3. Observe also that, in our context, the model Tree should
be considered as a “no-bias” model, on which the random forests algorithm is expected to perform
well.

In a first series of experiments, we let d = 100 and, for each of the three models and different
values of the sample size n, we generated a learning set of size n and fitted a forest (10000 trees)
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with mtry= d. For j= 1, . . . ,d, the ratio (number of times the j-th coordinate is split)/(total number
of splits over the forest) was evaluated, and the whole experiment was repeated 100 times. Figure 3,
Figure 4 and Figure 5 report the resulting boxplots for each of the first twenty variables and different
values of n. These figures clearly enlighten the fact that, as n grows, the probability of cuts does
concentrate on the informative variables only and support the assumption that ξn j → 0 as n→∞ for
each j ∈ S .

Figure 3: Boxplots of the empirical probabilities of cuts for model Sinus (S = {1}).

Next, in a second series of experiments, for each model, for different values of d and for sample
sizes n ranging from 10 to 1000, we generated a learning set of size n, a test set of size 50000 and
evaluated the mean squared error (MSE) of the random forests (RF) method via the Monte Carlo
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Figure 4: Boxplots of the empirical probabilities of cuts for model Friedman #1 (S = {1, . . . ,5}).

approximation

MSE≈
1

50000

50000

∑
j=1

[RF(test data #j)− r(test data #j)]2 .

All results were averaged over 100 data sets. The random forests algorithm was performed with
the parameter mtry automatically tuned by the R package RandomForests, 1000 random trees and
the minimum node size set to 5 (which is the default value for regression). Besides, in order to
compare the “true” algorithm with the approximate model discussed in the present document, an
alternative method was also tested. This auxiliary algorithm has characteristics which are identical
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Figure 5: Boxplots of the empirical probabilities of cuts for model Tree (S = {1, . . . ,5}).

to the original ones (same mtry, same number of random trees), with the notable difference that now
the maximum number of nodes is fixed beforehand. For the sake of coherence, since the minimum
node size is set to 5 in the RandomForests package, the number of terminal nodes in the custom
algorithm was calibrated to (n/5). It must be stressed that the essential difference between the
standard random forests algorithm and the alternative one is that the number of cases in the final
leaves is fixed in the former, whereas the latter assumes a fixed number of terminal nodes. In
particular, in both algorithms, cuts are performed using the actual sample, just as CART does. To
keep things simple, no data-splitting procedure has been incorporated in the modified version.
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Figure 6, Figure 7 and Figure 8 illustrate the evolution of the MSE value with respect to n and
d, for each model and the two tested procedures. First, we note that the overall performance of the
alternative method is very similar to the one of the original algorithm. This confirms our idea that
the model discussed in the present paper is a good approximation of the authentic Breiman’s forests.
Next, we see that for a sufficiently large n, the capabilities of the forests are nearly independent of
d, in accordance with the idea that the (asymptotic) rate of convergence of the method should only
depend on the “true” dimensionality S (Theorem 5). Finally, as expected, it is noteworthy that both
algorithms perform well on the third model, which has been precisely designed for a tree-structured
predictor.

Figure 6: Evolution of the MSE for model Sinus (S= 1).

5. Proofs

Throughout this section, we will make repeated use of the following two facts.

Fact 1 Let Kn j(X,Θ) be the number of times the terminal node An(X,Θ) is split on the j-th coordi-
nate ( j = 1, . . . ,d). Then, conditionally on X, Kn j(X,Θ) has binomial distribution with parameters
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Figure 7: Evolution of the MSE for model Friedman #1 (S= 5).

(log2 kn) and pn j (by independence of X and Θ). Moreover, by construction,

d

∑
j=1

Kn j(X,Θ) = (log2 kn).

Recall that we denote by Nn(X,Θ) the number of data points falling in the same cell as X, that is,

Nn(X,Θ) =
n

∑
i=1
1[Xi∈An(X,Θ)].

Let λ be the Lebesgue measure on [0,1]d .

Fact 2 By construction,
λ(An(X,Θ)) = 2−(log2 kn).

In particular, if X is uniformly distributed on [0,1]d, then the distribution of Nn(X,Θ) conditionally
on X and Θ is binomial with parameters n and 2−(log2 kn) (by independence of the random variables
X,X1, . . . ,Xn,Θ).
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Figure 8: Evolution of the MSE for model Tree (S= 5).

Remark 10 If X is not uniformly distributed but has a probability density f on [0,1]d, then, con-
ditionally on X and Θ, Nn(X,Θ) is binomial with parameters n and P(X1 ∈ An(X,Θ) |X,Θ). If f
is bounded from above and from below, this probability is of the order λ(An(X,Θ)) = 2−(log2 kn),
and the whole approach can be carried out without difficulty. On the other hand, for more general
densities, the binomial probability depends on X, and this makes the analysis significantly harder.

5.1 Proof of Theorem 1

Observe first that, by Jensen’s inequality,

E [r̄n(X)− r(X)]2 = E [EΘ [rn(X,Θ)− r(X)]]2

≤ E [rn(X,Θ)− r(X)]2 .

A slight adaptation of Theorem 4.2 in Györfi et al. (2002) shows that r̄n is consistent if both
diam(An(X,Θ))→ 0 in probability and Nn(X,Θ)→ ∞ in probability.

Let us first prove that Nn(X,Θ)→ ∞ in probability. To see this, consider the random tree parti-
tion defined by Θ, which has by construction exactly 2(log2 kn) rectangular cells, say A1, . . . ,A2(log2 kn) .
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Let N1, . . . ,N2(log2 kn) denote the number of observations amongX,X1, . . . ,Xn falling in these 2(log2 kn)
cells, and let C = {X,X1, . . . ,Xn} denote the set of positions of these n+1 points. Since these points
are independent and identically distributed, fixing the set C and Θ, the conditional probability that
X falls in the "-th cell equals N"/(n+1). Thus, for every fixedM ≥ 0,

P(Nn(X,Θ)<M) = E [P(Nn(X,Θ)<M |C ,Θ)]

= E



 ∑
"=1,...,2(log2 kn):N"<M

N"

n+1





≤
M2(log2 kn)

n+1

≤
2Mkn
n+1

,

which converges to 0 by our assumption on kn.
It remains to show that diam(An(X,Θ))→ 0 in probability. To this aim, letVn j(X,Θ) be the size

of the j-th dimension of the rectangle containing X. Clearly, it suffices to show that Vn j(X,Θ)→ 0
in probability for all j = 1, . . . ,d. To this end, note that

Vn j(X,Θ)
D
= 2−Kn j(X,Θ),

where, conditionally on X, Kn j(X,Θ) has a binomial B((log2 kn), pn j) distribution, representing the
number of times the box containing X is split along the j-th coordinate (Fact 1). Thus

E [Vn j(X,Θ)] = E

[

2−Kn j(X,Θ)
]

= E

[

E

[

2−Kn j(X,Θ) |X
]]

= (1− pn j/2)(log2 kn),

which tends to 0 as pn j logkn → ∞.

5.2 Proof of Proposition 2

Recall that

r̄n(X) =
n

∑
i=1

EΘ [Wni(X,Θ)]Yi,

where

Wni(X,Θ) =
1[Xi∈An(X,Θ)]
Nn(X,Θ)

1En(X,Θ)

and
En = [Nn(X,Θ) *= 0] .

Similarly,

r̃n(X) =
n

∑
i=1

EΘ [Wni(X,Θ)]r(Xi).
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We have

E [r̄n(X)− r̃n(X)]2 = E

[

n

∑
i=1

EΘ [Wni(X,Θ)] (Yi− r(Xi))

]2

= E

[

n

∑
i=1

E
2
Θ [Wni(X,Θ)] (Yi− r(Xi))2

]

(the cross terms are 0 since E[Yi|Xi] = r(Xi))

= E

[

n

∑
i=1

E
2
Θ [Wni(X,Θ)]σ2(Xi)

]

≤ σ2E

[

n

∑
i=1

E
2
Θ [Wni(X,Θ)]

]

= nσ2E
[

E
2
Θ [Wn1(X,Θ)]

]

,

where we used a symmetry argument in the last equality. Observe now that

E
2
Θ [Wn1(X,Θ)] = EΘ [Wn1(X,Θ)]EΘ′

[

Wn1(X,Θ′)
]

(where Θ′ is distributed as, and independent of, Θ)
= EΘ,Θ′

[

Wn1(X,Θ)Wn1(X,Θ′)
]

= EΘ,Θ′

[1[X1∈An(X,Θ)]1[X1∈An(X,Θ′)]

Nn(X,Θ)Nn(X,Θ′)
1En(X,Θ)1En(X,Θ′)

]

= EΘ,Θ′

[1[X1∈An(X,Θ)∩An(X,Θ′)]

Nn(X,Θ)Nn(X,Θ′)
1En(X,Θ)1En(X,Θ′)

]

.

Consequently,

E [r̄n(X)− r̃n(X)]2 ≤ nσ2E
[1[X1∈An(X,Θ)∩An(X,Θ′)]

Nn(X,Θ)Nn(X,Θ′)
1En(X,Θ)1En(X,Θ′)

]

.
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Therefore

E [r̄n(X)− r̃n(X)]2

≤ nσ2E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]
(

1+∑n
i=2 1[Xi∈An(X,Θ)]

)(

1+∑n
i=2 1[Xi∈An(X,Θ′)]

)

]

= nσ2E

[

E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]
(

1+∑n
i=2 1[Xi∈An(X,Θ)]

)

×
1

(

1+∑n
i=2 1[Xi∈An(X,Θ′)]

) |X,X1,Θ,Θ′

]]

= nσ2E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]E

[

1
(

1+∑n
i=2 1[Xi∈An(X,Θ)]

)

×
1

(

1+∑n
i=2 1[Xi∈An(X,Θ′)]

) |X,X1,Θ,Θ′

]]

= nσ2E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]E

[

1
(

1+∑n
i=2 1[Xi∈An(X,Θ)]

)

×
1

(

1+∑n
i=2 1[Xi∈An(X,Θ′)]

) |X,Θ,Θ′

]]

by the independence of the random variables X,X1, . . . ,Xn,Θ,Θ′. Using the Cauchy-Schwarz in-
equality, the above conditional expectation can be upper bounded by

E
1/2

[

1
(

1+∑n
i=2 1[Xi∈An(X,Θ)]

)2 |X,Θ

]

×E
1/2

[

1
(

1+∑n
i=2 1[Xi∈An(X,Θ′)]

)2 |X,Θ
′

]

≤
3×22(log2 kn)

n2
(by Fact 2 and technical Lemma 11)

≤
12k2n
n2

.

It follows that

E [r̄n(X)− r̃n(X)]2 ≤
12σ2k2n
n

E
[

1[X1∈An(X,Θ)∩An(X,Θ′)]

]

=
12σ2k2n
n

E
[

EX1
[

1[X1∈An(X,Θ)∩An(X,Θ′)]

]]

=
12σ2k2n
n

E
[

PX1
(

X1 ∈ An(X,Θ)∩An(X,Θ′)
)]

. (3)

Next, using the fact that X1 is uniformly distributed over [0,1]d , we may write

PX1
(

X1 ∈ An(X,Θ)∩An(X,Θ′)
)

= λ
(

An(X,Θ)∩An(X,Θ′)
)

=
d

∏
j=1

λ
(

An j(X,Θ)∩An j(X,Θ′)
)

,
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where

An(X,Θ) =
d

∏
j=1

An j(X,Θ) and An(X,Θ′) =
d

∏
j=1

An j(X,Θ′).

On the other hand, we know (Fact 1) that, for all j = 1, . . . ,d,

λ(An j(X,Θ))
D
= 2−Kn j(X,Θ),

where, conditionally on X, Kn j(X,Θ) has a binomial B((log2 kn), pn j) distribution and, similarly,

λ
(

An j(X,Θ′)
) D
= 2−K

′
n j(X,Θ′),

where, conditionally on X, K′
n j(X,Θ′) is binomial B((log2 kn), pn j) and independent of Kn j(X,Θ).

In the rest of the proof, to lighten notation, we writeKn j andK′
n j instead ofKn j(X,Θ) andK′

n j(X,Θ′),
respectively. Clearly,

λ
(

An j(X,Θ)∩An j(X,Θ′)
)

≤2−max(Kn j,K
′
n j)

= 2−K
′
n j2−(Kn j−K′

n j)+

and, consequently,

d

∏
j=1

λ
(

An j(X,Θ)∩An j(X,Θ′)
)

≤2−(log2 kn)
d

∏
j=1
2−(Kn j−K′

n j)+

(since, by Fact 1, ∑d
j=1Kn j = (log2 kn)). Plugging this inequality into (3) and applying Hölder’s

inequality, we obtain

E [r̄n(X)− r̃n(X)]2 ≤
12σ2kn
n

E

[

d

∏
j=1
2−(Kn j−K′

n j)+

]

=
12σ2kn
n

E

[

E

[

d

∏
j=1
2−(Kn j−K′

n j)+ |X

]]

≤
12σ2kn
n

E

[

d

∏
j=1

E
1/d
[

2−d(Kn j−K
′
n j)+ |X

]

]

.

Each term in the product may be bounded by technical Proposition 13, and this leads to

E [r̄n(X)− r̃n(X)]2 ≤
288σ2kn
πn

d

∏
j=1
min

(

1,
[

π
16(log2 kn)pn j(1− pn j)

]1/2d
)

≤
288σ2kn
πn

d

∏
j=1
min

(

1,
[

π log2
16(logkn)pn j(1− pn j)

]1/2d
)

.

Using the assumption on the form of the pn j, we finally conclude that

E [r̄n(X)− r̃n(X)]2 ≤Cσ2
(

S2

S−1

)S/2d

(1+ξn)
kn

n(logkn)S/2d
,
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where

C =
288
π

(

π log2
16

)S/2d

and

1+ξn =∏
j∈S

[

(1+ξn j)
−1
(

1−
ξn j
S−1

)−1
]1/2d

.

Clearly, the sequence (ξn), which depends on the {(ξn j) : j ∈ S} only, tends to 0 as n tends to
infinity.

5.3 Proof of Proposition 4

We start with the decomposition

E [r̃n(X)− r(X)]2

= E

[

n

∑
i=1

EΘ [Wni(X,Θ)] (r(Xi)− r(X))+

(

n

∑
i=1

EΘ [Wni(X,Θ)]−1

)

r(X)

]2

=E

[

EΘ

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))+

(

n

∑
i=1
Wni(X,Θ)−1

)

r(X)

]]2

≤ E

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))+

(

n

∑
i=1
Wni(X,Θ)−1

)

r(X)

]2

,

where, in the last step, we used Jensen’s inequality. Consequently,

E [r̃n(X)− r(X)]2

≤ E

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))

]2

+E
[

r(X)1E c
n (X,Θ)

]2

≤ E

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))

]2

+

[

sup
x∈[0,1]d

r2(x)

]

P(E c
n(X,Θ)) . (4)
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Let us examine the first term on the right-hand side of (4). Observe that, by the Cauchy-Schwarz
inequality,

E

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))

]2

≤ E

[

n

∑
i=1

√

Wni(X,Θ)
√

Wni(X,Θ) |r(Xi)− r(X)|

]2

≤ E

[(

n

∑
i=1
Wni(X,Θ)

)(

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))2

)]

≤ E

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))2

]

(since the weights are subprobability weights).

Thus, denoting by ‖X‖S the norm of X evaluated over the components in S , we obtain

E

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))

]2

≤ E

[

n

∑
i=1
Wni(X,Θ)(r!(XiS )− r!(XS ))

2

]

≤ L2
n

∑
i=1

E
[

Wni(X,Θ)‖Xi−X‖2S
]

= nL2E
[

Wn1(X,Θ)‖X1−X‖2S
]

(by symmetry).

But

E
[

Wn1(X,Θ)‖X1−X‖2S
]

= E

[

‖X1−X‖2S
1[X1∈An(X,Θ)]
Nn(X,Θ)

1En(X,Θ)
]

= E

[

‖X1−X‖2S
1[X1∈An(X,Θ)]

1+∑n
i=2 1[Xi∈An(X,Θ)]

]

= E

[

E

[

‖X1−X‖2S
1[X1∈An(X,Θ)]

1+∑n
i=2 1[Xi∈An(X,Θ)]

|X,X1,Θ
]]

.

Thus,

E
[

Wn1(X,Θ)‖X1−X‖2S
]

= E

[

‖X1−X‖2S1[X1∈An(X,Θ)]E
[

1
1+∑n

i=2 1[Xi∈An(X,Θ)]
|X,X1,Θ

]]

= E

[

‖X1−X‖2S1[X1∈An(X,Θ)]E
[

1
1+∑n

i=2 1[Xi∈An(X,Θ)]
|X,Θ

]]

(by the independence of the random variables X,X1, . . . ,Xn,Θ).
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By Fact 2 and technical Lemma 11,

E

[

1
1+∑n

i=2 1[Xi∈An(X,Θ)]
|X,Θ

]

≤
2(log2 kn)

n
≤
2kn
n

.

Consequently,

E

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))

]2

≤ 2L2knE
[

‖X1−X‖2S1[X1∈An(X,Θ)]
]

.

Letting

An(X,Θ) =
d

∏
j=1

An j(X,Θ),

we obtain

E

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))

]2

≤ 2L2kn∑
j∈S

E

[

|X( j)
1 −X( j)|21[X1∈An(X,Θ)]

]

= 2L2kn∑
j∈S

E

[

ρ j(X,X1,Θ)EX( j)
1

[

|X( j)
1 −X( j)|21

[X( j)
1 ∈An j(X,Θ)]

]]

where, in the last equality, we set

ρ j(X,X1,Θ) = ∏
t=1,...,d,t *= j

1
[X(t)
1 ∈Ant(X,Θ)]

.

Therefore, using the fact that X1 is uniformly distributed over [0,1]d ,

E

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))

]2

≤ 2L2kn∑
j∈S

E
[

ρ j(X,X1,Θ)λ3 (An j(X,Θ))
]

.

Observing that

λ(An j(X,Θ))×E
[X(t)
1 : t=1,...,d,t *= j] [ρ j(X,X1,Θ)]

= λ(An(X,Θ))

= 2−(log2 kn)

(Fact 2),

we are led to

E

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))

]2

≤ 2L2∑
j∈S

E
[

λ2 (An j(X,Θ))
]

= 2L2∑
j∈S

E

[

2−2Kn j(X,Θ)
]

= 2L2∑
j∈S

E

[

E

[

2−2Kn j(X,Θ) |X
]]

,

1088



ANALYSIS OF A RANDOM FORESTS MODEL

where, conditionally on X, Kn j(X,Θ) has a binomial B((log2 kn), pn j) distribution (Fact 1). Conse-
quently,

E

[

n

∑
i=1
Wni(X,Θ)(r(Xi)− r(X))

]2

≤ 2L2∑
j∈S

(1−0.75pn j)(log2 kn)

≤ 2L2∑
j∈S
exp
(

−
0.75
log2

pn j logkn
)

= 2L2∑
j∈S

1

k
0.75
S log2 (1+ξn j)
n

≤
2SL2

k
0.75
S log2 (1+γn)
n

,

with γn =min j∈S ξn j.
To finish the proof, it remains to bound the second term on the right-hand side of (4), which is

easier. Just note that

P(E c
n(X,Θ)) = P

(

n

∑
i=1
1[Xi∈An(X,Θ)] = 0

)

= E

[

P

(

n

∑
i=1
1[Xi∈An(X,Θ)] = 0 |X,Θ

)]

=
(

1−2−(log2 kn)
)n

(by Fact 2)

≤ e−n/2kn .

Putting all the pieces together, we finally conclude that

E [r̃n(X)− r(X)]2 ≤
2SL2

k
0.75
S log2 (1+γn)
n

+

[

sup
x∈[0,1]d

r2(x)

]

e−n/2kn ,

as desired.

5.4 Some Technical Results

The following result is an extension of Lemma 4.1 in Györfi et al. (2002). Its proof is given here for
the sake of completeness.

Lemma 11 Let Z be a binomial B(N, p) random variable, with p ∈ (0,1]. Then

(i)

E

[

1
1+Z

]

≤
1

(N+1)p
.
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(ii)

E

[

1
Z
1[Z≥1]

]

≤
2

(N+1)p
.

(iii)

E

[

1
1+Z2

]

≤
3

(N+1)(N+2)p2
.

Proof To prove statement (i), we write

E

[

1
1+Z

]

=
N

∑
j=0

1
1+ j

(

N
j

)

p j(1− p)N− j

=
1

(N+1)p

N

∑
j=0

(

N+1
j+1

)

p j+1(1− p)N− j

≤
1

(N+1)p

N+1

∑
j=0

(

N+1
j

)

p j(1− p)N+1− j

=
1

(N+1)p
.

The second statement follows from the inequality

E

[

1
Z
1[Z≥1]

]

≤ E

[

2
1+Z

]

and the third one by observing that

E

[

1
1+Z2

]

=
N

∑
j=0

1
1+ j2

(

N
j

)

p j(1− p)N− j.

Therefore

E

[

1
1+Z2

]

=
1

(N+1)p

N

∑
j=0

1+ j
1+ j2

(

N+1
j+1

)

p j+1(1− p)N− j

≤
3

(N+1)p

N

∑
j=0

1
2+ j

(

N+1
j+1

)

p j+1(1− p)N− j

≤
3

(N+1)p

N+1

∑
j=0

1
1+ j

(

N+1
j

)

p j(1− p)N+1− j

≤
3

(N+1)(N+2)p2

(by (i)).
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Lemma 12 Let Z1 and Z2 be two independent binomial B(N, p) random variables. Set, for all
z ∈ C!, ϕ(z) = E[zZ1−Z2 ]. Then

(i) For all z ∈ C!,
ϕ(z) =

[

p(1− p)(z+ z−1)+1−2p(1− p)
]N

.

(ii) For all j ∈ N,

P(Z1−Z2 = j) =
1
2πi

∫
Γ

ϕ(z)
z j+1

dz,

where Γ is the positively oriented unit circle.

(iii) For all d ≥ 1,

E

[

2−d(Z1−Z2)+
]

≤
24
π

∫ 1

0
exp
(

−4Np(1− p)t2
)

dt.

Proof Statement (i) is clear and (ii) is an immediate consequence of Cauchy’s integral formula
(Rudin, 1987). To prove statement (iii), write

E

[

2−d(Z1−Z2)+
]

=
N

∑
j=0
2−d jP((Z1−Z2)+ = j)

=
N

∑
j=0
2−d jP(Z1−Z2 = j)

≤
∞

∑
j=0
2−d jP(Z1−Z2 = j)

=
1
2πi

∫
Γ

ϕ(z)
z

∞

∑
j=0

(

2−d

z

) j

dz

(by statement (ii))

=
1
2π

∫ π

−π

ϕ(eiθ)
1−2−de−iθ

dθ

(by setting z= eiθ,θ ∈ [−π,π])

=
2d−1

π

∫ π

−π
[1+2p(1− p)(cosθ−1)]N

eiθ

2deiθ−1
dθ

(by statement (i)).

Noting that
eiθ

2deiθ−1
=

2d− eiθ

22d−2d+1 cosθ+1
,

we obtain

E

[

2−d(Z1−Z2)+
]

≤
2d−1

π

∫ π

−π
[1+2p(1− p)(cosθ−1)]N

2d− cosθ
22d−2d+1 cosθ+1

dθ.
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The bound
2d− cosθ

22d−2d+1 cosθ+1
≤

2d+1
(2d−1)2

leads to

E

[

2−d(Z1−Z2)+
]

≤
2d−1(2d+1)
π(2d−1)2

∫ π

−π
[1+2p(1− p)(cosθ−1)]N dθ

=
2d(2d+1)
π(2d−1)2

∫ π

0
[1+2p(1− p)(cosθ−1)]N dθ

=
2d(2d+1)
π(2d−1)2

∫ π

0

[

1−4p(1− p)sin2(θ/2)
]N dθ

(cosθ−1=−2sin2(θ/2))

=
2d+1(2d+1)
π(2d−1)2

∫ π/2

0

[

1−4p(1− p)sin2θ
]N dθ.

Using the elementary inequality (1− z)N ≤ e−Nz for z ∈ [0,1] and the change of variable

t = tan(θ/2),

we finally obtain

E

[

2−d(Z1−Z2)+
]

≤
2d+2(2d+1)
π(2d−1)2

∫ 1

0
exp
(

−
16Np(1− p)t2

(1+ t2)2

)

1
1+ t2

dt

≤Cd
∫ 1

0
exp
(

−4Np(1− p)t2
)

dt,

with
Cd =

2d+2(2d+1)
π(2d−1)2

.

The conclusion follows by observing thatCd ≤ 24/π for all d ≥ 1.

Evaluating the integral in statement (iii) of Lemma 12 leads to the following proposition:

Proposition 13 Let Z1 and Z2 be two independent binomial B(N, p) random variables, with p ∈
(0,1). Then, for all d ≥ 1,

E

[

2−d(Z1−Z2)+
]

≤
24
π
min

(

1,
√

π
16Np(1− p)

)

.
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Abstract
We present methods able to predict the presence and strength of conditional and unconditional
dependencies (correlations) between two variables Y and Z never jointly measured on the same
samples, based on multiple data sets measuring a set of common variables. The algorithms are
specializations of prior work on learning causal structures from overlapping variable sets. This
problem has also been addressed in the field of statistical matching. The proposed methods are
applied to a wide range of domains and are shown to accurately predict the presence of thousands
of dependencies. Compared against prototypical statistical matching algorithms and within the
scope of our experiments, the proposed algorithms make predictions that are better correlated with
the sample estimates of the unknown parameters on test data ; this is particularly the case when the
number of commonly measured variables is low.

The enabling idea behind the methods is to induce one or all causal models that are simultane-
ously consistent with (fit) all available data sets and prior knowledge and reason with them. This
allows constraints stemming from causal assumptions (e.g., Causal Markov Condition, Faithful-
ness) to propagate. Several methods have been developed based on this idea, for which we propose
the unifying name Integrative Causal Analysis (INCA). A contrived example is presented demon-
strating the theoretical potential to develop more general methods for co-analyzing heterogeneous
data sets. The computational experiments with the novel methods provide evidence that causally-
inspired assumptions such as Faithfulness often hold to a good degree of approximation in many
real systems and could be exploited for statistical inference. Code, scripts, and data are available at
www.mensxmachina.org.
Keywords: integrative causal analysis, causal discovery, Bayesian networks, maximal ancestral
graphs, structural equation models, causality, statistical matching, data fusion

1. Introduction

In several domains it is often the case that several data sets (studies) may be available related to
a specific analysis question. Meta-analysis methods attempt to collect, evaluate and combine the
results of several studies regarding a single hypothesis. However, studies may be heterogeneous in

∗. Also in Department of Computer Science, University of Crete.

c©2012 Ioannis Tsamardinos, Sofia Triantafillou and Vincenzo Lagani.
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several aspects, and thus not amenable to standard meta-analysis techniques. For example, different
studies may be measuring different sets of variables or under different experimental conditions.

One approach to allow the co-analysis of heterogeneous data sets in the context of prior knowl-
edge is to try to induce one or all causalmodels that are simultaneously consistent with all available
data sets and pieces of knowledge. Subsequently, one can reason with this set of consistent models.
We have named this approach Integrative Causal Analysis (INCA).

The use of causal models may allow additional inferences than what is possible with non-
causal models. This is because the former employ additional assumptions connecting the concept
of causality with observable and estimable quantities such as conditional independencies and depen-
dencies. These assumptions further constrain the space of consistent models and may lead to new
inferences. Two of the most common causal assumptions in the literature are the Causal Markov
Condition and the Faithfulness Condition (Spirtes et al., 2001); intuitively, these conditions assume
that the observed dependencies and independencies in the data are due to the causal structure of the
observed system and not due to accidental properties of the distribution parameters (Spirtes et al.,
2001). Another interpretation of these conditions is that the set of independencies is stable to small
perturbations of the joint distribution (Pearl, 2000) of the data.

The idea of inducing causal models from several data sets has already appeared in several prior
works. Methods for inducing causal models from samples measured under different experimental
conditions are described in Cooper and Yoo (1999), Tian and Pearl (2001), Claassen and Heskes
(2010), Eberhardt (2008); Eberhardt et al. (2010) and Hyttinen et al. (2011, 2010). Other methods
deal with the co-analysis of data sets defined over different variable sets (Tillman et al., 2008;
Triantafillou et al., 2010; Tillman and Spirtes, 2011). In Tillman (2009) and Tsamardinos and
Borboudakis (2010) approaches that induce causal models from data sets defined over semantically
similar variables (e.g., a dichotomous variable for Smoking in one data set and a continuous variable
for Cigarettes-Per-Day in a second) are explored. Methods for inducing causal models in the context
of prior knowledge also exist (Angelopoulos and Cussens, 2008; Borboudakis et al., 2011; Meek,
1995; Werhli and Husmeier, 2007; O’Donnell et al., 2006). INCA as a unifying common theme was
first presented in Tsamardinos and Triantafillou (2009) where a mathematical formulation is given
of the co-analysis of data sets that are heterogeneous in several of the above aspects. In Section
3, we present a contrived example demonstrating the theoretical potential to develop such general
methods.

In this paper, we focus on the problem of analyzing data sets defined over different variable
sets, as proof-of-concept of the main idea. We develop methods that could be seen as special cases
of general algorithms that have appeared for this problem (Tillman et al., 2008; Triantafillou et al.,
2010; Tillman and Spirtes, 2011). The methods are able to predict the presence and strength of
conditional and unconditional dependencies (correlations) between two variables Y and Z never
jointly measured on the same samples, based on multiple data sets measuring a set of common
variables.

To evaluate the methods we simulate the above situation in a way that it becomes testable: a
single data set is partitioned to three data sets that do not share samples. A different set of variables
is excluded from each of the first two data sets, while the third is hold out for testing. Based on the
first two data sets the algorithms predict certain pairs of the excluded variables should be dependent.
These are then tested in the third test set containing all variables.

The proposed algorithms make numerous predictions that range in the thousands for large data
sets; the predictions are highly accurate, significantly more accurate than predictions made at ran-
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dom. The methods also successfully predict certain conditional dependencies between pairs of
variables Y,Z never measured together in a study. In addition, when linear causal relations and
Gaussian error terms are assumed, the algorithms successfully predict the strength of the linear cor-
relation between Y and Z. The latter observation is an example where the INCA approach can give
rise to algorithms that provide quantitative inferences (strength of dependence), and are not limited
to qualitative inferences (e.g., presence of dependencies).

Inferring the correlation between Y and Z in the above setting has also been addressed by statis-
tical matching algorithms (D’Orazio et al., 2006), often found under the name of data fusion in Eu-
rope. Statistical matching algorithms make predictions based on parametric distributional assump-
tions, instead of causally-inspired assumptions. We have implemented two prototypical statistical
matching algorithms and performed a comparative evaluation. Within the scope of our experiments,
the proposed algorithms make predictions that are better correlated with the sample estimates of
the unknown parameters on test data; this is particularly the case when the number of commonly
measured variables is low. In addition, the proposed algorithms make predictions in cases where
some statistical matching procedures fail to do so and vice versa, and thus, the two approaches can
be considered complementary in this respect.

There are several philosophical and practical implications of the above results. First, the results
provide ample statistical evidence that some of the typical assumptions employed in causal modeling
hold abundantly (at least to a good level of approximation) in a wide range of domains and lead to
accurate inferences. To obtain the results the causal semantics are not employed per se, that is,
we do not predict the effects of experiments and manipulations. In other words, one could view
the assumptions made by the causal models as constraints or priors on probability distributions
encountered in Nature without any reference to causal semantics.

Second, the results point to the utility and potential impact of the approach: co-analysis pro-
vides novel inferences as a norm, not only in contrived toy problems or rare situations. Future
INCA-based algorithms that are able to handle all sorts of heterogeneous data sets that vary in terms
of experimental conditions, study design and sampling methodology (e.g., case-control vs. i.i.d.
sampling, cross-sectional vs. temporal measurements) could potentially one day enable the auto-
mated large-scale integrative analysis of a large part of available data and knowledge to construct
causal models.

The rest of this document is organized as follows: Section 2 briefly presents background on
causal modeling with Maximal Ancestral Graphs. Section 3 discusses the scope and vision of the
INCA approach. Section 4 presents the example scenario employed in all evaluations. Section 5
formalizes the problem of co-analysis of data sets measuring different quantities. Sections 6 and 7
present the algorithms and their comparative evaluation for predicting unconditional and conditional
dependencies respectively, between variables not jointly measured. Section 8 extends the theory to
devise an algorithm that can also predict the strength of the dependence. Section 9 presents the
statistical matching theory and comparative evaluation. The paper concludes with Section 10 and
11 discussing the related work and the paper in general.

2. Modeling Causality with Maximal Ancestral Graphs

Maximal Ancestral Graphs (MAGs) is a type of graphical model that represents causal relations
among a set of measured (observed) variables O as well as probabilistic properties, such as con-
ditional independencies (independence model). The probabilistic properties of MAGs can be de-
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veloped without any reference to their causal semantics; nevertheless, we also briefly discuss their
causal interpretation.

MAGs can be viewed as a generalization of Causal Bayesian Networks. The causal semantics
of an edge A→ B imply that A is probabilistically causing B, that is, an (appropriate) manipulation
of A results in a change of the distribution of B. Edges A↔ B imply that A and B are associated
but neither A causes B nor vice-versa. Under certain conditions, the independencies implied by the
model are given by a graphical criterion called m-separation, defined below. A desired property of
MAGs is that they are closed under marginalization: the marginal of a MAG is a MAG. MAGs can
also represent the presence of selection bias, but this is out of the scope of the present paper. We
present the key theory of MAGs, introduced in Richardson and Spirtes (2002).

A path in a graph G = (V,E) is a sequence of distinct vertices 〈V0,V1, . . . ,Vn〉 all of them in O
s.t for 0≤ i< n, Vi and Vi+1 are adjacent in G . A path from V0 to Vn is directed if for 0≤ i< n, Vi
is a parent Vi+1. X is called an ancestor of Y and Y a descendent of X if X =Y or there is a directed
path from X to Y in G . AnG (X) is used to denote the set of ancestors of node X in G . A directed
cycle in G occurs when X → Y ∈ E and Y ∈ AnG (X). An almost directed cycle in G occurs when
X ↔ Y ∈ E and Y ∈ AnG (X).

Definition 1 (Mixed and Ancestral Graph) A graph is mixed if all of its edges are either directed
or bi-directed. A mixed graph is ancestral if the graph does not contain any directed or almost
directed cycles.

Given a path p= 〈V0,V1, . . . ,Vn〉, nodeVi, i∈ 1,2, . . . ,n is a collider on p if both edges incident toVi
have an arrowhead towards Vi. We also say that triple (Vi−1,Vi,Vi+1) forms a collider. Otherwise Vi
is called a non-collider on p. The criterion of m-separation leads to a graphical way of determining
the probabilistic properties stemming from the causal semantics of the graph:

Definition 2 (m-connection, m-separation) In a mixed graph G = (E,V), a path p between A and
B is m-connecting relative to (condition to) a set of vertices Z , Z⊆ V\{A,B} if

1. Every non-collider on p is not a member of Z.

2. Every collider on the path is an ancestor of some member of Z.

A and B are said to be m-separated by Z if there is no m-connecting path between A and B relative to
Z. Otherwise, we say they are m-connected given Z. We denote the m-separation of A and B given
Z as MSep(A;B|Z). Non-empty sets A and B are m-separated given Z (symb. MSep(A;B|Z)) if for
every A ∈ A and every B ∈ B A and B are m-separated given Z. (A, B and Z are disjoint). We also
define the set of all m-separations as Jm(G):

Jm(G)≡ {〈X,Y|Z〉,s.t. MSep(X;Y|Z) and X,Y,Z⊆O}.

We also define the set J of all conditional independencies X ⊥⊥ Y|Z, where X, Y and Z are
disjoint sets of variables, in the joint distribution of P of O:

J (P )≡ {〈X,Y|Z|〉,s.t.,X⊥⊥ Y|Z and X,Y,Z⊆O}.

The set J (P ) is also called the independence model of P . The m-separation criterion is meant
to connect the graph with the observed independencies in the distribution under the following as-
sumption:
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Definition 3 (Faithfulness) We call a distribution P over a set of variables O faithful to a graph
G , and vice versa, iff:

J (P ) = Jm(G).

A graph is faithful iff there exists a distribution faithful to it. When the above equation holds, we say
the Faithfulness Condition holds for the graph and the distribution.

When the faithfulness condition holds, every m-separation present in G corresponds to a condi-
tional independence in J (P ) and vice-versa. The following definition describes a subset of ances-
tral graphs in which every missing edge (non-adjacency) corresponds to at least one conditional
independence:

Definition 4 (Maximal Ancestral Graph, MAG) An ancestral graph G is called maximal if for
every pair of non-adjacent vertices (X ,Y ), there is a (possibly empty) set Z, X ,Y /∈ Z such that
〈X ,Y |Z〉 ∈ J (G).

Every ancestral graph can be transformed into a unique equivalent MAG (i.e., with the same
independence model) with the possible addition of bi-directed edges. We denote the marginal of a
distribution P over a set of variables V \L L as P [L, and the independence model stemming from
the marginalized distribution as J (P )[L, that is,

J (P [L) = J (P )[L≡ {〈X,Y|Z〉 ∈ J (P ) : (X∪Y∪Z)∩L= /0}.

Equivalently, we define the set of m-separations of G restricted on the marginal variables as:

Jm(G)[L≡ {〈X,Y|Z〉 ∈ Jm(G) : (X∪Y∪Z)∩L= /0}.

A simple graphical transformation for a MAG G faithful to a distribution P with independence
model J (P ) exists that provides a unique MAG G [L that represents the causal ancestral relations
and the independence model J (P )[L after marginalizing out variables in L. Formally,

Definition 5 (Marginalized Graph G [L) Graph G [L has vertex set V \L, and edges defined as
follows: If X ,Y are s.t. , ∀Z⊆ V\ (L∪{X ,Y}), 〈X ,Y |Z〉 /∈ J (G) and

X /∈ AnG (Y );Y /∈ AnG (X)
X ∈ AnG (Y );Y /∈ AnG (X)
X /∈ AnG (Y );Y ∈ AnG (X)

then
X ↔ Y
X → Y
X ← Y

in G [L.

We will call G [L the marginalized graph G over L.

The following result has been proved in Richardson and Spirtes (2002):

Theorem 6 If G is a MAG over V, and L⊆ V, then G [L is also a MAG and

Jm(G)[L= Jm(G [L).

1101



TSAMARDINOS, TRIANTAFILLOU AND LAGANI

X

Z

Y

W

X

Z

Y

W

X

Z

Y

W

X

Z

Y

W

X

Z

Y

W

Figure 1: A PAG (left) and the MAGs of the respective equivalence class; all MAGs represent the
same independence model over variables {X ,Y,Z,W}.

If G is faithful to a distribution P over V, then the above theorem implies that J (P )[L= J (G)[L=
J (G [L); in other words the graph G [L constructed by the above process faithfully represents the
marginal independence model J [L(P ).

Different MAGs encode different causal information, but may share the same independence
models and thus are statistically indistinguishable based on these models alone. Such MAGs define
a Markov equivalence class based on the concepts of unshielded collider and discriminating path: A
triple of nodes (X ,Y,W ) is called unshielded if X is adjacent to Y , Y is adjacent toW , and X is not
adjacent toW . A path p= 〈X , . . . ,W,V,Y 〉 is called a discriminating path for V if X is not adjacent
to Y , and every vertex between X and Y is a collider on p and an ancestor of Y . The following result
has been proved in Spirtes and Richardson (1996):

Proposition 7 Two MAGs over the same vertex set are Markov equivalent if and only if:

1. They share the same edges.

2. They share the same unshielded colliders.

3. If a path p is discriminating for a vertex V in both graphs, V is a collider on the path on one
graph if and only if it is a collider on the path on the other.

A Partial Ancestral Graph is a graph containing (up to) three kinds of endpoints: arrowhead (>),
tail (−), and circle (◦), and represents a MAGMarkov equivalence class in the following manner: It
has the same adjacencies as any member of the equivalence class, and every non-circle endpoint is
invariant in any member of the equivalence class. Circle endpoints correspond to uncertainties; the
definitions of paths are extended with the prefix possible to denote that there is a configuration of the
uncertainties in the path rendering the path ancestral or m-connecting. For example if X ◦−◦Y◦→
W , 〈X ,Y,W 〉 is a possible ancestral path from X to W, but not a possible ancestral path fromW to X .
An example PAG, and some of the MAGs in the respective equivalence class are shown in Figure
1. FCI (Spirtes et al., 2001; Zhang, 2008) is a sound algorithm which outputs a PAG over a set of
variables V when given access to an independence model over V.

The MAG formulation is a generalization of the graph of a (Causal) Bayesian Network (CBN)
intended to explicitly model and reason with latent variables and particularly, latent confounding
variables. The absence of such confounding variables is (often unrealistically) assumed when learn-
ing Causal Bayesian Networks, named the Causal Sufficiency assumption. The presence of latent
confounders can be modeled in MAGs with bidirectional edges. The graph of a CBN is a MAG
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without bidirectional edges. Similarly, the Faithfulness Condition we define for MAGs generalizes
the Faithfulness for CBNs. This work is inspired by the following scenario: there exists an unknown
causal mechanism over variablesV, represented by a faithful CBN 〈P ,G〉. Based on the theory pre-
sented in this section (Theorem 6), each marginal distribution of P over a subsetO=V\L is faithful
to the MAG G [L described in definition 5.

3. Scope and Motivation of Integrative Causal Analysis

A general objective is to develop algorithms that are able to co-analyze data sets that are hetero-
geneous in various aspects, including data sets defined over different variables sets, experimental
conditions, sampling methodologies (e.g., observational vs. case-control sampling) and others. In
addition, cross-sectional data sets could be eventually co-analyzed with temporal data sets measur-
ing either time-series data or repeated measurements data. Finally, the integrative analysis should
also include prior knowledge about the data and their semantics. Some of the tasks of the integrative
analysis can be the identification of the causal structure of the data generating mechanism, the selec-
tion of the next most promising experiment, the construction of predictive models, the prediction of
the effect of manipulations, or the selection of the manipulation that best achieves a desired effect.

The work in this paper however, focuses on providing a first step towards this direction. It
addresses the problem of learning the structure of the data generating process from data sets defined
over different variable sets. In addition, it focuses on providing proof-of-concept experiments of the
main INCA idea on the simplest cases and comparing against current alternatives. Finally, it gives
methods that predict the strength of dependence betweenY and Z, which can be seen as constructing
a simple predictive model without having access to the joint distribution of the data.

We now make concrete some of these ideas by presenting a motivating fictitious integrative
analysis scenario:

• Study 1 (i.i.d., observational sampling, variables A,B,C,D): A scientist is studying the “rela-
tion” between contraceptives and breast cancer. In a random sample of women, he measures
variables {A,B,C,D} corresponding to quantities Suffers from Thrombosis (Yes/No), Contra-
ceptives (Yes/No), Concentration of Protein C in the Blood (numerical) and Develops Breast
Cancer by 60 Years Old (Yes/No). The researcher then develops predictive models for Breast
Cancer and, given that he finds B associated with D (among other associations), announces
taking contraceptives as a risk-factor for developing Breast Cancer.

• Study 2 (randomized controlled trial, variables A,B,C,D): Another scientist checks whether
(variable C) Protein C (causally) protects against cancer. In a randomized controlled ex-
periment she randomly assigns women into two groups and measures the same variables
{A,B,C,D}. The first group is injected with high levels of the protein in their blood, while
the latter is injected with enzymes that dissolve only the specific protein, effectively remov-
ing it from the blood. IfC and D are negatively correlated in her data, the scientist concludes
that the protein is causally protecting against the development of breast cancer. Notice that,
data from Study 2 cannot be merged with Study 1 because the joint distributions of the data
may be different. For example, assuming that C is caused by the disease D (e.g., the disease
changes the concentration of the protein in the blood) then C will be highly associated with
D in Study 1; in contrast, in Study 2 where the levels of C exclusively depend on the group
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Study
Variables A B C D E F

Thrombosis Contraceptives Protein C Cancer Protein Y Protein Z
(Yes/No) (Yes/No) (numerical) (Yes/No) (numerical) (numerical)

1 Yes No 10.5 Yes - -
No Yes 5.3 No - -

(observational
data) No Yes 0.01 No - -
2 No No 0(Control) No - -

Yes No 0(Control) Yes - -
(experimental

data) Yes Yes 5.0(Treat.) Yes - -
3 - - - Yes 0.03 9.3

(different
variables) - - - No 3.4 22.2

4
(prior B causally affects A: B!!" A

knowledge)

Figure 2: Tabular depiction of the different studies (data sets). Study 1 is a random sample aiming at
predicting D and identifying risk factors. Study 2 is a Randomized Controlled Trial were
the levels of C for a subject are randomly decided and enforced by the experimenter,
aiming at identifying a causal relation with cancer. Forced values are denoted by bold
font. Study 3 is also an observational study about D, but measuring different variables
than Study 1. Prior knowledge provides a piece of causal knowledge but the raw data are
not available. Typically, such studies are analyzed independently of each other.

assignment,C and D are not associated. Thus, statistical inferences made based on analyzing
Study 2 in isolation probably result in lower statistical power.

• Study 3 (i.i.d., observational sampling, variables D,E,F): A biologist studies the relation
of a couple of proteins in the blood, represented with variables E and F and their relation
with breast cancer. She measures in a random sample of women variables {D,E,F}. As
with analyzing Study 1, she develops predictive models for Breast Cancer (based on E and
F instead) and checks whether the two proteins are risk factors. These data cannot be pulled
together with Studies 1 or 2 because they measure different variables.

• Prior Knowledge: A doctor establishes a causal relation between the use of Contraceptives
(variable B) and the development of Thrombosis (variable A), that is, “B causes A” denoted
as B !!" A.1 Unfortunately, the raw data are not publicly available.

The three studies and prior knowledge are depicted Figure 2. Notice that, treating the empty
cells as missing values is meaningless given that it is impossible for an algorithm to estimate the
joint distribution between variables never measured together without additional assumptions (see
Rubin 1974 for more details).

1. We use a double arrow !!" to denote a causal relation without reference to the context of other variables. This is
to avoid confusion with the use of a single arrow → in most causal models (e.g., Causal Bayesian Networks) that
denotes a direct causal relation (or inducing path, see Richardson and Spirtes 2002), where direct causality is defined
in the context of the rest of the variables in the model.
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Figure 3: (a) Assumed unknown causal structure. (b) Structure induced by Study 1 alone. (c)
Structure induced by Study 2 alone. (d) Structure induced by INCA of Studies 1 and 2.
New inference: C is not causing B but they are associated. (e) Structure induced after
incorporating knowledge “B causes A”. New inference: B causes A and D. (f) Structure
induced by Study 3 alone. (g) Structure induced by all studies and knowledge. Dashed
edges denote edges whose both existence and absence is consistent with the data. New
inference: F and C (two proteins) are not causing each other nor do they have a latent
confounder, even though we never measure them together in a study.

We now show informally the reasoning for an integrative causal analysis of the above studies
and prior knowledge and compare against independent analysis of the studies. Figure 3(a) shows the
presumed true, unknown, causal structure. Figure 3(b-c) shows the causal model induced (asymp-
totically) by an independent analysis of the data of Study 1 and Study 2 respectively using existing
algorithms, such as FCI (Spirtes et al., 2001; Zhang, 2008) and assuming data generated by the
true model. The R variable denotes the randomization procedure that assigns patients to control
and treatment groups. Notice that it removes any causal link into C since the value of C only de-
pends on the result of the randomization. Figure 3(d) shows the causal model that can be inferred
by co-analyzing both studies together. By INCA of Study 1 and 2 it is now additionally inferred
that B and C are correlated but C does not cause B: If C was causing B, we would have found the
variables dependent in Study 2 (the randomization procedure would not have eliminated the causal
linkC→ B). If we also incorporate prior knowledge that “B causes A” we obtain the graph in Figure
3(e): “B causes A” implies that there has to be at least one directed (causal) path from B to A. Thus,
the only possible such path B◦→C→ A becomes directed B→C→ A. In other words using prior
knowledge we now additionally infer that “B is causingC”: the association found in Study 1 cannot
be totally explained by the presence of a latent variable. Analyzing independently Study 3 we obtain
the graph of Figure 3(f). In contrast INCA of Study 3 with the rest of data and knowledge results in
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Figure 3(g). This type of graph is called the Pairwise Causal Graph (Triantafillou et al., 2010) and
is presented in detail in Section 5. The dashed edges denote statistical indistinguishability about
the existence of the edge, that is, there exist a consistent causal model with all data and knowledge
having the edge, and one without the edge. Among other interesting inferences, notice that F and
C (two proteins) are not causing each other nor do they have a latent confounder, even though we
never measure them together. This is because if F→C, orC← F , or there exists latent H such that
F←H→C it would also imply an association between F and D. These two are found independent
however, in Study 3.

4. Running Example

To illustrate the main ideas and concepts, as well as provide a proof-of-concept validation in real
data, we have identified the smallest and simplest scenario that we could think of, that makes a
testable prediction. Specifically, we identify a special case that predicts an unconditional depen-
dence Y 2⊥⊥ Z| /0, as well as certain conditional dependencies Y 2⊥⊥ Z|S, for some S 2= /0, between
two variables not measured in the same samples, based on two data sets, one measuring Y , and one
measuring Z.

Example 1 We assume two i.i.d data sets D1 and D2 are provided on variables O1 = {X ,Y,W}
and O2 = {X ,Z,W} respectively. We assume that the independence models of the data sets are
J1 = {〈X ,W |Y 〉} and J2 = {〈X ,W |Z〉}, in other words the one and only independence in D1 is
X ⊥⊥W |Y , and in D2 is X ⊥⊥W |Z. Based on the input data it is possible to induce with existing
causal analysis algorithms, such as FCI the following PAGs from each data set respectively:

P1 : X ◦−◦Y ◦−◦W

and
P2 : X ◦−◦Z ◦−◦W.

These are also shown graphically in Figure 4. The problem is to identify one or all MAGs defined
onO= {X ,Y,Z,W} consistent with the independence models J1 and J2, or equivalently, both PAGs
P1 and P2.

These two PAGs represent all the sound inferences possible about the structure of the data, when
analyzing the data sets in isolation and independently of each other. We next develop the theory for
their causal co-analysis.

5. Integrative Causal Analysis of Data Sets with Overlapping Variable Sets

In this section, we address the problem of integratively analyzing multiple data sets defined over
different variable sets. Co-analyzing these data sets is meaningful (using this approach) only when
these variable sets overlap; otherwise, there are no additional inferences to be made unless other
information connects the two data sets (e.g., the presence of prior knowledge connecting some
variables).

We assume that we are given K data sets {Di}Ki=1 each with samples identically and indepen-
dently distributed defined over corresponding subsets of variables Oi. From these data we can
estimate the independence models {Ji}Ki=1 using statistical tests of conditional independence. A
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X Y W X ⊥⊥ W |Y

X Z W X ⊥⊥ W |Z

Figure 4: Definition of the co-analysis problem of Example 1: two observational i.i.d. data sets
defined on variables O1 = {X ,Y,W} and O2 = {X ,Z,W} are used to identify the inde-
pendence models J1 = {〈X ,W |Y 〉} and J2 = {〈X ,W |Z〉}. These models are represented
by PAGs P1 and P2 shown in the figure. The problem is to identify one or all MAGs
defined on O= {X ,Y,Z,W} consistent with both P1 and P2.

major assumption in the theory and algorithms presented is that the independence models can be
identified without any statistical errors. Section 6 discusses how we address this issue when experi-
menting with real data sets in the presence of statistical errors. We denote the union of all variables
as O= ∪Ki=1Oi and also define Oi ≡O\Oi. We now define the problem below:

Definition 8 (Find Consistent MAG) Assume the distribution ofO is faithful. Given independence
models {J (Oi)}Ki=1, Oi ⊆O, i= 1 . . .K, induce a MAGM s.t., for all i

J (M [Oi
) = J (Pi)

where Pi is the distribution of Oi.

In other words, we are looking for a model (graph) M such that when we consider its marginal
graphs over each variable set Oi, each one faithfully represents the observed independence model
of that data set. We can reformulate the problem in graph-theoretic terms. Let Pi be the PAG
representing the Markov equivalence class of all MAGs consistent with the independence model
Ji. Pi can be constructed with a sound and complete algorithm such as Fast Causal Inference (FCI)
(Spirtes et al., 2001). We can thus recast the problem above as identifying a MAGM such that,

M[Oi
∈ Pi, for all i

(abusing the notation to denote with Pi both the PAG and the equivalence class).
The first algorithm to solve the above problem is ION (Tillman et al., 2008), which identifies

the set of PAGs (defined over O) of all consistent MAGs. Subsequently, in Triantafillou et al.
(2010), we proposed the algorithm Find Consistent MAG (FCM) that converts the problem to a
satisfiability problem for improved computational efficiency. FCM returns one consistent MAG
with all input PAGs. Similar ideas have been developed to learn joint structure from marginal
structures in decomposable graphs such as undirected graphs (Kim and Lee, 2008) and Bayesian
Networks (Kim, 2010). Going back to Example 1, Figure 5 shows all 14 consistent MAGs with the
input PAGs in the scenario. The FCM algorithm arbitrarily returns one of them as the solution to
the problem (of course, the algorithm can be easily modified to return all solutions). Figure 6 (right)
shows the output of ION on the same problem.
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X Y Z W X Y Z W X Y Z W X Y Z W

X Y Z W X Y Z W X Y Z W X Y Z W

X Y Z W X Y Z W X Y Z W X Y Z W

X Y Z W X Y Z W

Figure 5: Solution of the co-analysis problem of Example 1: The 14 depicted MAGs are all and
only the consistent MAGs with the PAGs shown in Figure 4. In all these MAGs the
independencies X ⊥⊥W |Y and X ⊥⊥W |Z hold (and only them). Notice that, even though
the edge X −Y exists in P1 (Example 1), some of the consistent MAGs (the ones on the
right of the figure) do not contain this edge: adjacencies in the input PAGs do not simply
transfer to the solution MAGs. The FCM algorithm would arbitrarily output one of these
MAGs as the solution of the problem of Example 1.

5.1 Representing the Set of Consistent MAGs with Pairwise Causal Graphs

The set of consistent MAGs to a set of PAGs is defined as follows:

Definition 9 (Set of Consistent MAGs) We call the set of all MAGsM over variablesO consistent
with the set of PAGs P = {Pi}Ni=1 over corresponding variable sets Oi, where O = ∪iOi as the Set
of Consistent MAGs with P denoted withM(P).

Unfortunately, M(P) cannot in general be represented with a single PAG: the PAG formalism rep-
resents a set of equivalent MAGs when learning from a single data set and its independence model.
In Example 1 though, notice that the MAGs inM(P) in Figure 5 have a different skeleton (i.e., set
of edges ignoring the edge-arrows), so they cannot be represented by a single PAG.

The PAG formalism allows the set of m-separations that entail the m-separations of all MAGs
in the class to be read off its graph in polynomial time. Unfortunately, there is currently no known
compact representation ofM(P) such that the m-separations that hold for all members of the set can
be easily identified (i.e., in polynomial time).

We have introduced (Triantafillou et al., 2010) a new type of graph called the Pairwise Causal
Graph (PCG) that graphically representsM(P). However, PCG do not always allow them-separations
of each member MAG to be easily identified. A PCG focuses on representing the possible causal
pair-wise relations among each pair of variables X and Y in O.

Definition 10 (Pairwise Causal Graph) We consider the MAGs inM(P) consistent with the set of
PAGs P= {Pi}Ni=1 defined over {Oi}Ni=1. A Pairwise Causal Graph U is a partially oriented mixed
graph over

⋃
iOi with two kinds of edges dashed (!!) and solid (—) and three kinds of endpoints(>,

-, ◦) with the following properties:
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X Y Z W

X Y Z W

X Y Z W

Figure 6: (left) Pairwise Causal Graph (PCG) representing the set of consistent MAGs of Example
1. This PCG is the output of the cSAT+ algorithm on the problem of Example 1. Alterna-
tively, the set of consistent MAGs can be represented with two PAGs (right). This is the
output of the ION algorithm on the same problem.

1. X — Y in U iff X is adjacent to Y in every consistentM ∈M(P).

2. X !! Y in U iff X is adjacent to Y in at least one but not all consistentM ∈M(P).

3. X and Y are not adjacent in U iff they are not adjacent in any consistentM ∈M(P).

4. The right end-point of edge X !! Y is oriented as >, -, or ◦ iff X is into Y in all, none, or at
least one (but not all) consistent MAGM ∈M(P) where X and Y are adjacent. Similarly, for
the left end-point and for solid edges X−Y .

Solid edges, missing edges, as well as end-points marked with“>” and “−” show invariant charac-
teristics that hold in all consistent MAGs. Dash edges and “◦”-marked end-points represent uncer-
tainty of the presence of the edge and the type of the end-point.

The PCG of Example 1 is shown in Figure 6 (left). For computing the PCG one can employ
the cSAT+ algorithm (Triantafillou et al., 2010). There are several points to notice. The invariant
graph features are the solid edge Y — Z and the missing edge between X andW ; these are shared
by all consistent MAGs. The remaining edges are dashed showing that they are present in at least
one consistent MAG. All end-points are marked with “◦” showing that any type of orientation is
possible for each of them. The graph fails to graphically represent certain constraints, for example,
that there is no MAG that simultaneously contains edges X −Y and X −Z; in general, the presence
of an edge (or a particular end-point) in a consistent MAG may entail the absence of some other
edge (or end-point). It also fails to depict the m-separation X ⊥⊥W |Z or the fact that any solution
has a chain-like structure.

Nevertheless, the graph still conveys valuable information: the solid edge X — Y along with the
Faithfulness condition entails that Y and Z are associated given any subset of the other variables,
even though Y and Z are never measured together in any input data set. This is a testable prediction
on which we base the computational experiments in Section 6. Alternatively, the setM(P) could be
represented with two PAGs shown in 6 (right), as the set of MAGs consistent with either one them.
These PAGs form the output of ION on this problem.
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6. Predicting the Presence of Unconditional Dependencies

We now discuss how to implement the identification of the scenario in Example 1 to predict the
presence of dependencies.

6.1 Predictions of Dependencies

Recall that, in Example 1 we assume we are given two data sets on variables O1 = {X ,Y,W} and
O2 = {X ,Z,W}. We then determine, if possible, whether their independence models are respec-
tively J1 = {〈X ,W |Y 〉} and J2 = {〈X ,W |Z〉} by a series of unconditional and conditional tests of
independence. If this is the case, we predict an association between Y and Z. The details of de-
termining the independence model are important. Let us denote the p-value of an independence
test with null hypothesis X ⊥⊥ Y |Z as pX⊥⊥Y |Z. In the algorithms that follow, we make statistical
decisions with the following rules:

• If pX⊥⊥Y |Z ≤ α conclude X 2⊥⊥ Y |Z (reject the null hypothesis).

• If pX⊥⊥Y |Z ≥ β conclude X ⊥⊥ Y |Z (accept the null hypothesis).

• Otherwise, forgo making a decision.

Algorithm 1: Predict Dependency: Full-Testing Rule (FTR)
Input: Data Sets D1 and D2 on variables {X ,Y,W} and {X ,Z,W}, respectively
if in D1 we conclude1

// determine whether J1 = {〈X ,W |Y 〉}
X ⊥⊥W |Y , X 2⊥⊥ Y | /0 , Y 2⊥⊥W | /0 , X 2⊥⊥W | /0 , X 2⊥⊥ Y |W , Y 2⊥⊥W |X2

and in D2 we conclude3

// determine whether J2 = {〈X ,W |Z〉}
X ⊥⊥W |Z , X 2⊥⊥ Z| /0 , Z 2⊥⊥W | /0 , X 2⊥⊥W | /0 , X 2⊥⊥ Z|W , Z 2⊥⊥W |X4

then5

Predict Y 2⊥⊥ Z| /06

Predict either (X ◦−◦Y ◦−◦Z ◦−◦W ) or (X ◦−◦Z ◦−◦Y ◦−◦W ) holds7

else8

Do not make a prediction9

end10

The details are shown in Algorithm 1 named Full-Testing Rule, or FTR for short. We note a
couple of observations. First, the algorithm is opportunistic. It does not produce a prediction when-
ever possible, but only for the case presented in Example 1. In addition, it makes a prediction only
when the p-values of the tests are either too high or too low to relatively safely accept dependencies
and independencies. Second, to accept an independence model, for example, that J1 = {〈X ,W |Y 〉}
all possible conditional and unconditional tests among the variables are performed. If any of these
tests is inconclusive or contradictory to J1, the latter is not accepted and no prediction is made.
In the terminology of Spirtes et al. (2001), we test for a detectable failure of faithfulness. Similar
ideas have also been devised in Ramsey et al. (2006) and Spanos (2006). This rule characteristic
is important in case one would like to generalize these ideas to larger graphs and sets of variables:
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performing all possible tests becomes quickly prohibitive, and the probability of statistical errors
increases.

If however, one assumes the Faithfulness Condition holds among variables {X ,Y,Z,W}, then
it is not necessary to perform all such tests to determine the independence models. Algorithms for
inducing graphical models from data, such as FCI and PC (Spirtes et al., 2001) are based on this
observation to gain computational efficiency. The Minimal-Testing Rule, MTR for short, performs
only a minimal number of tests that together with Faithfulness may entail that J1 = {〈X ,W |Y 〉} and
J2 = {〈X ,W |Z〉} and lead to a prediction. The details are shown in Algorithm 2.

Algorithm 2: Predict Dependency Minimal-Testing Rule (MTR)
Input: Data Sets D1 and D2 on variables {X ,Y,W} and {X ,Z,W}, respectively
if in D1 we conclude1

// determine whether J1 = {〈X ,W |Y 〉}
X ⊥⊥W |Y , X 2⊥⊥ Y | /0 , Y 2⊥⊥W | /02

and in D2 we conclude3

// determine whether J2 = {〈X ,W |Z〉}
X ⊥⊥W |Z , X 2⊥⊥ Z| /0 , Z 2⊥⊥W | /04

then5

Predict Y 2⊥⊥ Z| /06

Predict either (X ◦−◦Y ◦−◦Z ◦−◦W ) or (X ◦−◦Z ◦−◦Y ◦−◦W ) holds7

else8

Do not make a prediction9

end10

6.2 Heuristic Predictions of Dependencies Based on Transitivity

Is it really necessary to develop and employ the theory presented to make such predictions? Could
there be other simpler and intuitive rules that are as predictive, or more predictive? For example,
a common heuristic inference people are sometimes willing to make is the transitivity rule: if Y is
correlated with X and X is correlated with Z, then predict that Y is also correlated with Z. The FTR
andMTR rules defined also check these dependencies: X 2⊥⊥Y inD1 and X 2⊥⊥ Z inD1, so one could
object that any success of the rules could be attributed to the transitivity property often holding in
Nature. We implement the Transitivity Rule (TR), shown in Algorithm 3 to compare against the
INCA-based FTR and MTR rules. Obviously, the Transitivity Rule is not sound in general,2 but on
the other hand, FTR and MTR are also based on the assumption of Faithfulness, which may as well
be unrealistic. The verdict will be determined by experimentation.

6.3 Empirical Evaluation of Predicting Unconditional Dependencies

We have applied and evaluated the three rules against each-other as well as random predictions (prior
probability of a pair being dependent) on real data, in a way that becomes testable. Specifically,
given a data set D we randomly partition its samples to three data sets of equal size, D1, D2, and
Dt . The latter is hold out for testing purposes. In the first two data sets, we identify quadruples of

2. The Transitivity Rule should be sound when the marginal of the three variables is faithful to aMarkov Random Field.
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Algorithm 3: Predict Dependency Transitivity Rule (TR)
Input: Data Sets D1 and D2 on variables {Y,X} and {X ,Z}, respectively
if in D1: Y 2⊥⊥ X | /0 and in D2: X 2⊥⊥ Z| /0 then1

Predict Y 2⊥⊥ Z| /02

else3

Do not make a prediction4

end5

Name Reference # istances # vars Group Size Vars type Scient. domain
Covtype Blackard and Dean (1999) 581012 55 55 N/O Agricultural
Read Guvenir and Uysal (2000) 681 26 26 N/C/O Business

Infant-mortality Mani and Cooper (2004) 5337 83 83 N Clinical study
Compactiv Alcalá-Fdez et al. (2009) 8192 22 22 C Computer science
Gisette Guyon et al. (2006a) 7000 5000 50 C Digit recognition
Hiva Guyon et al. (2006b) 4229 1617 50 N Drug discovering

Breast-Cancer Wang (2005) 286 17816 50 C Gene expression
Lymphoma Rosenwald et al. (2002) 237 7399 50 C Gene expression
Wine Cortez et al. (2009) 4898 12 12 C Industrial

Insurance-C Elkan (2001) 9000 84 84 N/O Insurance
Insurance-N Elkan (2001) 9000 86 86 N/O Insurance

p53 Danziger et al. (2009) 16772 5408 50 C Protein activity
Ovarian Conrads (2004) 216 2190 50 C Proteomics
C&C Frank and Asuncion (2010) 1994 128 128 C Social science
ACPJ Aphinyanaphongs et al. (2006) 15779 28228 50 C Text mining
Bibtex Tsoumakas et al. (2010) 7395 1995 50 N Text mining
Delicious Tsoumakas et al. (2010) 16105 1483 50 N Text mining
Dexter Guyon et al. (2006a) 600 11035 50 N Text mining
Nova Guyon et al. (2006b) 1929 12709 50 N Text mining

Ohsumed Joachims (2002) 5000 14373 50 C Text mining

Table 1: Data Sets included in empirical evaluation of Section 6.3. N- Nominal, O - Ordinal, C -
Continuous.

variables {X ,Y,Z,W} for which the Full-Testing and the Minimal-Testing Rules apply. Notice that,
the two rules perform tests among variables {X ,Y,W} in D1 and among variables {X ,Z,W} in D2;
the rules do not access the joint distribution of Y,Z. Similarly, for the Transitivity Rule we identify
triplets {X ,Y,Z} where the rule applies. Subsequently, we measure the predictive performance of
the rules. In more detail:

• Data Sets: We selected data sets in an attempt to cover a wide range of sample-sizes, di-
mensionality (number of variables), types of variables, domains, and tasks. The decision for
inclusion depended on availability of the data, ease of parsing and importing them. No data
set was a posteriori removed out of the study, once selected. Table 1 assembles the list of data
sets and their characteristics before preprocessing. Some minimal preprocessing steps were
applied to several data sets that are described in Appendix A.

• Tests of Independence: For discrete variables we have used the G2-test (a type of likelihood
ratio test) with an adjustment for the degrees-of-freedom used in Tsamardinos et al. (2006)
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and presented in detail in Tsamardinos and Borboudakis (2010). For continuous variables
we have used a test based on the Fisher z-transform of the partial correlation as described in
Spirtes et al. (2001). The two tests employed are typical in the graphical learning literature.
In some cases ordinal variables were treated as continuous, while in others the continuous
variables were discretized (see Appendix A) so that every possible quadruple {X ,Y,Z,W}
was either treated as all continuous variables or all discrete and one of the two tests above
could be applied.

• Significance Thresholds: There are two threshold parameters: level α below which we accept
dependence and level β above which we accept independence; the TR rule only employs the α
parameter. For FTR these thresholds were always set to αFTR = 0.05 and βFTR = 0.3 without
an effort to optimize them. Some minimal anecdotal experimentation with FTR showed that
the performance of the algorithm is relative insensitive to the values of αFTR and βFTR and
the algorithm works without fine-tuning. Notice that FTR requires 10 dependencies and 2
independencies to be identified, while MTR requires 4 dependencies and 2 independencies,
and TR requires 2 dependencies to be found. Thus, FTR is more conservative than MTR
and TR for the same values of α and β. The Bonferroni correction for MTR dictates that
αMTR = αFTR× 4

10 = 0.02, while for TR we get αTR = αFTR× 2
10 = 0.01 (TR however, does

not require any independencies present so this adjustment may not be conservative enough).
We run MTR with threshold values αMTR ∈ {0.05,0.02,0.002,0.0002}, that is equal to the
threshold of FTR, with the Bonferroni adjustment, and stricter than Bonferroni by one and
two orders of magnitude. The βMTR parameter is always set to 0.3. In a similar fashion for
TR, we set αTR ∈ {0.05,0.01,0.001,0.0001}.

• Identifying Quadruples: In low-dimensional data sets (number of variables less than 150), we
check the rules on all quadruples of variables. This is time-prohibitive however, for the larger
data sets. In such cases, we randomly permute the order of variables and partition them into
groups of 50 and consider quadruples only within these groups. The column named “Group
Size” in Table 1 notes the actual sizes of the variable groups used.

• Measuring Performance: The ground truth for the presence of a predicted correlation is not
known. We thus seek to statistically evaluate the predictions. Specifically, for each predicted
pair of variables X and Y , we perform a test of independence in the corresponding hold-out
test set Dt and store its p-value pX⊥⊥Y | /0. The lower the p-value the higher the probability the
pair is truly correlated. We consider as “accurate” a prediction whose p-value is less than a
threshold t and we report the accuracy of each rule.

Definition 11 (Prediction Accuracy) We denote with MR
i and UR

i the multiset and set respectively
of p-values of the predictions of rule R applied on data set i. The p-values are computed on the
hold-out test set. The accuracy of the rule on data set i at threshold t is defined as:

AccRi (t) = #{p<= t, p ∈MR
i }/|M

R
i |.

We also define the average accuracy over all data sets (each data set is weighted the same)

AccR(t) =
1
20

20

∑
i=1

AccRi (t)
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and the pooled accuracy over the union of predictions (each prediction is weighted the same)

AccR(t) = #{p<= t, i= 1 . . .20, p ∈MR
i }/∑

i
|MR

i |.

The reason MR
i is defined as a multiset stems from the fact that a dependency Y 2⊥⊥ Z| /0 may be

predicted multiple times if a rule applies to several quadruples {Xi,Y,Z,Wi} or triplets {Xi,Y,Z}
(for the Transitivity Rule). The number of predictions of each rule R (i.e., |MR

i |) is shown in Table 2,
while Table 8 in Appendix A reports |UR

i |, the number of pairs X−Y predicted correlated. In some
cases (e.g., data sets Read and ACPJ) the Full-Testing Rule does not make any predictions. Overall
however, the rules typically make hundreds or even thousands of predictions.

Data Set FTR0.05 MTR0.02 TR0.01
Covtype 222 33277 54392
Read 0 9 4713

Infant Mortality 22 2038 3736
Compactiv 135 679 3950
Gisette 423 35824 134213
hiva 554 65967 151582

Breast-Cancer 1833 141643 470212
Lymphoma 7712 188216 394572
Wine 4 73 431

Insurance-C 1839 30569 40173
Insurance-N 226 18270 47115

p53 46647 1645476 1995354
Ovarian 539165 1604131 2015133
C&C 99241 416934 301218
ACPJ 0 219 16574
Bibtex 1 3982 25948
Delicious 856 32803 105776
Dexter 0 2 117
Nova 0 124 3473

Ohsumed 0 64 5358

Table 2: Number of predictions |MR
i | with “Bonferroni” correction for rules FTR, MTR and TR.

Overall Performance: The accuracies at t = 0.05, Acci(t), Acc(t), and Acc(t) for the three
rules as well as the one achieved by guessing at random are shown in Figure 7. The Bonferroni
adjusted thresholds for MTR and TR were used: αFTR = 0.05,αMTR = 0.02,αTR = 0.01 . Similar
figures for all sets of thresholds are shown in Appendix A, Section A.3. Over all predictions, the
Full-Testing Rule achieves accuracy 96%, consistently higher than guessing at random, the MTR
and the TR. The same results are also depicted in tabular form in Table 3, where additionally, the
statistical significance is noted. The null hypothesis is that AccFTRi (0.05)≤ AccRi (0.05), for R being
MTR or TR. The one-tail Fisher’s exact test (Fisher, 1922) is employed when computationally
feasible, otherwise the Pearson χ2 test (Pearson, 1900) is used instead. FTR is typically performing
statistically significantly better than all other rules.
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Figure 7: Accuracies Acci for each data set, as well as the average accuracy Acc (each data set
weighs the same) and the pooled accuracy Acc (each prediction weighs the same). All
accuracies are computed as threshold t = 0.05. FTR’s accuracy is always above 80% and
always higher than MTR, TR, and random guess.

Sensitivity to the α parameter: The results are not particularly sensitive to the significance
thresholds used for α for MTR and TR. Figures 9 (a-b) show the average accuracy Acc and the
pooled accuracy Acc as a function of the alpha parameter used: no correction, Bonferroni correc-
tion, and stricter than Bonferroni by one and two orders of magnitude. The accuracy of MTR and
TR improves as they become more conservative but never reaches the one by FTR even for the
stricter thresholds of αMTR = 0.0002 and αTR = 0.0001.

Sensitivity to t: The results are also not sensitive to the particular significance level t used to
define accuracy. Figure 8 graphs AccRi (t) over t = [0,0.05] for two typical data sets as well as
Acc(t) and Acc(t). The situation is similar and consistent across all data sets considered, which
are shown in Appendix A. The lines of the Full Testing Rule rise sharply, which indicates that the
p-values of its predictions are concentrated close to zero.

Explaining the difference of FTR and MTR: Asymptotically and when the data distribution is
faithful to a MAG, the FTR and the MTR rules are both sound (100% accurate). However, when
the distribution is not faithful, the performance difference could become large because FTR tests
for faithfulness violations as much as possible in an effort to avoid false predictions. This may
explain the large differences in accuracies observed in the Infant Mortality, Gisette, Hiva, Breast-
Cancer, and Lymphoma data sets. When the distribution is faithful, but the sample is finite, we
expect some but small differences. For example when MTR falsely determines that X 2⊥⊥Y | /0 due to
a false positive test, the FTR rule still has a chance to avoid an incorrect prediction by additionally
testing X 2⊥⊥ Y |W . To support this theoretical analysis we perform experiments with simulated data
where the network structure is known. Specifically, we employ the structure of the ALARM (Bein-
lich et al., 1989), INSURANCE (Binder et al., 1997) and HAILFINDER (Abramson et al., 1996)
Bayesian Networks. We sample 20 continuous and 20 discrete pairs of data sets D1 and D2 from
distributions faithful to the network structure using different randomly chosen parameterizations for
the continuous case, and the original network parameters for the discrete case. We do the same for
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Data Set FTR0.05 MTR0.02 TR0.01 Random Guess
Covtype 1.00 1.00 0.91∗∗ 0.83∗∗
Read - 1.00 0.97 0.82

Infant Mortality 0.95 0.64∗∗ 0.36∗∗ 0.11♠
Compactiv 1.00 0.98 0.96∗ 0.93∗∗
Gisette 0.95 0.71♠ 0.59♠ 0.14♠
hiva 0.94 0.61♠ 0.44♠ 0.30♠

Breast-Cancer 0.84 0.49♠ 0.34♠ 0.20♠
Lymphoma 0.82 0.57♠ 0.39♠ 0.23♠
Wine 1.00 0.85 0.81 0.80

Insurance-C 0.97 0.75♠ 0.66♠ 0.37♠
Insurance-N 0.97 0.94∗ 0.86∗∗ 0.34♠

p53 0.97 0.87♠ 0.71♠ 0.54♠
Ovarian 0.99 0.98♠ 0.95♠ 0.91♠
C&C 0.96 0.88♠ 0.80♠ 0.77♠
ACPJ - 0.26 0.07 0.02
Bibtex 1.00 0.68 0.31 0.12∗∗
Delicious 1.00 0.87♠ 0.68♠ 0.23♠
Dexter - 0.50 0.05 0.02
Nova - 0.08 0.06 0.03

Ohsumed - 0.14 0.05 0.02
ACCR 0.96 0.69∗∗ 0.55∗∗ 0.39∗∗
ACCR 0.98 0.88♠ 0.74♠ 0.16♠

Table 3: ACCRi (t) at t = 0.05 with “Bonferroni” correction for rules FTR, MTR, TR and Random
Guess. Marks *, **, and ♠ denote a statistically significant difference from FTR at the
levels of 0.05, 0.01, and machine-epsilon respectively.

sample sizes 100, 500, 1000. Subsequently, we apply the FTR and MTR rules with αFTR = 0.05
and αMTR = 0.02 (Bonferroni adjusted) on each pair of D1 and D2 and all possible quadruples of
variables. The true accuracy is not computed on a test data set Dt but on the known graph instead
by checking whether Y and Z are d-connected given X andW . The mean true accuracies over all
samplings are reported in Figure 10. The difference in performance on the faithful, simulated data
is usually below 5%. In contrast, the largest difference in performance on the real data sets is over
35% (Breast-Cancer), while the difference of the pooled accuracies is 10%. Thus, violations of
faithfulness seem to be the most probable explanation for the large difference in accuracy on the
real data.

6.4 Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:

• Notice that even if all predicted pairs are truly correlated, the accuracy may not reach 100%
due to the presence of Type II errors (false negatives) in the test set.
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Figure 8: Accuracies AccRi (t) as a function of threshold t for two typical data sets along with
ACCR (t) and ACCR (t). The remaining data sets are plot in Appendix A Section A.3.
Predicted dependencies have p-values concentrated close to zero. The performance dif-
ferences are insensitive to the threshold t in the performance definition.

• The FTR rule performs the test for the X-W association independently in both data sets.
Given that the data in our experiments come from exactly the same distribution, they could be
pooled together to perform a single test; alternatively, if this is not appropriate, the p-values
of the tests could be combined to produce a single p-value (Tillman, 2009; Tsamardinos and
Borboudakis, 2010).

• The results show that the Full-Testing Rule accurately predicts the presence of dependencies,
statistically significantly better than random predictions, across all data sets, regardless of
the type of data or the idiosyncracies of a domain. The rule is successful in gene-expression
data, mass-spectra data measuring proteins, clinical data, images and others. The accuracy of
predictions is robustly always above 0.80 and over all predictions it is 0.96; the difference with
random predictions is of course more striking in data sets where the percentage of correlations
(prior probability) is relatively small, as there is more room for improvement.

• The Full-Testing Rule is noticeably more accurate than the Minimal-Testing Rule, due to test-
ing whether the Faithfulness Condition holds in the induced PAGs. The result is important
considering that most constraint-based algorithms assume the Faithfulness Condition to in-
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duce models, but do not check whether the induced model is Faithful. These results indicate
that when the latter is not the case, the model (and its predictions) may not be reliable. On the
other hand, the FTR rule is also noticeably more conservative: the number of predictions it
makes is significantly lower than the one made by MTR. In some data sets (e.g., Compactiv,
Insurance-N, and Ovarian) by using the MTR vs. the FTR one sacrifices a small percentage
of accuracy (less than 3% in these cases) to gain one order of magnitude more predictions.
However, caution should be exercised because in certain data sets MTR is over 35% less
accurate than FTR.

• The Full-Testing Rule is more accurate than the Transitivity Rule. Thus, the performance
of the Full-Testing Rule cannot be attributed to simply performing a super-set of the tests
performed by the Transitivity Rule.

• Predictions are the norm case and not occur in contrived or rare cases only. Even though
there were few or no predictions for a couple of data sets, there are typically hundreds or
thousands of predictions for each data set. This is the case despite the fact that we are only
looking for a special-case structure and the search for these structures is limited within groups
of 50 variables for the larger data sets. The results are consistent with the ones in Triantafillou
et al. (2010), where larger structures were induced from simulated data.

• FTR makes almost no predictions in the text data:3 this actually makes sense and is probably
evidence for the validity of the method: it is semantically hard to interpret the presence of a
word “causing” another word to be present.4

• FTR is an opportunistic algorithm that sacrifices completeness to increase accuracy, as well
as improve computational efficiency and scalability. General algorithms for co-analyzing
data over overlapping variable sets, such as ION (Tillman et al., 2008), IOD (Tillman and
Spirtes, 2011) and cSAT (Triantafillou et al., 2010) could presumably make more predictions,
and more general types of predictions (e.g., also predict independencies). However, their
computational and learning performance on a wide range of domains and high-dimensional
data sets is still an open question and an interesting future direction to pursue.

7. Predicting the Presence of Conditional Dependencies

The FTR and the MTR not only predict the presence of the dependencyY 2⊥⊥ Z| /0 given two data sets
onO1 = {X ,Y,W} andO2 = {X ,Z,W}; the rules also predict that either X ◦−◦Y ◦−◦Z ◦−◦W or
X ◦−◦Z ◦−◦Y ◦−◦W is the model that generated both data sets (see Algorithms 1 and 2). Both
of these models also imply the following dependencies:

Y 2⊥⊥ Z|X ,

3. The only predictions in text data are in Bibtex (1 prediction) and in Delicious (856), which are the only text data sets
that are actually not purely bag-of-words data sets but include variables corresponding to tags. 66% of the predictions
made in Delicious involves tag variables, as well as the single prediction in Bibtex.

4. However, causality between words is still conceivable in our opinion: deciding to include a word in a document may
change a latent variable corresponding to a mental state of the author, which in turn causes her to include some other
word.
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Figure 9: Average accuracy Acc(0.05) (left) and pooled accuracy Acc(0.05) (right) for each rule
as a function of α thresholds used: αMTR ∈ {0.05,0.02,0.002,0.0002} and αTR ∈
{0.05,0.01,0.001,0.0001} corresponding to no correction, Bonferroni correction, and
stricter than Bonferroni by one and two orders of magnitude respectively. FTR’s perfor-
mance is higher even when MTR and TR become quite conservative.

Y 2⊥⊥ Z|W,

Y 2⊥⊥ Z|{X ,W}.

In other words, the rules predict that the dependency between Y and Z is not mediated by either X or
W inclusively. To test whether all these predictions hold simultaneously at threshold t we compute:

p∗ = max
S⊆{X ,W}

pY⊥⊥Z|S

and test whether p∗ ≤ t. The above dependencies are all the dependencies that are implied by
the model but not tested by the FTR given that it has no access to the joint distribution of Y and
Z. Note that we forgo providing a value for p∗ when any of the conditional dependencies can
not be calculated, that is, when there are not enough samples to achieve large enough power, see
Tsamardinos and Borboudakis (2010). The accuracy of the predictions for all dependencies in the
model, named Structural Accuracy because it scores all the dependencies implied by the structure
of model, is defined in a similar fashion to Acc (Definition 11) but based on p∗ instead of p:

SAccRi (t) = #{p∗ <= t, p ∈MR
i }/|M

R
i |.

The SAcc for each FTR, MTR (with “Bonferroni” correction) and randomly selected quadruples is
shown in Figure 7.1; the remaining data sets are shown in Appendix A. There is no line for the TR
as it concerns triplets of variables and makes no predictions about conditional dependencies. Both
FTR and MTR have maximum p-values p∗ concentrated around zero. The curves do not rise as
sharp as those in Figure 8 since the p∗ values are always larger than the corresponding pY⊥⊥Z| /0. We
also calculate the accuracy at t = 0.05 for all data sets (see Table 9 in Appendix A Section A.2).
The results closely resemble the ones reported in Table 3, with FTR always outperforming random
guess. FTR outperforms MTR on most data sets (and hence SACCFTR > SACCMTR; however, over
all predictions their performance is quite similar.
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Figure 10: Difference between ACCFTR and ACCMTR for discrete (left) and continuous (right) sim-
ulated data sets. Results calculated using the “Bonferroni” correction (i.e., FTR0.05 and
MTR0.02). The difference between FTR and MTR is larger than 5% only in two cases
with low sample size (ALARM and HAILFINDER networks); however, the difference
steeply decreases as the sample size increases. No prediction was made for HAIL-
FINDER with discrete data and 100 samples. The difference between FTR and MTR on
faithful data is relatively small.

7.1 Summary, Interpretation, and Conclusions

The results show that both the FTR and MTR rules correctly predict all the dependencies (con-
ditional and unconditional) implied by the models involving the two variables never measured to-
gether. These results provide evidence that these rules often correctly identify the data generating
structure.

8. Predicting the Strength of Dependencies

In this section, we present and evaluate ideas that turn the qualitative predictions of FTR to quanti-
tative predictions. Specifically, for Example 1 we show how to predict the strength of dependence
in addition to its existence. In addition to the Faithfulness Condition, we assume that when the
FTR applies on quadruple {X ,Y,Z,W}, all dependencies are linear with independent and normally
distributed error terms. However, the results of these section could possibly be generalized to more
relaxed settings, for example, when some of the error terms are non-Gaussian (Shimizu et al., 2006,
2011). When the Full-Testing Rule applies, we can safely assume the true structure is one of the
MAGs shown in Figure 5. Given linear relationships among the variables, we can treat these MAGs
as linear Path Diagrams (Richardson and Spirtes, 2002). We also consider normalized versions of
the variables with zero mean and standard deviation of one. Let us consider one of the possible
MAGs:

M1 : X
ρXY
←−− Y ρYZ

−−→ Z ρZW
−−→W
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Figure 11: Structural Accuracies SAccRi (t) as a function of threshold t for two typical data sets
along with SACCR (t) and SACCR (t). The remaining data sets are plot in Appendix A
Section A.2. FTR outperforms MTR on most of the data sets, and thus SACCFTR (t) >
SACCMTR (t). However, since MTR ouperforms FTR on few data sets with a large
number of predictions and so SACCMTR (t) is slightly better than SACCFTR (t) for t <=
0.05.

where ρXY is the regression coefficient of regressing X on Y , that is,

X = ρXYY + ε

and ε is the error term. Since we have standardized the variables, and since the above equation is
simple linear regression, ρXY coincides with the Pearson linear correlation between variables X and
Y . Thus, there is no need to distinguish the two.5 Now notice that in all MAGs in Figure 5 there
are no colliders. Thus, as in M1 above, all regressions are simple regressions and all standardized
regression coefficients coincide with their respective correlation coefficients, and so, for the rest of
the section we will not differentiate between the two.

The rules of path analysis (Wright, 1934) dictate that the correlation between two variables, for
example, ρXY equals the sum of the contribution of every d-connecting path (conditioned on the

5. If Y was a collider then it would have been regressed on multiple variables; in this case ρXY should be the partial
regression coefficient which in general does not coincide with the partial correlation coefficient, even for standardized
variables.
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empty set); the contribution of each path is the product of the correlations on its edges. For M1 the
above rule implies (among others):

ρXZ = ρXY ×ρYZ

because from X to Z there is a single path going through Y . Recall that the 14 consistent MAGs are
represented by the following PAGs:

P1 : X ◦−◦Y ◦−◦Z ◦−◦W

and
P2 : X ◦−◦Z ◦−◦Y ◦−◦W.

All MAGs consistent with P1 entail the same constraints on the coefficients using path analysis;
similarly all MAGs consistent with P2.6 Specifically, if P1 is the true structure we get the constraints

ρXZ = ρXY ×ρYZ, (1)

ρYW = ρYZ×ρZW . (2)

On the other hand, if P2 is the true structure we obtain:

ρXY = ρXZ×ρYZ, (3)

ρZW = ρYZ×ρYW . (4)

We use ρ, r̂, and r to denote actual, predicted, and sample correlations, respectively. The quantities
that we observe are the sample correlation coefficients, denoted by r, for the pairs of variables
measured together. Thus, we can compute the quantities rXY ,rXZ,rYW ,rZW from the data and we
would like to predict ρYZ without available data. From Equations 1, 2, 3, 4 above we obtain four
possible estimators:

If P1 is true : r̂1YZ ≈
rXZ
rXY

from Equation 1 and r̂2YZ ≈
rYW
rZW

from Equation 2, (5)

if P2 is true : r̂3YZ ≈
rXY
rXZ

from Equation 3 and r̂4YZ ≈
rZW
rYW

from Equation 4 (6)

where the superscripts correspond to the equation used to produce the estimate. Notice that, each
possible PAG provides two equations to predict ρYZ , that is, the parameter is overidentified. Also,
the following important relation holds between the estimators:

r̂1YZ =
1
r̂3YZ

and r̂2YZ =
1
r̂4YZ

.

This observation allows us to distinguish between PAGs P1 and P2: if r̂1YZ, r̂2YZ ∈ [−1,+1], then their
reciprocals r̂3YZ, r̂4YZ 2∈ [−1,+1] and so, they are not valid estimates for a correlation. Thus, we can
infer that P1 is the true structure and employ only r̂1YZ, r̂2YZ for estimation. Otherwise, the reverse
holds r̂3YZ, r̂4YZ ∈ [−1,+1], P2 is the true structure and only r̂3YZ, r̂4YZ should be used for estimation.

6. In general, the consistent MAGs may disagree on the unknown correlations. In this case, these parameters may not
identifiable. However, one could analyze all possible MAGs to provide bounds on the unidentifiable quantities in a
similar fashion to Balke and Pearl (1997) and Maathuis et al. (2009).
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Due to sampling errors it is plausible that we obtain conflicting information: r̂1YZ ∈ [−1,+1] but
r̂2YZ 2∈ [−1,+1] (and so r̂3YZ 2∈ [−1,+1] and r̂2YZ ∈ [−1,+1]). In that case, we forgo making any
predictions.

The ramifications of the above analysis are important. In the case where all variables are jointly
measured, the distribution is Faithful, the relations are linear and the error terms follow Gaussian
distributions, the set of statistically indistinguishable causal graphs is determined completely by
the independence model and not by the parameterization of the distribution. However, in the case
of incomplete data, where some variable sets are not jointly observed, the set of indistinguishable
models also depends on the parameters of the distribution, even for linear relations and Gaussian
error terms. In our scenario, by analyzing the estimable parameters we can further narrow down the
set of equivalent consistent MAGs.

At this point in our analysis, we are left with two valid estimators, either r̂1, r̂2 or r̂3, r̂4. All
estimators are computed as ratios. We report the mean of the two valid estimators as the predicted
r̂YZ for a more robust estimation. The above procedure is formalized in Algorithm 4, named FTR-S.

Algorithm 4: Predict Dependency Strength(FTR-S)
Input: Data sets D1 and D2 on variables {X ,Y,W} and {X ,Z,W}, respectively
if Full-Testing Rule(D1, D2) does not apply then return;1

In D1 compute rXY ,rYW ;2

In D2 compute rXZ,rZW ;3

r̂1← rXZ
rXY ;4

r̂2← rYW
rZW ;5

r̂3← rXY
rXZ ;6

r̂4← rZW
rYW ;7

if r̂1, r̂2 ∈ [−1,1] then8

Predict X ◦−◦Y ◦−◦Z ◦−◦W ;9

Predict correlation r̂YZ = 1
2(r̂

1+ r̂2);10

end11

else if r̂3, r̂4 ∈ [−1,1] then12

Predict X ◦−◦Z ◦−◦Y ◦−◦W ;13

Predict correlation r̂YZ = 1
2(r̂

3+ r̂4);14

end15

else16

Make no prediction17

end18

8.1 Empirical Evaluation of the Predictions of Correlation Strength

As in Section 6, we partition each data set with continuous variables to three data sets D1, D2, and
a test setDt . We then apply Algorithm 4 and predict the strength of correlation r̂YZ for various pairs
of variables; we compare the predictions with the sample correlation rYZ as estimated in Dt . The
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results for one representative data set (Lymphoma) are shown in Figure 12(a): there is an apparent
trend to overestimate the absolute value of the sample correlation.

There are several possible explanations for the bias of the method, including violations of nor-
mality, linearity, faithfulness, and even the known bias in the estimation of sample correlation coef-
ficients (Zimmerman et al., 2003) that are used for making the predictions in Algorithm 4. In order
to pinpoint the culprit, we generated data where all assumptions hold from the model M1 shown in
the beginning of this section, where we set the correlations ρXY ,ρYZ,ρZW and the noise terms are
independently and normally distributed. We used the entire spectrum of positive correlation coef-
ficients for all three correlations to examine how the bias varies as a function of these correlations.
We generated 1000 data sets of different sample sizes of 50, 70 and 100 samples. We then used
Equation 1 to estimate rYZ in each experiment. This set of experiments revealed no significant bias
for any of the experimental settings (results are not shown for brevity).
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(a) Lymphoma Data Set (b) Simulated Data where FTR Rule Applies

Figure 12: (a) Predicted (r̂YZ) vs sample (rYZ) correlation for the Lymphoma data set. There is an
obvious trend to over-estimate the correlation in absolute value. (b) Simulated results
from model M1 when ρXZ and ρYW are lower than 0.4 and observed correlations are
found significant (FTR applies). The FTR constraint that the observed correlations are
significant reproduces a similar behavior in the simulated data, explaining the bias.

We next tested whether the bias is an artifact of the filtering by the FTR at Line 1 of the FTR-
S algorithm. We re-run this procedure, but this time we kept only the predicted correlations that
passed the FTR. By comparing Figure 12(a) produced on real data, and 12(b) on simulated data,
we observe a similar behavior, indicating that FTR filtering seems a reasonable explanation for the
bias.

An explanation of this phenomenon now follows. Suppose M1 : X
ρXY
←−− Y ρYZ

−−→ Z ρZW
−−→W is the

data generating MAG. We expect that r̂YZ = rXZ
rXY (the equality r̂YZ =

rYW
rZW also holds but we ignore it

to simplify the discussion). When sample correlations among {X ,Y,Z,W} pass the FTR, this means
that both rXZ and rXY are above a cut-off threshold, as given by the Fisher test. For example, for a
data set with 70 samples, two variables are considered dependent (ρ 2= 0) if their sample correlation

1124



TOWARDS INTEGRATIVE CAUSAL ANALYSIS

is more that 0.2391 (in absolute value), whereas for a data set with 50 samples, this threshold is
0.2852.

Filtering with the Fisher test introduces a bias in the estimation of r. The bias of the estimation
without filtering, ru is Bru = E[ru− ρ] = ru− ρ, while the bias of the estimation with filtering r f
is Brf = E[r f −ρ] = r f −ρ, where |r f | ≥ t. The threshold t, as mentioned above, is the threshold
determined by the Fisher test and depends on sample size. The lower the sample size, the higher
the threshold t, and so the higher the introduced bias Brf . In addition, the lower the |ρ| the higher
the bias Brf .

Figure 13 illustrates these points pictorially. In this example, the distribution of the sample
correlation r of two variables for sample size 70 when the true correlation is ρ ∈ {0.2,0.4}. For
unfiltered estimations, the bias is Bru is 0.0052 and -0.0011 for ρ equal to 0.2 and 0.4 respectively,
whereas for filtered estimations the corresponding values Brf are 0.1187 and 0.0127.

Going back to the prediction r̂YZ = rXZ
rXY notice that the numerator is always lower (in absolute

value) than the denominator. Therefore, when filtered, it is, on average more overestimated than the
denominator. This implies that, on average, the fraction leads to overestimating the absolute value
of ρYZ . The lower the values of |rXZ| and |rXY |, the larger we expect this bias to be. The situation
is similar for all fractions involved in Equations 5 and 6. This hypothesis is confirmed in the data
as illustrated in Figure 14 where the predictions are grouped by the mean absolute values of the
denominators used in their computation.

−0.2 0 0.2 0.4 0.6

ru = 0.2052

rf = 0.3187

Sample Correlations when ρ = 0.2

p-value<0.05

p-value>0.05

0 0.2 0.4 0.6 0.8

ru = 0.3989

rf = 0.4127

Sample Correlations when ρ = 0.4

p-value<0.05

p-value>0.05

(a) (b)

Figure 13: Histograms of the sample correlations for (a) ρ= 0.2 and (b) ρ= 0.4 for sample size 70.
Red bars correspond to cases where the Fisher test returns a p-value > 0.05, whereas
blue bars correspond to p-values < 0.05. The dashed lines indicate the mean sample
correlation for filtered and unfiltered correlations. The lower the ρ , the more overesti-
mated the sample correlations that pass the Fisher test, therefore the difference between
the two means is larger.

The bias should be a function of sample size, the absolute value of the correlations employed
for its computation, and the significance thresholds of the FTR rule. However, a full theoretical
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treatment of the bias is out of the scope of the paper. In the experiments that follow we remove the
linear trend to over-estimate (calibrate) by regressing the sample correlations rYZ on the predicted
r̂YZ: the final calibrated prediction is s× r̂YZ+ i. For each data set the intercept i and slope s of the
regression are estimated by training on the remaining data sets (leave-one-data-set-out validation).
The effect of this calibration is shown in Figure 15. To avoid repetition, the detailed set of results is
presented in the comparative evaluation to statistical matching in Section 9.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

predicted correlation

sa
m
p
le

co
rr
el
at
io
n

mean absolute denominator in [0.1, 0.2]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

predicted correlation

sa
m
p
le

co
rr
el
at
io
n

mean absolute denominator in [0.2, 0.3]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

predicted correlation

sa
m
p
le

co
rr
el
at
io
n

mean absolute denominator in [0.6, 0.7]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

predicted correlation

sa
m
p
le

co
rr
el
at
io
n

mean absolute denominator in [0.8, 0.9]

Figure 14: Predicted vs sample correlations over all data sets, grouped by the mean absolute values
of the denominators used in their computation: predictions computed based on large
correlations have reduced bias. Red regions correspond to higher density areas.

8.2 Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:
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Figure 15: Predicted vs sample correlations on all data sets (a) before, and (b) after calibration.

• FTR coupled with parametric assumptions can be used to predict the strength of dependency
(correlation), providing quantitative predictions. This is equivalent to constructing a predic-
tion model for variables not jointly observed.

• In the case of incomplete data, where some variable sets are not jointly observed, the set of
indistinguishable models also depends on the parameters of the distribution, even for linear
relations and Gaussian error terms. In contrast, in the case where all variables are jointly
measured and the distribution is Faithful the set of statistically indistinguishable causal graphs
is completely determined by the independence model (again, also assuming linearity and
Gaussian error terms).

• In our simple scenario, given the correct structure, path analysis of the induced MAGs pro-
vides easy solutions for predicting the strength of dependence. However, searching for the
correct MAG models by applying the FTR incurs bias on the predictions that should be taken
into account.

9. Comparison Against Statistical Matching

Statistical Matching (D’Orazio et al., 2006) is a integrative analysis procedure for data sets de-
fined over overlapping variable sets. Statistical matching addresses two main tasks named the micro
approach and the macro approach. The micro approach aims to impute the missing values and con-
struct a complete synthetic file, whereas the macro approach aims to identify some characteristics
of the joint probability distribution of the variables not jointly observed. Naturally, construction of
the synthetic data set premises the estimation of the parameters of the joint distribution. We focus
on the macro approach as it presents an alternative to the FTR and MTR.

The problem set up is as follows: variables Y∪X are measured in data set D1, while variables
Z∪X are measured in data set D2. Thus X are the commonly measured variables. The goal is to
estimate the variances and covariances of X∪Y∪Z. The problem cannot be solved without addi-
tional assumptions (Rubin, 1974; D’Orazio et al., 2006). Depending on nature of the assumptions,
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statistical matching is able to produce either intervals or point-estimates for the covariances between
Y and Z. The most typical assumption in the literature able to produce point estimates is the Con-
ditional Independence Assumption: Y ⊥⊥ Z|X. This is an arbitrary assumption that has been long
debated. Alternatively, one can limit the shape of the distribution by imposing parametric forms,
such as multivariate normality. The latter type of assumptions, for the typical distributions, do not
lead to identifiable estimations, but instead provide bounds on the missing covariances. Other ap-
proaches do exist that require prior knowledge, for example, Vantaggi (2008) assumes knowledge
of structural zeros and Cudeck (2000) of the structure of latent factors; such approaches however,
are not directly comparable with FTR and MTR on this task. In this section we briefly present the
main theory and techniques used in statistical matching, and then attempt to empirically compare
against FTR.

9.1 Statistical Matching Based on the Conditional Independence Assumption

The most common assumption that allows identification of the unknown parameters is the condi-
tional independence assumption (CIA): Y ⊥⊥ Z|X. The conditional independence assumption is
usually paired with some parametric assumption. The most common assumption for the shape of a
continuous distribution of the variables involved in the model is multivariate normality. In this case,
the parameters of the jpd are the mean vector and the covariance matrix. The covariance Matrix for
X∪Y∪Z can be written as:

Σ=





ΣXX ΣXY ΣXZ
ΣYX ΣYY ΣYZ
ΣZX ΣZY ΣZZ





where the unknown parameter is ΣYZ. The CIA assumption imposes that the covariance matrix of
Y and Z given X is null, thus,

ΣYZ = ΣYXΣXX−1ΣXZ.

In case we have standardized variables, and Y= {Y} and Z= {Z}, the covariance matrix becomes

Σ=





ρXX ρXY ρXZ
ρYX 1 ρYZ
ρZX ρZY 1





and so
ρYZ = ρYXρXX−1ρXZ.

This formula can be used to produce a prediction r̂YZ for the correlation coefficient of the not
commonly observed variables Y and Z. Recall that, we assume we are given a data set D1 on
variables X∪Y and a data set D2 on X∪Z. The parameters ρXY and ρXZ can be estimated from D1
and D2 respectively, while the parameters ρXX can be estimated from either or both data sets.

In an applied setting, there is usually also a preprocessing step attempting to identify a subset
of the common variables to be used in the matching process. This step serves mainly computational
efficiency and interpretability purposes and does not affect the asymptotic properties of the proce-
dure. The main method suggested in D’Orazio et al. (2006) is to disregard all variables in X that are
independent with both Y and Z. The details are described in Algorithm 5.

Even though the conditional independence assumption seems quite arbitrary, it is intuitively
justified in certain cases. When the number of common variables is large it is unlikely that Y
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Algorithm 5: Predict Correlation: Statistical Matching Rule (SMR)
Input: Data sets D1 and D2 on variables {V∪Y} and {V∪Z}, respectively
ψ1← {V ∈ V :V ⊥⊥ Y | /0} in D11

ψ2← {V ∈ V :V ⊥⊥ Z| /0} in D22

X← V\ (ψ1∩ψ2)3

Predict r̂YZ = ˆΣYX ˆΣXX
−1 ˆΣXZ4

provides additional information for Z, than what X already provides. In other words, we expect
Y ⊥⊥ Z|X to hold or hold approximately. Using graphical model theory one can better formalize
this intuition:

Theorem 12 Consider a Bayesian Network of maximum degree k faithful to a distribution defined
over a set of variables V = X∪Y ∪ Z, |V| = N. Then, the CIA Y ⊥⊥ Z|X holds if and only if
Y 2∈Mb(Z), where Mb(Z) is the Markov Boundary of Z in the context of variables V; if Y and Z are
chosen at random the probability of the CIA being violated is upper bounded by k2/N.

Proof In a faithful distribution over V, each variable Y has a unique Markov Boundary Mb(Y )
(Pearl, 2000) that coincides with the parents, children, and parents of children (spouses) of Y in any
network faithful to the distribution. It is also easy to see that Y ∈Mb(Z)⇔ Z ∈Mb(Y ). Finally, the
Mb(Y ) and any of its supersets d-separates Y from any other node Z. Thus, when Z 2∈Mb(Y ), then
conditioned on the remaining variables (superset ofMb(Y ))Y becomes d-separated and independent
of Z. Thus, the CIA holds. Conversely, if Z ∈Mb(Y ) then it is either a neighbor of Y or a spouse.
If it is a neighbor it cannot be made independent of Y conditioned on any subset of the variables
(Spirtes et al., 2001). If it is a spouse of Y , then conditioned on the remaining variables (which
includes the common children) it is d-connected to Y and thus dependent. Thus, the CIA does not
hold.

Now, the Markov Boundary of Y is a subset of the nodes that are reachable from Y within two
edges. If the network has degree at most k the probability that a randomly chosen Y belongs to the
Markov Boundary of Z is less than k2/N.

Thus, when the sparsity remains the same, the probability of a violation of the CIA between two
randomly selected variables decreases with the number of participating variables N. The theoretical
results is illustrated in Figure 16 on simulated data. The figure shows the results of the statistical
matching procedure described in Algorithm 5 for simulated continuous data from a network based
on the ALARM Network (Beinlich et al., 1989).7 To recreate the scenario above we generated two
data sets D1 and D2 of 1000 samples each from the distribution of the network. We then applied
the statistical matching rule described in Algorithm 5 for each pair of variables, considering that
the rest of the variables in the network are jointly measured in both data sets. Finally, we generated
a third data set to test the predictions of the method. The pairs of variables are partitioned in two
categories: pairs of variables that belong to each other’s Markov Boundary, and pairs of variables
that do not belong to each other’s Markov Boundary. As expected, the results are poorer for the

7. The ALARM network a well-known network with 37 variables. We used the skeleton of ALARM to simulate a
conditional linear gaussian network with random parameters.
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pairs of variables that belong to each other’s Markov Boundary, with a mean absolute error of
0.1649±0.1088, compared to a mean absolute error of 0.0326±0.0271 for pairs that do not belong
to each other’s Markov Boundary.

In the context of Maximal Ancestral Graphs, defining the Markov Boundary is more compli-
cated and its cardinality cannot be likewise bounded (Pellet and Elisseeff, 2008). Nevertheless, we
still expect that, in a sparse network containing a large number of jointly measured variables, the
probability that Y ∈Mb(Z) is low. We therefore expect that, when the number of common variables
is large, the CIA will often hold for randomly-chosen pairs of variables that have not been observed
together. If, however, the set of variables measured in common is small, we have no good reason to
expect that the conditional independence assumption holds.
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Figure 16: Predicted vs actual sample correlations using the Statistical Matching Rule for simulated
data from the ALARM network. For each pair of variables, prediction is based upon the
subset of the remaining 35 variables that are determined significantly correlated with
either Y or Z at level 0.05 . The CIA holds when Y 2∈ Mb(Z) in which case the mean
absolute error is 0.0326± 0.0271; in contrast, when Y ∈Mb(Z) the CIA does not hold
and the mean absolute error is 0.1649±0.1088.

9.2 Empirical Evaluation of SMR and FTR-S

In this section, we empirically compare the SMR and FTR-S methods for predicting the correlation
r̂YZ between two variables Y and Z never jointly observed. Both SMR and FTR-S procedures
provide such predictions, however, they follow different approaches that makes their comparison
not straightforward:

• SMR provides a prediction for all cases. FTR-S provides a prediction given it identifies a
specific structure that entails a significant correlation.
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Data Sets SMRG SMRQ FTR-S
ACPJ 445121 509000 0

Breast-Cancer 436093 356000 1005
C&C 5050 1000 70367

Compactiv 231 1000 108
Insurance-C 3486 1000 1372
Lymphoma 180074 147000 3897
Ohsumed 124505 122000 0
Ovarian 52675 43000 273456
Wine 66 495 4
p53 132299 108000 33934

Table 4: Number of predictions

• SMR can be applied to sets X with more than two commonly measured variables and get
leverage from all available information. FTR-S on the other hand is applicable only when the
number of common variables is two.

We applied the SMR method on all continuous data sets, simulating two scenarios. In the first sce-
nario, SMR is applied on two data setsD1 andD2 defined over a quadruple of variables {X ,Y,Z,W},
where only X ,W are jointly measured in both. The pairs of D1, D2 are simulated by considering
randomly chosen variable quadruples from each variable group of each data set of Table 1; as in
all experiments, D1 and D2 contain a disjoint third of the original samples. This scenario simulates
a case where SMR is applied on low dimensional data; we denote it as SMRQ. In this case, SMR
has the same information available for making predictions as FTR-S. Since the number of possible
quadruples is computationally prohibitive, we apply SMRQ on 1000 randomly chosen quadruples
from each variable group of each data set.8 In the second scenario, SMR is applied to data sets
of higher-dimensionality. Specifically, we apply SMR to all pairs of variables in the same group
(see Section 6), considering the remaining 48 variables in the group as the common variables X.
We name this case SMRG. The same leave-one-data-set-out calibration method was used for both
SMR cases and FTR-S. Figures 17, 18, 19 and 20 plot the predicted vs. the sample estimates of
the correlations for SMRG, SMRQ and FTR-S for all the continuous data sets used in the study. The
figures also present the coefficient of determination R2, the percentage of variance explained by the
predictions. R2 is also interpreted as the reduction in uncertainty obtained by using a linear function
of r̂ to predict r vs. predicting r by its expected value E(r). Table 5 shows the correlation between
predicted and sample estimates for all methods and data sets. Notice that R2 is simply computed
as the square of the correlation. Other metrics of performance (Mean Absolute Error and Mean
Relative Absolute Error) are also presented in the Appendix A, Tables 10, 11.

8. Notice that FTR is typically executed much more efficiently than SMRQ, because of the possible pruning of the search
space, for example, if X and Y are independent, there is no need to test whether the rule applies on any quadruples of
the form 〈X ,Y,Z,W 〉. For the SMRQ rule instead, one needs to exhaustively consider all quadruples.
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Data Sets SMRG SMRQ FTR-S
ACPJ 0.05 [0.04;0.05] 0.00 [0.00;0.01] -

Breast-Cancer 0.55 [0.55;0.55] 0.25 [0.24;0.25] 0.88 [0.87;0.90]
C&C 0.99 [0.99;0.99] 0.68 [0.65;0.71] 0.91 [0.91;0.91]

Compactiv 0.97 [0.96;0.98] 0.49 [0.44;0.54] 0.88 [0.83;0.92]
Insurance-C 0.83 [0.82;0.84] 0.47 [0.42;0.51] 0.90 [0.89;0.91]
Lymphoma 0.60 [0.60;0.60] 0.32 [0.31;0.32] 0.50 [0.47;0.52]
Ohsumed 0.02 [0.01;0.03] 0.01 [0.00;0.01] -
Ovarian 0.62 [0.62;0.63] 0.50 [0.50;0.51] 0.14 [0.14;0.14]
Wine 0.83 [0.74;0.90] 0.58 [0.52;0.64] 0.99 [0.47;1.00]
p53 0.91 [0.91;0.91] 0.45 [0.44;0.45] 0.87 [0.87;0.87]

Mean over data sets 0.64 [0.62;0.65] 0.38 [0.35;0.40] 0.76 [0.68;0.77]
On all predictions 0.73 [0.73;0.73] 0.58 [0.57;0.58] 0.89 [0.89;0.89]

Table 5: Correlations among predicted r̂YZ and sample-estimated rYZ; the 95% confidence intervals
are shown in brackets.

9.3 Summary, Interpretation, and Conclusions

The CIA assumption is the most common assumption in statistical matching to produce point-
estimates of the unknown distribution parameters. In comparison to FTR-S, we note the following:

• When predictions are based on only 2 common variables, statistical matching based on the
CIA (SMRQ) is unreliable in several data sets and particularly the text categorization ones:
the correlation of predicted vs. sample estimates in ACPJ, Breast-Cancer, and Ohsumed is
less than 0.3 (Table 4). In general, SMR tends to predict a zero correlation between the two
variables Y and Z: the point-clouds in Figures 17, 18, 19 and 20 are vertically oriented around
zero. While SMR gives a prediction in every case, it is too liberal in its predictions and the
CIA is often violated, as expected by Theorem 12. Over all predictions, the correlation of
predicted vs. sample estimates is 0.58.

• When predictions are based on larger sets of common variables statistical matching based on
the CIA (SMRG) is more successful. Over all predictions, the correlation of predicted vs.
sample estimates is 0.73. The method still fails however, on the text data (ACPJ, Ohsumed)
where the predictions are not correlated at all with the sample estimates. On the other hand,
FTR-S does not make any predictions on these data sets.

• FTR-S’s predictions are highly correlated with sample estimates (0.89 correlation), which is
the highest correlation achieved by any of the three methods. However, we point out that these
metrics are computed on different sets of predictions and their comparative interpretation is
not straightforward (see Appendix A, Section A.2 for more metrics and discussion).

• FTR-S is a novel alternative to statistical matching based on the CIA. FTR-S predictions are
better correlated with the sample estimates of the unknown parameters, particularly when the
number of common variables is low; we thus recommend that FTR-S should be preferred than
existing statistical matching alternatives making the CIA in such cases.
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Figure 17: Predicted vs Sample Correlations for SMRQ, SMRG, FTR-S

9.4 Statistical Matching Based on the Assumption of Multivariate Normality

The conditional independence assumption attempts to overcome the lack of joint information of
the variables of interest. However, it can often be a misspecified assumption as pointed out in the
literature (D’Orazio et al., 2006) and our simulated results above. An alternative approach, is to
limit oneself to an assumption involving only the shape of the distribution. The most common
distributional assumption adopted by statistical matching techniques for continuous variables is
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Figure 18: Predicted vs Sample Correlations for SMRQ, SMRG, FTR-S

multivariate normality. Of course, multivariate normality alone does not allow the estimation of
the parameters of the model. It does, however, impose some constraints on the parameters. These
constraints stem from the positive semi-definiteness of the covariance matrix in multivariate normal
distributions, thus, they naturally apply to any distribution with a positive semi-definite covariance
matrix.
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Figure 19: Predicted vs Sample Correlations for SMRQ, SMRG, FTR-S

Let us consider again standardized variables {X,Y,Z} and assume their joint is distributed as
multivariate normal with correlation / covariance matrix Σ (which is symmetric)

Σ=





ρXX ρXY ρXZ
ρYX 1 ρYZ
ρZX ρZY 1



 .

1135



TSAMARDINOS, TRIANTAFILLOU AND LAGANI

R
2:0.831

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

predicted correlation

s
a
m

p
le

c
o
r
r
e
la

t
io

n
SMRG

R
2:0.200

−1 −0.5 0 0.5 1

predicted correlation

SMRQ

R
2:0.758

−1 −0.5 0 0.5 1

predicted correlation

FTR-S

(a) p53

R
2:0.532

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

predicted correlation

s
a
m

p
le

c
o
r
r
e
la

t
io

n

SMRG

R
2:0.332

−1 −0.5 0 0.5 1

predicted correlation

SMRQ

R
2:0.793

−1 −0.5 0 0.5 1

predicted correlation

FTR-S

(b) All predictions

Figure 20: Predicted vs Sample Correlations for SMRQ, SMRG, FTR-S

The unknown quantity in the problem is parameter ρYZ . One can start from the requirement that Σ
must be positive semi-definite to prove that ρYZ must lie within the interval C±

√

(D) (Moriarity
and Scheuren, 2001), where

C =
p

∑
i=1

p

∑
j=1

ρYXi×B
i, j×ρZXj

and
D= [1−

p

∑
i=1

p

∑
j=1

ρYXi×B
i, j×ρYXj ]× [1−

p

∑
i=1

p

∑
j=1

ρZXi×B
i, j×ρZXj ]

where p is the cardinality of set X, and B is the inverse of ρXX, and Bi, j is B’s i, j element. This
constraint is equivalent stating that the partial correlation ρYZ|X parameter can range freely in the
interval [-1, 1]. Instead, the CIA specifies that ρYZ|X = 0, that is, the mid-point of the interval.

The formula above can be applied to quadruples of variables to produce bounds for the unknown
parameter ρYZ . The usefulness of such a prediction depends, of course, on the length of the predicted
interval. In case the interval does not include 0, we may also say that the method predicts an
unconditional independence for Y and Z. This procedure is described in Algorithm 6. In practice,
we apply Algorithm 6 using the sample estimates r̂ in place of the unknown population parameters
ρ. The sample estimates are the maximum likelihood ones. The uncertainty of the estimation could
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be considered in the computation of the intervals by considering the worst case over all correlation
estimates r̂ that belong in the 95% confidence interval of their corresponding ρ. However, in this
case the algorithm would produce wider intervals and thus fewer predictions.

Algorithm 6: Predict Dependency and Its Strength: Multivariate Normality Rule (MNR)
Input: Data sets D1 and D2 on variables {X ,Y,W} and {X ,Z,W}, respectively
Compute sample correlation matrix Σ (except unknown quantity ρYZ) ;1

MNI← [C−
√

(D),C+
√

(D)];2

if 0 2∈MNI then3

Predict Y 2⊥⊥ Z| /0 ;4

end5

Predict r̂XY ∈MNI6

9.5 Empirical Evaluation and Comparison of MNR and FTR

In order to evaluate how often MNR provides a prediction, we applied Algorithm 6 on real data.
Applying Algorithm 6 on all possible combinations of four variables is prohibitive. Thus, to evaluate
the MNR we randomly sampled 1000 quadruples from each group of 50 variables in each data set,
for all data sets with continuous variables; For the Wine data set we generated all possible 495
quadruples out of its 12 variables.

Table 6 reports MNR performances on the randomly chosen quadruples. The columns of the
table present the total number of randomly chosen quadruples (1000× the number of chunks, except
for the Wine data set), the number of predictions made by MNR on these random quadruples, the
accuracies AccMNR and AccFTR at threshold t = 0.05. We then calculate (project) the expected
number of predictions by the MNR rule, had it been applied on all possible quadruples. The final
column presents the ratio of the number of predictions by the FTR rule over the expected number of
predictions made by the MNR rule on all possible quadruples.

First, notice that MNR, similarly to FTR, does not provide any predictions for the text data sets
ACPJ and Ohsumed data sets. Second, the rule is in general, highly accurate and on par with FTR.
The most important observation however, is that the MNR does not outperform FTR in the number
of predictions. The number of predictions made by FTR ranges from about 25% to 50% of those
made by MNR (in four out of eight data sets) to 4 to 6 times more than MNR in the remaining data
sets.

To examine whether the predictions of MNR rule overlap with those of FTR, we applied the
MNR rule on the quadruples where FTR makes a prediction. The comparison is shown in Table
7. MNR is able to predict a dependence only for 1% to 25% of FTR predictions. The results in
both Tables 6 and 7 clearly indicate that the two methods share only a small subset of common
predictions, and thus neither method subsumes the other.

9.6 Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:

• It is possible to predict the presence of dependencies and bound their strength with distribu-
tional assumptions other than Faithfulness, such as multivariate normality.
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Data Set # rand. quads #MNR predictions ACCMNR ACCFTR #FTR predictions
sampled on sampled quads / #expected MNR predictions

on all quads
Breast-Cancer 356000 2 0.50 0.84 3.98

C&C 1000 45 1.00 0.96 0.02
Compactiv 1000 30 1.00 1.00 0.62
Insurance-C 1000 4 0.75 0.97 0.24
Lymphoma 147000 12 0.67 0.82 2.79
Ovarian 43000 391 0.99 0.99 5.99
p53 108000 39 1.00 0.97 5.19
Wine 495 7 1.00 1.00 0.57

Table 6: A comparison between FTR vs. MNR in predicting unconditional dependencies on ran-
domly sampled quadruples. The columns are: the data set name, the total number of
randomly sampled quadruples (1000 × the number of chunks, except for the Wine data
set), the number of predictions made by MNR on those, the accuracies AccMNR and AccFTR
at threshold t = 0.05. The final column presents the ratio of the number of predictions by
the FTR rule over the expected number of predictions made by the MNR rule on all possi-
ble quadruples. The number of predictions made by FTR ranges from about 25% to 50%
of those made by MNR to 4 to 6 times more than MNR.

Data Set #FTR #MNR predictions % common ACC
predictions restricted to cases predictions of both MNR

FTR makes a prediction and FTR
Breast-Cancer 1833 32 0.02 1.00

C&C 99241 10640 0.11 1.00
Compactiv 135 28 0.21 1.00
Insurance-C 1839 15 0.01 1.00
Lymphoma 7712 681 0.09 0.97
Ovarian 539165 59327 0.11 1.00
p53 46647 413 0.01 1.00
Wine 4 1 0.25 1.00

Table 7: A comparison between FTR vs. MNR in predicting unconditional dependencies on the
cases where both rules apply.

• The sets of predictions entailed by assuming Faithfulness (FTR) and multivariate normality
(MNR) do not overlap to a significant degree and neither method subsumes the other and they
could be considered complementary. For example, the MNR makes a prediction only in the
1% to 25% of cases where FTR applies. In addition, in some data sets MNR makes only 2%
of the number of FTR predictions, while in others MNR makes 6 times more predictions.
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10. Related Work

Whole sub-fields have been developed to address the problem of integrative analysis, that we re-
view briefly. Statistical matching has been reviewed, presented, and compared against in Section 9.
Meta-Analysis focuses on the co-analysis of studies with similar sampling and experimental design
characteristics with the purpose of making inferences about a single association. Meta-Analysis
in Statistics (O’Rourke, 2007) combines the results of several studies to address a set of related
research hypotheses. While meta-analysis focuses on a pair-wise association of a variable with an
outcome of interest, a recent interesting extension addresses the problem of estimating the multi-
variate associations (for example, in the form of a regression model) with the target variable (Samsa
et al., 2005); such methods often appear under the names of meta-regression and univariate synthe-
sis (Zhou et al., 2009). The main idea of the latter is to assume a parametric form of the regression
model and estimate the sufficient statistics from several homogeneous (in terms of being conducted
on the same population, experimental conditions, sampling, etc.) studies that may not measure all
variables (risk factors in this context). Both statistical matching and meta-analysis’s scope does not
extend to other sources of heterogeneity of the data sets, such as different experimental conditions.

In Computer Science and Machine Learning, the field of Transfer Learning (Pan and Yang,
2010) represents a main effort in integrative analysis. In Transfer Learning, successful search con-
trol strategies, model priors, and other characteristics transfer among different domains and/or tasks.
When the task (target) is the same but the domains (populations) are different, this type of Transfer
Learning is called Domain Adaptation. In this case, typically one would like to translate the esti-
mated conditional distribution Ps(Y |X) used for prediction in a source distribution to a target distri-
bution Pt(Y |X) that may be different (e.g., has a different marginal class distribution). Given that
such methods are typically non-causal based, they cannot transfer to data sets where manipulations
have been performed (causal methods could transfer predictive models to manipulated distributions
as we show in Tsamardinos and Brown 2008, also shown in Maathuis et al. 2010). In addition, the
input space for the predictors X has to be common. When the domain is the same (same distribu-
tion), but the tasks (target variables) are different, the type of Transfer Learning is calledMulti-Task
Learning. This type of learning attempts to simultaneously build models for several tasks in an
effort to use one for leveraging the performance on the others. Typically this is performed by using
a shared representation and learning common induced features. Again, these inferences are limited
as they can only combine studies under the same sampling and experimental conditions on the same
sets of variables.

Other fields may seem related in a first glance, but are orthogonal to the proposed research.
The field of Relational Learning (Getoor and Taskar, 2007) does not really address the problem of
learning from different data sets/studies over different samples, rather than a single data set (the one
stemming from implicitly propositionalizing the database) in the form of relational tables. Simi-
larly, the field of Distributed Learning (Cannataro et al., 2002) is restricted to designing time and
communication-efficient analysis of what is essentially a single data set stored in different locations.

Other related work includes efforts to combine models (that may be developed from different
data sets) on the same system but on different scales (Gennari et al., 2008). Typically, such methods
involve mechanical models using differential equations and are not concerned with statistical mod-
els. In addition, these methods concern vertical integration at different temporal or spatial scales,
while INCA proposes a horizontal integration of studies.
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11. Discussion and Conclusions

We presented the basic idea and concept behind Integrative Causal Analysis (INCA), an approach
for co-analyzing data sets that are heterogeneous in several aspects, such as in terms of measured
variables and experimental conditions in the context of available prior knowledge. In this approach,
one attempts to identify one or all causal models that are consistent with all available data and pieces
of prior knowledge, and reason with them. Depending on the assumptions connecting causality with
estimable quantities, co-analysis may lead to more inferences than independent analysis of the data
sets.

In this paper, we focus on the problem of analyzing data sets over different variable sets. We
employ Maximal Ancestral Graphs (MAGs) to model independencies in the data distributions and
assume the latter are faithful to some MAG. As a proof-of-concept, we identify the simplest sce-
nario where the INCA idea provides testable predictions, and specifically it predicts the presence
and strength of an unconditional dependence, and a chain-like causal structure (entailing several
additional conditional dependencies). The idea is implemented in the following algorithms: the
Full-Testing Rule (FTR), the Minimal-Testing Rule (MTR) and FTR-S that additionally predicts
the strength of the dependence.

The empirical results show that FTR and MTR are able to accurately predict the presence and
strength of unconditional dependencies, as well as all the conditional dependencies entailed by the
causal model. These predictions are better than chance and cannot be explained by the transitivity
of dependencies often holding in Nature. Against typical statistical matching algorithms, FTR-S’s
predictions are better correlated with sample estimates particularly when the number of common
variables is low.

Inducing causal models from observational data has been long debated (Pearl, 2000; Spirtes
et al., 2001; Pearl, 2009). In our experiments, we do not employ the causal semantics of the models
to predict the effect of manipulations but their ability to represent independencies, based on the
assumption of Faithfulness. The results support that graphical models and the assumption of Faith-
fulness can make testable predictions and can be exploited for novel statistical inferences. While this
is not a direct proof in favor of the causal semantics of the models, we do note that both Faithfulness
and MAGs have been inspired by theories of probabilistic causality.

The empirical results show that the proposed algorithms’ predictions are abundant, indicating
the potential of the approach. Extending the theory and algorithms for increased efficiency, statisti-
cal robustness, range of tasks, data types, types of prior knowledge, and settings seems a promising
direction that may allow the co-analysis of a large part of available studies and data sets.
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Appendix A. Supplementary Material

In this appendix we provide supplementary information for the data sets used in the experiments
presented in this paper, as well as some additional results.
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A.1 Data Sets Preprocessing

Missing data imputation and discretization were separately performed, when necessary, on each
sub-data-set D1, D2 and Dt . Continuous variables X were discretized in three intervals:

• ]− inf; mean(X)− std (X)]

• [mean(X)+ std (X) ; inf[

• remaining values.

Missing data were substituted with mean values (continuous, ordinal variables) or encoded as a
distinct value (nominal variables). Our implementation of theG2 test requires that nominal variables
with n distinct values are econded as 0 . . .n−1. When necessary we re-encoded nominal variables
for respecting this convention.

A.1.1 ACPJ

Preprocessing steps: 2765 variables were found constant in at least one sub-data-set and were con-
sequently eliminated from the analysis.
Download information: Aliferis et al. (2010) kindly provided us with the data.

A.1.2 BIBTEX

Preprocessing steps: No particular preprocessing steps.
Download information: The data set is freely available from the MULAN project website:
http://sourceforge.net/projects/mulan/ (checked on February 10, 2011).

A.1.3 C&C

Preprocessing steps: The first five attributes were eliminated because they do not carry relevant
information. Columns with more than 80% of missing values were removed.
Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime (checked on February 10, 2011).

A.1.4 COMPACTIV

Preprocessing steps: No particular preprocessing steps.
Download information: The data set is freely available from the KEEL software web site:
http://sci2s.ugr.es/keel/dataset.php?cod=49 (checked on February 10, 2011).

A.1.5 COVTYPE

Preprocessing steps: Attributes 1 . . .10 were discretized.
Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/Covertype
(checked on February 10, 2011).
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A.1.6 DELICIOUS

Preprocessing steps: No particular preprocessing steps.
Download information: The data set is freely available from the MULAN project website:
http://sourceforge.net/projects/mulan/ (checked on February 10, 2011).

A.1.7 HIVA

Preprocessing steps: No particular preprocessing steps.
Download information: The data set is freely available from the web site:
http://www.causality.inf.ethz.ch/al data/HIVA.html (checked on February 10, 2011).

A.1.8 INSURANCE-C

Preprocessing steps: All variables were considered as continuous; nominal variables (namely, at-
tributes 1 and 5) were eliminated.
Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+(COIL+2000)
(checked on February 10, 2011).

A.1.9 INSURANCE-N

Preprocessing steps: All variables were considered as nominal.
Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+(COIL+2000)
(checked on February 10, 2011).

A.1.10 P53

Preprocessing steps: Samples with missing values were eliminated from the analysis (180 rows in
total).
Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/p53+Mutants (checked on February 10, 2011).

A.1.11 READ

Preprocessing steps: Continuous variables (namely attributes 24, 25 and 26) were discretized.
Download information: The data set is freely available from the web site:
http://funapp.cs.bilkent.edu.tr/DataSets/ (checked on February 10, 2011).

A.1.12 WINE

Preprocessing steps: Two different data sets are available, respectively about red and white wines.
For our experimentation we used only the white wines data set (the one with more samples).
Download information: The data set is freely available from the UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/datasets/Wine+Quality (checked on February 10, 2011).
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Data Set FTR0.05 MTR0.02 TR0.01
Covtype 59 810 1431
Read 0 9 260

Infant Mortality 10 427 1170
Compactiv 69 193 231
Gisette 330 12340 31648
hiva 366 16174 34977

Breast-Cancer 1371 68077 228610
Lymphoma 4473 51794 122857
Wine 3 44 66

Insurance-C 394 2212 3264
Insurance-N 95 1002 2527

p53 15181 95195 129372
Ovarian 41600 48376 52646
C&C 4168 5048 5050
ACPJ 0 190 15994
Bibtex 1 1858 16087
Delicious 524 6042 21351
Dexter 0 2 116
Nova 0 115 3280

Ohsumed 0 60 5227

Table 8: Number of unique predictions |UR
i | with “Bonferroni” correction for rules FTR, MTR, TR

and Random Guess

A.1.13 BREAST-CANCER, DEXTER, GISETTE, INFANT-MORTALITY, LYMPHOMA, NOVA,
OHSUMED, OVARIAN

Preprocessing steps: No particular preprocessing steps.
Download information: Aliferis et al. (2010) kindly provided us with the data.

A.2 Supplementary Tables

Table 10 presents the performance of the algorithms as measured by the Mean Absolute Error
(MAE) of the predictions r̂YZ and the sample-estimates rYZ: 1/N ·∑ |r̂i− ri|, where N is the to-
tal number of predictions of an algorithm. This metric may favor algorithms that often predict zero
correlations on data sets where the number of dependencies is low. This is the case of SMRG and
SMRQ on the ACPJ data set (see Figure 17a). SMRG and SMRQ achieve an MAE of only 0.01 and
0.02 respectively because they always predict values close to zero, while failing to detect any high
correlation. The corresponding correlations between predictions and sample-estimates on the same
data set are low: 0.05 and 0.00 respectively.

Table 11 presents the performance of the algorithms as measured by the Mean Relative Absolute
Error (MRAE) of the predictions r̂YZ and the sample-estimates rYZ: 1/N ·∑ |r̂i− ri|/|ri|, where N is
the total number of predictions of an algorithm. This metric penalizes more algorithms that attempt
predictions of small correlations (such as SMR) because even a small absolute error may lead to a
high relative error. For example, SMR on the Ovarian data set has a high MRAE (on the order of
109 despite a correlation between predictions and sample-estimates of 0.62 .
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Data Set FTR0.05 MTR0.02 Random Quadruple
Covtype 1.00 0.99 0.74♠
Read - - -

Infant Mortality 0.60 0.44 0.10∗∗
Compactiv 0.87 0.93∗ 0.83
Gisette 0.80 0.59♠ 0.11♠
hiva 0.71 0.47♠ 0.22♠

Breast-Cancer 0.55 0.31♠ 0.16♠
Lymphoma 0.46 0.34♠ 0.18♠
Wine 1.00 0.70 0.73

Insurance-C 0.86 0.65♠ 0.42♠
Insurance-N 0.57 0.50 0.17∗∗

p53 0.90 0.82♠ 0.49♠
Ovarian 0.61 0.62♠ 0.50♠
C&C 0.78 0.73♠ 0.66♠
ACPJ - 0.26 0.02
Bibtex 1.00 0.55 0.08∗∗
Delicious 0.99 0.81♠ 0.19♠
Dexter - 0.50 0.02
Nova - 0.07 0.03

Ohsumed - 0.14 0.02
SACCR 0.78 0.55∗ 0.30∗∗
SACCR 0.66 0.69♠ 0.12♠

Table 9: SACCRi (t) at t = 0.05 with “Bonferroni” correction for rules FTR, MTR and Random
Quadruple. Marks *, **, and ♠ denote a statistically significant difference from FTR at
the levels of 0.05, 0.01, and machine-epsilon respectively.

Data Sets SMRG SMRQ FTR-S
ACPJ 0.01 ± 0.01 0.02 ± 0.01 -

Breast-Cancer 0.11 ± 0.08 0.13 ± 0.10 0.18 ± 0.13
C&C 0.05 ± 0.03 0.19 ± 0.18 0.18 ± 0.13

Compactiv 0.04 ± 0.06 0.19 ± 0.20 0.14 ± 0.12
Insurance-C 0.03 ± 0.08 0.09 ± 0.14 0.14 ± 0.12
Lymphoma 0.12 ± 0.09 0.14 ± 0.11 0.17 ± 0.14
Ohsumed 0.01 ± 0.02 0.02 ± 0.02 -
Ovarian 0.15 ± 0.10 0.16 ± 0.11 0.09 ± 0.07
Wine 0.09 ± 0.10 0.15 ± 0.17 0.22 ± 0.14
p53 0.03 ± 0.05 0.07 ± 0.10 0.14 ± 0.12

Over data sets 0.06 ± 0.06 0.12 ± 0.11 0.16 ± 0.12
Over predictions 0.07 ± 0.08 0.07 ± 0.09 0.11 ± 0.10

Table 10: Mean Absolute Error (MAE) between the calibrated predictions r̂YZ and sample-
estimated rYZ (average value± standard deviation). SMRG refers to the Statistical Match-
ing Rule applied on all pairs of variables in the same group, considering the remaining 48
variables in the group as common variables. SMRQ is the Statistical Matching Rule ap-
plied on quadruples of variables randomly chosen from the same group. Finally, FTR-S
consists in the Full Testing Rule modified for estimating the strength of the dependency,
see Algorithm 4.
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Data Sets SMRG SMRQ FTR-S
ACPJ 13.17 ± 87.17 27.22 ± 141.50 -

Breast-Cancer 5.74 ± 624.51 2.79 ± 90.41 1.39 ± 4.51
C&C 1.52 ± 39.16 3.53 ± 44.98 1.30 ± 16.80

Compactiv 0.39 ± 1.43 1.79 ± 9.39 0.46 ± 0.53
Insurance-C 2.79 ± 11.04 2.10 ± 5.15 2.44 ± 18.04
Lymphoma 4.51 ± 182.18 3.66 ± 181.90 5.77 ± 145.88
Ohsumed 4.62 ± 30.53 7.72 ± 8.95 -
Ovarian 7.32 ×109 ± 1.68 ×1013 0.58 ± 5.51 0.20 ± 0.44
Wine 1.31 ± 2.24 1.78 ± 5.65 0.38 ± 0.06
p53 34.95 ± 7982.92 19.86 ± 4544.32 4.76 ± 290.58

Over data sets 7.32 ×109 ± 1.68 ×1013 7.10 ± 503.78 2.09 ± 59.61
Over predictions 2.79 ×109 ± 3.28 ×1012 14.36 ± 1320.98 0.87 ± 87.92

Table 11: Mean Relative Absolute Error (MRAE) between the calibrated predictions r̂YZ and
sample-estimated rYZ (average value ± standard deviation) SMRG refers to the Statis-
tical Matching Rule applied on all pairs of variables in the same group, considering the
remaining 48 variables in the group as common variables. SMRQ is the Statistical Match-
ing Rule applied on quadruples of variables randomly chosen from the same group. Fi-
nally, FTR-S consists in the Full Testing Rule modified for estimating the strength of
the dependency, see Algorithm 4. For the Ovarian data set the SMRG rule provides pre-
dictions for cases with nearby-zero sample estimated rYZ , and these predictions generate
extremely high MRAE values. Once excluded such cases, the SMRG MRAE on the
Ovarian data set is 0.54 ± 12.16, while the MRAE averaged over all data sets and over
all predictions is 6.95 ± 897.33 and 10.45 ± 2498.28, respectively.
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A.3 Supplementary Figures
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Figure 21: Accuracies Acci for each data set, as well as the average accuracy Acc (each data set
weighs the same) and the pooled accuracy Acc (each prediction weighs the same). (a)
All rules are applied without any correction of significance threshold and all accuracies
are computed at t = 0.05 (b) Accuracies Acci calculated with the “Bonferroni 10−1”
significance threshold correction. (c) Accuracies Acci calculated with the “Bonferroni
10−2” significance threshold correction.
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Figure 22: Accuracy at threshold t for data sets ACPJ-Etiology, Bibtex, Breast Cancer and Com-
munities and Crime, Compactiv and Covtype for different rules
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Figure 23: Accuracy at threshold t for data sets Delicious, Dexter, Gisette, Hiva, Infant Mortality
and Insurance-C for different rules
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Figure 24: Accuracy at threshold t for data sets Insurance-N, Lymphoma, Nova, Ohsumed, Ovarian,
Read and for different rules
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Figure 25: Accuracy at threshold t for data sets Wine, p53
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Figure 26: Structural accuracy at threshold t for data sets Delicious, Dexter, Gisette and Hiva for
different rules
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Figure 27: Structural accuracy at threshold t for data sets Infant Mortality, Insurance-C, Insurance-
N, Lymphoma, Nova and Ohsumed for different rules
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Figure 28: Structural accuracy at threshold t for data sets Ovarian, Read, Wine and p53 for different
rules
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Abstract
In machine translation, discriminative models have almost entirely supplanted the classical noisy-
channel model, but are standardly trained using a method that is reliable only in low-dimensional
spaces. Two strands of research have tried to adapt more scalable discriminative training methods
to machine translation: the first uses log-linear probability models and either maximum likelihood
or minimum risk, and the other uses linear models and large-margin methods. Here, we provide an
overview of the latter. We compare several learning algorithms and describe in detail some novel
extensions suited to properties of the translation task: no single correct output, a large space of
structured outputs, and slow inference. We present experimental results on a large-scale Arabic-
English translation task, demonstrating large gains in translation accuracy.
Keywords: machine translation, structured prediction, large-margin methods, online learning,
distributed computing

1. Introduction

Statistical machine translation (MT) aims to learn models that can predict, given some utterance
in a source language, the best translation into some target language. The earliest of these models
were generative (Brown et al., 1993; Och et al., 1999): drawing on the insight of Warren Weaver
in 1947 that “translation could conceivably be treated as a problem in cryptography” (Locke and
Booth, 1955), they treated translation as the inverse of a process in which target-language utterances
are generated by a language model and then changed into source-language utterances via a noisy
channel, the translation model.

Och and Ney (2002) first proposed evolving this noisy-channel model into a discriminative
log-linear model, which incorporated the language model and translation model as features. This
allowed the language model and translation model be to scaled by different factors, and allowed
the addition of features beyond these two. Although discriminative models were initially trained by
maximum-likelihood estimation, the method that quickly became dominant was minimum-error-
rate training or MERT, which directly minimizes some loss function (Och, 2003). The loss function
of choice is most often BLEU (rather, 1−BLEU), which is the standard metric of translation quality
used in current MT research (Papineni et al., 2002). However, because this loss function is in general
non-convex and non-smooth, MERT tends to be reliable for only a few dozen features.

Two strands of research have tried to adapt more scalable discriminative training methods to
machine translation. The first uses log-linear probability models, as in the original work of Och
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and Ney (2002), either continuing with maximum likelihood (Tillmann and Zhang, 2006; Blunsom
et al., 2008) or replacing it with minimum risk, that is, expected loss (Smith and Eisner, 2006; Zens
et al., 2008; Li and Eisner, 2009; Arun et al., 2010). The other uses linear models and large-margin
methods (Liang et al., 2006; Watanabe et al., 2007; Arun and Koehn, 2007); we have followed
this approach (Chiang et al., 2008b) and used it successfully with many different kinds of features
(Chiang et al., 2009; Chiang, 2010; Chiang et al., 2011).

Here, we provide an overview of large-margin methods applied to machine translation, and
describe in detail our approach. We compare MERT and minimum-risk against several online large-
margin methods: stochastic gradient descent, the Margin Infused Relaxed Algorithm or MIRA
(Crammer and Singer, 2003), and Adaptive Regularization of Weights or AROW (Crammer et al.,
2009). Using some simple lexical features, the best of these methods, AROW, yields a sizable
improvement of 2.4 BLEU over MERT in a large-scale Arabic-English translation task.

We discuss three novel extensions of these algorithms that adapt them to particular properties
of the translation task. First, in translation, there is no single correct output, but only a reference
translation, which is one of many correct outputs. We find that training the model to generate
the reference exactly can be too brittle; instead, we propose to update the model towards hope
translations which compromise between the reference translation and translations that are easier
for the model to generate (Section 4). Second, translation involves a large space of structured
outputs. We try to efficiently make use of this whole space, like most recent work in structured
prediction, but unlike much work in statistical MT, which relies on n-best lists of translations instead
(Section 5). Third, inference in translation tends to be very slow. Therefore, we investigate methods
for parallelizing training, and demonstrate a novel method that is expensive, but highly effective
(Section 6).

2. Preliminaries

In this section, we outline some basic concepts and notation needed for the remainder of the paper.
Most of this material is well-known in the MT literature; only Section 2.4, which defines the loss
function, contains new material.

2.1 Setting

In this paper, models are defined over derivations d, which are objects that encapsulate an input
sentence f (d), an output sentence e(d), and possibly other information.1 For any input sentence f ,
let D( f ) be the set of all valid derivations d such that f (d) = f .

A model comprises a mapping from derivations d to feature vectors h(d), together with a vector
of feature weights w, which are to be learned. The model score of a derivation d is w ·h(d). The
1-best or Viterbi derivation of fi is d̂ = arg maxd∈D( fi)w ·h(d), and the 1-best or Viterbi translation
is ê= e(d̂).

We are given a training corpus of input sentences f1, . . . , fN , and reference output translations
e1, . . . ,eN produced by a human translator. Each ei is not the only correct translation of fi, but only
one of many. For this reason, often multiple reference translations are available for each fi, but

1. The variables f and e stand for French and English, respectively, in reference to the original work of Brown et al.
(1993).

1160



DISCRIMINATIVE TRAINING OF STATISTICAL TRANSLATION MODELS

for notational simplicity, we generally assume a single reference, and describe how to extend to
multiple references when necessary.

Note that although the model is defined over derivations, only sentence pairs ( fi,ei) are ob-
served. There may be more than one derivation of ei, or there may be no derivations. Nevertheless,
assume for the moment that we can choose a reference derivation di that derives ei; we discuss
various ways of choosing di in Section 4.

2.2 Derivation Forests

The methods described in this paper should work with a wide variety of translation models, but,
for concreteness, we assume a model defined using a weighted synchronous context-free grammar
or related formalism (Chiang, 2007). We do not provide a full definition here, but only enough
to explain the algorithms in this paper. In models of this type, derivations can be thought of as
trees, and the set of derivations D( f ) is called a forest. Although its cardinality can be worse than
exponential in | f |, it can be represented as a polynomial-sized hypergraph G= (V,E,r), where V is
a set of nodes, r ∈V is the root node, and E ⊆V ×V ∗ is a set of hyperedges. We write a hyperedge
as (v→ v). A derivation d is represented by an edge-induced subgraph of G such that r ∈ d and, for
every node v ∈ d, there is exactly one hyperedge (v→ v).

We require that h (and therefore w ·h) decomposes additively onto hyperedges, that is, h can be
extended to hyperedges such that

h(d) = ∑
(v→v)∈d

h(v→ v).

This allows us to find the Viterbi derivation efficiently using dynamic programming.

2.3 BLEU

The standard metric for MT evaluation is currently BLEU (Papineni et al., 2002). Since we use this
metric not only for evaluation but during learning, it is necessary to describe it in detail.

For any string e, let gk(e) be the multiset of all k-grams of e. Let K be the maximum size k-
grams we will consider; K = 4 is standard. For any multiset A, let #A(x) be the multiplicity of x in
A, let |A|= ∑x #A(x), and define the multisets A∩B, A∪B, and A∗ such that

#A∩B(x) =min(#A(x),#B(x)),
#A∪B(x) =max(#A(x),#B(x)),

#A∗(x) =

{

∞ if #A(x)> 0,
0 otherwise.

Let c be the candidate translation to be evaluated and let r be the reference translation. Then
define a vector of component scores

b(c,r) = [m1, . . .mK ,n1, . . .nK ,ρ]

where

mk = |gk(c)∩gk(r)| ,
nk = |gk(c)| ,
ρ= |r|.
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If there is a set of multiple references R, then

mk =

∣

∣

∣

∣

∣

gk(c)∩
⋃

r∈R
gk(r)

∣

∣

∣

∣

∣

, (1)

ρ= arg min
r∈R

∣

∣|r|− |c|
∣

∣ (2)

where ties are resolved by letting ρ be the length of the shorter reference.
The component scores are additive, that is, the component score vector for a set of sentences

c1, . . . ,cN with references r1, . . . ,rN is ∑ib(ci,ri). Then the BLEU score is defined in terms of the
component scores:

BLEU(b) = exp

(

1
K

K

∑
k=1

mk

nk
+min

(

0,1−
ρ
n1

)

)

.

2.4 Loss Function

Our learning algorithms assume a loss function !i(e,ei) that indicates how bad it is to guess e instead
of the reference ei. Our loss function is based on BLEU, but because our learning algorithms are
online, we need to be able to evaluate the loss for a single sentence, whereas BLEU was designed to
be used on whole data sets. If we try to compute it on a single sentence, several problems arise. If nk
is zero, the BLEU score is undefined; if any of the mk are zero, the whole BLEU score is zero. Even
barring such problems, a BLEU score for a single sentence may not accurately reflect the impact of
that sentence on the whole test set (Chiang et al., 2008a).

The standard solution to these problems is to add pseudocounts (Lin and Och, 2004):

BLEU(b+b) = exp

(

1
K

K

∑
k=1

mk+mk

nk+nk
+min

(

0,1−
ρ+ρ
n1+n1

)

)

where b= [m1, . . . ,mK ,n1, . . . ,nK ,ρ] are pseudocounts that must be set appropriately.
Watanabe et al. (2007) score a sentence in the context of all previously seen 1-best translations,

which they call the oracle document. We follow this approach here, but in order to reduce de-
pendence on the distant past, we use an exponential decay. That is, after processing each training
example ( fi,ei), we update the oracle document using the 1-best translation ê:

b← 0.9 · (b+b(ê,ei)).

Then we define a per-sentence metric B that measures the impact that adding a new input and output
sentence will have on the BLEU score of the oracle document:

B(b) = n1 ·
(

BLEU(b+b)−BLEU(b)
)

. (3)

The reason for the scaling factor n1, which is the size of the oracle document, is to try to correct for
the fact that if the oracle document is small, then adding a new sentence will have a large effect on
its BLEU score, and vice versa.

Finally, we can define the loss of a translation e relative to e′ as the difference between their
B scores, following Watanabe et al. (2007):

!i(e,e′) = B(b(e,ei))−B(b(e′,ei))
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and, as shorthand,

!i(d,e′)≡ !i(e(d),e′),
!i(d,d′)≡ !i(e(d),e(d′)).

3. Learning Algorithms

In large-margin methods, we want to ensure that the difference, or margin, between the correct label
and an incorrect label exceeds some minimum; in margin scaling (Crammer and Singer, 2003), this
minimum is equal to the loss. That is, our learning problem is to minimize:

L(w) =
1
N∑i

Li(w) (4)

where

Li(w) = max
d∈D( fi)

vi(w,d,di),

vi(w,d,di) = !i(d,di)−w · (h(di)−h(d)).

Note that since di ∈ D( fi) and vi(w,di,di) = 0, Li(w) is always nonnegative. We now review the
derivations of several existing algorithms for optimizing (4) for structured models.

3.1 Stochastic Gradient Descent

An easy way to optimize the objective function L(w) is stochastic (sub)gradient descent (SGD)
(Ratliff et al., 2006; Shalev-Shwartz et al., 2007). In SGD, we consider one component Li(w) of the
objective function at a time and update w by the subgradient:

w← w−η∇Li(w), (5)
∇Li(w) =−(h(di)−h(d+))

where

d+ = arg max
d∈D( fi)

vi(w,d,di).

If, as an approximation, we restrictD( fi) to just the 1-best derivation of fi, then we get the structured
perceptron algorithm (Rosenblatt, 1958; Freund and Schapire, 1999; Collins, 2002). Otherwise, we
get Algorithm 1. Note that, as is common practice with the perceptron, the final weight vector is
the average of the weight vector at each iteration. (Line 6 as implemented here can be inefficient; in
practice, we use the trick of Daumé III (2006, p. 19) to average efficiently.)

The derivation d+ is the worst violator of our constraint that the margin be greater than or
equal to the loss, and appears frequently in large-margin learning algorithms. We call d+ the fear
derivation.2 An easy way to approximate the fear derivation would be to generate an n-best list and
select the derivation from it that maximizes vi. In Section 5 we discuss better ways to search for the
fear derivation.
2. The terminology of fear derivations and hope derivations to be defined below are due to Kevin Knight.
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Algorithm 1 Stochastic gradient descent
Require: training examples ( f1,e1), . . . ,( fN ,eN)
1: w← 0
2: s← 0, t← 0
3: while not converged do
4: for i ∈ {1, . . . ,N} in random order do
5: UPDATEWEIGHTS(w, i)
6: s← s+w
7: t← t+1
8: w← s/t

9: procedure UPDATEWEIGHTS(w, i)
10: d+← arg maxd∈D( fi) vi(w,d,di)
11: w← w+η(h(di)−h(d+))

3.2 MIRA

Kivinen and Warmuth (1996) derive SGD from the following update:

w← arg min
w′

(

1
2η
‖w′ −w‖2+Li(w′)

)

(6)

where the first term, the conservativity term, prevents us from moving too far in a single iteration.
Taking partial derivatives and setting to zero, we get

w′ −w+η∇Li(w′) = 0.

If we make the approximation ∇Li(w′)≈ ∇Li(w), we get the gradient-descent update again:

w← w−η∇Li(w).

But the advantage of using (6) without approximation is that it will not overshoot the optimum if
the step size η happens to be too large. This is the Margin Infused Relaxed Algorithm (MIRA) of
Crammer and Singer (2003).

The MIRA update (6) replaces the procedure UPDATEWEIGHTS in Algorithm 1. It is more
commonly presented as a quadratic program (QP):

minimize
1
2η
‖w′ −w‖2+ξi

subject to vi(w′,d,di)−ξi ≤ 0 ∀d ∈D( fi)

where ξi is a slack variable.3 (Note that ξi ≥ 0 since di ∈ D( fi) and vi(w′,di,di) = 0.) The La-
grangian is:

L =
1
2η
‖w′ −w‖2+ξi+ ∑

d∈D( fi)
αd(vi(w′,d,di)−ξi). (7)

3. Watanabe et al. (2007) use a different slack variable ξid for each hypothesis d, which leads to a different update than
the one derived below.
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Setting partial derivatives to zero gives:

w′ = w+η ∑
d∈D( fi)

αd(h(di)−h(d))

∑
d∈D( fi)

αd = 1.

Substituting back into (7), we get the following dual problem:

maximize −
η
2

∥

∥

∥

∥

∥

∑
d∈D( fi)

αd(h(di)−h(d))

∥

∥

∥

∥

∥

2

+ ∑
d∈D( fi)

αdvi(w,d,di)

subject to ∑
d∈D( fi)

αd = 1

αd ≥ 0 ∀d ∈D( fi).

In machine translation, and in structured prediction in general, the number of hypotheses in
D( fi), and therefore the number of constraints in the QP, can be exponential or worse. Watanabe
et al. (2007) use the 1 best or 10 best hypotheses. In an earlier version of this work (Chiang et al.,
2008b), we used the top 10 fear derivations.4 Here, we use the cutting-plane algorithm of Tsochan-
taridis et al. (2004), which repeatedly recomputes the fear derivation and adds it to a working set Si
of derivations on which the QP is optimized (Algorithm 2). A new fear derivation is added to the
working set only if it is a worse violator by a certain margin (ε); otherwise, the algorithm terminates.

The procedure OPTIMIZESET solves the QP restricted to Si by sequential minimal optimization
(Platt, 1998), in which we repeatedly select a pair of derivations d′,d′′ and optimize their dual
variables αd′ ,αd′′ . The function SELECTPAIR uses the heuristics suggested by Taskar (2004, p. 80)
to select a pair of constraints: one must violate one of the KKT conditions (αd(vi(w′,d,di)−ξi) =
0), and the other must allow the objective to be improved. The procedure OPTIMIZEPAIR optimizes
a single pair of dual variables. This optimization is exact and can be derived as follows. Suppose
we have current suboptimal weights w(α) =w+η∑αd(h(di)−h(d)), and we want to increase αd′
by δ and decrease αd′′ by δ. Then we get the following optimization in a single variable, δ:

maximize −
η
2

∥

∥

∥

∥

∥

∑
d
αd(h(di)−h(d))+δ(−h(d′)+h(d′′))

∥

∥

∥

∥

∥

2

+δ(vi(w,d′,di)− vi(w,d′′,di))

subject to −αd′ ≤ δ≤ αd′′ . (8)

Setting the partial derivative with respect to δ equal to zero, we get

δ=
η∑d αd(h(di)−h(d)) · (h(d′)−h(d′′))+ vi(w,d′,di)− vi(w,d′′,di)

η‖h(d′)−h(d′′)‖2

=
(w(α)−w) · (h(d′)−h(d′′))+ vi(w,d′,di)− vi(w,d′′,di)

η‖h(d′)−h(d′′)‖2

=
vi(w(α),d′,di)− vi(w(α),d′′,di)

η‖h(d′)−h(d′′)‖2
.

4. More accurately, we took the union of the 10 best derivations, the top 10 fear derivations, and the top 10 hope
derivations (to be defined below).
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Algorithm 2MIRA weight update (Tsochantaridis et al., 2004; Platt, 1998; Taskar, 2004)
1: procedure UPDATEWEIGHTS(w, i)
2: ε= 0.01
3: Si← {di}
4: again← true
5: while again do
6: again← false
7: d+← arg max

d∈D( fi)
vi(w,d,di)

8: if vi(w,d+,di)>max
d∈Si

vi(w,d,di)+ ε then

9: Si← Si∪{d+}
10: OPTIMIZESET(w, i)
11: again← true

12: procedure OPTIMIZESET(w, i)
13: αd ← 0 for d ∈ Si
14: αdi ← 1
15: iterations← 0
16: while iterations< 1000 do
17: iterations← iterations+1
18: d′,d′′ ← SELECTPAIR(w, i)
19: if d′,d′′ not defined then
20: return
21: OPTIMIZEPAIR(w, i,d′,d′′)

22: function SELECTPAIR(w, i)
23: ε= 0.01
24: for d′ ∈ Si do
25: vmax← max

d′′!d′
vi(w,d′′,di)

26: if αd′ = 0 and vi(w,d′,di)> vmax+ ε then
27: if ∃d′′ ! d′ such that αd′′ > 0 then
28: return d′,d′′

29: if αd′ > 0 and vi(w,d′,di)< vmax− ε then
30: if ∃d′′ ! d′ such that vi(w,d′′,di)> vi(w,d′,di) then
31: return d′,d′′

32: return undefined

33: procedure OPTIMIZEPAIR(w, i,d′,d′′)

34: δ←
vi(w,d′,di)− vi(w,d′′,di)

η‖h(d′)−h(d′′)‖2
35: δ←max(−αd′ ,min(αd′′ ,δ))
36: αd′ ← αd′+δ; αd′′ ← αd′′ −δ
37: w← w−ηδ(h(d′)−h(d′′))
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But in order to maintain constraint (8), we clip δ to the interval [−αd′ ,αd′′ ] (line 35).
At the end of training, following McDonald et al. (2005), we average all the weight vectors

obtained at each iteration, just as in the averaged perceptron.

3.3 AROW

The conservativity term in (6) assumes that it is equally risky to move w in any direction, but this
is not the case in general. For example, even a small change in the language model weights could
result in a large change in translation length and fluency, whereas large changes in features like
those attached to number-translation rules have a relatively small effect.

Imagine that we choose a feature of our model, h j, and replace it with the feature h j · c while
replacing its weight with wj/c. This change has no effect on the scores assigned to derivations or the
translations generated, so intuitively one would hope that it also has no effect on learning. However,
it is easy to see that our online algorithms in fact apply updates that are c times bigger, and relative
to the new weight, c2 times bigger.

A number of approaches are suggested in the literature to address this problem, for example, the
second-order perceptron (Cesa-Bianchi et al., 2005), confidence-weighted learning (Dredze et al.,
2008), and Adaptive Regularization of Weights or AROW (Crammer et al., 2009). AROW replaces
the weight vector w with a Gaussian distribution over weight vectors, N (w,Σ). The conservativity
term in (6) accordingly changes from a Euclidean distance to a Kullback-Leibler distance. In ad-
dition, a new term is introduced that causes the confidence in the weights to increase over time (in
AROW’s predecessor (Dredze et al., 2008), it was motivated as the variance of Li).

w,Σ← arg min
w′,Σ′

(

KL
(

N (w′,Σ′)‖N (w,Σ)
)

+Li(w′)+
λ
2
xTΣ′x

)

.

In the original formulation of AROW for binary classification, x is the instance vector. Here, we
set it to ∑d∈Si αd (h(di)−h(d)), even though the αd aren’t known in advance; in practice, they are
known by the time they are needed.

With the KL distance between the two Gaussians written out explicitly, the quantity we want to
minimize is:

1
2

(

log
detΣ
detΣ′

+Tr
(

Σ−1Σ′
)

+(w′ −w)TΣ−1(w′ −w)−D
)

+Li(w′)+
λ
2
xTΣ′x

where D is the number of features. We minimize with respect to w′ and Σ′ separately. If we drop
terms not depending on w′, we get:

w← arg min
w′

1
2
(w′ −w)TΣ−1(w′ −w)+Li(w′)

which is the same as MIRA (6) except that Σ has taken the place of η. This leads to Algorithm 3,
which modifies Algorithm 2 in two ways. First, line 34 is replaced with:

δ←
vi(w,d′,di)− vi(w,d′′,di)

(h(d′)−h(d′′))Σ(h(d′)−h(d′′))

and line 37 is replaced with:
w← w−Σδ(h(d′)−h(d′′)).

1167



CHIANG

Next, we turn to Σ. Setting partial derivatives with respect to Σ′ to zero, and using the fact that
Σ′ is symmetric, we get (Petersen and Pedersen, 2008):

1
2
(

−Σ′−1+Σ−1
)

+
λ
2
xTx= 0.

This leads to the AROW update, which follows the update for w (line 5 in Algorithm 1):

Σ−1← Σ−1+λxTx.

We initialize Σ to η0I and then update it at each iteration using this update; following Crammer et al.
(2009), we keep only the diagonal elements of Σ.

Algorithm 3 AROW (Crammer et al., 2009)
Require: training examples ( f1,e1), . . . ,( fN ,eN)
1: w← 0
2: Σ← η0I
3: s← 0, t← 0
4: while not converged do
5: for i ∈ {1, . . . ,N} in random order do
6: UPDATEWEIGHTS(w, i) " Algorithm 2
7: s← s+w
8: t← t+1
9: x← ∑

d∈Si
αd (h(di)−h(d))

10: Σ−1← Σ−1+λdiag(x21, . . . ,x2n)
11: w← s/t

12: procedure OPTIMIZEPAIR(w, i,d′,d′′)

13: δ←
vi(w,d′,di)− vi(w,d′′,di)

(h(d′)−h(d′′))Σ(h(d′)−h(d′′))
14: δ←max(−αd′ ,min(αd′′ ,δ))
15: αd′ ← αd′+δ
16: αd′′ ← αd′′ −δ
17: w← w−Σδ(h(d′)−h(d′′))

.

4. The Reference Derivation

We have been assuming that di is the derivation of the reference translation ei. However, this is not
always possible or even desirable. In this section, we discuss some alternative choices for di.

4.1 Bold/Max-BLEU Updating

It can happen that there does not exist any derivation of ei, for example, if ei contains a word never
seen before in training. In this case, Liang et al. (2006), in the scheme they call bold updating,
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simply skip the sentence. Another approach, called max-BLEU updating (Tillmann and Zhang,
2006; Arun and Koehn, 2007), is to try to find the derivation with the highest BLEU score. However,
Liang et al. find that even when it is possible to find a di that exactly generates ei, it is not necessarily
desirable to update the model towards it, because it may be a bad derivation of a good translation.

For example, consider the following Arabic sentence (written left-to-right in Buckwalter roman-
ization) with English glosses:

sd
blocked

qTEp
piece

mn
of

AlkEk
biscuit

AlmmlH
salted

“
“
brytzl
pretzel

”
”
Hlqh
his-throat

.

.

A very literal translation might be,

A piece of a salted biscuit, a “pretzel,” blocked his throat.

But the reference translation is in fact:

A pretzel, a salted biscuit, became lodged in his throat.

While accurate, this translation swaps grammatical roles in a way that is still difficult for statistical
MT systems to model. If the system happens to have some bad rules that translate sd qTEp mn
as a pretzel and “ brytzl ” as became lodged in, then it can use these bad rules to obtain a perfect
translation, but using this derivation as the reference derivation would only reinforce the use of these
bad rules. A derivation of the more literal translation would probably serve better as the reference
translation. What we need is a good derivation of a good translation.

4.2 Local Updating

The most common way to do this has been to generate the n-best derivations according to the model
and to choose the one with the lowest loss (Och and Ney, 2002). Liang et al. (2006) call this local
updating. Watanabe et al. (2007) generate a 1000-best list and select either the derivation with
lowest loss or the 10 derivations with lowest loss. The idea is that restricting to derivations with a
higher model score will filter out derivations that use bad, low-probability rules. Normally one uses
an n-best list as a proxy for the whole space of derivations, so that the larger n is, the better; in this
case, however, as n increases, local updating approaches max-BLEU updating, which is what we
are trying to avoid. It is not clear what the optimal n is, and whether it depends on factors such as
sentence length or pruning.

4.3 Hope Derivations

Here, we propose an approach that ties the choice of di more closely to the model. We suppose that
for each fi, the reference derivation di is unknown, and it doesn’t necessarily derive the reference
translation ei, but we add a term to the objective function that says that we want di to have low loss
relative to ei.

w← arg min
w′

min
di∈D( fi)

(

1
2η
‖w′ −w‖2+ max

d∈D( fi)
vi(w′,d,di)+(1−µ)!i(di,ei)

)

.

The parameter µ< 0 controls how strongly we want di to have low loss.
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We first optimize with respect to di, holding w′ constant. Then the optimization reduces to

di = arg max
d∈D( fi)

(µ!i(d,ei)+w ·h(d)) . (9)

Then, we optimize with respect to w′, holding di constant. Since this is identical to (6), we can use
any of the algorithms presented in Section 3.

We call di chosen according to (9) the hope derivation. Unlike the fear derivation, it is parame-
terized by µ. If we let µ=−1, the definition of the hope derivation becomes conveniently symmetric
with the fear derivation:

di = arg max
d∈D( fi)

(−!i(d,ei)+w ·h(d)).

Both the hope and fear derivations try to maximize the model score, but the fear derivation maxi-
mizes the loss whereas the hope derivation minimizes the loss.

5. Searching for Hope and Fear

As mentioned above, one simple way of approximating either the hope or fear derivation is to
generate an n-best list and choose from it the derivation that maximizes (9) or vi, respectively. But
Figure 1 shows that this approximation can be quite poor in practice, because the n-best list covers
such a small portion of the entire search space. Increasing n would help (and, unlike with local
updating, the larger n is, the better), but could become inefficient.

Instead, we use a dynamic program, analogous to the Viterbi algorithm, to directly search for
the hope/fear derivations in the forest. (For efficiency, we reuse the forest that is previously used to
search for the Viterbi derivation—an approximation, because this forest is pruned using the model
score.) If our loss function were decomposable onto hyperedges, this would be a simple matter
of setting the hyperedge weights to w · h(v→ v)± !i(v→ v) and running the Viterbi algorithm.
However, our loss function is not hyperedge-decomposable, so we must resort to approximations.

5.1 Towards Hyperedge-level BLEU

We begin by attempting to decompose the component scores b onto hyperedges. First, we need to
be able to calculate gk(v→ v), the set of k-grams introduced by the hyperedge (v→ v). This turns
out to be fairly easy, because nearly all decoder implementations have a mechanism for scoring a
k-gram language model, which is a feature of the form

hLMk(d) = ∑
w1···wk∈gk(e(d))

logP(wk | w1 · · ·wk−1).

Since hLMk is decomposable onto hyperedges by assumption, it is safe to assume that gk is also
decomposable onto hyperedges, and so is nk, which is the cardinality of gk.

But mk is not as easy to decompose, because of “clipping” of k-gram matches. Suppose our
reference sentence is

Australia is one of the few countries that have diplomatic relations with North Korea

and we have two partial translations

the few
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Figure 1: Using loss-augmented inference to search for fear translations in the whole forest is better
than searching in the n-best list. Each point represents a derivation. The red square in the
upper-right is the fear derivation obtained by loss-augmented inference, whereas the red
square inside the box labeled “100-best” is the fear derivation selected from the 100-best
list. (The gray circles outside the box are 100 random samples from the forest.)
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the countries

then for both, m1 = 2. But if we combine them into

the few the countries

then m1 is not 2+2= 4, but 3, because the only occurs once in the reference sentence. In order to
decompose mk exactly, we would have to structure the forest hypergraph so that subderivations with
different gk are rooted at different nodes, resulting in an exponential blowup. Therefore, following
Dreyer et al. (2007), we use unclipped counts of n-gram matches, which are not limited to the
number of occurrences in the reference(s), in place of (1):

mk = |gk(c)∩gk(r)∗| .

These counts are easily decomposable onto hyperedges.
Finally, in order to decompose ρ, if there are multiple references, we can’t use the standard

definition of ρ in (2); instead we use the average reference length. Then we can apportion ρ among
hyperedges according to how much of the input sentence they consume:

ρ(v→ v) =
ρ
| fi|

(

| f (v)|− ∑
v′∈v

∣

∣ f (v′)
∣

∣

)

(10)

where f (v) is the part of the input sentence covered by the subderivation rooted at v.

5.2 Forest Reranking

Appendix A.3, following Tromble et al. (2008), describes a way to fully decompose BLEU onto hy-
peredges. Here, however, we follow Dreyer et al. (2007), who use a special case of forest reranking
(Huang, 2008). To search for the hope or fear derivation, we use the following dynamic program:

vderiv(v) = arg max
d∈{vderiv(v→v)}

φ(d)

vderiv(v→ v) = {v→ v}∪
⋃

v′∈v
vderiv(v′)

where φ is one of the following:

φ(d) = w ·h(d)+B(b(d,ei)) (hope),
φ(d) = w ·h(d)−B(b(d,ei)) (fear).

Note that maximizing w ·h(d)+B(b(d,ei)) is equivalent to maximizing w ·h(d)− !i(d,ei), since
they differ by only a constant; likewise, maximizing w ·h(d)−B(b(d,ei)) is equivalent to maximiz-
ing w ·h(d)+ !i(d,ei).

This algorithm is not guaranteed to find the optimum, however. We illustrate with a counterex-
ample, using BLEU-2 (i.e., K = 2) instead of BLEU-4 for simplicity. Suppose our reference sentence
is as above, and we have two partial candidate sentences

1. one of the few nations which maintain ties with the DPRK has been
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2. North Korea with relations diplomatic have that countries few the of one is

Translation #1 has 4 unigram matches and 3 bigram matches, for a BLEU-2 score of
√

12/156;
translation #2 has 13 unigram matches and 1 bigram match, for a BLEU-2 score of

√

13/156. If
we extend both translations, however, with the word Australia, giving them each an extra unigram
match, then translation #1 gets a BLEU-2 score of

√

15/156, and translation #2,
√

14/156. Though
it does not always find the optimum, it works well enough in practice. After we find a hope or fear
derivation, we recalculate its exact BLEU score, without any of the approximations described in this
section.

6. Parallelization

Because inference is so slow for the translation task, and especially for the CKY-based decoder
we are using, parallelization is critical. Batch learning algorithms like MERT are embarrassingly
parallel, but parallelization of online learning is an active research area. Two general strategies have
been proposed for SGD. The simpler strategy is to run p learners in parallel and then average their
final weight vectors afterward (Mann et al., 2009; McDonald et al., 2010; Zinkevich et al., 2010).
The more communication-intensive option, known as asynchronous SGD, is to maintain a single
weight vector and for p parallel learners to update it simultaneously (Langford et al., 2009; Gimpel
et al., 2010). It is not actually necessary for a learner to wait for the others to finish computing their
updates; it can simply update the weight vector and move to the next example.

6.1 Iterative Parameter Mixing

A compromise between the two is iterative parameter mixing (McDonald et al., 2010), in which
a master node periodically averages the weight vectors of the learners. At the beginning of each
epoch, a master node broadcasts the same initial weight vector to p learners, which run in parallel
over the training data and send their weight vectors back to the master node. The master averages
the p weight vectors together to obtain the initial weight vector for the next epoch. At the end of
training, the weight vectors from each iteration of each learner are all averaged together to yield the
final weight vector.

6.2 Asynchronous MIRA/AROW

In asynchronous SGD, when multiple learners make simultaneous updates to the master weight vec-
tor, the updates are simply summed. Our experience is that this works, but requires carefully throt-
tling back the learning rate η. Here, we focus on asynchronous parallelization of MIRA/AROW.
The basic idea is to build forests for several examples in parallel, and optimize the QP over all of
them together. However, this would require keeping the forests of all the examples in a shared mem-
ory, which would probably be too expensive. Instead, the solution we have adopted (Algorithm 4) is
for the learners to broadcast just the working sets Si to one another, rather than whole forests. Thus,
when each learner works on a training example ( fi,ei), it optimizes the QP on it along with all of the
working sets it received from other nodes. It can grow the working set Si, but not the working sets
it received from other nodes. For AROW, each node maintains its own Σ in addition to its own w.
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Algorithm 4 Asynchronous MIRA
1: wk← 0 for each node k
2: sk← 0, tk← 0 for each node k
3: while not converged do
4: T ← training data
5: for each node k in parallel do
6: while T ! /0 do
7: pick a random ( fi,ei) from T and remove it
8: receive working sets {Si′ | i′ ∈ I} from other nodes
9: UPDATEWEIGHTS(wk, i, I)
10: broadcast Si to other nodes
11: sk← sk+wk
12: tk← tk+1
13: w← ∑k sk

∑k tk

14: procedure UPDATEWEIGHTS(w, i, I)
15: ε= 0.01
16: Si← {di}
17: again← true
18: while again do
19: again← false
20: d+← arg max

d∈D( fi)
vi(w,d,di)

21: if vi(w,d+,di)>max
d∈Si

vi(w,d,di)+ ε then

22: Si← Si∪{d+}
23: again← true
24: if again then
25: OPTIMIZESETS(w,{i}∪ I)

26: procedure OPTIMIZESETS(w, I)
27: for i ∈ I do
28: αd ← 0 for d ∈ Si
29: αdi ← 1
30: again← true
31: iterations← 0
32: while again and iterations< 1000 do
33: again← false
34: iterations← iterations+1
35: for i ∈ I do
36: d′,d′′ ← SELECTPAIR(w, i) " Algorithm 2
37: if d′,d′′ defined then
38: OPTIMIZEPAIR(w, i,d′,d′′)
39: again← true
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7. Experiments

We experimented with the methods described above on the hierarchical phrase-based translation
system Hiero (Chiang, 2005, 2007), using two feature sets. The small model comprises 13 features:
7 inherited from Pharaoh (Koehn et al., 2003), a second language model, and penalties for the glue
rule, identity rules, unknown-word rules, and two kinds of number/name rules. The large model
additionally includes the following lexical features:

• lex(e) fires when an output word e is generated

• lex( f ,e) fires when an output word e is generated aligned to a input word f

• lex(NULL,e) fires when an output word e is generated unaligned

In all these features, f and e are limited to words occurring 10,000 times or more in the parallel data;
less-frequent words are replaced with the special symbol UNK. Typically, this results in 10,000–
20,000 features.

Our training data were all drawn from the constrained track of the NIST 2009 Open Machine
Translation Evaluation. We extracted an Arabic-English grammar from all the allowed parallel data
(152+175M words), and we trained two 5-gram language models, one on the combined English
sides of the Arabic-English and Chinese-English tracks (385M words), and another on 2 billion
words of English.

We ran discriminative training on 3011 lines (67k Arabic words) of newswire and web data
drawn from the NIST 2004 and 2006 evaluations and newsgroup data from the GALE program
(LDC2006E92). After each epoch (pass through the discriminative-training data), we used the
averaged weights to decode our development data, which was from the NIST 2008 evaluation (1357
lines, 36k Arabic words). After 10 epochs, we chose the weights that yielded the highest BLEU on
the development data and decoded the test data, which was from the NIST 2009 evaluation (1313
lines, 34k Arabic words).

Except where noted, the following default settings were used:

• Learning rate η= 0.01

• Hope derivations with µ=−1

• Forest reranking for hope/fear derivations

• Iterative parameter mixing on 20 processors

A few probability features have to be initialized carefully: the two language models and the
two phrase translation probability models. If these features are given negative weights, extremely
long and disfluent translations result, and we find that the learner has difficulty recovering. So we
initialize their weights to 1 instead of 0, and in AROW, we initialize their learning rates to 0.01
instead of η0.

The learning curves in the figures referenced below show the BLEU score obtained on the devel-
opment data (disjoint from the discriminative-training data) over time. Figure 2abc shows learning
curves for SGD, MIRA, and minimum risk (see Appendix A) for several values of the learning rate
η, using the small model. Generally, all the methods converged to the same performance level, and
SGD and minimum risk were surprisingly not very sensitive to the learning rate η. MIRA, on the
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Figure 2: Learning curves of various algorithms on the development data, using the small model.
Graphs (a), (b), and (c) show the effect of the learning rate η on SGD, MIRA, and min-
imum risk. SGD and min-risk seem relatively insensitive to η, while MIRA converges
faster with higher η. Graph (d) compares the three online methods against MERT. The
online algorithms converge more quickly and smoothly than MERT does, with MIRA
slightly better than the others. The first two epochs of MERT, not shown here, had scores
of 10.6 and 31.6.

1176



DISCRIMINATIVE TRAINING OF STATISTICAL TRANSLATION MODELS

2 4 6 8 10

39

40

41

42

Epoch

D
ev
el
op
m
en
tB

L
E
U

(a) loss augmented inference

reranking
linear

2 4 6 8 10

39

40

41

42

Epoch

(b) varying µ

µ=−0.2
µ=−0.5
µ=−1
µ=−2
µ=−5

Figure 3: Variations on selecting hope/fear derivations, using the small model. (a) Linear BLEU
performs as well as or slightly better than forest reranking. SGD, η= 0.01. (b) More neg-
ative values of the loss weight µ for hope derivations lead to higher initial performance,
whereas less negative loss weights lead to higher final performance. MIRA, η= 0.01.

other hand, converged faster with higher learning rates up to η = 0.05. Since our past experience
suggests that on tasks with lower BLEU scores (namely, Chinese-English web and speech), lower
learning rates are better, our default η= 0.01 seems like a generally safe value.

Figure 2d compares all three algorithms with MERT (20 random restarts). The online algo-
rithms converge more quickly and smoothly than MERT does, with MIRA converging faster than
the others. However, on the test set (Table 1), MERT outperformed the other algorithms. Using
bootstrap resampling with 1000 samples (Koehn, 2004; Zhang et al., 2004), only the difference
with minimum risk was significant (p< 0.05).

One possible confounding factor in our comparison with minimum risk is that it must use linear
BLEU to compute the gradient. To control for this, we ran SGD (on the hinge loss) using both forest
reranking and linear BLEU to search for hope/fear derivations (Figure 3a). We found that their
performance is quite close, strengthening our finding that the hinge loss performs slightly better
than minimum risk.

Figure 3b compares several values of the parameter µ that controls how heavily to weight the
loss function when computing hope derivations. Higher loss weights lead to higher initial perfor-
mance, whereas lower loss weights lead to higher final performance (the exception being µ=−0.2,
which perhaps would have improved with more time). A weight of µ= −1 appears to be a good
tradeoff, and is symmetrical with the weight of 1 used when computing fear derivations. It would be
interesting, however, to investigate decaying the loss weight over time, as proposed by McAllester
et al. (2010).
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Figure 4: On the small model, asynchronous MIRA does not perform well compared to iterative
parameter mixing. But on the large model, asynchronous MIRA strongly outperforms
iterative parameter mixing. Increasing the number of processors to 50 provides little
benefit to iterative parameter mixing in either case, whereas asynchronous MIRA gets a
near-linear speedup.
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Figure 5: Taking a closer look at asynchronous sharing of working sets, we see that, at each epoch,
greater parallelization generally gives better performance.

1178



DISCRIMINATIVE TRAINING OF STATISTICAL TRANSLATION MODELS

2 4 6 8 10

43

44

45

Epoch

D
ev
el
op
m
en
tB

L
E
U

(a) varying η0

MIRA η= 0.01
η0 = 0.1
η0 = 1
η0 = 10

2 4 6 8 10

43

44

45

Epoch

(b) varying λ

MIRA η= 0.01
λ= 0.0001
λ= 0.001
λ= 0.01
λ= 0.1

Figure 6: (a) With λ= 0.01, AROW seems relatively insensitive to the choice of η0 in the range of
0.1 to 1, but performs much worse outside that range. (b) With η0 = 1, AROW converges
faster for larger values of λ up to 0.01; at 0.1, however, the algorithm appears to be unable
to make progress.

We then compared the two methods of parallelization (Figure 4). These experiments were run on
a cluster of nodes communicating by MPI (Message Passing Interface) over Myrinet, a high-speed
local area networking system. In these graphs, the x-axis continues to be the number of epochs;
wallclock time is roughly proportional to the number of epochs divided by p, but mixed hardware
unfortunately prevented us from performing direct comparisons of wallclock time.

One might expect that, at each epoch, the curves with greater p underperform the curves with
lower p only slightly. With iterative parameter mixing, for both the small and large models, we
see that increasing p from 20 to 50 degrades performance considerably. It would appear that there
is very little speedup due to parallelization, probably because the training data is so small (3011
sentences).

Asynchronous MIRA using the small model starts off well but afterwards does not do as well
as iterative parameter mixing. On the large model, however, asynchronous MIRA performs dramat-
ically better. Taking a closer look at its performance for varying p (Figure 5), we see that, at each
epoch, the curves with greater p actually tend to outperform the curves with lower p.

Next, we tested the AROW algorithm. We held λ fixed to 0.01 and compared different values of
the initial learning rate η0 (Figure 6a), finding that the algorithm performed well for η0 = 0.1 and
1 and was fairly insensitive to the choice of η0 in that range; larger and smaller values, however,
performed worse. We then held η0 = 1 and compared different values of λ (Figure 6b), finding that
higher values converged faster, but λ= 0.1 did much worse.

The scores on the test set (Table 1) using the large model generally confirm what was already
observed on the development set. In total, the improvement over MERT on the test set is 2.4 BLEU.
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BLEU
model obj alg approx par epoch dev test
small 1−BLEU MERT – – 6 42.1 45.2
small hinge SGD η= 0.02 rerank IPM 6 42.2 44.9
small risk SGD η= 0.05 linear IPM 8 41.9 44.8
small hinge MIRA η= 0.05 rerank IPM 4 42.2 44.9
large hinge SGD η= 0.01 rerank IPM 5 42.4 45.2
large hinge MIRA η= 0.01 rerank IPM 7 43.1 45.9
large hinge MIRA η= 0.01 rerank async 9 44.5 47.3
large hinge AROW η0 = 1 λ= 0.01 rerank async 4 44.7 47.6

Table 1: Final results. Key to columns: model = features used, obj = objective function, alg opti-
mization algorithm, approx = approximation for calculating the loss function on forests,
par = parallelization method, epoch = which epoch was selected on the development data,
dev and test = (case-insensitive IBM) BLEU score on development and test data (NIST
2008 and 2009, respectively).

8. Conclusion

We have surveyed several methods for online discriminative training and the issues that arise in
adapting these methods to the task of statistical machine translation. Using SGD, we found that the
large-margin objective performs slightly better than minimum risk. Then, using the large-margin
objective, we found that MIRA does better than SGD, and AROW, better still. We extended all of
these methods in novel ways to cope with the large structured search space of the translation task,
that is, to use as much of the translation forest as possible.

An apparent disadvantage of the large-margin objective is its requirement of a single correct
derivation, which does not exist. We showed that the hope derivation serves this purpose well. We
demonstrated that the highest-BLEU derivation is not in general the right choice, by showing that
performance drops for very negative values of µ. We also raised the possibility, as yet unexplored,
of decaying µ over time, as has been suggested by McAllester et al. (2010).

The non-decomposability of BLEU as a loss function is a nuisance that must be dealt with
carefully. However, the choice of approximation (forest reranking versus linear BLEU) for loss-
augmented inference or expectations turned out not to be very important. Past experience shows
that linear BLEU sometimes outperforms and sometimes underperforms forest reranking, but since
it is faster and easier to implement, it may be the better choice.

The choice of parallelization method turned out to be critical. We found that asynchronous
sharing of working sets in MIRA/AROW not only gave speedups that were nearly linear in the
number of processors, but also gave dramatically higher final BLEU scores than iterative parameter
mixing. It is not clear yet whether this is because iterative parameter mixing was not able to converge
in only 10 epochs or because aggregating working sets confers an additional advantage.

Although switching from MERT to online learning initially hurt performance, by adding some
very simple features to the model, we ended up with a gain of 2.4 BLEU over MERT. When these
online methods are implemented with due attention to translation forests, the nature of the transla-
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tion problem, the idiosyncrasies of BLEU, and parallelization, they are a highly effective vehicle for
exploring new extensions to discriminative models for translation.
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Appendix A. Minimum Risk Training

In this appendix, we describe minimum risk (expected loss) training (Smith and Eisner, 2006; Zens
et al., 2008; Li and Eisner, 2009; Arun et al., 2010) and some notes on its implementation.

A.1 Objective Function

Define a probabilistic version of the model,

PT (d | fi) ∝ exp
1
T
w ·h(d)

where T is a temperature parameter, and for any random variable X over derivations, define

ET [X | fi] = ∑
d∈D( fi)

PT (d | fi)X(d).

In minimum-risk training, we want to minimize∑i ET [!i(d,di) | fi] for T = 1. In annealed minimum-
risk training (Smith and Eisner, 2006), we let T → 0, in which case the expected loss approaches
the loss.

This objective function is differentiable everywhere (unlike in MERT), though not convex (as
maximum likelihood is). The gradient for a single example is:

∇ET [!i(d,di) | fi] =
1
T
(ET [!ih | fi]−ET [!i | fi]ET [h | fi])

or, in terms of B:

∇ET [!i(d,di) | fi] =−∇ET [B(b(d,ei)) | fi]

=−
1
T
(ET [Bh | fi]−ET [B | fi]ET [h | fi]) . (11)

A major advantage that minimum-risk has over the large-margin methods explored in this paper
is that it does not require a reference derivation, or a hope derivation as a proxy for the reference
derivation. The main challenge with minimum-risk training is that we must calculate expectations
of B and Bh. We discuss how this is done below.
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A.2 Relationship to Hope/fear Derivations

There is an interesting connection between the risk and the generalized hinge loss (4). McAllester
et al. (2010) show that for applications where the input space is continuous (as in speech processing),
a perceptron-like update using the hope and 1-best derivations, or the 1-best and fear derivations,
approaches the gradient of the loss. We provide here an analogous argument for the discrete input
case.

Consider a single training example ( fi,ei), so that we can simply write ! for !i and ET [X ] for
ET [X | fi]. Define a loss-augmented model:

Pµ(d | fi) ∝ exp
1
µ
(w ·h(d)+µ!(d,di))

and define

Eµ[X ] = ∑
d∈D( fi)

Pµ(d | fi)X(d).

As before, the gradient with respect to w is:

∇wEµ[!] =
1
T
(Eµ[!h]−Eµ[!]Eµ[h])

and, by the same reasoning, the partial derivative of E[h] with respect to µ comes out to be the same:

∂
∂µ
Eµ[h] =

1
T
(Eµ[h!]−Eµ[h]Eµ[!]) .

Therefore we have

∇wE[!] =
∂Eµ[h]
∂µ

∣

∣

∣

∣

µ=0

= lim
µ→0

1
2µ

(Eµ[h]−E−µ[h])

which suggests the following update rule:

w← w−
η′

2µ
(Eµ[h]−E−µ[h])

with µ decaying over time. But if we let µ= 1 (that is, to approximate the tangent with a secant),
and η′ = 2η, we get:

w← w−η(E+1[h]−E−1[h]) .
Having made this approximation, there is no harm in letting T = 0, so that the expectations of h
become the value of h at the mode of the underlying distribution:

w← w−η(h(d+1)−h(d−1)) ,
d+1 = arg max

d
(w ·h(d)+ !(d,di)) ,

d−1 = arg max
d

(w ·h(d)− !(d,di)) .

But this is exactly the SGD update on the generalized hinge loss (5), with d+ = d+1 being the fear
derivation and di = d−1 being the hope derivation.
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A.3 Linear BLEU

In order to calculate the expected loss from a forest of derivations, we must make the loss fully
decomposable onto hyperedges. Tromble et al. (2008) define a linear approximation to BLEU which
they use for minimum Bayes risk decoding. We present here a version that includes the brevity
penalty.

Suppose we have some fixed document with component scores b and add a sentence to it that has
component scores b. How does adding the new sentence affect the BLEU score? Form a first-order
Taylor approximation around b:

BLEU(b+b)≈ BLEU(b)+b ·∇BLEU(b)

= BLEU(b)

(

1+
K

∑
k=1

(

mk

Kmk
−

nk
Knk

)

+H (ρ−n1)
(

ρn1
n21
−

ρ
n1

)

)

where

H(x) =

{

1 if x≥ 0
0 if x< 0.

Note that although the brevity penalty is not differentiable at n1 = ρ, we have filled in an arbitrary
value (which is easier than smoothing the brevity penalty and works well in practice).

Since this approximation is linear in the mk and nk, it is decomposable onto hyperedges. The
term involving ρ is the same for all derivations, so we don’t need to decompose it and can also
skip (10).

The approximation is highly dependent on b; Tromble et al. use a fixed b but we use the oracle
document defined in Section 2.4. Then B, defined as in (3) but using the linear approximation to
BLEU, is decomposable down to hyperedges, making it possible to compute E[B] as well as E[bh]
over the entire forest.

A.4 Calculating the Risk and its Gradient

To calculate the expected loss, we can use the expectation semiring of Eisner (2002); we give a
slightly modified definition that renormalizes intermediate values in such a way that they can be
stored directly instead of as signed logarithms:

expectB(v) = ∑
(v→v)∈E

insidew·h(v→ v)
insidew·h(v)

expectB(v→ v), (12)

expectB(v→ v) = B(v→ v)+ ∑
v′∈v

expectB(v
′), (13)

insidew·h(v) = ∑
(v→v)∈E

insidew·h(v→ v),

insidew·h(v→ v) = expw ·h(v→ v)×∏
v′∈v

insidew·h(v′).
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To calculate the expected product ET [Bh | fi] in the gradient (11), we use the second-order
expectation semiring (Li and Eisner, 2009), similarly modified:

expectBh(v) = ∑
(v→v)∈E

insidew·h(v→ v)
insidew·h(v)

expectBh(v→ v),

expectBh(v→ v) = expectB(v→ v)expecth(v→ v)
+ ∑

v′∈v

(

expectBh(v
′)− expectB(v

′)expecth(v
′)
)

where expecth is calculated analogously to expectB (12–13).
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Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and Ben Taskar. An end-to-end discriminative
approach to machine translation. In Proceedings of COLING-ACL, 2006.

Chin-Yew Lin and Franz Josef Och. ORANGE: A method for evaluating automatic evaluation
metrics for machine translation. In Proceedings of COLING, 2004.

William N. Locke and A. Donald Booth, editors. Machine Translation of Languages: Fourteen
Essays. Technology Press of MIT, Cambridge, MA, 1955.

1185



CHIANG

GideonMann, RyanMcDonald, Mehryar Mohri, Nathan Silberman, and Daniel D.Walker. Efficient
large-scale distributed training of conditional maximum entropy models. In Advances in Neural
Information Processing Systems 22, 2009.

David McAllester, Tamir Hazan, and Joseph Keshet. Direct loss minimization for structured pre-
diction. In Advances in Neural Information Processing Systems 23, 2010.

Ryan McDonald, Koby Crammer, and Fernando Pereira. Online large-margin training of depen-
dency parsers. In Proceedings of ACL, 2005.

Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the structured
perceptron. In Proceedings of NAACL HLT, 2010.

Franz Josef Och. Minimum error rate training in statistical machine translation. In Proceedings of
ACL, 2003.

Franz Josef Och and Hermann Ney. Discriminative training and maximum entropy models for
statistical machine translation. In Proceedings of ACL, 2002.

Franz Josef Och, Christoph Tillmann, and Hermann Ney. Improved alignment models for statistical
machine translation. In Proceedings of EMNLP, 1999.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of ACL, 2002.

Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook. 2008. http://
matrixcookbook.com.

John C. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support
Vector Learning, pages 195–208. MIT Press, 1998.

Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Subgradient methods for maximum
margin structured learning. In Proceedings of the ICML Workshop on Learning in Structured
Output Spaces, 2006.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review, 65:386–408, 1958.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM. In Proceedings of ICML, 2007.

David A. Smith and Jason Eisner. Minimum risk annealing for training log-linear models. In
Proceedings of COLING/ACL, 2006. Poster Sessions.

Ben Taskar. Learning Structured Prediction Models: A Large Margin Approach. PhD thesis,
Stanford University, 2004.

Christoph Tillmann and Tong Zhang. A discriminative global training algorithm for statistical MT.
In Proceedings of COLING-ACL, 2006.

1186



DISCRIMINATIVE TRAINING OF STATISTICAL TRANSLATION MODELS

Roy W. Tromble, Shankar Kumar, Franz Och, and Wolfgang Macherey. Lattice minimum Bayes-
risk decoding for statistical machine translation. In Proceedings of EMNLP, 2008.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector
machine learning for interdependent and structured output spaces. In Proceedings of ICML, 2004.

Taro Watanabe, Jun Suzuki, Hajime Tsukuda, and Hideki Isozaki. Online large-margin training for
statistical machine translation. In Proceedings of EMNLP, 2007.
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Abstract
We consider the following sparse signal recovery (or feature selection) problem: given a design
matrix X ∈ Rn×m (m# n) and a noisy observation vector y ∈ Rn satisfying y = Xβ∗ + ε where
ε is the noise vector following a Gaussian distribution N(0,σ2I), how to recover the signal (or
parameter vector) β∗ when the signal is sparse?

The Dantzig selector has been proposed for sparse signal recovery with strong theoretical guar-
antees. In this paper, we propose a multi-stage Dantzig selector method, which iteratively refines
the target signal β∗. We show that if X obeys a certain condition, then with a large probability
the difference between the solution β̂ estimated by the proposed method and the true solution β∗
measured in terms of the !p norm (p≥ 1) is bounded as

‖β̂−β∗‖p ≤
(

C(s−N)1/p
√

logm+∆
)

σ,

where C is a constant, s is the number of nonzero entries in β∗, the risk of the oracle estimator ∆ is
independent of m and is much smaller than the first term, and N is the number of entries of β∗ larger
than a certain value in the order of O(σ

√
logm). The proposed method improves the estimation

bound of the standard Dantzig selector approximately fromCs1/p
√
logmσ to C(s−N)1/p

√
logmσ

where the value N depends on the number of large entries in β∗. When N = s, the proposed
algorithm achieves the oracle solution with a high probability, where the oracle solution is the
projection of the observation vector y onto true features. In addition, with a large probability, the
proposed method can select the same number of correct features under a milder condition than the
Dantzig selector. Finally, we extend this multi-stage procedure to the LASSO case.
Keywords: multi-stage, Dantzig selector, LASSO, sparse signal recovery

1. Introduction

The sparse signal recovery problem has been studied in many areas including machine learning
(Zhang, 2009b; Zhao and Yu, 2006), signal processing (Donoho et al., 2006; Romberg, 2008; Wain-
wright, 2009), and mathematics/statistics (Bunea et al., 2007; Candès and Plan, 2009; Candès and
Tao, 2007; Koltchinskii and Yuan, 2008; Lounici, 2008; Meinshausen et al., 2006; Ravikumar et al.,
2008; Zhang, 2009a). In the sparse signal recovery problem, one is mainly interested in the signal
recovery accuracy, that is, the distance between the estimation β̂ and the original signal or the true
solution β∗. If the design matrix X is considered as a feature matrix, that is, each column is a feature
vector, and the observation y as a target object vector, then the sparse signal recovery problem is

c©2012 Ji Liu, Peter Wonka and Jieping Ye.
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equivalent to feature selection (or model selection). In feature selection, one concerns the feature
selection accuracy. Typically, a group of features corresponding to the coefficient values in β̂
larger than a threshold form the supporting feature set. The difference between this set and the true
supporting set (i.e., the set of features corresponding to nonzero coefficients in the original signal)
measures the feature selection accuracy.

Two well-known algorithms for learning sparse signals include LASSO (Tibshirani, 1996) and
Dantzig selector (Candès and Tao, 2007):

LASSO min
β
:
1
2
‖Xβ− y‖22+λ′||β||1,

Dantzig Selector min
β
: ||β||1

s.t. : ‖XT (Xβ− y)‖∞ ≤ λ.

Strong theoretical results concerning LASSO and Dantzig selector have been established in the
literature (Cai et al., 2009; Candès and Plan, 2009; Candès and Tao, 2007;Wainwright, 2009; Zhang,
2009a; Zhao and Yu, 2006).

1.1 Contributions

In this paper, we propose a multi-stage procedure based on the Dantzig selector, which estimates
the supporting feature set F0 and the signal β̂ iteratively. The intuition behind the proposed multi-
stage method is that feature selection and signal recovery are tightly correlated and they can benefit
from each other: a more accurate estimation of the supporting features can lead to a better signal
recovery and a more accurate signal recovery can help identify a better set of supporting features.
In the proposed method, the supporting set F0 starts from an empty set and its size increases by one
after each iteration. At each iteration, we employ the basic framework of Dantzig selector and the
information about the current supporting feature set F0 to estimate the new signal β̂. In addition, we
select the supporting feature candidates in F0 among all features in the data at each iteration, thus
allowing to remove incorrect features from the previous supporting feature set.

The main contributions of this paper lie in the theoretical analysis of the proposed method.
Specifically, we show: 1) the proposed method can improve the estimation bound of the standard
Dantzig selector approximately from Cs1/p

√
logmσ to C(s−N)1/p

√
logmσ where the value N de-

pends on the number of large entries in β∗; 2) when N = s, the proposed algorithm can achieve the
oracle solution β̄ with a high probability, where the oracle solution is the projection of the observa-
tion vector y onto true features (see Equation (1) for the explicit description of β̄); 3) with a high
probability, the proposed method can select the same number of correct features under a milder
condition than the standard Dantzig selector method; 4) this multi-stage procedure can be easily
extended to the LASSO case. The numerical experiments validate these theoretical results.

1.2 Related Work

Sparse signal recovery without observation noise was studied by Candès and Tao (2005), which
showed under the restricted isometry property (RIP) sparse signals can be perfectly recovered by
solving an !1 norm minimization problem. LASSO and Dantzig selector can be considered as its
noisy versions. Zhao and Yu (2006) proved the feature selection consistency of LASSO under
the irrepresentable condition. It was also shown by Candès and Plan (2009) that if the true signal
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is strong enough together with some additional assumptions on its supporting set and signs, the
mutual incoherence property (MIP) (or incoherence condition) can guarantee the feature selection
consistency and the sign consistency with a high probability. A comprehensive analysis for LASSO,
including the recovery accuracy in an arbitrary !p norm (p≥ 1) and the feature selection consistency,
was presented in Zhang (2009a). Candès and Tao (2007) proposed the Dantzig selector (which is a
linear programming problem) for sparse signal recovery and presented a bound of recovery accuracy
with the same order as LASSO under the uniform uncertainty principle (UUP). An approximate
equivalence between the LASSO estimator and the Dantzig selector was given by Bickel et al.
(2009). Lounici (2008) studied the !∞ convergence rate for LASSO and Dantzig estimators in
a high-dimensional linear regression model under MIP. James et al. (2009) provided conditions on
the design matrix X under which the LASSO and Dantzig selector coefficient estimates are identical
for certain tuning parameters. Please refer to recent papers (Zhang, 2009a; Fan and Lv, 2010) for a
more comprehensive overview of LASSO and Dantzig selector.

Since convex regularization methods like LASSO and Dantzig selector give biased estimation
due to convex regularization, many heuristic methods have been proposed to correct the bias of
convex relaxation recently, including orthogonal matching pursuit (OMP) (Tropp, 2004; Donoho
et al., 2006; Zhang, 2009b, 2011a; Cai and Wang, 2011), two stage LASSO (Zhang, 2009a), multi-
ple thresholding LASSO (Zhou, 2009), adaptive LASSO (Zou, 2006), adaptive forward-backward
greedy method (FoBa) (Zhang, 2011b), and nonconvex regularization methods (Zhang, 2010b; Fan
and Lv, 2011; Lv and Fan, 2009; Zhang, 2011b). They have been shown to outperform the standard
convex methods in many practical applications. It was shown that under exact recovery condition
(ERC) (similar to MIP) the solution of OMP guarantees the feature selection consistency in the
noiseless case (Tropp, 2004). The results of Tropp (2004) were extended to the noisy case by Zhang
(2009b). Very recently, Zhang (2011a) showed that under RIP (weaker than MIP and ERC), OMP
can stably recover a sparse signal in 2-norm under measurement noise. A multiple thresholding pro-
cedure was proposed to refine the solution of LASSO or Dantzig selector (Zhou, 2009). The FoBa
algorithm was proposed by Zhang (2011b), and it was shown that under RIP the feature selection
consistency is achieved if the minimal nonzero entry in the true solution is larger than O(σ

√
logm).

The adaptive LASSO was proposed to adaptively tune the weight value for the !1 norm penalty,
and it was shown to enjoy the oracle properties (Zou, 2006). Zhang (2010b) proposed a general
multi-stage convex regularization method (MSCR) to solve a nonconvex sparse regularization prob-
lem. It was also shown that a specific case “least square loss + nonconvex sparse regularization”
can eliminate the bias in signal recovery (Zhang, 2010b) and achieve the feature selection con-
sistency (Zhang, 2011c) under the sparse eigenvalue condition (SEC) if the true signal is strong
enough. More related work about nonconvex regularization methods can be found in a recent paper
by Zhang and Zhang (2012).

Conditions mentioned above can be classified into two classes: 1) the !2 conditions including
RIP, UUP, and SEC; 2) the !∞ conditions including ERC and MIP. Overall, the !2 conditions are
considered to be weaker than the !∞ conditions, since the !∞ conditions require about O(s2 logm)
random projections while the !2 conditions only need O(s logm) random projections.

1.3 Definitions, Notations, and Basic Assumptions

We use X ∈ Rn×m to denote the design matrix and focus on the case m # n, that is, the signal
dimension is much larger than the observation dimension. The correlation matrix A is defined as
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A = XTX with respect to the design matrix. The noise vector ε follows the multivariate normal
distribution ε ∼ N(0,σ2I). The observation vector y ∈ Rn satisfies y = Xβ∗+ ε, where β∗ denotes
the original signal (or true solution). β̂ is used to denote the solution of the proposed algorithm. The
α-supporting set (α≥ 0) for a vector β is defined as

suppα(β) = { j : |β j|> α}.

The “supporting” set of a vector refers to the 0-supporting set. F denotes the supporting set of the
original signal β∗. For any index set S, |S| denotes the size of the set and S̄ denotes the complement
of S in {1,2,3, ...,m}. In this paper, s is used to denote the size of the supporting set F , that is,
s= |F|. We use βS to denote the subvector of β consisting of the entries of β in the index set S. The
!p norm of a vector v is computed by ‖v‖p = (∑i |vi|p)

1/p, where vi denotes the ith entry of v. The
oracle solution β̄ is defined as

β̄F = (XTF XF)
−1XTF y and β̄F̄ = 0. (1)

We employ the following notation to measure some properties of a PSD matrixM ∈ RK×K (Zhang,
2009a):

µ(p)M,k = inf
u∈Rk,|I|=k

‖MI,Iu‖p
‖u‖p

, ρ(p)M,k = sup
u∈Rk,|I|=k

‖MI,Iu‖p
‖u‖p

,

θ(p)M,k,l = sup
u∈Rl ,|I|=k,|J|=l,I∩J=∅

‖MI,Ju‖p
‖u‖p

, γM =max
i-= j

|Mi j|,

where p ∈ [1,∞], I and J are disjoint subsets of {1,2, ...,K}, and MI,J ∈ R|I|×|J| is a submatrix of
M with rows from the index set I and columns from the index set J. One can easily verify that
µ(∞)A,k ≥ 1− γA(k− 1), ρ

(∞)
A,k ≤ 1+ γA(k− 1), and θ

(∞)
A,k,l ≤ lγA, if all columns of X are normalized to

have a unit length.
Additionally, we use the following notation to denote two probabilities:

η′1 = η1(π log((m− s)/η1))−1/2, η′2 = η2(π log(s/η2))−1/2,

where η1 and η2 are two factors between 0 and 1. In this paper, if we say “large”, “larger” or “the
largest”, it means that the absolute value is large, larger or the largest. For simpler notation in the
computation of sets, we sometimes use “S1+ S2” to indicate the union of two sets S1 and S2, and
use “S1− S2” to indicate the removal of the intersection of S1 and S2 from the first set S1. In this
paper, the following assumption is always admitted.

Assumption 1 We assume that s = |supp0(β∗)| < n, the variable number is much larger than the
feature dimension (i.e., m# n), each column vector is normalized as XTi Xi = 1 where Xi indicates
the ith column (or feature) of X, and the noise vector ε follows the Gaussian distribution N(0,σ2I).

In the literature, it is often assumed that XTi Xi = n, which is essentially identical to our assumption.
However, this may lead to a slight difference of a factor

√
n in some conclusions. We have automat-

ically transformed conclusions from related work according to our assumption when citing them in
our paper.
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1.4 Organization

The rest of the paper is organized as follows. We present our multi-stage algorithm in Section 2.
The main theoretical results are summarized in Section 3 with detailed proofs given in Appendix
A (for Dantzig selector) and Appendix B (for LASSO). The numerical simulation is reported in
Section 4. Finally, we conclude the paper in Section 5.

2. The Multi-Stage Dantzig Selector Algorithm

In this section, we introduce the multi-stage Dantzig selector algorithm. In the proposed method,
we update the support set F0 and the estimation β̂ iteratively; the supporting set F0 starts from an
empty set and its size increases by one after each iteration. At each iteration, we employ the basic
framework of Dantzig selector and the information about the current supporting set F0 to estimate
the new signal β̂ by solving the following linear program:

min ‖βF̄0‖1
s.t. ‖XTF̄0(Xβ− y)‖∞ ≤ λ

‖XTF0(Xβ− y)‖∞ = 0.

(2)

Since the features in F0 are considered as the supporting candidates, it is natural to enforce them to
be orthogonal to the residual vector Xβ− y, that is, one should make use of them for reconstructing
the overestimation y. This is the rationale behind the constraint: ‖XTF0(Xβ− y)‖∞ = 0. The other
advantage is when all correct features (i.e., the true feature set F) are chosen, the proposed algorithm
can be shown to converge to the oracle solution. In other words, the oracle solution satisfies this
constraint with F . The detailed procedure is formally described in Algorithm 1 below. Apparently,
when F(0)

0 =∅ and N = 0, the proposed method is identical to the standard Dantzig selector.

Algorithm 1Multi-Stage Dantzig Selector

Require: F(0)
0 , λ, N, X , y

Ensure: β̂(N), F(N)
0

1: while i=0; i≤N; i++ do
2: Obtain β̂(i) by solving the problem (2) with F0 = F(i)

0 ;
3: Form F(i+1)

0 as the index set of the i+1 largest elements of β̂(i);
4: end while

3. Main Results

This section introduces the main results of this paper and discusses some of their implications. The
proofs are provided in the Appendix.

3.1 Motivation

To motivate the proposed multi-stage algorithm, we first consider a simple case where some knowl-
edge about the supporting features is known in advance. In standard Dantzig selector, we assume
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F0 =∅. If we assume that the features belonging to a set F0 are known as supporting features, that
is, F0 ⊂ F , we have the following result:

Theorem 1 Assume that Assumption 1 holds. Take F0 ⊂ F and λ = σ

√

2log
(

m−s
η1

)

in the opti-

mization problem (2). If there exists some l such that

µ(p)A,s+l−θ(p)A,s+l,l

(

|F̄0− F̄ |
l

)1−1/p
> 0

holds, then with a probability larger than 1−η′1, the !p norm (1≤ p≤∞) of the difference between
β̂, the solution of the problem (2), and the oracle solution β̄ is bounded as

‖β̂− β̄‖p ≤

[

1+
(

|F̄0−F̄ |
l

)p−1
]1/p

(|F̄0− F̄ |+ l2p)1/p

µ(p)A,s+l−θ(p)A,s+l,l

(

|F̄0−F̄|
l

)1−1/p λ (3)

and with a probability larger than 1−η′1−η′2, the !p norm (1≤ p≤ ∞) of the difference between
β̂, the solution of the problem (2) and the true solution β∗ is bounded as

‖β̂−β∗‖p ≤

[

1+
(

|F̄0−F̄|
l

)p−1
]1/p

(|F̄0− F̄|+ l2p)1/p

µ(p)A,s+l−θ(p)A,s+l,l

(

|F̄0−F̄ |
l

)1−1/p λ+

s1/p

µ(p)
(XTF XF )1/2,s

σ
√

2log(s/η2).

(4)

It is clear that both bounds (for any 1 ≤ p ≤ ∞) are monotonically increasing with respect to the
value of |F̄0− F̄ |. In other words, the larger F0 is, the lower these bounds are. This coincides
with our motivation that more knowledge about the supporting features can lead to a better signal
estimation. Most related literatures directly estimate the bound of ‖β̂−β∗‖p. Since β∗ may not be
a feasible solution of problem (2), it is not easy to directly estimate the distance between β̂ and β∗.

The bound given in the inequality (4) consists of two terms. Since m # n > s, we have
√

2log((m− s)/η1)#
√

2log(s/η2) if η1 ≈ η2. When p= 2, the following holds:

µ(2)A,s+l−θ(2)A,s+l,l

(

|F̄0− F̄|
l

)1−1/2
≤ µ(2)

(XTF XF )1/2,s

due to the following relationships:

µ(2)A,s+l ≤ µ(2)A,s ≤ µ(2)XTF XF ,s
≤ µ(2)

(XTF XF )1/2,s
.

From the analysis in the next section, we can see that the first term is the upper bound of the distance
from the optimizer to the oracle solution, that is, ‖β̂− β̄‖p and the second term is the upper bound
of the distance from the oracle solution to the true solution, that is, ‖β̄−β∗‖p.1 Thus, the first term
may be much larger than the second term under the assumption m# n> s.

1. The presented bound for ‖β̄− β̂‖p can be sharper for a particular value of p, for example, ‖β̄− β∗‖2 ≤ O(σ
√
s),

‖β̄−β∗‖∞ ≤ O(σ
√
logs) (Zhang, 2009b). For simplicity, a general bound ‖β̄−β∗‖p ≤ O(σs1/p

√
logs) is used in

this paper.
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3.2 Comparison with Dantzig Selector

We first compare our estimation bound with the one derived by Candès and Tao (2007) for p = 2.
For convenience of comparison, we rewrite their theorem (Candès and Tao, 2007) equivalently as:

Theorem 2 Suppose β ∈ Rm is any s-sparse vector of parameters obeying δ2s+θ(2)A,s,2s < 1. Setting
λp = σ

√

2log(m/η) (0< η≤ 1), with a probability at least 1−η(π logm)−1/2, the solution of the
standard Dantzig selector β̂D obeys

‖β̂D−β∗‖2 ≤
4

1−δ2s−θ(2)A,s,2s

s1/2σ
√

2log(m/η), (5)

where δ2s =max(ρ
(2)
A,2s−1,1−µ(2)A,2s).

In order to compare Theorem 1 with the result above, taking l = |F̄0− F̄|≤ s, p= 2, η1 = m−s
m η,

and η2 = s
mη in Theorem 1, we obtain that

‖β̂−β∗‖2 ≤





√
10l

µ(2)A,s+l−θ(2)A,s+l,l

+

√
s

µ(2)
(XTF XF )1/2,s



σ
√

2log(m/η) (6)

holds with probability larger than 1−η(π logm)−1/2. It is easy to verify that

1−δ2s−θ(2)A,s,2s ≤ µ(2)A,s+l−θ(2)A,s+l,s ≤ µ(2)A,2s ≤ µ(2)
(XTF XF ),s

=
(

µ(2)
(XTF XF )1/2,s

)2
≤ µ(2)

(XTF XF )1/2,s
≤ 1.

When F0=∅, the bound in (6) is comparable to the one in (5). Since µ(2)A,s+l−θ(2)A,s+l,l in Equation (6)
is a decreasing function in terms of l, if F0 is nonempty, particularly if F0 is close to F (i.e., l is close
to 0), the condition µ(2)A,s+l −θ(2)A,s+l,l > 0 required in Equation (6) is much easier to satisfy than the
condition 1−δ2s−θ(2)A,s,2s > 0 required in Equation (5).

3.3 Feature Selection

The estimation bounds in Theorem 1 assume that a set F0 is given. In this section, we show how
the supporting set can be estimated. Similar to previous work (Candès and Plan, 2009; Zhang,
2009b), |β∗j | for j ∈ F is required to be larger than a threshold value. As is clear from the proof
in Appendix A, the threshold value α0 is actually proportional to the value of ‖β̂− β∗‖∞. We
essentially employ the result with p=∞ in Theorem 1 to estimate the threshold value. It shows that
the value of ‖β̂−β∗‖∞ is bounded by O(λ), which is consistent with the result of Lounici (2008).
In the following, we first consider the simple case when N = 0. We have shown in the last section
that the estimation bound in this case is similar to the one for Dantzig selector.

Theorem 3 Under the Assumption 1, if there exist a nonempty set

Ω= {l | µ(∞)A,s+l−θ(∞)A,s+l,l

(s
l

)

> 0}
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and an index set J such that |β∗j |> α0 for any j ∈ J, where

α0 =‖β̂(0)−β∗‖∞+‖β̂(0)− β̄‖∞

≤4min
l∈Ω

max
(

1, sl
)

µ(∞)A,s+l−θ(∞)A,s+l,l
( s
l
)

λ+
1

µ(∞)
(XTF XF )1/2,s

σ
√

2log(s/η2),

then taking F0 = ∅, N = 0, λ = σ

√

2log
(

m−s
η1

)

into the problem (2) (equivalent to Dantzig selec-

tor), the largest |J| elements of β̂std (or β̂(0)) belong to F with probability larger than 1−η′1−η′2.

The theorem above indicates that under the given condition, if min j∈J |β∗j | > O(σ
√
logm) (as-

suming that there exists l ≥ s such that µ(∞)A,s+l − θ(∞)A,s+l,l
( s
l
)

> 0), then with high probability the
selected |J| features by Dantzig selector belong to the true supporting set. In particular, if |J| = s,
then the consistency of feature selection is achieved. In order to build up a link to the previous work,
we let l = s. Note that µ(∞)A,2s−θ(∞)A,2s,s ≥ 1− γA(3s−1). If the MIP holds like γAs ≤ 1/6 (see Corol-
lary 8.1 in Zhang, 2009a), then the condition required in Theorem 3 is satisfied as well. It means
that the condition we require is not stronger than MIP. However, it still belongs to the !∞ condition
like MIP. The result above is comparable to the ones for other feature selection algorithms, includ-
ing LASSO/two stage LASSO (Candès and Plan, 2009; Zhao and Yu, 2006), OMP (Tropp, 2004;
Donoho et al., 2006; Zhang, 2009b), and two stage LASSO (Zhang, 2009a). In all these algorithms,
the conditions min j∈F |β∗j |≥Cσ

√
logm and an !∞ condition are required. As pointed out by Zhang

and Zhang (2012) and Zhang (2011a), these conditions required by OMP, Dantzig selector, and
LASSO in feature selection cannot be improved. If one wants to use the !2 conditions in feature
selection, the minimal nonzero entry of the true solution must be in the order of O(σ

√
s logm),

which can be obtained by simply using ‖β̂(0)− β∗‖∞+ ‖β̂(0)− β̄‖∞ ≤ ‖β̂(0)− β∗‖2+ ‖β̂(0)− β̄‖2.
A similar requirement under the !2 condition for LASSO (or two stage LASSO) is also implied by
Zhang (2009a, Theorem 8.1).

Next, we show that the condition |β∗j |> α0 in Theorem 3 can be relaxed by the proposed multi-
stage procedure with N > 0, as summarized in the following theorem:

Theorem 4 Under the Assumption 1, if there exist a nonempty set

Ω= {l | µ(∞)A,s+l−θ(∞)A,s+l,l

(s
l

)

> 0}

and a set J such that |suppαi(β∗J)|> i holds for all i ∈ {0,1, ..., |J|−1}, where

αi =‖β̂(i)−β∗‖∞+‖β̂(i)− β̄‖∞

≤4min
l∈Ω

max
(

1, s−il
)

µ(∞)A,s+l−θ(∞)A,s+l,l
( s−i

l
)

λ+
1

µ(∞)
(XTF XF )1/2,s

σ
√

2log(s/η2),

then taking F(0)
0 = ∅, λ = σ

√

2log
(

m−s
η1

)

and N = |J|− 1 into Algorithm 1, the solution after

N iterations satisfies F(N)
0 ⊂ F (i.e., |J| correct features are selected) with probability larger than

1−η′1−η′2.
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Assume that one aims to select N correct features by the standard Dantzig selector and the multi-
stage method. These two theorems show that the standard Dantzig selector requires that at least N
of |β∗j |’s with j ∈ F are larger than the threshold value α0, while the proposed multi-stage method
requires that at least i of the |β∗j |’s are larger than the threshold value αi−1, for i = 1, · · · ,N. Since
the upper bounds of {α j}’s strictly decrease and the difference of two neighbors is greater than

4θ(∞)A,s+l,l

l
(

µ(∞)A,s+l−θ(∞)A,s+l,l
( s−i

l
)

)2λ

for some l ∈ Ω, the proposed multi-stage method requires a strictly weaker condition for selecting
N correct features than the standard Dantzig selector. If we consider the !2 conditions, using ‖β̂(i)−
β∗‖∞+‖β̂(i)− β̄‖∞ ≤ ‖β̂(i)−β∗‖2+‖β̂(i)− β̄‖2 to bound αi, we obtain that αi ≤O(

√

(s− i) logm+
∆)σ where ∆ is a small number relying on s. When i is close to s, the order of αi approaches
O(σ

√
logm). Recall that the FoBa algorithm (Zhang, 2011b), MSCR (Zhang, 2011c), and MC+

(Zhang, 2010a) require an !2 condition and the threshold value is in the order of O(σ
√
logm) for the

feature selection consistency while the standard LASSO or Dantzig selector requires the threshold
value in the order of O(σ

√
s logm). Therefore, our condition lies between them.

3.4 Signal Recovery

In this section, we derive the estimation bound of the proposed multi-stage method by combining
results from Theorems 1, 3, and 4.
Theorem 5 Under the Assumption 1, if there exist l such that

µ(∞)A,s+l−θ(∞)A,s+l,l

(s
l

)

> 0 and µ(p)A,2s−θ(p)A,2s,s > 0,

and a set J such that |suppαi(β∗J)|> i holds for all i ∈ {0,1, ..., |J|−1}, where the αi’s are defined
in Theorem 4, then

(1) taking F0 = ∅, N = 0 and λ = σ

√

2log
(

m−s
η1

)

into Algorithm 1, with probability larger than

1−η′1−η′2, the solution of the Dantzig selector β̂D (i.e., β̂(0)) obeys:

‖β̂D−β∗‖p ≤
(2p+1+2)1/ps1/p

µ(p)A,2s−θ(p)A,2s,s

λ+
s1/p

µ(p)
(XTF XF )1/2,s

σ
√

2log(s/η2);

(2) taking F0 =∅, N = |J| and λ= σ

√

2log
(

m−s
η1

)

into Algorithm 1, with probability larger than

1−η′1−η′2, the solution of the multi-stage method β̂mul (i.e., β̂(N)) obeys:

‖β̂mul−β∗‖p ≤
(2p+1+2)1/p(s−N)1/p

µ(p)A,2s−N−θ(p)A,2s−N,s−N

λ+
s1/p

µ(p)
(XTF XF )1/2,s

σ
√

2log(s/η2).

Similar to the analysis in Theorem 1, the first term (i.e., the distance from β̂ to the oracle solution β̄)
dominates in the estimated bounds. Thus, the performance of the multi-stage method approximately
improves the standard Dantzig selector from Cs1/p

√
logmσ to C(s−N)1/p

√
logmσ. When p = 2,

our estimation has the same order as FoBa (Zhang, 2011b) and MCSR (Zhang, 2010b), but the
conditions involved in our estimation belong to the !∞ class while they use the !2 condition.
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3.5 The Oracle Solution

The oracle solution β̂ defined in Equation (1) is the minimum-variance unbiased estimator of the
true solution given the noisy observation. We show in the following theorem that the proposed
method can obtain the oracle solution with high probability under certain conditions:

Theorem 6 Under the assumption 1, if there exists l such that µ(∞)A,s+l − θ(∞)A,s+l,l
( s−i

l
)

> 0, and the
supporting set F of β∗ satisfies |suppαi(β∗F)|> i for all i∈ {0,1, ...,s−1}, where the αi’s are defined

in Theorem 4, then taking F0 = ∅, N = s and λ = σ

√

2log
(

m−s
η1

)

into Algorithm 1, the oracle

solution can be achieved, that is, F(N)
0 = F and β̂(N) = β̄, with probability larger than 1−η′1−η′2.

The theorem above shows that when the nonzero elements of the true coefficients vector β∗ are large
enough, the oracle solution can be achieved with high probability.

3.6 The Multi-Stage LASSO Algorithm

Next we extend the multi-stage procedure to the LASSO case; we expect to achieve similar improve-
ments over the standard LASSO. The multi-stage LASSO algorithm can be obtained by substituting
the basic optimization problem, that is, Equation (2) in Algorithm 1, by the following problem:

min
β
:
1
2
‖Xβ− y‖22+λ′||βF̄0 ||1

s.t. : ‖XTF0(Xβ− y)‖∞ = 0.
(7)

Note that the constraint in Equation (7) is satisfied automatically at the optimal solution by observing
the subdifferential of its objective function. Thus, the constraint can be removed from Equation (7)
in practice.

We apply the same framework in Dantzig selector to analyze the multi-stage LASSO to obtain
a bound estimation for any p ∈ [1,∞] and show that similar improvements can be achieved over the
standard LASSO. For completeness, we include all proofs and results for multi-stage LASSO in
Appendix B.

It is worth mentioning that Zhang (2010b, 2011b) recently developed a similar method called
MSCR. The main difference is that it uses a threshold value to update the candidate set F(i+1)

0 at each
iteration and may need to solve LASSO more than s times to converge, while our algorithm needs to
solve LASSO less than s times. An advantage of MSCR is that it requires a weaker condition, that
is, mini∈F |β∗| > O(σ

√
logm) and an !2 condition, to achieve the consistency on feature selection

and signal recovery.

4. Simulation Study

We have performed simulation studies to verify our theoretical analysis. Our comparison includes
two aspects: signal recovery accuracy and feature selection accuracy. The signal recovery accuracy
is measured by the relative signal error: SRA=−20log10(‖β̂−β∗‖2/‖β∗‖2), where β̂ is the solution
of a specific algorithm. The feature selection accuracy is measured by the percentage of correct
features selected: FSA= |F̂ ∩F |/|F|, where F̂ is the estimated feature candidate set.

We generate an n×m random matrix X . Each element of X follows an independent stan-
dard Gaussian distribution N(0,1). We then normalize the length of the columns of X to be 1.
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The s−sparse original signal β∗ is generated with s nonzero elements independently uniformly
distributed from [−10,10]. The locations of s nonzero elements are uniformly distributed in
{1,2, · · · ,m}. We form the observation by y = Xβ∗ + ε, where the noise vector ε is generated
by the Gaussian distribution N(0,σ2I). All experiments are repeated 100 times and we use their
average performance for comparison.

First we compare the standard Dantzig selector and the multi-stage version. For a fair compar-
ison, we choose the same λ = σ

√
2logm in both algorithms. We run the proposed algorithm with

F(0)
0 = ∅ with different values of N and let the estimation β̂ be the output β̂(N) in Algorithm 1.
The feature candidate set F̂ is predicted by the index set of the s largest elements in β̂. Note that F̂
identified by β̂ = β̂(N) is different from the output F(N)

0 by Algorithm 1. The size of F̂ is always
s while the size of F(N)

0 is N. Note that the solution of the standard Dantzig selector algorithm is
equivalent to β̂(N) with N = 0. We report the SRA curve of β̂(N) with respect to N in the left column
of Figure 1. The right column of Figure 1 shows the FSA curve with respect to N. We allow N > s
in our simulation although this case is beyond our theoretical analysis, since in practice the sparsity
number s is usually unknown in advance. We can observe from Figure 1 that 1) the multi-stage
method obtains a solution with a smaller distance to the original signal than the standard Dantzig
selector method; 2) the multi-stage method selects a larger percentage of correct features than the
standard Dantzig selector method; 3) the multi-stage method can achieve the oracle solution with a
large probability; and 4) even when N > s, the multi-stage algorithm still outperforms the standard
Dantzig selector and achieves high accuracy in signal recovery and feature selection. Overall, the
recovery accuracy curve increases with an increasing value of N before reaching the sparsity level s
and decreases slowly after that, and the feature selection accuracy curve increases while N ≤ s and
becomes flat after N goes beyond s.

Next we apply the multi-stage procedure to the LASSO case and compare the multi-stage
LASSO to the standard LASSO and the two-stage LASSO (Zhang, 2009a). The two-stage LASSO
algorithm first estimates a support set F0 = suppα(β′) from the solution β′ of the standard LASSO
where α> 0 is the threshold parameter; the second stage estimates the signal by solving the follow-
ing problem

min
β
:
1
2
‖Xβ− y‖22+λ′‖βF̄0‖1, (8)

which is indeed identical to Equation (7). In order to make it comparable to the proposed multi-
stage LASSO algorithm with the parameter N, we properly choose α such that |F0|= N and use the
output β̂′ from Equation (8) and the feature candidate set by β̂′ for comparison. Similarly, we use
the same λ′ = 2λ in the three algorithms. The comparison reported in Figure 2 also indicates the
advantage of the proposed multi-stage procedure.

5. Conclusion

In this paper, we propose a multi-stage procedure to improve the performance of the Dantzig selector
and the LASSO by iteratively selecting the supporting features and recovering the original signal.
The proposed method makes use of the information of supporting features to estimate the signal
and simultaneously makes use of the information of the estimated signal to select the supporting
features. Our theoretical analysis shows that the proposed method improves upon the standard
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Figure 1: Numerical simulation. We compare the solutions of the standard Dantzig selector method
(N = 0), the proposed method for different values of N = 0,1, · · · ,s, · · · ,s+ 5, and the oracle so-
lution. The SRA and FSA comparisons are reported on the left column and the right column, re-
spectively. The red line indicates the SRA (or FSA) value of the standard Dantzig selector method;
the blue line indicates the value of the oracle solution; the green curve with black boxes records the
results by the proposed method for different values of N; the vertical cyan line distinguishes two
cases N <= s and N > s.
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Figure 2: Numerical simulation. We compare the solutions of the standard Dantzig selector
method (N = 0), the two-stage LASSO algorithm, the proposed method for different values of
N = 0,1, · · · ,s, · · · ,s+ 5, and the oracle solution. The SRA and FSA comparisons are reported on
the left column and the right column, respectively. The red line indicates the SRA (or FSA) value
of the standard Dantzig selector method; the blue line indicates the value of the oracle solution; the
green curve with black boxes records the results of the proposed method for different values of N;
the magenta curve with yellow diamonds indicates the results of the two-stage LASSO algorithm;
the vertical cyan line distinguishes two cases N <= s and N > s.
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Dantzig selector and the LASSO in both signal recovery and supporting feature selection. The final
numerical simulation confirms our theoretical analysis.
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Appendix A.

Theorem 1 is fundamental for the rest of the theorems. We first highlight a brief architecture for its
proof. Theorem 1 estimates ‖β̂−β∗‖p, which is bounded by the sum of two parts: ‖β̂−β∗‖p≤‖β̂−
β̄‖p+ ‖β̄−β∗‖p. We use the upper bounds of these two parts to estimate the bound of ‖β̂−β∗‖p.
The analysis in Section 3.2 shows that the first term ‖β̂− β̄‖p may be much larger than the second
term ‖β̄−β∗‖p. In Lemma 7, we estimate the bound of ‖β̄−β∗‖p and its holding probability. The
remaining part of the proof focuses on the estimation of the bound of ‖β̂− β̄‖p. For convenience,
we use h to denote β̂− β̄. h can be divided into hF̄1−T1 and hF1+T1 , where F0 ⊂ F1 ⊂ F . Lemma 9
studies the relationship between hF̄1−T1 and hF1+T1 , if β̄ is feasible (Lemma 8 computes its holding
probability). Then, Lemma 11 shows that ‖h‖p can be bounded in terms of ‖hF1+T1‖p. In Theorem
12, we estimate the bound of ‖hF1+T1‖p. Finally, letting F1 = F , we prove Theorem 1.

Lemma 7 With probability larger than 1−η(π log(s/η))−1/2, the following holds:

‖β̄−β∗‖p ≤
s1/pσ

√

2log(s/η)

µ(p)
(XTF XF )1/2,s

. (9)

Proof According to the definition of β̄, we have

β̄F = (XTF XF)
−1XTF y= (XTF XF)

−1XTF (Xβ
∗+ ε) = (XTF XF)

−1XTF (XFβ
∗
F + ε)

= β∗F +(XTF XF)
−1XTF ε.

It follows that

β̄F −β∗F = (XTF XF)
−1XTF ε∼ N(0,(XTF XF)−1σ2).
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Since ‖β̄− β∗‖p = ‖β̄F − β∗F‖p, we only need to consider the bound for ‖β̄F − β∗F‖p. Let Z =
(XTF XF)1/2(β∗F − β̄F)/σ ∼ N(0, I). We have

P(‖Z‖p ≥ t) = (2π)−s/2
∫
‖Z‖p≥t

e−Z
T Z/2dZ

≤ (2π)−s/2
∫
s1/p‖Z‖∞≥t

e−Z
T Z/2dZ (due to ‖Z‖p ≤ s1/p‖Z‖∞)

= 1− (2π)−s/2
∫
‖Z‖∞≤s−1/pt

e−Z
T Z/2dZ

= 1−
[

(2π)−1/2
∫
|Zi|≤s−1/pt

e−Z
2
i /2dZi

]s

= 1−
[

1−2(2π)−1/2
∫ ∞

s−1/pt
e−Z

2
i /2dZi

]s

≤ s
[

2(2π)−1/2
∫ ∞

s−1/pt
e−Z

2
i /2dZi

]

≤
2s1+1/p

t(2π)1/2
exp
[

−t2

2s2/p

]

.

Thus the following bound holds with probability larger than 1− 2s1+1/p
t(2π)1/2 exp

[

−t2
2s2/p

]

:

P(‖Z‖p ≤ t) = P(‖(XTF XF)1/2(β∗F − β̄F)‖p ≤ tσ)

≤ P(µ(p)
(XTF XF )1/2,s

‖β∗F − β̄F‖p ≤ tσ) = P(‖β∗F − β̄F‖p ≤ tσ/µ(p)
(XTF XF )1/2,s

).

Taking t =
√

2log(s/η)s1/p, we prove the claim. Note that the presented bound holds for any p≥ 1.

Lemma 8 With probability larger than 1−η(π log m−sη )−1/2, the following bound holds:

‖XTF̄ (X β̄− y)‖∞ ≤ λ,

where λ= σ
√

2log(m− s)/η.

Proof Let us first consider the probability of ‖XTF̄ (X β̄− y)‖∞ ≤ λ. For any j ∈ F̄ , define v j as

v j = XTj (X β̄− y)

= XTj
(

XF(XTF XF)
−1XTF (XFβ

∗
F + ε)−XFβ∗F − ε

)

= XTj
(

XF(XTF XF)
−1XTF − I

)

ε

∼ N(0,XTj (I−XF(XTF XF)
−1XTF )Xjσ

2).

Since (I−XF(XTF XF)−1XTF ) is a projection matrix, we have XTj (I−XF(XTF XF)−1XTF )Xjσ2 ≤ σ2.
Thus,

P(‖XTF̄ (X β̄− y)‖∞ ≥ λ) = P(sup
j∈F̄

|v j|≥ λ)≤
2(m− s)σ
λ(2π)1/2

exp{−λ2/2σ2}.
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Taking λ= σ
√

2log(m− s)/η in the inequality above, we prove the claim.

It follows from the definition of β̄ that ‖XTF (X β̄− y)‖∞ = 0 always holds. In the following
discussion, we assume that the following assumption holds:

Assumption 2 β̄ is a feasible solution of the problem (2), if F0 ⊂ F.

Under the assumption above, both ‖XTF̄ (X β̄− y)‖∞ ≤ λ and ‖XTF (X β̄− y)‖∞ = 0 hold.
Note that this assumption is just used to simplify the description for following proofs. Our proof

for the final theorems will substitute this assumption by the probability it holds.
In the following, we introduce an additional set F1 satisfying F0 ⊂ F1 (Zhang, 2009a).

Lemma 9 Let F0 ⊂ F. Assume that Assumption 2 holds. Given any index set F1 such that F0 ⊂ F1,
we have the following conclusions:

‖hF̄0−F̄1‖1+2‖β̄F̄1‖1 ≥‖hF̄1‖1
‖XTF0Xh‖∞ =0
‖XTF̄ Xh‖∞ ≤2λ

‖XTF̄0−F̄Xh‖∞ ≤λ.

Proof Since β̄ is a feasible solution, the following holds

‖β̂F̄0‖1 ≤ ‖β̄F̄0‖1
‖β̂F̄0−F̄1‖1+‖β̂F̄1‖1 ≤ ‖β̄F̄0−F̄1‖1+‖β̄F̄1‖1

‖β̂F̄1‖1 ≤ ‖hF̄0−F̄1‖1+‖β̄F̄1‖1
‖hF̄1 + β̄F̄1‖1 ≤ ‖hF̄0−F̄1‖1+‖β̄F̄1‖1

‖hF̄1‖1 ≤ ‖hF̄0−F̄1‖1+2‖β̄F̄1‖1.

Thus, the first inequality holds. Since

XTF0Xh= XTF0X(β̂− β̄) = XTF0(X β̂− y)−XTF0(X β̄− y),

the second inequality can be obtained as follows:

‖XTF0Xh‖∞ ≤ ‖XTF0(X β̂− y)‖∞+‖XTF0(X β̄− y)‖∞ = 0.

The third inequality holds since

‖XTF̄ Xh‖∞ ≤ ‖XTF̄ (X β̂− y)‖∞+‖XTF̄ (X β̄− y)‖∞ ≤ 2λ.

Similarly, the fourth inequality can be obtained as follows:

‖XTF̄0−F̄Xh‖∞ ≤ ‖XTF̄0−F̄(X β̂− y)‖∞+‖XTF̄0−F̄(X β̄− y)‖∞ ≤ λ.
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Lemma 10 Given any v ∈ Rm, its index set T is divided into a group of subsets Tj’s ( j = 1,2, ...)
without intersection such that

⋃
j Tj = T . Ifmax j |Tj|≤ l andmaxi∈Tj+1 |vTj+1 [i]|≤ ‖vTj‖1/l hold for

all j’s, then we have
‖vT̄1‖p ≤ ‖v‖1l1/p−1.

Proof Since |vTj+1 [i]|≤ ‖vTj‖1/l, we have

‖vTj+1‖
p
p = ∑

i∈Tj+1
|vpTj+1 [i]|≤ ‖vTj‖

p
1 l
1−p,

⇒‖vTj+1‖p ≤‖vTj‖1l
1/p−1.

Thus,
‖vT̄1‖p ≤ ∑

j≥1
‖vTj+1‖p ≤ ∑

j≥1
‖vTj‖1l

1/p−1 = ‖v‖1l1/p−1,

which proves the claim.

Note that similar techniques as those in Lemma 10 have been used in the literature (Candès and
Tao, 2007; Zhang, 2009a).

Lemma 11 Assume that F0 ⊂ F and F0 ⊂ F1. We divide the index set F̄1 into a group of subsets Tj’s
( j= 1,2, ...) such that they satisfy all conditions in Lemma 10 with v= h. Then the following holds:

‖hF̄1−T1‖p ≤l
1/p−1

(

|F̄0− F̄1|1−1/p‖hF̄0−F̄1‖p+2‖β̄F̄1‖1
)

,

‖h‖p ≤

[

1+
(

|F̄0− F̄1|
l

)p−1
]1/p

‖hF1+T1‖p+2l
1/p−1‖β̄F̄1‖1.

Proof Using Lemma 10 with T = F̄1, the first inequality can be obtained using the first inequality
in lemma 9 as follows:

‖hF̄1−T1‖p ≤l
1/p−1‖hF̄1‖1 ≤ l1/p−1

(

‖hF̄0−F̄1‖1+2‖β̄F̄1‖1
)

≤l1/p−1
(

|F̄0− F̄1|1−1/p‖hF̄0−F̄1‖p+2‖β̄F̄1‖1
)

.

For any x≥ 0, y≥ 0, p≥ 1, and a≥ 0, it can be easily verified that

(xp+(ax+ y)p)1/p ≤ (1+ap)1/px+ y. (10)

It follows that

‖h‖p =
[

‖hF1+T1‖
p
p+‖hF̄1−T1‖

p
p
]1/p

≤

[

‖hF1+T1‖
p
p+

[

(

|F̄0− F̄1|
l

)1−1/p
‖hF̄0−F̄1‖p+2l

1/p−1‖β̄F̄1‖1

]p]1/p

≤

[

1+
(

|F̄0− F̄1|
l

)p−1
]1/p

‖hF1+T1‖p+2l
1/p−1‖β̄F̄1‖1.
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The first inequality is due to the first claim in this lemma; the second inequality is due to ‖hF̄0−F̄1‖p≤
‖hF1+T1‖p and (10). We complete the proof for the second claim.

Theorem 12 Under Assumption 1, taking F0 ⊂ F and λ = σ

√

2log
(

m−s
η1

)

into the optimization

problem (2), for any given index set F1 satisfying F0 ⊂ F1 ⊂ F , if there exists some l such that

µ(p)A,s1+l−θ(p)A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p
> 0 holds where s1 = |F1|, then with probability larger than 1−η′1,

the !p norm (1 ≤ p ≤ ∞) of the difference between the optimizer of the problem (2) and the oracle
solution is bounded as

‖β̂− β̄‖p ≤

[

1+
(

|F̄0−F̄1|
l

)p−1
]1/p

(

(|F̄0− F̄1|+2pl)1/pλ+2θ
(p)
A,s1+l,l l

1/p−1‖β̄F̄1‖1
)

µ(p)A,s1+l−θ(p)A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p

+2l1/p−1‖β̄F̄1‖1

and with probability larger than 1−η′1−η′2, the !p norm (1≤ p≤∞) of the difference between the
optimizer of the problem (2) and the true solution is bounded as

‖β̂−β∗‖p ≤

[

1+
(

|F̄0−F̄1|
l

)p−1
]1/p

(

(|F̄0− F̄1|+2pl)1/pλ+2θ
(p)
A,s1+l,l l

1/p−1‖β̄F̄1‖1
)

µ(p)A,s1+l−θ(p)A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p

+2l1/p−1‖β̄F̄1‖1+
s1/p

µ(p)
(XTF XF )1/2,s

σ
√

2log(s/η2).

Proof First, we assume Assumption 2 and the inequality (9) hold. Divide F̄1 into a group of subsets
Tj’s ( j = 1,2, ...) without intersection such that

⋃
j Tj = F̄1, max j |Tj| ≤ l and maxi∈Tj+1 hTj+1 [i] ≤

‖hTj‖1/l hold. Note that such a partition always exists. Simply, let T1 be the index set of the largest
l elements in h, T2 be the index set of the largest l elements among the remaining elements, and so
on (the size of the last set may be less than l). It is easy to verify that this group of sets satisfy all
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conditions above. For convenience of presentation, we denote T0 = F̄0− F̄1 and T01 = T0+T1. Since

‖XTT01+F0Xh‖p
=‖XTT01+F0XT01+F0hT01+F0 +∑

j≥2
XTT01+F0XTjhTj‖p

≥µ(p)A,s1+l‖hT01+F0‖p−∑
j≥2

θ(p)A,s1+l,l‖hTj‖p

≥µ(p)A,s1+l‖hT01+F0‖p−θ(p)A,s1+l,l ∑
j≥2

‖hTj‖p

≥µ(p)A,s1+l‖hT01+F0‖p−θ(p)A,s1+l,l l
1/p−1‖hF̄1‖1 (due to lemma 10)

≥µ(p)A,s1+l‖hT01+F0‖p−θ(p)A,s1+l,l l
1/p−1 (‖hT0‖1+2‖β̄F̄1‖1

)

(due to lemma 9)

≥µ(p)A,s1+l‖hT01+F0‖p−θ(p)A,s1+l,l

(

l
|T0|

)1/p−1
‖hT0‖p−2θ

(p)
A,s1+l,l l

1/p−1‖β̄F̄1‖1

≥

(

µ(p)A,s1+l−θ(p)A,s1+l,l

(

l
|T0|

)1/p−1
)

‖hT01+F0‖p−2θ
(p)
A,s1+l,l l

1/p−1‖β̄F̄1‖1

and
‖XTT01+F0Xh‖

p
p

=‖XTF0Xh‖
p
p+‖XTT01∩FXh‖

p
p+‖XTT01∩F̄Xh‖

p
p

≤|T01∩F |λp+ |T01∩ F̄ |(2λ)p (due to lemma 9)
≤|T0∩F |λp+ |T1∩F |λp+ |T0∩ F̄ |(2λ)p+ |T1∩ F̄ |(2λ)p (due to F1 ⊂ F)
≤|T0|λp+ l(2λ)p, (due to T0∩ F̄ =∅)

we have

‖hF1+T1‖p =‖hT01+F0‖p ≤
(|T0|+2pl)1/pλ+2θ

(p)
A,s1+l,l l

1/p−1‖β̄F̄1‖1

µ(p)A,s1+l−θ(p)A,s1+l,l

(

l
|T0|

)1/p−1

=
(|F̄0− F̄1|+2pl)1/pλ+2θ

(p)
A,s1+l,l l

1/p−1‖β̄F̄1‖1

µ(p)A,s1+l−θ(p)A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p .

Due to the second inequality in Lemma 11, we have

‖h‖p ≤

[

1+
(

|F̄0− F̄1|
l

)p−1
]1/p

‖hF1+T1‖p+2l
1/p−1‖β̄F̄1‖1

=

[

1+
(

|F̄0−F̄1|
l

)p−1
]1/p

(

(|F̄0− F̄1|+2pl)1/pλ+2θ
(p)
A,s1+l,l l

1/p−1‖β̄F̄1‖1
)

µ(p)A,s1+l−θ(p)A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p +

2l1/p−1‖β̄F̄1‖1.
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Thus, we can bound ‖β̂−β∗‖p as

‖β̂−β∗‖p ≤‖β̂− β̄‖p+‖β̄−β∗‖p

≤

[

1+
(

|F̄0−F̄1|
l

)p−1
]1/p

(

(|F̄0− F̄1|+2pl)1/pλ+2θ
(p)
A,s1+l,l l

1/p−1‖β̄F̄1‖1
)

µ(p)A,s1+l−θ(p)A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p

+2l1/p−1‖β̄F̄1‖1+
s1/p

µ(p)
(XTF XF )1/2,s

σ
√

2log(s/η2).

Finally, taking λ = σ

√

2log
(

m−s
η1

)

, Lemma 8 with η = η1 implies that Assumption 2 holds with

probability larger than 1−η′1 and Lemma 7 with η = η2 implies that (9) holds with probability
larger than 1−η′2. Thus, these two bounds above hold with probabilities larger than 1−η′1 and
1−η′1−η′2, respectively.

Remark 13 Candès and Tao (2007) provided a more general upper bound for the Dantzig selec-
tor solution in the order of O

(

k1/2σ
√
logm+ r(2)k (β∗)

√
logm

)

, where 1 ≤ k ≤ s and r(p)k (β) =
(

∑i∈Lk |βi|
p)1/p (Lk is the index set of the k largest entries in β). We argue that the result in

Theorem 12 potentially implies a tighter bound for Dantzig selector. Setting F0 = ∅ (equiva-
lent to the standard Dantzig selector) and l = k with k = |F̄1| in Theorem 12, it is easy to verify
that the order of the bound for ‖β̂D− β̄‖p is determined by O

(

k1/pσ
√
logm+ k1/p−1r(1)k (β̄)

)

, or

O

(

k1/pσ
√
logm+ k1/p−1r(1)k (β∗)

)

due to Lemma 7. This bound achieves the same order as the
bound of the LASSO solution given by Zhang (2009a), which is the sharpest bound for LASSO to
our knowledge.

We are now ready to prove Theorem 1.
Proof of Theorem 1: Taking F1 = F in theorem 12 which indicates that β̄F̄1 = 0, we conclude that

‖β̂− β̄‖p ≤

[

1+
(

|F̄0−F̄ |
l

)p−1
]1/p

(|F̄0− F̄ |+ l2p)1/p

µ(p)A,s+l−θ(p)A,s+l,l

(

|F̄0−F̄|
l

)1−1/p λ

holds with probability larger than 1−η′1 and

‖β̂−β∗‖p ≤‖β̂− β̄‖p+‖β̄−β∗‖p

≤

[

1+
(

|F̄0−F̄|
l

)p−1
]1/p

(|F̄0− F̄ |+ l2p)1/p

µ(p)A,s+l−θ(p)A,s+l,l

(

|F̄0−F̄|
l

)1−1/p λ+
s1/p

µ(p)
(XTF XF )1/2,s

σ
√

2log(s/η2)
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holds with probability larger than 1−η′1−η′2. !

Proof of Theorem 3: From the proof in Theorem 12, the bounds (3) and (4) in Theorem 1 hold
with probability 1 if Assumption 2 and the inequality (9) hold. It is easy to verify by Theorem 1
that for any j ∈ J, the following holds: |β∗j |> α0 ≥ ‖β̂− β̄‖∞+‖β̂−β∗‖∞. For any j ∈ J, we have

|β̂ j|≥ |β∗j |− |β̂ j−β∗j |> ‖β̂− β̄‖∞+‖β̂−β∗‖∞− |β̂ j−β∗j |≥ ‖β̂− β̄‖∞ ≥ ‖β̂F̄‖∞.

Thus, there exist at least |J| elements of β̂F larger than ‖β̂F̄‖∞. If we pick up the largest |J| elements
in β̂, then all of them correspond to the location of nonzero entries in the true solution β∗. Since
Assumption 2 and the inequality (9) hold, the bounds (3) and (4) in Theorem 1 hold with probability
larger than 1−η′1−η′2. Thus the claim above holds with probability larger than 1−η′1−η′2. Note
that the probability will not accumulate, as we only need the holding probability of Assumption 2
and the inequality (9). The proofs below follow the same principle. !

Proof of Theorem 4: From the proof in Theorem 12, the bounds (3) and (4) in Theorem 1 hold
with probability 1 if assumption 2 and the inequality (9) hold. In the multi-stage algorithm, the
problem in (2) is solved N times. It is easy to verify that the following holds:

α0 ≥ ‖β̂(0)− β̄‖∞+‖β̂(0)−β∗‖∞.

Since |suppα0(β∗J)| > 0, there exists at least 1 element in β̂
(0)
J larger than ‖β̂(0)F̄ ‖∞. Thus, F

(1)
0 must

be a subset of F . Then, we can verify that

α1 ≥ ‖β̂(1)− β̄‖∞+‖β̂(1)−β∗‖∞,

and |suppα1(β∗J)|> 1 guarantee that there exist at least 2 elements in β̂
(1)
J larger than ‖β̂(1)F̄ ‖∞. Thus,

F(2)
0 must be a subset of F . Similarly, we can show that F(N)

0 is guaranteed to be a subset of F .
Since the bounds (3) and (4) in Theorem 1 hold with probability larger than 1−η′1−η′2, the claim
F(N)
0 ⊂ F holds with probability larger than 1−η′1−η′2. !

Proof of Theorem 5: From Theorem 1, the first conclusion holds with probability larger than
1−η′1−η′2 by choosing F0 =∅ and l = s.

Assuming Assumption 2 and the inequality (9) hold, the bounds (3) and (4) in Theorem 1 hold
with probability 1. Since the conditions in Theorem 4 are satisfied, the |J| correct features can be
selected from the feature set, that is, F(|J|)

0 ⊂ F . Using the conclusion in (4) of Theorem 1, the bound
of the multi-stage method can be estimated by taking l = |F̄0− F̄| as follows:

‖β̂mul−β∗‖p ≤
(2p+1+2)1/p(s−N)1/p

µ(p)A,2s−N−θ(p)A,2s−N,s−N

λ+
s1/p

µ(p)
(XTF XF )1/2,s

σ
√

2log(s/η2).

Note that since
µ(p)A,2s−N−θ(p)A,2s−N,s−N ≥ µ(p)A,2s−θ(p)A,2s,s,

the following always holds: µ(p)A,2s−N −θ(p)A,2s−N,s−N > 0. Since Assumption 2 and the inequality (9)
hold, the bounds (3) and (4) in Theorem 1 hold with probability larger than 1−η′1−η′2. Thus the
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claim above holds with probability larger than 1−η′1−η′2. !

Proof of Theorem 6: First, we assume that Assumption 2 and the inequality (9) hold. In this case,
the claim in Theorem 4 holds with probability 1. Since all conditions in Theorem 4 are satisfied,
after s iterations, s correct features will be selected (i.e., F(N)

0 = F) with probability 1. Since all
correct features are obtained, the optimization problem in the last iteration can be formulated as:

min : ‖βF̄‖1
s.t. : ‖XTF̄ (Xβ− y)‖∞ ≤ λ

‖XTF (Xβ− y)‖∞ = 0.
(11)

The oracle solution minimizes the objective function to 0. Since Assumption 2 indeed implies that
the oracle is a feasible solution, the oracle solution is one optimizer. We can also show that it is the
unique optimizer. If there is another optimizer β -= β̄, then βF̄ = 0 and βF = (XTF XF)−1XTF y, which
is identical to the definition of the oracle solution. Thus, we conclude that the oracle is the unique
optimizer for the optimization problem (11) with probability 1. Since the holding probability of
Assumption 2 and the inequality (9) is larger than 1−η′1−η′2, the oracle solution can be achieved
with the same probability. !

Appendix B.

In this section, we expound the properties of the multi-stage LASSO which are very similar to the
multi-stage Dantzig selector. The complete proof is given below.

In the following discussion, we use β̂′ to denote the solution in Equation (7) and let h′ = β̂′ − β̄.
We first consider the simple case F0 ⊂ F as in Section 3.1; we have the following theorem.

Theorem 14 Assume Assumption 1 holds. Take F0 ⊂ F and

λ′ = 2σ

√

2log
(

m− s
η1

)

into the optimization problem (7). If there exists some l such that

µ(p)A,s+l−3θ
(p)
A,s+l,l

(

|F̄0− F̄ |
l

)1−1/p
> 0

holds, then with probability larger than 1−η′1, the !p norm (1 ≤ p ≤ ∞) of the difference between
β̂′, the optimizer of the problem (7) and the oracle solution β̄ is bounded as

‖β̂′ − β̄‖p ≤

[

1+3
(

|F̄0−F̄|
l

)p−1
]1/p

(|F̄0− F̄ |+(3/2)pl)1/p

µ(p)A,s+l−3θ
(p)
A,s+l,l

(

|F̄0−F̄|
l

)1−1/p λ′

1210



MULTI-STAGE DANTZIG SELECTOR

and with probability larger than 1−η′1−η′2, the !p norm (1≤ p≤∞) of the difference between β̂′,
the optimizer of the problem (7) and the true solution β∗ is bounded as

‖β̂′ −β∗‖p ≤

[

1+3
(

|F̄0−F̄ |
l

)p−1
]1/p

(|F̄0− F̄|+(3/2)pl)1/p

µ(p)A,s+l−3θ
(p)
A,s+l,l

(

|F̄0−F̄ |
l

)1−1/p λ′+
s1/p

µ(p)
(XTF XF )1/2,s

σ
√

2log(s/η2).

This theorem is similar to Theorem 1 for the multi-stage Dantzig selector. Like Equations (3)
and (4), the two bounds in the above theorem are strictly decreasing in terms of |F̄0− F̄ |. Thus,
feature selection and signal recovery can benefit from each other. For this reason, the multi-stage
LASSO has similar properties as the multi-stage Dantzig selector. We expound them as follows.
(a) First, like Theorem 4, in the LASSO case the multi-stage procedure can lead to a weaker require-
ment to choose |J| correct features than the standard LASSO as shown in the following theorem.

Theorem 15 Under Assumption 1, if there exist a nonempty set

Ω= {l|µ(p)A,s+l−3θ
(p)
A,s+l,l

(s
l

)1−1/p
> 0}

and a set J such that |suppαi(β∗J)|> i holds for all i ∈ {0,1, ..., |J|−1}, where

αi =
3
2
min
l∈Ω

max(1, 3(s−i)l )

µ(∞)A,s+l−3θ
(∞)
A,s+l,l

( s−i
l
)

λ′+
1

µ(∞)
(XTF XF )1/2,s

σ
√

2log(s/η2),

then taking F(0)
0 = ∅, λ = σ

√

2log
(

m−s
η1

)

and N = |J|− 1 into the multi-stage algorithm 1, the

result after N iterations satisfies F(N)
0 ⊂ F (i.e., |J| correct features are chosen) with probability

larger than 1−η′1−η′2.

It is easy to see that α0 > α1 > ... > α|J|−1 holds strictly. Referring to the analysis for Theorem 4,
we know that the multi-stage method for LASSO requires weaker conditions to obtain |J| correct
features than the standard LASSO.
(b) Second, like Theorem 5 the following theorem shows that with a high probability the multi-
stage procedure can improve the upper bound of the standard LASSO from Cs1/p

√
logm+∆ to

C(s−N)1/p
√
logm+∆, where C is a constant and ∆ is a small number independent from m.

Theorem 16 Under Assumption 1, if there exist l such that µ(∞)A,s+l−3θ
(∞)
A,s+l,l

( s
l
)

> 0, µ(p)A,2s−3θ
(p)
A,2s,s>

0, and a set J such that |suppαi(β∗J)|> i holds for all i∈ {0,1, ..., |J|−1}, where αi’s follow the def-

inition in Theorem 15, then taking F0 = ∅, N = |J| and λ′ = 2σ
√

2log
(

m−s
η1

)

into the multi-stage

LASSO algorithm, the solution β̂′mul of the multi-stage LASSO obeys

‖β̂′mul−β∗‖p ≤
4
(

( 3
2
)p

+1
)1/p

(s−N)1/p

µ(p)A,2s−N−3θ
(p)
A,2s−N,s−N

λ′+
s1/p

µ(p)
(XTF XF )1/2,s

σ
√

2log(s/η2)

with probability larger than 1−η′1−η′2.
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(c) Finally, the proposed method can obtain the oracle solution with high probability under certain
conditions:

Theorem 17 Under Assumption 1, if there exists l such that µ(∞)A,s+l − 3θ
(∞)
A,s+l,l

( s−i
l
)

> 0, and the
supporting set F of β∗ satisfies |suppαi(β∗F)| > i for all i ∈ {0,1, ...,s− 1}, where αi follows the

definition in theorem 15, then taking F0 = ∅, N = s and λ′ = 2σ
√

2log
(

m−s
η1

)

into the multi-

stage LASSO algorithm, the oracle solution can be achieved, that is, F(N)
0 = F and β̂′(N) = β̄ with

probability larger than 1−η′1−η′2.

In the following, we provide the complete proof for the theorems above.

Lemma 18 Let β̂′ be defined above. We have

‖XTF̄0(X β̂
′ − y)‖∞ ≤ λ′.

Proof The subdifferential of the objective function in Equation (7) at the optimal solution β̂′ is
given by:

XTi (X β̂
′ − y)+λ′sgn(β̂′i)

where i ∈ F̄0 and

sgn(x) =







1, x> 0;
−1, x< 0;
[-1,1], x= 0.

Since 0 must belong to the subdifferential at the optimal solution, we have

|XTi (X β̂′ − y)|≤ λ′,

which implies the claim.

Let us assume that the oracle solution satisfies the following assumption.

Assumption 3
‖XTF̄ (X β̄− y)‖∞ ≤ λ′/2.

This assumption actually plays the same role as Assumption 2 in the Dantzig selector.
In the following, we introduce an additional set F1 satisfying F0 ⊂ F1 (Zhang, 2009a).
Similar to Lemma 9, we have the following results for the LASSO case:

Lemma 19 Let F0 ⊂ F. Assume that Assumption 3 holds. Given any index set F1 such that F0 ⊂ F1,
we have the following conclusions:

3‖h′F̄0−F̄1‖1+4‖β̄F̄1‖1 ≥ ‖h′F̄1‖1
‖XTF0Xh

′‖∞ = 0

‖XTF̄ Xh
′‖∞ ≤

3
2
λ′

‖XTF̄0−F̄Xh
′‖∞ ≤ λ′.
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Proof We only show the proof for the first inequality and the rest can be easily proven by following
the proof in Lemma 9.

Let ε = X β̄− y and f (.) be the objective function in Equation (7) with respect to β. One can
verify that εTXF = 0. Since β̂′ is the optimal solution of Equation (7), we have

0≥ f (β̂′)− f (β̄)

=
1
2
(‖X β̂′ − y‖22−‖X β̄− y‖22)+λ′(‖β̂′F̄0‖1−‖β̄F̄0‖1)

=
1
2
(Xh′)T (X β̂′ − y+ ε)+λ′(‖β̂′F̄0‖1−‖β̄F̄0‖1)

≥εTXh′+λ′(‖β̂′F̄0‖1−‖β̄F̄0‖1)

≥εT (XFh′F +XF̄h′F̄)+λ′(‖β̂′F̄0‖1−‖β̄F̄0‖1)

≥−λ′/2‖h′F̄‖1+λ′(‖β̂′F̄0−F̄1‖1+‖β̂′F̄1‖1−‖β̄F̄0−F̄1‖1−‖β̄F̄1‖1) (due to Assumption 3)

≥−λ′/2‖h′F̄0‖1+λ′(−‖h′F̄0−F̄1‖1+‖h′F̄1‖1−2‖β̄F̄1‖1)

=λ′/2‖h′F̄1‖1−
3
2
λ′‖h′F̄0−F̄1‖1−2λ

′‖β̄F̄1‖1,

which implies the first inequality.

Similar to Lemma 11, the following result holds in the LASSO case:

Lemma 20 Assume F0 ⊂ F and F0 ⊂ F1 and the index set F̄1 is divided into a group of subsets Tj’s
such that they satisfy all conditions in Lemma 10 with v= h′. Then the following holds:

‖h′F̄1−T1‖p ≤l
1/p−1

(

3|F̄0− F̄1|1−1/p‖h′F̄0−F̄1‖p+4‖β̄F̄1‖1
)

‖h′‖p ≤
[

1+3p(|F̄0− F̄1|/l)p−1
]1/p ‖h′F1+T1‖p+4l

1/p−1‖β̄F̄1‖1,

where s1 = |F1|.

Proof Using the claim in Lemma 10 with v= h′, we have

‖h′F̄1−T1‖p
≤l1/p−1‖h′F̄1‖1

≤l1/p−1
(

3‖h′F̄0−F̄1‖1+4‖β̄F̄1‖1
)

(due to the first inequality in Lemma 19)

≤l1/p−1
(

3|F̄0− F̄1|1−1/p‖h′F̄0−F̄1‖p+4‖β̄F̄1‖1
)

.

This proves the first inequality. Using this equality, we can obtain the second inequality as follows:

‖h′‖p
=(‖h′F1+T1‖

p
p+‖h′F̄1−T1‖

p
p)
1/p

≤

[

‖h′F1+T1‖
p
p+

(

3
(

|F̄0− F̄1|
l

)1−1/p
‖h′F̄0−F̄1‖p+

4
l1−1/p

‖β̄F̄1‖1

)p]1/p

≤
[

1+3p(|F̄0− F̄1|/l)p−1
]1/p ‖h′F1+T1‖p+4l

1/p−1‖β̄F̄1‖1.
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The last inequality is due to Equation (10).

Similar to the Lemma 12, the following result holds in the LASSO case:

Theorem 21 Under Assumption 1, taking F0 ⊂ F and λ′ = 2σ
√

2log
(

m−s
η1

)

into the optimization

problem (7), if for any index set F1 satisfying F0 ⊂ F1 ⊂ F there exists some l such that µ(p)A,s1+l −

3θ(p)A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p
> 0 holds where s1 = |F1|, then with probability larger than 1−η′1, the !p

norm (1≤ p≤∞) of the difference between the optimizer of the problem (7) and the oracle solution
is bounded as

‖β̂′ − β̄‖p

≤

[

1+3p
(

|F̄0−F̄1|
l

)p−1
]1/p(

(|F̄0− F̄1|+(3/2)pl)1/pλ′+
4θ(p)A,s1+l,l

l1−1/p ‖β̄F̄1‖1
)

µ(p)A,s1+l−3θ
(p)
A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p

+4l1/p−1‖β̄F̄1‖1

and with probability larger than 1−η′1−η′2, the !p norm (1≤ p≤∞) of the difference between the
optimizer of the problem (7) and the true solution is bounded as

‖β̂′ −β∗‖p

≤

[

1+3p
(

|F̄0−F̄1|
l

)p−1
]1/p(

(|F̄0− F̄1|+(3/2)pl)1/pλ′+
4θ(p)A,s1+l,l

l1−1/p ‖β̄F̄1‖1
)

µ(p)A,s1+l−3θ
(p)
A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p

+4l1/p−1‖β̄F̄1‖1+
s1/p

µ(p)
(XTF XF )1/2,s

σ
√

2log(s/η2).

Proof The proof follows the same strategy as in Theorem 12. First, we assume that Assumption 3
and the inequality (9) hold. Divide F̄1 into a group of subsets Tj’s ( j = 1,2, ...) without intersection

1214



MULTI-STAGE DANTZIG SELECTOR

such that
⋃
j Tj = F̄1, max j |Tj|≤ l and maxi∈Tj+1 hTj+1 [i]≤ ‖hTj‖1/l hold. Since

‖XTT01+F0Xh
′‖p

=‖XTT01+F0XT01+F0h
′
T01+F0 +∑

j≥2
XTT01+F0XTjh

′
Tj‖p

≥µ(p)A,s1+l‖h
′
T01+F0‖p−∑

j≥2
θ(p)A,s1+l,l‖h

′
Tj‖p

≥µ(p)A,s1+l‖h
′
T01+F0‖p−θ(p)A,s1+l,l ∑

j≥2
‖h′Tj‖p

≥µ(p)A,s1+l‖h
′
T01+F0‖p−θ(p)A,s1+l,l l

1/p−1‖h′F̄1‖1

≥µ(p)A,s1+l‖h
′
T01+F0‖p−θ(p)A,s1+l,l l

1/p−1
(

3‖h′F̄0−F̄1‖1+4‖β̄F̄1‖1
)

(due to the first inequality of Lemma 19)

≥µ(p)A,s1+l‖h
′
T01+F0‖p−3θ

(p)
A,s1+l,l

(

l
|T0|

)1/p−1
‖h′T0‖p−4θ

(p)
A,s1+l,l l

1/p−1‖β̄F̄1‖1

≥

[

µ(p)A,s1+l−3θ
(p)
A,s1+l,l

(

|T0|
l

)1−1/p
]

‖h′T01+F0‖p−4θ
(p)
A,s1+l,l l

1/p−1‖β̄F̄1‖1

and

‖XTT01+F0Xh
′‖pp

=‖XTF0Xh
′‖pp+‖XTT01∩FXh

′‖pp+‖XTT01∩F̄Xh
′‖pp

≤|T01∩F |λ′p+ |T01∩ F̄ |(3λ′/2)p (due to Lemma 19)
≤|T0∩F |λ′p+ |T1∩F |λ′p+ |T0∩ F̄ |(3λ′/2)p+ |T1∩ F̄ |(3λ′/2)p (due to F1 ⊂ F)
≤|T0|λ′p+ l(3λ′/2)p, (due to T0∩ F̄ =∅)

thus we have

‖h′F1+T1‖p = ‖h′T01+F0‖p ≤
(|F̄0− F̄1|+(3/2)pl)1/pλ′+4θ(p)A,s1+l,l l

1/p−1‖β̄F̄1‖1

µ(p)A,s1+l−3θ
(p)
A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p .

It follows that

‖h′‖p ≤

[

1+3p
(

|F̄0− F̄1|
l

)p−1
]1/p

‖h′F1+T1‖p+4l
1/p−1‖β̄F̄1‖1

≤

[

1+3p
(

|F̄0−F̄1|
l

)p−1
]1/p(

(|F̄0− F̄1|+(3/2)pl)1/pλ′+
4θ(p)A,s1+l,l

l1−1/p ‖β̄F̄1‖1
)

µ(p)A,s1+l−3θ
(p)
A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p

+4l1/p−1‖β̄F̄1‖1,
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and
‖β̂′ −β∗‖p

≤

[

1+3
(

|F̄0−F̄1|
l

)p−1
]1/p(

(|F̄0− F̄1|+(3/2)pl)1/pλ′+
4θ(p)A,s1+l,l

l1−1/p ‖β̄F̄1‖1
)

µ(p)A,s1+l−3θ
(p)
A,s1+l,l

(

|F̄0−F̄1|
l

)1−1/p

+4l1/p−1‖β̄F̄1‖1+
s1/p

µ(p)
(XTF XF )1/2,s

σ
√

2log(s/η2).

Finally, taking

λ′ = 2σ

√

2log
(

m− s
η1

)

,

Lemma 8 (letting η = η1) implies that Assumption 3 holds with probability larger than 1−η′1 and
Lemma 7 (letting η= η2) implies that Equation (9) holds with probability larger than 1−η′2. Thus,
these two bounds above hold with probability larger than respectively 1−η′1 and 1−η′1−η′2.

Proof to Theorem 14: By taking F1 = F in Theorem 21, the claims above can be obtained imme-
diately. !

Proof to Theorem 15: Please refer to the proof for Theorem 4. !

Proof to Theorem 16: Please refer to the proof for Theorem 5. !

Proof to Theorem 17: First, we assume that Assumption 3 and the inequality (9) holds. Then,
the claim in Theorem 15 holds with probability 1. Since all conditions in Theorem 15 are satisfied,
after s iterations s correct features can be chosen (i.e., F(N)

0 = F) with probability 1. Since all correct
features are obtained, the optimization problem in the last iteration can be formulated as

min :
1
2
‖Xβ− y‖22+λ′‖βF̄‖1. (12)

A minimizer should satisfy the following conditions:

0 ∈XTF̄ (Xβ− y)+λ′sgn(βF̄)
0=XTF (Xβ− y),

(13)

where the first formula is based on the subdifferential set. Because of Assumption 3, the oracle
solution satisfies these two conditions. Since the objective function is not strictly convex, we need
to show that the oracle solution is the unique minimizer.

From the second equality in Equation (13), we have βF =−(XTF XF)−1XTF (XF̄βF̄−y). It follows
that the objective function in Equation (12) can be expressed as

f (βF̄) =
1
2
‖(I−XF(XTF XF)

−1XTF )(XF̄βF̄ − y)‖22+λ′‖βF̄‖1.

Because the oracle solution is a minimizer of the Equation (12), “0” should be one of the minimizers
of f (βF̄). Next we show that “0” is the unique minimizer, which implies that the oracle solution
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is the unique minimizer for Equation (12). We can compute the directional derivative along any
direction ∆ at the point “0” for the function f (βF̄) as follows:

d f (0+ t∆)
dt

|t=0 =− yT (I−XF(XTF XF)
−1XTF )X

T
F̄ ∆+λ′‖∆‖1

≥λ′‖∆‖1−‖∆‖1‖yT (I−XF(XTF XF)
−1XTF )X

T
F̄ ‖∞

=‖∆‖1(λ′ −‖XTF̄ (X β̄− y)‖∞)
>0. (due to Assumption 3)

Thus, the directional derivative at “0” is always strictly greater than 0 at arbitrary directions, which
shows that “0” should be the unique minimizer for f (βF̄).

Finally, because the probability of Assumption 3 and the inequality (9) holding is larger than
1−η′1−η′2, the oracle solution is achieved with the same probability. !
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Abstract

The Sample Compression Conjecture of Littlestone & Warmuth has remained unsolved for a quar-
ter century. While maximum classes (concept classes meeting Sauer’s Lemma with equality) can be
compressed, the compression of general concept classes reduces to compressing maximal classes
(classes that cannot be expanded without increasing VC dimension). Two promising ways forward
are: embedding maximal classes into maximum classes with at most a polynomial increase to VC
dimension, and compression via operating on geometric representations. This paper presents pos-
itive results on the latter approach and a first negative result on the former, through a systematic
investigation of finite maximum classes. Simple arrangements of hyperplanes in hyperbolic space
are shown to represent maximum classes, generalizing the corresponding Euclidean result. We
show that sweeping a generic hyperplane across such arrangements forms an unlabeled compres-
sion scheme of size VC dimension and corresponds to a special case of peeling the one-inclusion
graph, resolving a recent conjecture of Kuzmin & Warmuth. A bijection between finite maximum
classes and certain arrangements of piecewise-linear (PL) hyperplanes in either a ball or Euclidean
space is established. Finally we show that d-maximum classes corresponding to PL-hyperplane
arrangements in Rd have cubical complexes homeomorphic to a d-ball, or equivalently complexes
that are manifolds with boundary. A main result is that PL arrangements can be swept by a moving
hyperplane to unlabeled d-compress any finite maximum class, forming a peeling scheme as con-
jectured by Kuzmin & Warmuth. A corollary is that some d-maximal classes cannot be embedded
into any maximum class of VC-dimension d+ k, for any constant k. The construction of the PL
sweeping involves Pachner moves on the one-inclusion graph, corresponding to moves of a hyper-
plane across the intersection of d other hyperplanes. This extends the well known Pachner moves
for triangulations to cubical complexes.

Keywords: sample compression, hyperplane arrangements, hyperbolic and piecewise-linear ge-
ometry, one-inclusion graphs

1. Introduction

Maximum concept classes have the largest cardinality possible for their given VC dimension. Such
classes are of particular interest as their special recursive structure underlies all general sample
compression schemes known to-date (Floyd, 1989; Warmuth, 2003; Kuzmin and Warmuth, 2007).

c©2012 Benjamin I. P. Rubinstein and J. Hyam Rubinstein.
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It is this structure that admits many elegant geometric and algebraic topological representations
upon which this paper focuses.

Littlestone and Warmuth (1986) introduced the study of sample compression schemes, defined
as a pair of mappings for given concept class C: a compression function mapping a C-labeled
n-sample to a subsequence of labeled examples and a reconstruction function mapping the sub-
sequence to a concept consistent with the entire n-sample. A compression scheme of bounded
size—the maximum cardinality of the subsequence image—was shown to imply learnability. The
converse—that classes of VC-dimension d admit compression schemes of size d—has become one
of the oldest unsolved problems actively pursued within learning theory (Floyd, 1989; Helmbold
et al., 1992; Ben-David and Litman, 1998; Warmuth, 2003; Hellerstein, 2006; Kuzmin and War-
muth, 2007; Rubinstein et al., 2007, 2009; Rubinstein and Rubinstein, 2008). Interest in the conjec-
ture has been motivated by its interpretation as the converse to the existence of compression bounds
for PAC learnable classes (Littlestone and Warmuth, 1986), the basis of practical machine learning
methods on compression schemes (Marchand and Shawe-Taylor, 2003; von Luxburg et al., 2004),
and the conjecture’s connection to a deeper understanding of the combinatorial properties of concept
classes (Rubinstein et al., 2009; Rubinstein and Rubinstein, 2008). Recently Kuzmin and Warmuth
(2007) achieved compression of maximum classes without the use of labels. They also conjectured
that their elegant min-peeling algorithm constitutes such an unlabeled d-compression scheme for
d-maximum classes.

As discussed in our previous work (Rubinstein et al., 2009), maximum classes can be fruitfully
viewed as cubical complexes. These are also topological spaces, with each cube equipped with a
natural topology of open sets from its standard embedding into Euclidean space. We proved that
d-maximum classes correspond to d-contractible complexes—topological spaces with an identity
map homotopic to a constant map—extending the result that 1-maximum classes have trees for
one-inclusion graphs. Peeling can be viewed as a special form of contractibility for maximum
classes. However, there are many non-maximum contractible cubical complexes that cannot be
peeled, which demonstrates that peelability reflects more detailed structure of maximum classes
than given by contractibility alone.

In this paper we approach peeling from the direction of simple hyperplane arrangement rep-
resentations of maximum classes. Kuzmin and Warmuth (2007, Conjecture 1) predicted that d-
maximum classes corresponding to simple linear-hyperplane arrangements could be unlabeled d-
compressed by sweeping a generic hyperplane across the arrangement, and that concepts are min
peeled as their corresponding cell is swept away. We positively resolve the first part of the conjec-
ture and show that sweeping such arrangements corresponds to a new form of corner peeling, which
we prove is distinct from min peeling. While min peeling removes minimum degree concepts from
a one-inclusion graph, corner peeling peels vertices that are contained in unique cubes of maximum
dimension.

We explore simple hyperplane arrangements in hyperbolic geometry, which we show correspond
to a set of maximum classes, properly containing those represented by simple linear Euclidean ar-
rangements. These classes can again be corner peeled by sweeping. Citing the proof of existence of
maximum unlabeled compression schemes due to Ben-David and Litman (1998), Kuzmin and War-
muth (2007) ask whether unlabeled compression schemes for infinite classes such as positive half
spaces can be constructed explicitly. We present constructions for illustrative but simpler classes,
suggesting that there are many interesting infinite maximum classes admitting explicit compression
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schemes, and under appropriate conditions, sweeping infinite Euclidean, hyperbolic or PL arrange-
ments corresponds to compression by corner peeling.

Next we prove that all maximum classes in {0,1}n are represented as simple arrangements of
piecewise-linear (PL) hyperplanes in the n-ball. This extends previous work by Gärtner and Welzl
(1994) on viewing simple PL-hyperplane arrangements as maximum classes. The close relationship
between such arrangements and their hyperbolic versions suggests that they could be equivalent.
Resolving the main problem left open in the preliminary version of this paper (Rubinstein and
Rubinstein, 2008), we show that sweeping of d-contractible PL arrangements does compress all
finite maximum classes by corner peeling, completing (Kuzmin and Warmuth, 2007, Conjecture 1).

We show that a one-inclusion graph Γ can be represented by a d-contractible PL-hyperplane
arrangement if and only if Γ is a strongly contractible cubical complex. This motivates the nomen-
clature of d-contractible for the class of arrangements of PL hyperplanes. Note then that these
one-inclusion graphs admit a corner-peeling scheme of the same size d as the largest dimension of
a cube in Γ. Moreover if such a graph Γ admits a corner-peeling scheme, then it is a contractible
cubical complex. We give a simple example to show that there are one-inclusion graphs which
admit corner-peeling schemes but are not strongly contractible and so are not represented by a d-
contractible PL-hyperplane arrangement.

Compressing maximal classes—classes which cannot be grown without an increase to their VC
dimension—is sufficient for compressing all classes, as embedded classes trivially inherit compres-
sion schemes of their super-classes. This reasoning motivates the attempt to embed d-maximal
classes into O(d)-maximum classes (Kuzmin and Warmuth, 2007, Open Problem 3). We present
non-embeddability results following from our earlier counter-examples to Kuzmin & Warmuth’s
minimum degree conjecture (Rubinstein et al., 2009), and our new results on corner peeling. We
explore with examples, maximal classes that can be compressed but not peeled, and classes that are
not strongly contractible but can be compressed.

Finally, we investigate algebraic topological properties of maximum classes. Most notably we
characterize d-maximum classes, corresponding to simple linear Euclidean arrangements, as cubical
complexes homeomorphic to the d-ball. The result that such classes’ boundaries are homeomorphic
to the (d− 1)-sphere begins the study of the boundaries of maximum classes, which are closely
related to peeling. We conclude with several open problems.

2. Background

We begin by presenting relevant background material on algebraic topology, computational learning
theory, and sample compression.

2.1 Algebraic Topology

Definition 1 A homeomorphism is a one-to-one and onto map f between topological spaces such
that both f and f−1 are continuous. Spaces X and Y are said to be homeomorphic if there exists a
homeomorphism f : X → Y .

Definition 2 A homotopy is a continuous map F : X × [0,1]→ Y . The initial map is F restricted
to X × {0} and the final map is F restricted to X × {1}. We say that the initial and final maps are
homotopic. A homotopy equivalence between spaces X and Y is a pair of maps f : X → Y and
g : Y → X such that f ◦g and g◦ f are homotopic to the identity maps on Y and X respectively. We
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say that X and Y have the same homotopy type if there is a homotopy equivalence between them. A
deformation retraction is a special homotopy equivalence between a space X and a subspace A⊆ X.
It is a continuous map r : X → X with the properties that the restriction of r to A is the identity map
on A, r has range A and r is homotopic to the identity map on X.

Definition 3 A cubical complex is a union of solid cubes of the form [a1,b1]× . . .× [am,bm], for
bounded m ∈ N, such that the intersection of any two cubes in the complex is either a cubical face
of both cubes or the empty-set.

Definition 4 A contractible cubical complex X is one which has the same homotopy type as a one
point space {p}. X is contractible if and only if the constant map from X to p is a homotopy
equivalence.

Definition 5 A simplicial complex is a union of simplices, each of which is affinely equivalent1
to the convex hull of k+ 1 points (0,0, . . . ,0),(1,0, . . . ,0), . . .(0,0, . . . ,1) in Rk, for some k. The
intersection of any two simplices in the complex is either a face of both simplices or the empty-set.
A map f : X→Y is called simplicial if X ,Y are simplicial complexes and f maps each simplex of X
to a simplex of Y so that vertices are mapped to vertices and the map is affine linear. A subdivision
of a simplicial complex is a new simplicial complex with the same underlying point-set obtained by
cutting up the original simplices into smaller simplices.

For a more formal treatment of simplicial complexes see (Rourke and Sanderson, 1982). We
will need the concepts of piecewise-linear (PL) manifolds and maps.

Definition 6 A mapping f : X → Y is called piecewise linear (PL) if X ,Y are simplicial complexes
and there are subdivisions X!,Y ! of the respective complexes, so that f : X! → Y ! is simplicial.
A PL homeomorphism f : X → Y is a bijection so that both f , f−1 are PL maps. A PL manifold
M is a space which is covered by open sets Uα for α ∈ I some index set, together with bijections
φα : Uα → Vα, where Vα is an open set in Rn. Moreover when Uα ∩Uβ )= /0, then the transition
function φβ ◦φα−1 : φα(Uα∩Uβ)→ φβ(Uα∩Uβ) is a PL homeomorphism. A pair (Uα,φα) is called
a chart for M.

2.2 Pachner Moves

Pachner (1987) showed that triangulations of manifolds which are combinatorially equivalent after
subdivision are also equivalent by a series of moves which are now referred to as Pachner moves.
For the main result of this paper, we need a version of Pachner moves for cubical structures rather
than simplicial ones. The main idea of Pachner moves remains the same.

A Pachner move replaces a topological d-ballU divided into d-cubes, with another ballU ′ with
the same (d−1)-cubical boundary but with a different interior cubical structure. In dimension d= 2,
for example, such an initial ballU can be constructed by taking three 2-cubes forming a hexagonal
disk and in dimension d = 3, four 3-cubes forming a rhombic dodecahedron, which is a polyhedron
U with 12 quadrilateral faces in its boundary. The setU ′ of d-cubes is attached to the same boundary
as for U , that is, ∂U = ∂U ′, as cubical complexes homeomorphic to the (d−1)-sphere. Moreover,
U ′ and U are isomorphic cubical complexes, but the gluing between their boundaries produces

1. The simplices are related via an affine bijection.
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P1P2
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PArrangement
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(b)

Figure 1: (a) An example linear-hyperplane arrangement P and (b) the result of a Pachner move of
hyperplane P4 on P .

the boundary of the 3- or 4-cube, as a 2- or 3-dimensional cubical structure on the 2- or 3-sphere
respectively.

To better understand this move, consider the cubical face structure of the boundary V of the
(d+ 1)-cube. This is a d-sphere containing 2d+ 2 cubes, each of dimension d. There are many
embeddings of the (d−1)-sphere as a cubical subcomplex into V , dividing it into a pair of d-balls.
One ball is combinatorially identical toU and the other toU ′.

There are a whole series of Pachner moves in each dimension d, but we are only interested in
the ones where the pair of balls U,U ′ have the same numbers of d-cubes. In Figure 1 a change in
a hyperplane arrangement is shown, which corresponds to a Pachner move on the corresponding
one-inclusion graph (considered as a cubical complex).

2.3 Concept Classes and their Learnability

A concept classC on domain X , is a subset of the power set of set X or equivalentlyC⊆ {0,1}X . We
primarily consider finite domains and so will writeC⊆ {0,1}n in the sequel, where it is understood
that n= |X | and the n dimensions or colors are identified with an ordering {xi}ni=1 = X .

The one-inclusion graph G(C) of C ⊆ {0,1}n is the graph with vertex-set C and edge-set con-
taining {u,v} ⊆C iff u and v differ on exactly one component (Haussler et al., 1994); G(C) forms
the basis of a prediction strategy with essentially-optimal worst-case expected risk. G(C) can be
viewed as a simplicial complex in Rn by filling in each face with a product of continuous intervals
(Rubinstein et al., 2009). Each edge {u,v} in G(C) is labeled by the component on which the two
vertices u,v differ.

Example 1 An example concept class in {0,1}4 is enumerated in Figure 2(a). The corresponding
one-inclusion graph is visualized in Figure 2(b), making immediately apparent the interpretation of
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x1 x2 x3 x4
v0 0 0 0 0
v1 1 0 0 0
v2 0 1 0 0
v3 0 0 1 0
v4 1 0 1 0
v5 1 1 0 0
v6 0 1 1 0
v7 0 0 0 1
v8 1 0 0 1
v9 0 1 0 1
v10 0 0 1 1

(a)

0011

0010

0110

0100 1100

1000

1010

1001
0001

0000

0101

(b)

Figure 2: (a) A concept class in {0,1}4 that is maximum with VC-dim 2 and (b) the one-inclusion
graph of the concept class.

the object as a simplicial complex: in this case the concepts form vertices which are connected by
edges; these edges bound 2-cubes.

Probably Approximately Correct learnability of a concept classC ⊆ {0,1}X is characterized by
the finiteness of the Vapnik-Chervonenkis (VC) dimension of C (Blumer et al., 1989). One key to
all such results is Sauer’s Lemma.

Definition 7 The VC dimension of concept class C ⊆ {0,1}X is defined as VC(C) =

sup
{

n
∣

∣

∣
∃Y ∈

(X
n
)

,ΠY (C) = {0,1}n
}

where ΠY (C) = {(c(x1), . . . ,c(xn)) | c ∈C} ⊆ {0,1}n is the
projection of C on sequence Y = (x1, . . . ,xn).

Lemma 8 (Vapnik and Chervonenkis, 1971; Sauer, 1972; Shelah, 1972) The cardinality of any
concept classes C ⊆ {0,1}n is bounded by |C|≤ ∑VC(C)i=1

(n
i
)

.

Motivated by maximizing concept class cardinality under a fixed VC dimension, which is related
to constructing general sample compression schemes (see Section 2.4), Welzl (1987) defined the
following special classes.

Definition 9 Concept class C ⊆ {0,1}X is called maximal if VC(C∪{c}) > VC(C) for all c ∈
{0,1}X\C. Furthermore ifΠY (C) satisfies Sauer’s Lemma with equality for each Y ∈

(X
n
)

, for every
n ∈ N, then C is termed maximum. If C ⊆ {0,1}n then C is maximum (and hence maximal) if C
meets Sauer’s Lemma with equality.

Example 2 The concept class of Example 1 has VC-dimension 2 as witnessed by projecting onto
any two of the four available axes. Moreover its cardinality of 11 exactly meets Sauer’s Lemma with
equality, so the class is also maximum.
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Figure 3: The (a) projection (b) reduction and (c) tail of the concept class of Figure 2 with respect
to projecting on to the first three coordinates (i.e., projecting out the fourth coordinate).

The reduction of C ⊆ {0,1}n with respect to i ∈ [n] = {1, . . . ,n} is the class Ci =
Π[n]\{i}

({

c ∈C | i ∈ IG(C)(c)
})

where IG(C)(c)⊆ [n] denotes the labels of the edges incident to vertex
c; a multiple reduction is the result of performing several reductions in sequence. The tail of class
C is taili (C) =

{

c ∈C | i /∈ IG(C)(c)
}

. Welzl showed that ifC is d-maximum, thenΠ[n]\{i}(C) andCi
are maximum of VC-dimensions d and d−1 respectively.

Example 3 A projection, reduction and tail of the concept class of Figure 2 are shown in Fig-
ures 3(a)—3(c) respectively, when projecting onto coordinates {1,2,3}. In particular note that the
reduction, like the projection, is a class in the smaller 3-cube while the tail is in the original 4-
cube. Moreover note that the projection and reduction and maximum with VC-dimensions 2 and 1
respectively.

The results presented below relate to other geometric and topological representations of maxi-
mum classes existing in the literature. Under the guise of ‘forbidden labels’, Floyd (1989) showed
that maximum C ⊆ {0,1}n of VC-dim d is the union of a maximally overlapping d-complete col-
lection of cubes (Rubinstein et al., 2009)—defined as a collection of ( nd ) d-cubes which uniquely
project onto all ( nd ) possible sets of d coordinate directions. (An alternative proof was developed by
Neylon 2006.) It has long been known that VC-1 maximum classes have one-inclusion graphs that
are trees (Dudley, 1985); we previously extended this result by showing that when viewed as com-
plexes, d-maximum classes are contractible d-cubical complexes (Rubinstein et al., 2009). Finally
the cells of a simple linear arrangement of n hyperplanes in Rd form a VC-d maximum class in
the n-cube (Edelsbrunner, 1987), but not all finite maximum classes correspond to such Euclidean
arrangements (Floyd, 1989).

Example 4 It is immediately clear from visual inspection that the 2-maximum concept classes of
Figures 2 and 3(a) are composed of complete collections of 2-cubes. Similarly the 1-maximum class
of Figure 3(c) is a tree with one edge of each color.

2.4 Sample Compression Schemes

Littlestone and Warmuth (1986) showed that the existence of a compression scheme of finite size is
sufficient for learnability of C, and conjectured the converse, that VC(C) = d < ∞ implies a com-
pression scheme of size d. Later Warmuth (2003) weakened the conjectured size to O(d). To-date it
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is only known that maximum classes can be d-compressed (Floyd, 1989). Unlabeled compression
was first explored by Ben-David and Litman (1998); Kuzmin and Warmuth (2007) defined unla-
beled compression as follows, and explicitly constructed schemes of size d for maximum classes.

Definition 10 Let C be a d-maximum class on a finite domain X. A mapping r is called a represen-
tation mapping of C if it satisfies the following conditions:

1. r is a bijection between C and subsets of X of size at most d; and

2. [non-clashing] :2 Πr(c)∪r(c′)(c) )=Πr(c)∪r(c′)(c′) for all c,c′ ∈C, c )= c′.

As with all previously published labeled schemes, all previously known unlabeled compression
schemes for maximum classes exploit their special recursive projection-reduction structure and so
it is doubtful that such schemes will generalize. Kuzmin and Warmuth (2007, Conjecture 2) conjec-
tured that theirmin-peeling algorithm constitutes an unlabeled d-compression scheme for maximum
classes; it iteratively removes minimum degree vertices from G(C), representing the corresponding
concepts by the remaining incident dimensions in the graph. The authors also conjectured that
sweeping a hyperplane in general position across a simple linear arrangement forms a compres-
sion scheme that corresponds to min peeling the associated maximum class (Kuzmin and Warmuth,
2007, Conjecture 1). A particularly promising approach to compressing general classes is via their
maximum-embeddings: a class C embedded in class C′ trivially inherits any compression scheme
for C′, and so an important open problem is to embed maximal classes into maximum classes with
at most a linear increase in VC dimension (Kuzmin and Warmuth, 2007, Open Problem 3).

3. Preliminaries

A first step towards characterizing and compressing maximum classes is a process of building them.
After describing this process of lifting we discuss compressing maximum classes by peeling, and
properties of the boundaries of maximum classes.

3.1 Constructing All Maximum Classes

The aim in this section is to describe an algorithm for constructing all maximum classes of VC-
dimension d in the n-cube. This process can be viewed as the inverse of mapping a maximum class
to its d-maximum projection on [n]\{i} and the corresponding (d−1)-maximum reduction.

Definition 11 Let C,C′ ⊆ {0,1}n be maximum classes of VC-dimensions d,d− 1 respectively, so
that C′ ⊂C, and let C1,C2 ⊂C be d-cubes, that is, d-faces of the n-cube {0,1}n.

1. C1,C2 are connected if there exists a path in the one-inclusion graph G(C) with end-points in C1
and C2; and

2. C1,C2 are said to be C′-connected if there exists such a connecting path that further does not
intersect C′.

The C′-connected components of C are the equivalence classes of the d-cubes of C under the C′-
connectedness relation.
2. We abuse notation slightly by applying projections, originally defined to operate on concept classes in Definition 7,
to concepts.
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Algorithm 1 MAXIMUMCLASSES(n,d)
Given: n ∈ N,d ∈ [n]
Returns: the set of d-maximum classes in {0,1}n

1. if d = 0 then return {{v} | v ∈ {0,1}n} ;
2. if d = n then return {0,1}n ;
3. M ← /0 ;
for eachC ∈MAXIMUMCLASSES(n−1,d),

C′ ∈MAXIMUMCLASSES(n−1,d−1) s.t. C′ ⊂C do
4. {C1, . . . ,Ck}←C′-connected components ofC ;
5. M ←M ∪

⋃
p∈{0,1}k

{

(C′ ×{0,1})∪
⋃
q∈[k]Cq×{pq}

}

;
done

6. returnM ;

The recursive algorithm for constructing all maximum classes of VC-dimension d in the n-cube,
detailed as Algorithm 1, considers each possible d-maximum class C in the (n− 1)-cube and each
possible (d−1)-maximum subclass C′ of C as the projection and reduction of a d-maximum class
in the n-cube, respectively. The algorithm lifts C and C′ to all possible maximum classes in the
n-cube. ThenC′ ×{0,1} is contained in each lifted class; so all that remains is to find the tails from
the complement of the reduction in the projection. It turns out that each C′-connected component
Ci of C can be lifted to either Ci× {0} or Ci× {1} arbitrarily and independently of how the other
C′-connected components are lifted. The set of lifts equates to the set of d-maximum classes in the
n-cube that project-reduce to (C,C′).

Lemma 12 MAXIMUMCLASSES(n,d) (cf. Algorithm 1) returns the set of maximum classes of VC-
dimension d in the n-cube for all n ∈ N,d ∈ [n].

Proof We proceed by induction on n and d. The base cases correspond to n∈N,d ∈ {0,n} for which
all maximum classes, enumerated as singletons in the n-cube and the n-cube itself respectively, are
correctly produced by the algorithm. For the inductive step we assume that for n ∈N,d ∈ [n−1] all
maximum classes of VC-dimension d and d−1 in the (n−1)-cube are already known by recursive
calls to the algorithm. Given this, we will show that MAXIMUMCLASSES(n,d) returns only d-
maximum classes in the n-cube, and that all such classes are produced by the algorithm.

Let classes C ∈ MAXIMUMCLASSES(n− 1,d) and C′ ∈MAXIMUMCLASSES(n− 1,d− 1) be
such that C′ ⊂C. Then C is the union of a d-complete collection and C′ is the union of a (d− 1)-
complete collection of cubes that are faces of the cubes of C. Consider a concept class C! formed
fromC andC′ by Algorithm 1. The algorithm partitionsC intoC′-connected componentsC1, . . . ,Ck
each of which is a union of d-cubes. WhileC′ is lifted toC′ ×{0,1}, some subset of the components
{Ci}i∈S0 are lifted to {Ci×{0}}i∈S0 while the remaining components are lifted to {Ci×{1}}i/∈S0 .
Here S0 ranges over all subsets of [k], selecting which components are lifted to 0; the complement
of S0 specifies those components lifted to 1. By definition C! is a d-complete collection of cubes
with cardinality equal to ( n

≤d ) since |C!| = |C′|+ |C| (Kuzmin and Warmuth, 2007). So C! is d-
maximum (Rubinstein et al., 2009, Theorem 34).

If we now consider any d-maximum classC!⊆ {0,1}n, its projection on [n]\{i} is a d-maximum
class C ⊆ {0,1}n−1 and C!i is the (d− 1)-maximum projection C′ ⊂ C of all the d-cubes in C!
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Figure 4: 2-maximum concept classes in {0,1}4 constructed by lifting concept class Figure 3(a) as
the projection, and concept class Figure 3(b) as the reduction.

which contain color i. It is thus clear that C! must be obtained by lifting parts of the C′-connected
components of C to the 1 level and the remainder to the 0 level, and C′ to C′ ×{0,1}. We will now
show that if the vertices of each component are not lifted to the same levels, then while the number
of vertices in the lift match that of a d-maximum class in the n-cube, the number of edges are too
few for such a maximum class. Define a lifting operator on C as "(v) = {v}× "v, where "v ⊆ {0,1}
and

|"v| =

{

2 , if v ∈C′

1, if v ∈C\C′
.

Consider now an edge {u,v} in G(C). By the definition of a C′-connected component there ex-
ists some Cj such that either u,v ∈ Cj\C′, u,v ∈ C′ or WLOG u ∈ Cj\C′,v ∈ C′. In the first case
"(u)∪ "(v) is an edge in the lifted graph iff "u = "v. In the second case "(u)∪ "(v) contains four
edges and in the last it contains a single edge. Furthermore, it is clear that this accounts for all edges
in the lifted graph by considering the projection of an edge in the lifted product. Thus any lift other
than those produced by Algorithm 1 induces strictly too few edges for a d-maximum class in the
n-cube (cf. Kuzmin and Warmuth, 2007, Corollary 7.5).

Example 5 Let C andC′ refer to the 2- and 1-maximum concept classes in Figures 3(a) and 3(b) re-
spectively. Then Figures 4(a), 4(b) and 2 make up all possible 2-maximum classes (up to symmetry)
resulting from lifting projection C and reduction C′. Figure 2 corresponds to lifting no C′-connected
components of C; Figure 4(a) corresponds to lifting just one component; and Figure 4(b) corre-
sponds to lifting two components. (Note that Figure 4(a) and Figure 4(b) are actually equivalent
after a symmetry. )
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3.2 Corner Peeling

Kuzmin and Warmuth (2007, Conjecture 2) conjectured that their simple min-peeling procedure
is a valid unlabeled compression scheme for maximum classes. Beginning with a concept class
C0 = C ⊆ {0,1}n, min peeling operates by iteratively removing a vertex vt of minimum-degree
in G(Ct) to produce the peeled class Ct+1 = Ct\{vt}. The concept class corresponding to vt is
then represented by the dimensions of the edges incident to vt in G(Ct), IG(Ct)(vt) ⊆ [n]. Providing
that no-clashing holds for the algorithm, the size of the min-peeling scheme is the largest degree
encountered during peeling. Kuzmin and Warmuth predicted that this size is always at most d for
d-maximum classes. We explore these questions for a related special case of peeling, where we
prescribe which vertex to peel at step t as follows.

Definition 13 We say that C ⊆ {0,1}n can be corner peeled if there exists an ordering v1, . . . ,v|C|
of the vertices of C such that, for each t ∈ [|C|] where C0 =C,

1. vt ∈Ct−1 and Ct =Ct−1\{vt};

2. There exists a unique cube C′t−1 of maximum dimension over all cubes in Ct−1 containing vt;

3. The neighbors Γ(vt) of vt in G(Ct−1) satisfy Γ(vt)⊆C′t−1; and

4. C|C| = /0.

The vt are termed the corner vertices of Ct−1 respectively. If d is the maximum degree of each vt in
G(Ct−1), then C is d corner peeled.

Note that we do not constrain the cubes C′t to be of non-increasing dimension. It turns out that
an important property of maximum classes is invariant to this kind of peeling.

Definition 14 We call a class C ⊆ {0,1}n shortest-path closed if for any u,v ∈C, G(C) contains a
path connecting u,v of length ‖u− v‖1.

Lemma 15 If C ⊆ {0,1}n is shortest-path closed and v ∈C is a corner vertex of C, then C\{v} is
shortest-path closed.

Proof Consider a shortest-path closed C ⊆ {0,1}n. Let c be a corner vertex of C, and denote the
cube of maximum dimension in C, containing c, by C′. Consider {u,v} ⊆C\{c}. By assumption
there exists a u-v-path p of length ‖u− v‖1 contained inC. If c is not in p then p is contained in the
peeled product C\{c}. If c is in p then p must cross C′ such that there is another path of the same
length which avoids c, and thusC\{c} is shortest-path closed.

3.2.1 CORNER PEELING IMPLIES COMPRESSION

Theorem 16 If a maximum class C can be corner peeled then C can be d-unlabeled compressed.

Proof The invariance of the shortest-path closed property under corner peeling is key. The corner-
peeling unlabeled compression scheme represents each vt ∈C by r(vt) = IG(Ct−1)(vt), the colors of
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Figure 5: (a) A 2-maximum class in the 4-cube and (b) its boundary highlighted by solid lines.

the cube C′t−1 which is deleted from Ct−1 when vt is corner peeled. We claim that any two ver-
tices vs,vt ∈C have non-clashing representatives. WLOG, suppose that s< t. The class Cs−1 must
contain a shortest vs-vt-path p. Let i be the color of the single edge contained in p that is incident
to vs. Color i appears once in p, and is contained in r(vs). This implies that vs,i )= vt,i and that
i ∈ r(vs)∪ r(vt), and so vs|(r(vs)∪ r(vt)) )= vt |(r(vs)∪ r(vt)). By construction, r(·) is a bijection
between C and all subsets of [n] of cardinality ≤ VC(C).

If the oriented one-inclusion graph, with each edge directed away from the incident vertex rep-
resented by the edge’s color, has no cycles, then that representation’s compression scheme is termed
acyclic (Floyd, 1989; Ben-David and Litman, 1998; Kuzmin and Warmuth, 2007).

Proposition 17 All corner-peeling unlabeled compression schemes are acyclic.

Proof We follow the proof that the min-peeling algorithm is acyclic (Kuzmin and Warmuth, 2007).
Let v1, . . . ,v|C| be a corner vertex ordering of C. As a corner vertex vt is peeled, its unoriented inci-
dent edges are oriented away from vt . Thus all edges incident to v1 are oriented away from v1 and
so the vertex cannot take part in any cycle. For t > 1 assume Vt = {vs | s < t} is disjoint from all
cycles. Then vt cannot be contained in a cycle, as all incoming edges into vt are incident to some
vertex in Vt . Thus the oriented G(C) is indeed acyclic.

3.3 Boundaries of Maximum Classes

We now turn to the geometric boundaries of maximum classes, which are closely related to corner
peeling.
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Figure 6: The first steps of building the dunce hat in Example 7.

Definition 18 The boundary ∂C of a d-maximum class C is defined as all the (d − 1)-subcubes
which are the faces of a single d-cube in C.

Maximum classes, when viewed as cubical complexes, are analogous to soap films (an example
of a minimal energy surface encountered in nature), which are obtained when a wire frame is dipped
into a soap solution. Under this analogy the boundary corresponds to the wire frame and the number
of d-cubes can be considered the area of the soap film. An important property of the boundary of a
maximum class is that all lifted reductions meet the boundary multiple times.

Theorem 19 Every d-maximum class has boundary containing at least two (d−1)-cubes of every
combination of d−1 colors, for all d > 1.

Proof We use the lifting construction of Section 3.1. Let C! ⊆ {0,1}n be a 2-maximum class and
consider color i ∈ [n]. Then the reduction C!i is an unrooted tree with at least two leaves, each of
which lifts to an i-colored edge in C!. Since the leaves are of degree 1 in C!i, the corresponding
lifted edges belong to exactly one 2-cube inC! and so lie in ∂C!. Consider now a d-maximum class
C! ⊆ {0,1}n for d > 2, and make the inductive assumption that the projection C = Π[n−1](C!) has
two of each type of (d−1)-cube, and that the reduction C′ =C!n has two of each type of (d−2)-
cube, in their boundaries. Pick d−1 colors I ⊆ [n]. If n ∈ I then consider two (d−2)-cubes colored
by I\{xn} in ∂C′. By the same argument as in the base case, these lift to two I-colored cubes in ∂C!.
If n /∈ I then ∂C contains two I-colored (d−1)-cubes. For each cube, if the cube is contained in C′
then it has two lifts one of which is contained in ∂C!, otherwise its unique lift is contained in ∂C!.
Therefore ∂C! contains at least two I-colored cubes.

Example 6 The one-inclusion graph of a 2-maximum concept class in the 4-cube is depicted in Fig-
ure 5(a), along with its boundary of edges in Figure 5(b). Note that all four colors are represented
by exactly two boundary edges in this case.

Having a large boundary is an important property of maximum classes that does not follow from
contractibility.
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Example 7 Take a 2-simplex with vertices A,B,C. Glue the edges AB to AC to form a cone. Next
glue the end loop BC to the edge AB . The result is a complex D with a single vertex, edge and
2-simplex, which is classically known as the dunce hat (cf. Figure 6). It is not hard to verify that D
is contractible, but has no (geometric) boundary.

Although Theorem 19 will not be explicitly used in the sequel, we return to boundaries of
maximum complexes later.

4. Euclidean Arrangements

Definition 20 A linear arrangement is a collection of n≥ d oriented hyperplanes inRd. Each region
or cell in the complement of the arrangement is naturally associated with a concept in {0,1}n; the
side of the ith hyperplane on which a cell falls determines the concept’s ith component. A simple
arrangement is a linear arrangement in which any subset of d planes has a unique point in common
and all subsets of d+ 1 planes have an empty mutual intersection. Moreover any subset of k < d
planes meet in a plane of dimension d−k. Such a collection of n planes is also said to be in general
position.

Many of the familiar operations on concept classes in the n-cube have elegant analogues on
arrangements.

• Projection on [n]\{i} corresponds to removing the ith plane;

• The reduction Ci is the new arrangement given by the intersection of C’s arrangement with
the ith plane; and

• The corresponding lifted reduction is the collection of cells in the arrangement that adjoin the
ith plane.

A k-cube in the one-inclusion graph corresponds to a collection of 2k cells, all having a common
(d− k)-face, which is contained in the intersection of k planes, and an edge corresponds to a pair
of cells which have a common face on a single plane. The following result is due to Edelsbrunner
(1987).

Lemma 21 The concept class C ⊆ {0,1}n induced by a simple linear arrangement of n planes in
Rd is d-maximum.

Proof Note thatC has VC dimension at most d, since general position is invariant to projection, that
is, no d+1 planes are shattered. SinceC is the union of a d-complete collection of cubes (every cell
contains d-intersection points in its boundary) it follows that C is d-maximum (Rubinstein et al.,
2009).

Example 8 Consider the simple linear arrangement inR2 shown in Figure 7(b). The given labeling
of its cells map to the concept class in the 4-cube enumerated in Figure 7(a) with one-inclusion
graph shown in Figure 5(a). This class is maximum with VC-dimension 2.
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x1 x2 x3 x4
v0 0 0 0 0
v1 1 0 0 0
v2 0 1 0 0
v3 0 0 1 0
v4 1 0 1 0
v5 1 1 0 0
v6 0 1 1 0
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v8 1 1 0 1
v9 0 1 0 1
v10 0 1 1 1
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Figure 7: (a) The enumeration of the 2-maximum class in {0,1}4 in Figure 5(a) and (b) a simple
linear line arrangement corresponding to the class, with each cell corresponding to a
unique vertex.

Corollary 22 Let A be a simple linear arrangement of n hyperplanes in Rd with corresponding
d-maximum C ⊆ {0,1}n. The intersection of A with a generic hyperplane corresponds to a (d−1)-
maximum class C′ ⊆C. In particular if all d-intersection points of A lie to one side of the generic
hyperplane, then C′ lies on the boundary of C; and ∂C is the disjoint union of two (d−1)-maximum
sub-classes.

Proof The intersection of A with a generic hyperplane is again a simple arrangement of n hyper-
planes but now in Rd−1. Hence by Lemma 21 C′ is a (d−1)-maximum class in the n-cube. C′ ⊆C
since the adjacency relationships on the cells of the intersection are inherited from those of A.

Suppose that all d-intersections in A lie in one half-space of the generic hyperplane. C′ is the
union of a (d−1)-complete collection. We claim that each of these (d−1)-cubes is a face of exactly
one d-cube inC and is thus in ∂C. A (d−1)-cube inC′ corresponds to a line in Awhere d−1 planes
mutually intersect. The (d−1)-cube is a face of a d-cube in C iff this line is further intersected by
a dth plane. This occurs for exactly one plane, which is closest to the generic hyperplane along this
intersection line. For once the d-intersection point is reached, when following along the line away
from the generic plane, a new cell is entered. This verifies the second part of the result.

Consider two parallel generic hyperplanes h1,h2 such that all d-intersection points of A lie in
between them. We claim that each (d− 1)-cube in ∂C is in exactly one of the concept classes in-
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duced by the intersection of A with h1 and A with h2. Consider an arbitrary (d−1)-cube in ∂C. As
before this cube corresponds to a region of a line formed by a mutual intersection of d− 1 planes.
Moreover this region is a ray, with one end-point at a d-intersection. Because the ray begins at a
point between the generic hyperplanes h1,h2, it follows that the ray must cross exactly one of these.

Example 9 To illustrate, consider the 2-maximum class in Figure 5(a) that corresponds to the
simple linear arrangement in Figure 7(b). The boundary, shown in Figure 5(b) is clearly a disjoint
union of two 1-maximum classes—in this case sticks.

Corollary 23 Let A be a simple linear arrangement of n hyperplanes in Rd and let C ⊆ {0,1}n be
the corresponding d-maximum class. Then C considered as a cubical complex is homeomorphic to
the d-ball Bd; and ∂C considered as a (d− 1)-cubical complex is homeomorphic to the (d− 1)-
sphere Sd−1.

Proof We construct a Voronoi cell decomposition corresponding to the set of d-intersection points
inside a very large ball in Euclidean space. By induction on d, we claim that this is a cubical
complex and the vertices and edges correspond to the class C. By induction, on each hyperplane,
the induced arrangement has a Voronoi cell decomposition which is a (d−1)-cubical complex with
edges and vertices matching the one-inclusion graph for the tail of C corresponding to the label
associated with the hyperplane. It is not hard to see that the Voronoi cell defined by a d-intersection
point p on this hyperplane is a d-cube. In fact, its (d− 1)-faces correspond to the Voronoi cells
for p, on each of the d hyperplanes passing through p. We also see that this d-cube has a single
vertex in the interior of each of the 2d cells of the arrangement adjacent to p. In this way, it follows
that the vertices of this Voronoi cell decomposition are in bijective correspondence to the cells of
the hyperplane arrangement. Finally the edges of the Voronoi cells pass through the faces in the
hyperplanes. So these correspond bijectively to the edges of C, as there is one edge for each face
of the hyperplanes. Using a very large ball, containing all the d-intersection points, the boundary
faces become spherical cells. In fact, these form a spherical Voronoi cell decomposition, so it is
easy to replace these by linear ones by taking the convex hull of their vertices. So a piecewise
linear cubical complex C is constructed, which has one-skeleton (graph consisting of all vertices
and edges) isomorphic to the one-inclusion graph forC.

Finally we want to prove that C is homeomorphic to Bd . This is quite easy by construction. For
we see that C is obtained by dividing up Bd into Voronoi cells and replacing the spherical boundary
cells by linear ones, using convex hulls of the boundary vertices. This process is clearly given by a
homeomorphism by projection. In fact, the homeomorphism preserves the PL-structure so is a PL
homeomorphism.

Example 10 Consider again the one-inclusion graph in Figure 5(a) corresponding to a 2-maximum
concept class in the 4-cube. It is trivial to see via inspection that this class, when viewed as a
simplicial complex, is homeomorphic to a disc; similarly its boundary, highlighted in Figure 5(b),
is homeomorphic to a circle.
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Figure 8: The simple linear line arrangement from Figure 7(b) corresponding to the concept class
enumerated in Figure 7(a) and visualized in Figure 5(a). The arrangement is in the process
of being swept by the dashed line.

The following example demonstrates that not all maximum classes of VC-dimension d are
homeomorphic to the d-ball. The key to such examples is branching.

Example 11 A simple linear arrangement in R corresponds to points on the line—cells are simply
intervals between these points and so corresponding 1-maximum classes are sticks. Any tree that
is not a stick can therefore not be represented as a simple linear arrangement in R and is also not
homeomorphic to the 1-ball which is simply the interval [−1,1].

As Kuzmin and Warmuth (2007) did previously, consider a generic hyperplane h sweeping
across a simple linear arrangement A. h begins with all d-intersection points of A lying in its positive
half-space H+. The concept corresponding to cell c is peeled from C when |H+∩ c| = 1, that is, h
crosses the last d-intersection point adjoining c. At any step in the process, the result of peeling j
vertices fromC to reach Cj, is captured by the arrangement H+∩A for the appropriate h.

Example 12 Figure 7(a) enumerates the 11 vertices of a 2-maximum class in the 4-cube. Figures 8
and 5(a) display a hyperplane arrangement in Euclidean space and its Voronoi cell decomposition,
corresponding to this maximum class. In this case, sweeping the vertical dashed line across the
arrangement corresponds to a partial corner peeling of the concept class with peeling sequence v7,
v8, v5, v9, v2, v0. What remains is the 1-maximum stick {v1,v3,v4,v6,v10}.
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Next we resolve the first half of Kuzmin and Warmuth (2007, Conjecture 1).

Theorem 24 Any d-maximum class C ⊆ {0,1}n corresponding to a simple linear arrangement A
can be corner peeled by sweeping A, and this process is a valid unlabeled compression scheme for
C of size d.

Proof Wemust show that as the jth d-intersection point p j is crossed, there is a corner vertex ofCj−1
peeled away. It then follows that sweeping a generic hyperplane h across A corresponds to corner
peeling C to a (d−1)-maximum sub-class C′ ⊆ ∂C by Corollary 22. Moreover C′ corresponds to a
simple linear arrangement of n hyperplanes in Rd−1.

We proceed by induction on d, noting that for d = 1 corner peeling is trivial. Consider h as it
approaches the jth d-intersection point p j. The d planes defining this point intersect h in a simple
arrangement of hyperplanes on h. There is a compact cell ∆ for the arrangement on h, which
is a d-simplex3 and shrinks to a point as h passes through p j. We claim that the cell c for the
arrangement A, whose intersection with h is ∆, is a corner vertex v j of Cj−1. Consider the lines
formed by intersections of d − 1 of the d hyperplanes, passing through p j. Each is a segment
starting at p j and ending at h without passing through any other d-intersection points. So all faces
of hyperplanes adjacent to c meet h in faces of ∆. Thus, there are no edges in Cj−1 starting at the
vertex corresponding to p j, except for those in the cubeC′j−1, which consists of all cells adjacent to
p j in the arrangement A. So c corresponds to a corner vertex v j of the d-cubeC′j−1 inCj−1. Finally,
just after the simplex is a point, c is no longer in H+ and so v j is corner peeled fromCj−1.

Theorem 16 completes the proof that this corner peeling of C constitutes unlabeled compres-
sion.

Corollary 25 The sequence of cubes C′0, . . . ,C′|C|, removed when corner peeling by sweeping simple
linear arrangements, is of non-increasing dimension. In fact, there are

(n
d
)

cubes of dimension d,
then

( n
d−1

)

cubes of dimension d−1, etc.

While corner peeling and min peeling share some properties in common, they are distinct proce-
dures. Notice that sweeping produces a monotonic corner-peeling sequence, as cubes are removed
in order of non-increasing dimensions.

Example 13 Consider sweeping a simple linear arrangement corresponding to a 2-maximum class.
After all but one 2-intersection point has been swept, the corresponding corner-peeled class Ct is
the union of a single 2-cube with a 1-maximum stick. Min peeling applied to Ct would first peel a
leaf, while sweeping must peel the 2-cube next.

A second example is the class in a 3-cube which consists of six vertices, so that two opposite
vertices, for example, 000 and 111 are not included. This class cannot be corner peeled as the
one-inclusion graph consists of six edges forming a single cycle. On the other hand, it has many
min-peeling schemes.

An interesting question is if a class has a corner-peeling scheme, does it always have a min-
peeling scheme which is also a corner-peeling scheme? This is given as Question 50 below.

3. ∆ is a topological simplex—the convex hull of d+1 affinely independent points in Rd .
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The next result follows from our counter-examples to Kuzmin & Warmuth’s minimum degree
conjecture (Rubinstein et al., 2009).

Corollary 26 There is no constant c so that all maximal classes of VC-dimension d can be embed-
ded into maximum classes corresponding to simple hyperplane arrangements of dimension d+ c.

5. Hyperbolic Arrangements

To motivate the introduction of hyperbolic arrangements, note that linear-hyperplane arrangements
can be efficiently described, since each hyperplane is determined by its unit normal and distance
from the origin. Similarly, a hyperbolic hyperplane is a hypersphere. So it can be parametrized by
its center—a point on the ideal sphere at infinity—and its radius.4

However the family of hyperbolic hyperplanes has more flexibility than linear hyperplanes since
there are many disjoint hyperbolic hyperplanes, whereas in the linear case only parallel hyperplanes
do not meet. Thus we turn to hyperbolic arrangements to represent a larger collection of concept
classes than those represented by simple linear arrangements.

We briefly discuss the Klein model of hyperbolic geometry (Ratcliffe, 1994, pg. 7). Consider
the open unit ball Hk in Rk. Geodesics (lines of shortest length in the geometry) are given by
intersections of straight lines in Rk with the unit ball. Similarly planes of any dimension between 2
and k− 1 are given by intersections of such planes in Rk with the unit ball. Note that such planes
are completely determined by their spheres of intersection with the unit sphere Sk−1, which is called
the ideal boundary of hyperbolic space Hk. Note that in the appropriate metric, the ideal boundary
consists of points which are infinitely far from all points in the interior of the unit ball.

We can now see immediately that a simple hyperplane arrangement in Hk can be described by
taking a simple hyperplane arrangement in Rk and intersecting it with the unit ball. However we
require an important additional property to mimic the Euclidean case. Namely we add the constraint
that every subcollection of d of the hyperplanes in Hk has mutual intersection points inside Hk, and
that no (d+ 1)-intersection point lies in Hk. We need this requirement to obtain that the resulting
class is maximum.

Definition 27 A simple hyperbolic d-arrangement is a collection of n hyperplanes in Hk with the
property that every sub-collection of d hyperplanes mutually intersect in a (k− d)-dimensional
hyperbolic plane, and that every sub-collection of d+1 hyperplanes mutually intersect as the empty
set.

Corollary 28 The concept class C corresponding to a simple d-arrangement of hyperbolic hyper-
planes in Hk is d-maximum in the k-cube.

Proof The result follows by the same argument as before. Projection cannot shatter any (d+ 1)-
cube and the class is a complete union of d-cubes, so is d-maximum.

The key to why hyperbolic arrangements represent many new maximum classes is that they
allow flexibility of choosing d and k independently. This is significant because the unit ball can be

4. Note also that hyperbolic hyperplanes are ‘linear’ in the sense that they are filled by a family of geodesics, which are
shortest paths or lines in the hyperbolic metric.
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chosen to miss much of the intersections of the hyperplanes in Euclidean space. Note that the new
maximum classes are embedded in maximum classes induced by arrangements of linear hyperplanes
in Euclidean space.

A simple example is any 1-maximum class. It is easy to see that this can be realized in the
hyperbolic plane by choosing an appropriate family of lines and the unit ball in the appropriate po-
sition. In fact, we can choose sets of pairs of points on the unit circle, which will be the intersections
with our lines. So long as these pairs of points have the property that the smaller arcs of the circle
between them are disjoint, the lines will not cross inside the disk and the desired 1-maximum class
will be represented.

Corner-peeling maximum classes represented by hyperbolic-hyperplane arrangements proceeds
by sweeping, just as in the Euclidean case. Note first that intersections of the hyperplanes of the
arrangement with the moving hyperplane appear precisely when there is a first intersection at the
ideal boundary. Thus it is necessary to slightly perturb the collection of hyperplanes to ensure
that only one new intersection with the moving hyperplane occurs at any time. Note also that new
intersections of the sweeping hyperplane with the various lower dimensional planes of intersection
between the hyperplanes appear similarly at the ideal boundary. The important claim to check is
that the intersection at the ideal boundary between the moving hyperplane and a lower dimensional
plane, consisting entirely of d intersection points, corresponds to a corner-peeling move. We include
two examples to illustrate the validity of this claim.

Example 14 In the case of a 1-maximum class coming from disjoint lines in H2, a cell can disap-
pear when the sweeping hyperplane meets a line at an ideal point. This cell is indeed a vertex of the
tree, that is, a corner-vertex.

Example 15 Assume that we have a family of 2-planes in the unit 3-ball which meet in pairs in
single lines, but there are no triple points of intersection, corresponding to a 2-maximum class. A
corner-peeling move occurs when a region bounded by two half disks and an interval disappears,
in the positive half space bounded by the sweeping hyperplane. Such a region can be visualized by
taking a slice out of an orange. Note that the final point of contact between the hyperplane and the
region is at the end of a line of intersection between two planes on the ideal boundary.

We next observe that sweeping by generic hyperbolic hyperplanes induces corner peeling of the
corresponding maximum class, extending Theorem 24. As the generic hyperplane sweeps across
hyperbolic space, not only do swept cells correspond to corners of d-cubes but also to corners of
lower dimensional cubes as well. Moreover, the order of the dimensions of the cubes which are
corner peeled can be arbitrary—lower dimensional cubes may be corner peeled before all the higher
dimensional cubes are corner peeled. This is in contrast to Euclidean sweepouts (cf. Corollary 25).
Similar to Euclidean sweepouts, hyperbolic sweepouts correspond to corner peeling and not min
peeling.

Theorem 29 Any d-maximum classC⊆ {0,1}n corresponding to a simple hyperbolic d-arrangement
A can be corner peeled by sweeping A with a generic hyperbolic hyperplane.

Proof We follow the same strategy of the proof of Theorem 24. For sweeping in hyperbolic space
Hk, the generic hyperplane h is initialized as tangent to Hk. As h is swept across Hk, new intersec-
tions appear with A just after hmeets the non-empty intersection of a subset of hyperplanes of Awith
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Figure 9: 2-maximum classes in {0,1}4 that can be represented as hyperbolic arrangements but not
as Euclidean arrangements.

the ideal boundary. Each d-cube C′ in C still corresponds to the cells adjacent to the intersection
IC′ of d hyperplanes. But now IC′ is a (k−d)-dimensional hyperbolic hyperplane. A cell c adjacent
to IC′ is corner peeled precisely when h last intersects c at a point of IC′ at the ideal boundary. As
for simple linear arrangements, the general position of A∪ {h} ensures that corner-peeling events
never occur simultaneously. For the case k = d+1, as for the simple linear arrangements just prior
to the corner peeling of c, H+∩ c is homeomorphic to a (d+1)-simplex with a missing face on the
ideal boundary. And so as in the simple linear case, this d-intersection point corresponds to a corner
d-cube. In the case k > d+1, H+∩ c becomes a (d+1)-simplex (as before) multiplied by Rk−d−1.
If k = d, then the main difference is just before corner peeling of c, H+ ∩ c is homeomorphic to a
k-simplex which may be either closed (hence in the interior of Hk) or with a missing face on the
ideal boundary. The rest of the argument remains the same, except for one important observation.

Although swept corners in hyperbolic arrangements can be of cubes of differing dimensions,
these dimensions never exceed d and so the proof that sweeping simple linear arrangements induces
d-compression schemes is still valid.

Example 16 Constructed with lifting, Figure 9 completes the enumeration, up to symmetry, of the
2-maximum classes in {0,1}4 begun with Example 12. These cases cannot be represented as simple
Euclidean linear arrangements, since their boundaries do not satisfy the condition of Corollary 23
but can be represented as hyperbolic arrangements as in Figure 10. Figures 11(a) and 11(b) display
the sweeping of a general hyperplane across the former arrangement and the corresponding corner
peeling. Notice that the corner-peeled cubes’ dimensions decrease and then increase.
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(a) (b)

Figure 10: Hyperbolic-hyperplane arrangements corresponding to the classes in Figure 9. In both
cases the four hyperbolic planes meet in 6 straight line segments (not shown). The
planes’ colors correspond to the edges’ colors in Figure 9.

Corollary 30 There is no constant c so that all maximal classes of VC-dimension d can be em-
bedded into maximum classes corresponding to simple hyperbolic-hyperplane arrangements of VC-
dimension d+ c.

This result follows from our counter-examples to Kuzmin & Warmuth’s minimum degree con-
jecture (Rubinstein et al., 2009).

Corollary 28 gives a proper superset of simple linear-hyperplane arrangement-induced maxi-
mum classes as hyperbolic arrangements. We will prove in Section 7 that all maximum classes
can be represented as PL-hyperplane arrangements in a ball. These are the topological analogue
of hyperbolic-hyperplane arrangements. If the boundary of the ball is removed, then we obtain an
arrangement of PL hyperplanes in Euclidean space.

6. Infinite Euclidean and Hyperbolic Arrangements

We consider a simple example of an infinite maximum class which admits corner peeling and a
compression scheme analogous to those of previous sections.

Example 17 Let L be the set of lines in the plane of the form L2m = {(x,y) | x = m} and L2n+1 =
{(x,y) | y = n} for m,n ∈ N. Let v00, v0n, vm0, and vmn be the cells bounded by the lines {L2,L3},
{L2,L2n+1,L2n+3}, {L2m,L2m+2,L3}, and {L2m,L2m+2,L2n+1,L2n+3}, respectively. Then the cubical
complex C, with vertices vmn, can be corner peeled and hence compressed, using a sweepout by the
lines {(x,y) | x+(1+ ε)y = t} for t ≥ 0 and any small fixed irrational ε > 0. C is a 2-maximum
class and the unlabeled compression scheme is also of size 2.

1242



A GEOMETRIC APPROACH TO SAMPLE COMPRESSION

v1

v2

v3

v4

initialized
sweeping
hyperplane

(a)

 v1

2-cube  v 4

1-cube

 v 3

2-cube
 v 2

2-cube

(b)

Figure 11: (a) The simple hyperbolic arrangement corresponding to the 2-maximum class in {0,1}4
of Figure 9(a)—as shown in Figure 10(a)—with a generic sweeping hyperplane shown
in several positions before and after it sweeps past four cells; and (b) the class with the
first four corner-vertices peeled by the hyperbolic arrangement sweeping. Notice that
three 2-cubes are peeled, then a 1-cube (all shown) followed by 2-cubes.

To verify the properties of this example, notice that sweeping as specified corresponds to corner
peeling the vertex v00, then the vertices v10,v01, then the remaining vertices vmn. The lines x+(1+
ε)y = t are generic as they pass through only one intersection point of L at a time. Additionally,
representing v00 by /0, v0n by {L2n+1}, vm0 by {L2m} and vmn by {L2m,L2n+1} constitutes a valid
unlabeled compression scheme. Note that the compression scheme is associated with sweeping
across the arrangement in the direction of decreasing t. This is necessary to pick up the boundary
vertices of C last in the sweepout process, so that they have either singleton representatives or the
empty set. In this way, similar to Kuzmin and Warmuth (2007), we obtain a compression scheme
so that every labeled sample of size 2 is associated with a unique concept in C, which is consistent
with the sample. On the other hand to obtain corner peeling, we need the sweepout to proceed with
t increasing so that we can begin at the boundary vertices ofC.

In concluding this brief discussion, we note that many infinite collections of simple hyperbolic
hyperplanes and Euclidean hyperplanes can also be corner peeled and compressed, even if inter-
section points and cells accumulate. However a key requirement in the Euclidean case is that the
concept class C has a non-empty boundary, when considered as a cubical complex. An easy ap-
proach is to assume that all the d-intersections of the arrangement lie in a half-space. Moreover,
since the boundary must also admit corner peeling, we require more conditions, similar to having
all the intersection points lying in an octant.

Example 18 In R3, choose the family of planes P of the form P3n+i = {x ∈R3 | xi+1 = 1−1/n} for
n≥ 1 and i ∈ {0,1,2}. A corner-peeling scheme is induced by sweeping a generic plane {x ∈ R3 |
x1+αx2+βx3 = t} across the arrangement, where t is a parameter and 1,α,β are algebraically
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independent (in particular, no integral linear combination is rational) and α,β are both close to
1. This example has similar properties to Example 17: the compression scheme is again given by
decreasing t whereas corner peeling corresponds to increasing t. Note that cells shrink to points,
as x→ 1 and the volume of cells converge to zero as n→ ∞, or equivalently any xi→ 1.

Example 19 In the hyperbolic plane H2, represented as the unit circle centered at the origin in R2,
choose the family of lines L given by L2n = {(x,y) | x= 1−1/n} and L2n+1 = {(x,y) | x+ny= 1},
for n≥ 1. This arrangement has corner peeling and compression schemes given by sweeping across
L using the generic line {y= t}.

7. Piecewise-Linear Arrangements

PL hyperplanes have the advantage that they can be easily manipulated, by cutting and pasting or
isotoping part of a hyperplane to a new position, keeping the rest of the hyperplane fixed. How-
ever a disadvantage is that there is no simple way of describing a PL hyperplane, similar to the
parametrizations of either linear or hyperbolic hyperplanes. The methods of proof of our main re-
sults about representing maximum classes and corner peeling, require PL-hyperplane arrangements.
We conjecture that PL-hyperplane arrangements are equivalent to hyperbolic ones. This would give
an interesting geometric approach of forming all maximum classes as simple hyperbolic arrange-
ments.

A PL hyperplane is the image of a proper piecewise-linear homeomorphism from the (k− 1)-
ball Bk−1 into Bk, that is, the inverse image of the boundary Sk−1 of the k-ball is Sk−2 (Rourke
and Sanderson, 1982). A simple PL d-arrangement is an arrangement of n PL hyperplanes such
that every subcollection of j hyperplanes meet transversely in a (k− j)-dimensional PL plane for
2≤ j ≤ d and every subcollection of d+1 hyperplanes are disjoint.

Corollary 31 The concept class C corresponding to a simple d-arrangement of PL hyperplanes in
Bk is d-maximum in the k-cube.

Proof The result follows by the same argument as in the linear or hyperbolic cases. Projection
cannot shatter any (d+1)-cube and the class is a complete union of d-cubes, so is d-maximum.

7.1 Maximum Classes are Represented by Simple PL-Hyperplane Arrangements

Our aim is to prove the following theorem by a series of steps.

Theorem 32 Every d-maximum class C ⊆ {0,1}n can be represented by a simple arrangement of
PL hyperplanes in an n-ball. Moreover the corresponding simple arrangement of PL hyperspheres
in the (n−1)-sphere also represents C, so long as n> d+1.

7.1.1 EMBEDDING A d-MAXIMUM CUBICAL COMPLEX IN THE n-CUBE INTO AN n-BALL

We begin with a d-maximum cubical complex C ⊆ {0,1}n embedded into [0,1]n. This gives a nat-
ural embedding of C into Rn. Take a small regular neighborhood N of C so that the boundary ∂N
of N will be a closed manifold of dimension n− 1. Note that N is contractible because it has a
deformation retraction ontoC and so ∂N is a homology (n−1)-sphere (by a standard, well-known
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Figure 12: A 1-maximum class (thick solid lines) with its fattening (thin solid lines with points),
bisecting sets (dashed lines) and induced complementary cells.

argument from topology due to Mazur 1961). Our aim is to prove that ∂N is an (n− 1)-sphere
and N is an n-ball. There are two ways of proving this: show that ∂N is simply connected and
invoke the well-known solution to the generalized Poincaré conjecture (Smale, 1961), or use the
cubical structure of the n-cube and C to directly prove the result. We adopt the latter approach, al-
though the former works fine. The advantage of the latter is that it produces the required hyperplane
arrangement, not just the structures of ∂N and N .

7.1.2 BISECTING SETS

For each color i, there is a hyperplane Pi in Rn consisting of all vectors with ith coordinate equal
to 1/2. We can easily arrange the choice of regular neighborhood N of C so that Ni = Pi ∩N
is a regular neighborhood of C∩Pi in Pi. (We call Ni a bisecting set as it intersects C along the
‘center’ of the reduction in the ith coordinate direction, see Figure 12.) But then since C∩Pi is a
cubical complex corresponding to the reduction Ci, by induction on n, we can assert that Ni is an
(n− 1)-ball. Similarly the intersections Ni ∩N j can be arranged to be regular neighborhoods of
(d−2)-maximum classes and are also balls of dimension n−2, etc. In this way, we see that if we
can show that N is an n-ball, then the induction step will be satisfied and we will have produced a
PL-hyperplane arrangement (the system of Ni in N ) in a ball.

7.1.3 SHIFTING

To complete the induction step, we use the technique of shifting (Alon, 1983; Frankl, 1983; Haus-
sler, 1995). In our situation, this can be viewed as the converse of lifting. Namely if a color i is
chosen, then the cubical complex C has a lifted reduction C′ consisting of all d-cubes containing
the ith color. By shifting, we can move down any of the lifted components, obtained by splitting C
open alongC′, from the level xi = 1 to the level xi = 0, to form a new cubical complexC!. We claim
that the regular neighborhood of C is a ball if and only if the same is true for C!. But this is quite
straightforward, since the operation of shifting can be thought of as sliding components of C, split
open alongC′, continuously from level xi = 1 to xi = 0. So there is an isotopy of the attaching maps
of the components onto the lifted reduction, using the product structure of the latter. It is easy then
to check that this does not affect the homeomorphism type of the regular neighborhood and so the
claim of shift invariance is proved.
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(a) (b)

Figure 13: The (a) top and (b) bottom of Figure 9(b) (i.e., the 2-cubes seen from above and below,
respectively) both give part of the boundary of a regular neighborhood in R3.

But repeated shifting finishes with the downwards closed maximum class consisting of all ver-
tices in the n-cube with at most d coordinates being one and the remaining coordinates all being
zero. It is easy to see that the corresponding cubical complex C̃ is star-like, that is, contains all the
straight line segments from the origin to any point in C̃. If we choose a regular neighborhood Ñ to
also be star-like, then it is obvious that Ñ is an n-ball, using radial projection. Hence our induction
is complete and we have shown that any d-maximum class in {0,1}n can be represented by a family
of PL hyperplanes in the n-ball.

7.1.4 IDEAL BOUNDARY

To complete the proof of Theorem 32, let ∂N = Sn−1 denote the boundary of the n-ball N con-
structed above (cf. Figure 13). Each PL hyperplane intersects this sphere in a PL hypersphere of
dimension n−2. It remains to show this arrangement of hyperspheres gives the same cubical com-
plex asC, unless n= d+1.

Suppose that n > d+ 1. Then it is easy to see that each cell c in the complement of the PL-
hyperplane arrangement in N has part of its boundary on the ideal boundary ∂N . Let ∂c = ∂c+∪
∂c−, where ∂c+ is the intersection of c with the ideal boundary and ∂c− is the closure of ∂c\∂c+.

It is now straightforward to verify that the face structure of ∂c+ is equivalent to the face structure
of ∂c−. Note that any family of at most d PL hyperplanes meet in a PL ball properly embedded inN .
Since n> d+1, the smallest dimension of such a ball is two, and hence its boundary is connected.
Then ∂c− has faces which are PL balls obtained in this way of dimension varying between n− d
and n−1. Each of these faces has boundary a PL sphere which is a face of ∂c+. So this establishes
a bijection between the faces of ∂c+ and those of ∂c−. It is easy to check that the cubical complexes
corresponding to the PL hyperplanes and to the PL hyperspheres are the same.

Note that if n = d+ 1, then any d-maximum class C ⊆ {0,1}d+1 is obtained by taking all the
d-faces of the (d+1)-cube which contain a particular vertex. SoC is a d-ball and the ideal boundary
of N is a d-sphere. The cubical complex associated with the ideal boundary is the double 2C of
C, that is, two copies of C glued together along their boundaries. The proof of Theorem 32 is now
complete.
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Example 20 Consider the unique bounded below 2-maximum class C̃ ⊆ {0,1}5. We claim that C̃
cannot be realized as an arrangement of PL hyperplanes in the 3-ball B3. Note that our method
gives C̃ as an arrangement in B5 and this example shows that B4 is the best one might hope for in
terms of dimension of the hyperplane arrangement.

For suppose that C̃ could be realized by any PL-hyperplane arrangement in B3. Then clearly
we can also embed C̃ into B3. The vertex v0 = {0}5 has link given by the complete graph K on 5
vertices in C̃. (By link, we mean the intersection of the boundary of a small ball in B3 centered at
v0 with C̃.) But as is well known, K is not planar, that is, cannot be embedded into the plane or
2-sphere. This contradiction shows that no such arrangement is possible.

7.2 Maximum Classes with Manifold Cubical Complexes

We prove a partial converse to Corollary 23: if a d-maximum class has a ball as cubical complex,
then it can always be realized by a simple PL-hyperplane arrangement in Rd .

Theorem 33 Suppose that C ⊆ {0,1}n is a d-maximum class. Then the following properties of C,
considered as a cubical complex, are equivalent:

(i) There is a simple arrangement A of n PL hyperplanes in Rd which represents C.

(ii) C is homeomorphic to the d-ball.

(iii) C is a d-manifold with boundary.

Proof To prove (i) implies (ii), we can use exactly the same argument as Corollary 23. Next (ii)
trivially implies (iii). So it remains to show that (iii) implies (i). The proof proceeds by double
induction on n,d. The initial cases where either d = 1 or n= 1 are very easy.

Assume that C is a manifold. Let p denote the ith coordinate projection. Then p(C) is obtained
by collapsingCi× [0,1] ontoCi, whereCi is the reduction. As before, let Pi be the linear hyperplane
in Rn, where the ith coordinate takes value 1/2. Viewing C as a manifold embedded in the n-
cube, since Pi intersects C transversely, we see that Ci× {1/2} is a proper submanifold of C. But
it is easy to check that collapsing Ci× [0,1] to Ci in C produces a new manifold which is again
homeomorphic toC. (The product regionCi× [0,1] inC can be expanded to a larger product region
Ci× [−ε,1+ε] and so collapsing shrinks the larger region to one of the same homeomorphism type,
namely Ci× [−ε,ε] ). So we conclude that the projection p(C) is also a manifold. By induction on
n, it follows that there is a PL-hyperplane arrangement A, consisting of n−1 PL hyperplanes in Bd ,
which represents p(C).

Next, observe that the reduction Ci can be viewed as a properly embedded submanifold M in
Bd , whereM is a union of some of the (d−1)-dimensional faces of the Voronoi cell decomposition
corresponding to A, described in Corollary 23. By induction on d, we conclude thatCi is also repre-
sented by n PL hyperplanes in Bd−1. But then since condition (i) implies (ii), it follows thatM is PL
homeomorphic to Bd−1, since the underlying cubical complex for Ci is a (d−1)-ball. So it follows
that A∪ {M} is a PL-hyperplane arrangement in Bd representing C. This completes the proof that
condition (iii) implies (i).
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8. Corner Peeling 2-Maximum Classes

We give a separate treatment for the case of 2-maximum classes, since it is simpler than the gen-
eral case and shows by a direct geometric argument, that representation by a simple family of PL
hyperplanes or PL hyperspheres implies a corner-peeling scheme.

Theorem 34 Every 2-maximum class can be corner peeled.

Proof By Theorem 32, we can represent any 2-maximum class C ⊆ {0,1}n by a simple family of
PL hyperspheres {Si} in Sn−1. Every pair of hyperspheres Si,S j intersects in an (n− 3)-sphere Si j
and there are no intersection points between any three of these hyperspheres. Consider the family
of spheres Si j, for i fixed. These are disjoint hyperspheres in Si so we can choose an innermost one
Sik which bounds an (n−2)-ball B1 in Si not containing any other of these spheres. Moreover there
are two balls B2,B3 bounded by Sik on Sk. We call the two (n−1)-balls Q2,Q3 bounded by B1∪B2,
B1∪B3 respectively in Sn−1, which intersect only along B1, quadrants.

Assume B2 is innermost on Sk. Then the quadrant Q2 has both faces B1,B2 innermost. It is easy
to see that such a quadrant corresponds to a corner vertex in C which can be peeled. Moreover,
after peeling, we still have a family of PL hyperspheres which give an arrangement corresponding
to the new peeled class. The only difference is that cell Q2 disappears, by interchanging B1,B2 on
the corresponding spheres Si,Sk and then slightly pulling the faces apart. (If n= 3, we can visualize
a pair of disks on two intersecting spheres with a common boundary circle. Then peeling can be
viewed as moving these two disks until they coincide and then pulling the first past the second). So
it is clear that if we can repeatedly show that a quadrant can be found with two innermost faces,
until all the intersections between the hyperspheres have been removed, then we will have corner
peeled C to a 1-maximum class, that is, a tree. So peeling will be established.

Suppose neither of the two quadrants Q2,Q3 has both faces innermost. Consider Q2 say and let
{Sα} be the family of spheres intersecting the interior of the face B2. Amongst these spheres, there
is clearly at least one Sβ so that the intersection Skβ is innermost on Sk. But then Skβ bounds an
innermost ball B4 in Sk whose interior is disjoint from all the spheres {Sα}. Similarly, we see that
Skβ bounds a ball B5 which is the intersection of the sphere Sβ with the quadrant Q2. We get a new
quadrant bounded by B4∪B5 which is strictly smaller than Q2 and has at least one innermost face.
But clearly this process must terminate—we cannot keep finding smaller and smaller quadrants and
so a smallest one must have both faces innermost.

9. Corner Peeling Finite Maximum Classes

Above, simple PL-hyperplane arrangements in the n-ball Bn are defined. For the purposes of this
section, we study a slightly more general class of arrangements. Every simple arrangement is in
this larger class, but the latter class has many good properties. In Example 23, a maximal class is
represented by a 2-contractible hyperbolic-hyperplane arrangement. By contrast, simple hyperplane
arrangements always represent maximum classes.

Definition 35 Suppose that a finite arrangement P of PL hyperplanes {Pα}, each properly embed-
ded in an n-ball Bn, satisfies the following conditions:
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i. Each k-subcollection of hyperplanes either intersects transversely in a PL plane of dimension
n− k, or has an empty intersection; and

ii. The maximum number of hyperplanes which mutually intersect is d ≤ n.

Then we say that the arrangement P is d-contractible.

The arrangements in Definition 35 are called d-contractible because we prove later that their
corresponding one-inclusion graphs are strongly contractible cubical complexes of dimension d.
Moreover we now prove that the corresponding one-inclusion graphs have VC dimension exactly d.

Lemma 36 The one-inclusion graph Γ corresponding to a d-contractible arrangement P has VC-
dimension d.

Proof We observe first of all, that since P has a subcollection of d hyperplanes which mutually
intersect, the corresponding one-inclusion graph Γ has a d-subcube, when considered as a cubical
complex. But then the VC dimension of Γ is clearly at least d. On the other hand, suppose that
the VC dimension of Γ was greater than d. Then there is a projection of Γ which shatters some
(d+ 1)-cube. But this projection can be viewed as deleting all the hyperplanes of P except for a
subcollection of d+ 1 hyperplanes. However, by assumption, such a collection cannot have any
mutual intersection points. It is easy to see that any such an arrangement has at most 2d+1−1 com-
plementary regions and hence cannot represent the (d+1)-cube. This completes the proof.

Definition 37 A one-inclusion graph Γ is strongly contractible if it is contractible as a cubical
complex and moreover, all reductions and multiple reductions of Γ are also contractible.

Definition 38 The complexity of a PL-hyperplane arrangement P is the lexicographically ordered
pair (r,s), where r is the number of regions in the complement of P , and s is the smallest number of
regions in any half space on one side of an individual hyperplane in P .

We allow several different hyperplanes to be used for a single sweeping process. So a hyperplane
P may start sweeping across an arrangement P . One of the half spaces defined by P can become a
new ball B+ with a new arrangement P+ defined by restriction of P to the half space B+. Then a
second generic hyperplane P′ can start sweeping across this new arrangement P+. This process may
occur several times. It is easy to see that sweeping a single generic hyperplane as in Theorem 29,
applies to such a multi-hyperplane process. Below we show that a suitable multiple sweeping of a
PL-hyperplane arrangement P gives a corner-peeling sequence of all finite maximum classes.

The following states our main theorem.

Theorem 39 Assume that P is a d-contractible PL-hyperplane arrangement in the n-ball Bn. Then
there is a d-corner-peeling scheme for this collection P .

Corollary 40 There is no constant k so that every finite maximal class of VC-dimension d can be
embedded into a maximum class of VC-dimension d+ k.
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P1P2
P3

P4

P5

PArrangement

Ball B

(a)

P1P2
P3

P4

P5

PArrangement     '

B

(b)

Figure 14: (a) An example PL-hyperplane arrangement P and (b) the result of a Pachner move of
hyperplane P4 on P .

Proof By Theorem 39, every maximum class has a peeling scheme which successively removes
vertices from the one-inclusion graph, so that the vertices being discarded never have degree more
than d. But Rubinstein et al. (2007) gave examples of maximal classes of VC-dimension d which
have a core of the one-inclusion graph of size d+ k for any constant k. Recall that a core is a sub-
graph and its size is the minimum degree of all the vertices. Having a peeling scheme gives an upper
bound on the size of any core and so the result follows.

9.1 Proof of Main Theorem

The proof is by induction on the complexity of P . Since we are dealing with the class of d-
contractible PL-hyperplane arrangements, it is easy to see that if any such P is split open along some
fixed hyperplane P1 in the arrangement (see Figures 14–15), then the result is two new arrangements
P+,P− each of which contains fewer hyperplanes and also fewer complementary regions than the
initial one. The new arrangements have smaller complexity than P and are k−,k′-contractible for
some k,k′ ≤ d. This is the key idea of the construction.

To examine this splitting process in detail, first note that each hyperplane Pα of P is either
disjoint from P1 or splits along P1 into two hyperplanes P+

α ,P−α . We can now construct the new
PL-hyperplane arrangements P+,P− in the balls B+,B− obtained by splitting B along P1. Note
that ∂B+ = P1 ∪D+ and ∂B− = P1 ∪D− where D+,D− are balls of dimension n− 1 which have
a common boundary with P1. It is easy to verify that P+,P− satisfy similar hypotheses to the
original arrangement. Observe that the maximum number of mutually intersecting hyperplanes in
P+,P− may decrease relative to this number for P , after the splitting operation. The reason is that
the hyperplane P1 ‘disappears’ after splitting and so if all maximum subcollections of P which
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P2
P3

P4

P5

P2

P3

P4

P5

Ball B–
Ball B+

PArrangement + PArrangement –

Figure 15: Result of splitting P in Figure 14(a) along hyperplane P1.

mutually intersect, all contain P1, then this number is smaller for P+,P− as compared to the initial
arrangement P . This number shows that P+,P− can be k- or k′-contractible, for k,k′ < d as well as
the cases where k,k′ = d.

Start the induction with any arrangement with one hyperplane. This gives two regions and
complexity (2,1). The corresponding graph has one edge and two vertices and obviously can be
corner peeled.

We now describe the inductive step. There are two cases. In the first, assume the arrangement
has complexity (r,1). The corresponding graph has a vertex which belongs to only one edge, so can
be corner peeled. This gives an arrangement with fewer hyperplanes and clearly the complexity has
decreased to (r−1,s) for some s. This completes the inductive step for the first case.

For the second case, assume that all d-contractible hyperplane arrangements with complexity
smaller than (r,s) have corner-peeling sequences and s> 1. Choose any d-contractible hyperplane
arrangement P with complexity (r,s). Select a hyperplane P1 which splits the arrangement into two
smaller arrangements P+,P− in the balls B+,B−. By our definition of complexity, it is easy to see
that however we choose P1, the complexity of each of P+,P− will be less than that of P . However,
a key requirement for the proof will be that we select P1 so that it has precisely s complementary
regions for P+, that is, P1 has fewest complementary regions in one of its halfspaces, amongst all
hyperplanes in the arrangement.

Since P+ has smaller complexity than (r,s), by our inductive hypothesis, it can be corner peeled
(cf. Figure 16). If any of the corner-peeling moves of P+ is a corner-peeling move for P , then
the argument follows. For any corner-peeling move of P gives a PL-hyperplane arrangement with
fewer complementary cells than P and thus smaller complexity than (r,s). Hence by the inductive
hypothesis, it follows that P can be corner peeled.

Next, suppose that no corner-peeling move of P+ is a corner-peeling move for P . In particular,
the first corner-peeling move for P+ must occur for a cell R+ in the complement of P , which is
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Sweep P1
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P4
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P2
P3

P4

P1

Figure 16: Partial corner-peeling sequence for the (B+,P+) arrangement split from the arrangement
of Figure 15, in the proof of Theorem 39.

adjacent to P1. (Clearly any corner-peeling move for P+, which occurs at a region R1 with a face
on D+, will be a corner-peeling move for P .) R+ must be a product of a d′-simplex ∆ with a copy
of Rn−d′ , with one face on P1 and the other faces on planes of P . This is because a corner-peeling
move can only occur at a cell with this type of face structure, as described in Theorem 29. The
corresponding effect on the one-inclusion graph is peeling of a vertex which is a corner of a d′-cube
in the binary class corresponding to the arrangement P+, where d′ ≤ d.

Now even though such a cell R+ does not give a corner-peeling move for P , we can push P1
across R+. The effect of this is to move the complementary cell R+ from B+ to B−. Moreover,
since we assumed that the hyperplane P1 satisfies P+ has a minimum number s of complementary
regions, it follows that the move pushing P1 across R+ produces a new arrangement P ! with smaller
complexity (r,s− 1) than the original arrangement P . Hence by our inductive assumption, P !

admits a corner-peeling sequence.
To complete the proof, we need to show that existence of a corner-peeling sequence for P !

implies that the original arrangement P has at least one corner-peeling move. Recall that R+ has
face structure given by ∆×Rn−d′ , with one face on P1 and the other faces on planes of P . Consider
the subcomplexU of the one-inclusion graph consisting of all the regions sharing a vertex or face of
dimension k for 1≤ k≤ n−1 with R+. It is not difficult to see thatU is a d′-ball consisting of d′+1
cubes, each of dimension d′. (As examples, if d′ = 2, U consists of 3 2-cubes forming a hexagon
and if d′ = 3,U consists of 4 3-cubes with boundary a rhombic dodecahedron.)

Consider the first corner-peeling move on the arrangement P !. Note that the one-inclusion
graphs of P ! and P differ precisely by replacingU withU ′, that is, by a Pachner move. Hence this
first corner-peeling move must occur at a vertex v1 whose degree is affected by this replacement,
since otherwise, the corner-peeling move would also apply to P and the proof would be complete.
In fact, if v1 has the same number of adjacent edges before and after the Pachner move, then it
must belong to the same single maximum dimension cube before and after the Pachner move. (The
only cubes altered by the Pachner move are the ones in U .) It is easy to see that, v1 must belong
to ∂U = ∂U ′ and must have degree d′ in P !. So v1 is a corner of a single d′-cube for U ′ and does
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Pachner v3

v1

v2
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v1

v2

U'

Peel v1

U''

v3 v3
v3v

v2

Peel v2

U'''
v3v

Peel v3

Figure 17: A 2-maximum complex in the 3-cube. After a Pachner move vertices v1,v2,v3, etc. can
be corner-peeled.

not belong to any other edges or cubes of the one inclusion graph for P !. In U (and hence also in
P ), v1 belongs to d′-cubes of dimension d′ and so has degree d′+1. After peeling away v1 and its
corresponding d′-cube, we still have a d′-ball with only d′-cubes, (cf. Figure 17).

Consider the next corner-peeling move. We claim that it must again be at a vertex v2 belonging
to ∂U ′. The reason is that only vertices belonging to U ′ have degree reduced by our first corner-
peeling move. So if this second move did not occur at a vertex of U ′, then it could be used as
a corner-peeling move of our initial arrangement P . There may be several choices for v2. For
example, if d′ = 2, then U ′ is a hexagonal disk and removing one 2-cube from U ′ gives a choice
which could be either of the two vertices which are corners of a single 2-cube inU ′, (cf. Figure 17).
Note that a vertex which is a corner of a single cube in U ′ remains so after corner peeling at v1.
Note also that v2 cannot belong to any edges of the one-inclusion graph which are not inU ′, as for
v1, if v2 can be used for corner peeling.

We can continue examining corner-peeling moves of P ! and find that all must occur at vertices
in ∂U ′, until the unique interior vertex is ready to be peeled, that is, belongs to a single cube. (See
Figure 17.) The key to understanding this is that firstly, when we initially peel only vertices in ∂U ′,
these are not adjacent to any vertices of the one-inclusion graph outside U ′ and so cannot produce
any new opportunities for corner peeling of vertices not inU ′. Secondly, if the unique interior vertex
v of U ′ can be corner peeled, after sufficiently many vertices in ∂U ′ have been peeled, then new
vertices in ∂U ′ become candidates for peeling. For although these latter vertices may be adjacent to
vertices outsideU ′, after v has been peeled, they may become a corner vertex of a unique maximal
cube.

But now a final careful examination of this situation shows that there must be at least one vertex
ofU which belongs to a single d′-cube inU and to no other edges in P . So this will give our initial
corner-peeling move of P .

To elaborate, we can describe U as the set of d′-cubes which share the vertex (0,0, . . . ,0) in
the (d′+ 1)-cube {0,1}d′+1. Then U ′ consists of all the d′-cubes in {0,1}d′+1 which contain the
vertex (1,1, . . . ,1). Now assume that an initial sequence of corner peeling of vertices in ∂U ′ allows
the next step to be corner peeling of the unique interior vertex v. Note that in the notation above, v
corresponds to the vertex (1,1, . . . ,1).
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As in Figure 17, we may assume that after the corner peeling corresponding to the initial se-
quence of vertices in ∂U ′, that there is a single d′-cube left inU ′ containing v. Without loss of gen-
erality, suppose this is the cube with vertices with x1 = 1 where the coordinates are x1,x2, . . . ,xd′+1
in {0,1}d′+1. But then, it follows that there are no vertices outside U ′ adjacent to any of the initial
sequence of vertices, which are all the vertices in {0,1}d′+1 with x1 = 0, except for (0,0, . . . ,0). But
now the vertex (0,1, . . . ,1) has the property that we want - it is contained in a unique d′-cube in U
and is adjacent to no other vertices outsideU . This completes the proof.

9.2 Peeling Classes with Generic Linear or Generic Hyperbolic Arrangements

In this subsection, we study a special class of d-contractible arrangements. If a collection of hyper-
planes in an n-manifold is in general position, then they have the property in the following definition.
Then a key idea in differential or PL topology is that any collection can be slightly perturbed to be
in general position. See Rourke and Sanderson (1982) for a discussion of these issues in the PL
case.

Definition 41 A linear or hyperbolic-hyperplane arrangement P in Rn orHn respectively, is called
generic, if any subcollection of k hyperplanes of P , for 2≤ k ≤ n has the property that there are no
intersection points or the subcollection intersects transversely in a plane of dimension n− k.

Corollary 42 Suppose P is a generic linear or hyperbolic-hyperplane arrangement in Rn or Hn

and amongst all subcollections of P , the largest with an intersection point in common, has d hyper-
planes. Then P admits a d-corner-peeling scheme.

Remark 43 The proof of Corollary 42 is immediate since it is obvious that any generic linear or
hyperbolic-hyperplane arrangement is a d-contractible PL-hyperplane arrangement, where d is the
cardinality of the largest subcollection of hyperplanes which mutually intersect. Note that many
generic linear, hyperbolic or d-contractible PL-hyperplane arrangements do not embed in any sim-
ple linear, hyperbolic or PL-hyperplane arrangement. For if there are two hyperplanes in P which
are disjoint, then this is an obstruction to enlarging the arrangement by adding additional hyper-
planes to obtain a simple arrangement. Hence this shows that Theorem 39 produces compression
schemes, by corner peeling, for a considerably larger class of one-inclusion graphs than just max-
imum one-inclusion graphs. However it seems possible that d-contractible PL hyperplanes always
embed in d-maximum classes, by ‘undoing’ the operation of sweeping and corner peeling, which
pulls apart the hyperplanes.

10. Peeling Infinite Maximum Classes with Finite-Dimensional Arrangements

We seek infinite classes represented by arrangements satisfying the same conditions as above. Note
that any finite subclass of such an infinite class then satisfies these conditions and so can be corner
peeled. Hence any such a finite subclass has a complementary region R which has face structure of
the product of a d′-simplex with a copy of Rn−d′ with one face on the boundary of Bn. To find such
a region in the complement of our infinite collection P , we must impose some conditions.

One convenient condition (cf. the proof of Theorem 39) is that a hyperplane Pα in P can be
found which splits Bn into pieces B+,B− so that one, say B+ gives a new arrangement for which the
maximum number of mutually intersecting hyperplanes is strictly less than that for P . Assume that
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the new arrangement satisfies a similar condition, and we can keep splitting until we get to disjoint
hyperplanes.

It is not hard to prove that such arrangements always have peeling sequences. Moreover the
peeling sequence does give a compression scheme. This sketch establishes the following.

Theorem 44 Suppose that a countably infinite collection P of PL hyperplanes {Pα}, each properly
embedded in an n-ball Bn, satisfies the following conditions:

i. P satisfies the conditions of d-contractible arrangements as in Definition 35 and

ii. There is an ordering of the planes in P so that if we split Bn successively along the planes,
then at each stage, at least one of the two resulting balls has an arrangement with a smaller
maximum number of planes which mutually intersect.

Then there is a d-corner-peeling scheme for P , and this provides a d-unlabeled compression scheme.

Example 21 Rubinstein and Rubinstein (2008) give an example that satisfies the assumptions of
Theorem 44. Namely in Rn choose the positive octant O = {(x1,x2, . . .xn) : xi ≥ 0}. Inside O choose
the collection of hyperplanes given by xi = m for all 1 ≤ i ≤ n and m ≥ 1 a positive integer. There
are many more examples, we present only a very simple model here. Take a graph inside the unit
disk D with a single vertex of degree 3 and the three end vertices on ∂D. Now choose a collection
of disjoint embedded arcs representing hyperplanes with ends on ∂D and meeting one of the edges
of the graph in a single point. We choose finitely many such arcs along two of the graph edges and
an infinite collection along one arc. This gives a very simple family of hyperplanes satisfying the
hypotheses of Theorem 44. Higher dimensional examples with intersecting hyperplanes based on
arbitrary trees can be constructed in a similar manner.

11. Contractibility, Peeling and Arrangements

In this section, we characterize the concept classes which have one-inclusion graphs representable
by d-contractible PL-hyperplane arrangements.

Theorem 45 Assume that C is a concept class in the binary n-cube and d is the largest dimension
of embedded cubes in its one-inclusion graph Γ. The following are equivalent.

i. Γ is a strongly contractible cubical complex.

ii. There is a d-contractible PL-hyperplane arrangement P in an n-ball which represents Γ.

Proof To prove that i implies ii, we use some important ideas in the topology of manifolds. The
cubical complex C is naturally embedded into the binary n-cube, which can be considered as an
n-ball Bn. A regular neighborhood N of C homotopy retracts onto C and so is contractible. Now we
can use a standard argument from algebraic and geometric topology to prove that N is a ball. Firstly,
∂N is simply connected, assuming that n−d > 2. For given a loop in ∂N, it bounds a disk in N by
contractibility. Since C is a d-dimensional complex and n− d > 2 it follows that this disk can be
pushed off C by transversality and then pushed into ∂N. But now we can follow a standard argument
using the solution of the Poincaré conjecture in all dimensions (Perelman, 2002; Freedman, 1982;
Smale, 1961). By duality, it follows that ∂N is a homotopy (n− 1)-sphere and so by the Poincaré
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conjecture, ∂N is an (n−1)-sphere. Another application of the Poincaré conjecture shows that N is
an n-ball.

Next, the bisecting planes of the binary n-cube meet the n-ball N in neighborhoods of reduc-
tions. Hence the assumption that each reduction is contractible enables us to conclude that these
intersections are also PL hyperplanes in N. Therefore the PL-hyperplane arrangement has been
constructed which represents Γ. It is easy to see that this arrangement is indeed d-contractible,
since strong contractibility implies that all multiple reductions are contractible and so intersections
of subfamilies of PL hyperplanes are either empty or are contractible and hence planes, by the same
argument as the previous paragraph. (Note that such intersections correspond to multiple reductions
of Γ.)

Finally to show that ii implies i, by Theorem 39, a d-contractible PL-hyperplane arrangement
P has a peeling sequence and so the corresponding one-inclusion graph Γ is contractible. This fol-
lows since a corner-peeling move can be viewed as a homotopy retraction. But then reductions and
multiple reductions are also represented by d′-contractible hyperplane arrangements, since these
correspond to the restriction of P to the intersection of a finite subfamily of hyperplanes of P . It is
straightforward to check that these new arrangements are d′-contractible, completing the proof.

Remark 46 Note that any one-inclusion graph Γ which satisfies the hypotheses of Theorem 45
admits a corner-peeling sequence. From the proof above, Γ must be contractible if it has a peeling
sequence. However Γ does not have to be strongly contractible. A simple example can be found
in the binary 3-cube, with coordinate directions x,y,z. Define Γ to be the union of four edges,
labeled x,y,z,x. It is easy to see that Γ has a peeling sequence and is contractible but not strongly
contractible. For the bisecting hyperplane transverse to the x direction meets Γ in two points, so the
reduction Γx is a pair of vertices, which is not contractible.

Note that all maximum classes are strongly contractible, as are also all linear and hyperbolic
arrangements, by Corollary 42 and Theorem 45.

12. Future Directions: Compression Schemes for Maximal Classes

In this section, we compare two maximal classes of VC-dimension 2 in the binary 4-cube. For the
first, we show that the one-inclusion graph is not contractible and therefore there is no peeling or
corner-peeling scheme. There is an unlabeled compression scheme, but this is not associated with
either peeling or a hyperplane arrangement. For the second, the one-inclusion graph is contractible
but not strongly contractible. However there are simple corner-peeling schemes and a related com-
pression scheme. Note that the relation between the compression scheme and the corner-peeling
scheme is not as straightforward as in our main result above. Finally for the second example, there
is a non simple hyperplane arrangement consisting of lines in the hyperbolic plane which represents
the class. It would be interesting to know if there are many maximal classes which admit such non
simple representations and if there is a general procedure to find associated compression schemes.

Example 22 Let C be the maximal class of VC-dimension 2 in the 4-cube with concepts and labels
shown in Figure 18(a). This forms an unlabeled compression scheme. Note that the one-inclusion
graph is not connected, consisting of four 2-cubes with common vertex at the origin 0000 and an
isolated vertex at 1111. So since a contractible complex is connected, the one-inclusion graph
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Concept Label
0000 /0
1000 x1
0100 x2
0010 x3
0001 x4
1100 x1x2
0011 x3x4
0110 x2x3
1001 x1x4
1111 x1x3, x2x4

(a)

Concept Label
0000 /0
1000 x1
0100 x2
0010 x3
1100 x1x2
0110 x2x3
1010 x1x3
1011 x2x4
1101 x3x4
0111 x1x4

(b)

Figure 18: VC-2 maximal classes from (a) Example 22 and (b) Example 23.

cannot be contractible. Moreover any hyperplane arrangement represents a connected complex so
there cannot be such an arrangement for this example. This example is the same class (up to flipping
coordinate labels) as in Kuzmin and Warmuth (2007, Table 2) but there appear to be some errors
there in describing the compression scheme.

Example 23 Let C be the maximal class of VC-dimension 2 in the 4-cube with concepts and labels
defined in Figure 18(b). The class is enlarged by adding an extra vertex 1111 x4 to complete the
labeling.

This forms an unlabeled compression scheme and is the same as in Kuzmin and Warmuth (2007,
Table 1). The one-inclusion graph is contractible, consisting of three 2-cubes with common vertex
0100 and three edges attached to these 2-cubes. It is easy to form a hyperbolic-line arrangement
consisting of three lines meeting in three points forming a triangle and three further lines near the
boundary of the hyperbolic plane which do not meet any other line.

It is easy to see that there is a corner-peeling sequence, but there is not such an obvious way
of using this to form a compression scheme. The idea is that the label x1x4 comes from picking
the origin at 0000 and considering the shortest path to the origin as giving the label. There are
numerous ways of corner peeling this one-inclusion complex. The only other comment is that the
final vertices 0111, 1011, 1101 and 1111 are labeled in a different manner. Namely putting the
origin at 0000 means that 0111 has shortest path with label x2x3x4. We replace this by the label x1x4
since clearly this satisfies the no-clashing condition. Then the final vertex 1111 has the remaining
label x4 to uniquely specify it.

13. Conclusions and Open Problems

We saw in Corollary 23 that d-maximum classes represented by simple linear-hyperplane arrange-
ments in Rd have underlying cubical complexes that are homeomorphic to a d-ball. Hence the VC
dimension and the dimension of the cubical complex are the same. Moreover in Theorem 33, we
proved that d-maximum classes represented by PL-hyperplane arrangements in Rd are those whose
underlying cubical complexes are manifolds or equivalently d-balls.
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Question 47 Does every simple PL-hyperplane arrangement in Bd, where every subcollection of
d planes transversely meet in a point, represent the same concept class as some simple linear-
hyperplane arrangement?

Question 48 What is the connection between the VC dimension of a maximum class induced by
a simple hyperbolic-hyperplane arrangement and the smallest dimension of hyperbolic space con-
taining such an arrangement? In particular, can the hyperbolic space dimension be chosen to only
depend on the VC dimension and not the dimension of the binary cube containing the class?

We gave an example of a 2-maximum class in the 5-cube that cannot be realized as a hyperbolic-
hyperplane arrangement inH 3. Note that the Whitney embedding theorem (Rourke and Sanderson,
1982) proves that any cubical complex of dimension d embeds in R2d . Can such an embedding be
used to construct a hyperbolic arrangement in H 2d or a PL arrangement in R2d?

The structure of the boundary of a maximum class is strongly related to corner peeling. For
Euclidean-hyperplane arrangements, the boundary of the corresponding maximum class is homeo-
morphic to a sphere by Corollaries 22 and 23.

Question 49 Is there a characterization of the cubical complexes that can occur as the boundary
of a maximum class? Characterize maximum classes with isomorphic boundaries.

Question 50 Does a corner-peeling scheme exist with corner vertex sequence having minimum
degree?

Theorem 32 suggests the following.

Question 51 Can any d-maximum class in {0,1}n be represented by a simple arrangement of hy-
perplanes in Hn?

Question 52 Which compression schemes arise from sweeping across simple hyperbolic-hyperplane
arrangements?

Kuzmin and Warmuth (2007) note that there are unlabeled compression schemes that are cyclic.
In Proposition 17 we show that corner-peeling compression schemes (like min-peeling) are acyclic.
So compression schemes arising from sweeping across simple arrangements of hyperplanes in
Euclidean or hyperbolic space are also acyclic. Does acyclicity characterize such compression
schemes?

We have established peeling of all finite maximum and a family of infinite maximum classes by
representing them as PL-hyperplane arrangements and sweeping by multiple generic hyperplanes.
A larger class of arrangements has these properties—namely those which are d-contractible—and
we have shown that the corresponding one-inclusion graphs are precisely the strongly contractible
ones. Finally we have established that there are d-maximal classes that cannot be embedded in any
(d+ k)-maximum classes for any constant k. Some important open problems along these lines are
the following.

Question 53 Prove peeling of maximum classes using purely combinatorial arguments
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Question 54 Can all maximal classes be peeled by representing them by hyperplane arrangements
and then using a sweeping technique (potentially solving the Sample Compressibility conjecture)?
The obvious candidate for this approach is to use d-contractible PL-hyperplane arrangements.

Question 55 What about more general collections of infinite maximum classes, or infinite arrange-
ments?

Question 56 Is it true that any d-contractible PL-hyperplane arrangement is equivalent to a hyperbolic-
hyperplane arrangement?

Question 57 Is it true that all strongly contractible classes, with largest dimension d of cubes can
be embedded in maximum classes of VC-dimension d?
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